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Nonparametric Estimation of Conditional Expectations for Sustainability 
Analyses

Abstract
Optimal forecasts are, under a squared error loss, conditional expectations of the unknown future values 
of interest. When stochastic demographic models are used in macroeconomic analyses, it becomes im-
portant to be able to handle updated forecasts. That is, when population development turns out to differ 
from the expected one, the decision makers in the macroeconomic models may change their behavior. To 
allow for this, numerical methods have been developed that allow us to approximate how future forecasts 
might look like, for any given observed path. Some technical details of how this can be done in the R en-
vironment are given.

Key words: Demography, forecasting, overlapping generations
 
 
 
 
Kestävyysanalyyseissä tarvittavien ehdollisten odotusarvojen laskenta 
epäparametrisillä menetelmillä

Tiivistelmä
Pienintä neliövirhettä vastaavat optimaaliset ennusteet ovat odotusarvoja. Kun stokastisia demografisia 
malleja käytetään makroekonomisissa kestävyystarkasteluissa, on tärkeää voida käsitellä sellaisia tilantei-
ta, joissa päätöksentekijät muuttavat käytöstään uuden informaation tullessa tietoon. Käytännössä tämä 
tarkoittaa päivittyvien ennusteiden laskentaa. Kirjoituksessa käsitellään lähestymistapoja, joita voidaan R-
ympäristössä käyttää tarvittavien ehdollisten odotusarvojen laskennassa.

Asiasanat: Väestötiede, ennustaminen, sukupolvimalli
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1 Introduction
In the analysis of fiscal sustainability, decisions concerning current and future
labor demand and supply depend on population forecasts, as they tell us what
the future potential labor supply in different ages will be. When population
development deviates from the forecast, the decision makers might like to
adjust their decisions using an updated forecast. The calculations described
in this paper are needed in the modeling of the behavior of an economy in
which such adjustments do occur.

This topic is closely related to the literature on forecast updating in time-
series analysis (e.g., Box and Jenkins (1976), p. 164). However, those dis-
cussions typically assume that a well-identified model is available. Then,
the required conditional expectations of future values can be derived either
analytically, or by iterative numerical methods.

In our applications this is not the case. Instead, a recursive equation for
the renewal of the population vector is used repeatedly based on simulated
values of the future vital rates (of fertility, mortality, and migration). This
produces a numerical approximation for the predictive distribution of the
future population vector for lead times of interest. The question we ask in
this paper is, how can one best use the simulated counts to estimate the
future expected values of the population counts, conditionally on how the
population has evolved earlier? A more detailed exposition of the relevance
of the setting is given in Alho (2014).

In an Appendix we give some R scripts that can be used to implement
the proposed procedures. In the practical applications we will consider, the
program PEP (Program for Error Propagation) has been used to generate
the random population counts.

2 Cohorts as Overlapping Generations
In the so-called overlapping generations (OLG) model decision makers con-
sider the consumption and saving behavior of all current and future birth
cohorts. For example, in the Finnish Overlapping Generations (FOG) model
of Lassila, Palm and Valkonen (1997), there is a profit-maximizing firm that
pays wages to labor force. In return, the labor force agrees to work to finance
consumption. The price of labor depends on the size of working age cohorts.
Thus, the optimal labor supply, wages, and consumption decisions of all cur-
rently living and future cohorts are interlinked. In the traditional approach,
the future population evolution is assumed to follow the best estimate path,
and the wages, labor supply, and consumption are optimized for all current

1



ETLA Raportit – ETLA Reports     No 244

and future cohorts in a single step.
In Alho et al. (2008) several applications of OLG models are given, in

which stochastic population evolution is allowed. This is accomplished by
repeatedly generating sample paths representing alternative future develop-
ments of the population. If the OLG model is solved path by path, this
would be equivalent to assuming that the decision makers possess the gift of
perfect foresight. A more realistic approach is to assume that the decision
makers revise their decisions as it becomes obvious that the population has
evolved differently from the expected path (cf. Alho and Määttänen (2008)).

3 Linear Growth Model for Population
Let V(t) = (V(0, t)T , . . . ,V(ω, t)T )T represent the population in the begin-
ning of year t, where the vectors V(x, t) have the numbers of females and
males in ages x = 0, . . . , ω. The population one year later can be written in
the form

V(t+ 1) = R(t)V(t) +N(t), (1)

where R(t) = (R(x, y, t)) is a matrix of (ω+1)× (ω+1) blocks, and N(t) is
a vector of the same form as V(t) that contains the net number of migrants
surviving to the beginning of year t + 1. The first column of the matrices
R(x, 0, t) contains the expected numbers of girls and boys born per woman
in child bearing ages, say, x = 15, . . . , 49. The second column is zero. The
subdiagonal blocks R(x+1, x, t) contain survival probabilities from age x to
age x+1, and R(ω, ω, t) contains probabilities of survival in the open-ended
highest age, for example ω = 100+. Other blocks are zero (Alho and Spencer
(2005), pp. 180-183).

When population renewal is stochastic, the matrices R(t) and the vectors
N(t) are random.

4 Nonparametric Estimation of Conditional Ex-
pectations

4.1 Using a Neighborhood Average

Let Y(t,H) denote a vector of all population counts during years t, . . . , H
(in some order). The predictive distribution of such vectors is assumed to
be continuous but its exact form, while fully specified by (1), is, in practice,
only known up to the accuracy of simulations. The probability of any sample
path is zero, or P (Y(0, T ) = y(0, T )) = 0 for any y(0, T ). Therefore, the

2
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conditional expectation E[Y(T + 1, H) | Y(0, T ) = y(0, T )] cannot be esti-
mated based on the simulations, as in any finite (or even countably infinite)
set of simulations, there is, with probability one, only one path that has the
beginning y(0, T ).

A way out can be based on the approximation

E[Y(T + 1, H) | Y(0, T ) = y(0, T )]

≈ E[Y(T + 1, H) | Y(0, T ) ∈ U(y(0, T ), c)],
(2)

where U(y(0, T ), c) = {y | d(y − y(0, T )) < c} and d is some metric. The
approximation becomes an identity as c ↓ 0, but for any c > 0 the estimate
is typically biased.

Our proposed approach is based on the following. Suppose we have N
samples taken from the predictive distribution of Y(1, L) that we wish to
use for a sustainability analysis. We will then take N ′ >> N supplementary
samples from the same distribution.1 These will be used to compute the
neighborhood averages.

To develop some intuition, consider scalar-valued Y1 and Y2. Suppose that
these are related linearly Y2 = a + bY1 + ε, where E[ε | Y1] = 0 and V ar(ε |
Y1) = σ2. Pick some c > 0 and a value y1, and write P (Y1 ∈ U(y1, c)) = δ,
where d(y−y1) ≡| y−y1 |< c. Suppose we have a sample of size N ′ available
from the distribution of (Y1, Y2). Then, the bias of the estimate is

E[Y2 | Y1 ∈ U(y1, c)]− E[Y2 | Y1 = y1] = b(E[Y1 | Y1 ∈ U(y1, c)]− y1). (3)

This depends on b and the bias in the sampling of Y1 values. To see how
this works, suppose that the density is linear in the neighborhood, f(y) =
κ0 + κ1(y − y1), so that f(y1) = κ0 and f ′(y1) = κ1, and where κ0 ≥ c | κ1 |.
Then, setting P (Y1 ∈ [y1 − c, y1 + c]) = δ, we get that 2κ0c = δ, and
E[Y1 | Y1 ∈ [y1 − c, y1 + c]] = y1 + κ1c

2/3κ0. This shows that the bias
vanishes as c ↓ 0, but we also see that the steeper the tangent line, the larger
the bias.

The mean squared error of the estimator of the conditional expectation
has also a variance component. Suppose for simplicity that the error term
ε is independent of Y1. If the number of sample points falling in the neigh-
borhood is n, then the variance of the sample mean is σ2/n. A first order
approximation for the unconditional variance is σ2/E[n]. This shows that
if one wishes to reduce the bias by taking c small, one has to pay for that
in terms of small expected sample E[n] = N ′δ and correspondingly larger
random error.

1In practice, this is accomplished by running the recursion (1) a total of N +N ′ times
for different sets of demographic rates.
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Continuing with the assumption that the density is linear in the neigh-
borhood, note that δ depends on y1 and c. Suppose we fix the value of δ first,
and determine c so that P (Y1 ∈ [y1− c, y1+ c]) = δ is true for all values of y1
and c. Under the linear case, this is accomplished by taking c = δ/2κ0. This
would guarantee that around each target value of interest y1 the expected
number of samples would be E[n] = δN ′, where N ′ is the number of supple-
mentary samples. A simple alternative is that one fixes n = δN ′, and lets c
vary freely.
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Figure 1: Bias of the Kernel Estimator at Quantiles of the Stan-
dard Normal Distribution (Target Values) Corresponding to Probabilities
0.005, 0.010, . . . , 0.500 for h = 0.02 (dashed), h = 0.05 (dotted), h = 0.10
(dash-dotted) and h = +∞ (solid).

Example 1. In Figure 1, we assume that f(y) = exp(−y2/2)/
√
2π, i.e.,

it is the density of the standard normal distribution. We consider the mean
of the sampled y values, around y1 values that correspond to quantiles for
probabilities = 0.005, 0.010, . . . , 0.500 (the results for larger quantiles are
symmetric). We take N ′ = 10, 000, δ = 0.01 and c = δ/2κ0, so each neigh-
borhood U(y1, c) is expected to have 100 supplementary samples. The values
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of y1 increase from -2.58 to 0, and correspondingly the neighborhood radiuses
decrease from 0.346 to 0.0125, first rapidly, and then leveling off. The bias
using a local linear approximation to the normal density is given by the solid
line. We see that up to two standard deviations, the theoretical bias is <
0.0075. While the bias seems small, less than 0.5 % of the target value y1
that we find on the horizontal axis, one can reduce the bias further.

4.2 Nearest Neighbor Approach

An alternative to using an average over a neighborhood are the nearest neigh-
bor estimators that use some form of weighted averaging. Let us write
E[Y2 | Y1 = y1] = g(y1), where we can identify Y1 = Y(0, T ) and
Y2 = Y(T + 1, h). Then we have the model

Y2 = g(y1) + ε(y1), (4)

where E[ε(y1)] = 0. The function g is smooth, because the population
renewal model (1) has derivatives of all orders. Suppose that we wish to esti-
mate the conditional expectation g(y1) and we have the sample (y1i,y2i), i =
1, 2, . . . , n from the joint distribution of (Y1,Y2). An n-nearest neighbor es-
timator would be

ĝ(y1) =
n∑

i=1

y2iK(y1 − y1i)/
n∑

i=1

K(y1 − y1i), (5)

where the kernel K is some unimodal probability density symmetric around
the origin, and the sum is extended over those sample points with the n
smallest distances d(y1i − y1). To illustrate this approach, we return to the
example of the previous section.

Example 2. Continuing with Example 1, we note that the most widely
used kernel is the Gaussian, with K(x) = exp(−x2/2h2)/

√
2πh (cf., Silver-

man (1998)). Then, the bias caused by having to use of a biased sample of
y1i’s equals

B(y1) =
n∑

i=1

E[Y2iK(y1 − Y1i)/
n∑

i=1

K(y1 − Y1i)]− y1. (6)

As above, this effect is further multiplied by b. If we choose the bandwidth
roughly as h ∼ c, then the nonparameteric estimate would be approximately
a weighted average of the points in the neighborhood U(y1, c). The radiuses
c range in this example approximately from 0.0125 to 0.346. Recall that
as we use a standard normal distribution as our model of Y1’s, the radiuses
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can be interpreted as going from 1.25 % to 34.6 % of the standard deviation
with the largest value at the tails. In Figure 1, we illustrate the bias for
h = 0.02, 0.05, 0.10. The finding is clear, the smaller h is, the smaller is the
bias.

4.3 Bias-Variance Trade-off

The nearest neighbor estimator is biased, but the bias is expected to be small,
except at extreme tails of the density that have a very small probability.
Moreover, as shown by Figure 1, even at the tails the bias can be made
small by selecting small values for the scale parameter. The downside is
that the effective sample size is reduced. To get an idea of what this could
mean in practice, let us write for the (random) weights in formula (5) as
wi ≡ K(y1−Y1i)/

∑n
i=1 K(y1−Y1i), for short. If we condition on the observed

values Y1i, and assume that the error terms ε are independent of them, with
V ar(εi) = σ2, then, the variance of the kernel estimate is

σ2

n∑
i=1

w2
i . (7)

In case the weights are all equal, or wi ≡ 1/n, then the variance is simply
the usual variance of the sample mean σ2/n. However, when the weights are
not constant, the variance increases.

Example 3. Using the Gaussian kernel of Example 2, we find that the
expected value of the sum in (6) is,

I(h) ≡
n∑

i=1

(e−z2i /2h
2

)2/(
n∑

i=1

e−z2i /2h
2

)2, (8)

where the summation is over the n = 100 nearest neighbors of y1. Com-
plementing the bias results of Examples 1 and 2, we can now calculate the
inflation factor I(h) for h = 0.02, 0.05, 0.10. In Figure 2 these values are com-
pared to I(+∞) = 1/n = 0.01 that corresponds to simple random sampling.
The interpretation is that e.g. for h = 0.02 and y1 = −2.0 the sampling
variance of the kernel estimator is approximately 5 times as large as that
of the unweighted neighborhood average. As expected, we see the reverse
order, as compared to Figure 1. The small values of h that are so successful
in reducing the bias, now lead to inordinate increases in sampling variability.
For comparison with the results of the previous examples, we may set σ = 1.
This corresponds to a random walk model where a = 0, b = 1, and Y1 is the
first observation and Y2 is the second. It seems that qualitatively the larger

6
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Figure 2: Variance Inflation Factor of the Kernel Estimator at Quantiles of
the Standard Normal Distribution (Target Values) Corresponding to Prob-
abilities 0.005, 0.010, . . . , 0.500 for h = 0.02 (dashed), h = 0.05 (dotted),
h = 0.10 (dash-dotted) and h = +∞ (solid).

issue is the variance inflation rather than the bias. In fact, in the compu-
tation of the root mean squared error the bias estimates of Figure 1 will be
squared before adding to the variances of Figure 2, so they are an order of
magnitude smaller. This is confirmed by Figure 3 that gives the root mean
squared errors for different target values. In any case, a compromise between
bias and sampling variability may be sought. For these particular data the
optimal weights would be in the neighborhood 0.05 < h < 0.10.

4.4 Repeated Conditional Expectations

The previous example already alluded to the aspect that we have so far ig-
nored. That is, the updating of the conditional expectation is carried out
repeatedly. Here, two aspects seem relevant. First, several aspects of the
recursive process of population renewal are non-Markovian, and we would
like to account for this possibility. The second aspect is the non-stationary
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Figure 3: Root Mean Squared Error of the Kernel Estimator at Quantiles of
the Standard Normal Distribution (Target Values) Corresponding to Prob-
abilities 0.005, 0.010, . . . , 0.500 for h = 0.02 (dashed), h = 0.05 (dotted),
h = 0.10 (dash-dotted) and h = +∞ (solid).

nature of the renewal process. In non-stationary processes we would typically
see some sample paths that would systematically deviate from the expected.
For such sample paths, forecast errors would be expected to be large, but
our computational methods should not exaggerate the errors unnecessarily.
Therefore, we would like to make our procedures robust against errors incur-
ring for such paths.

To study this, we will expand the setting of Examples 1 and 2 to include
several updates. Suppose Xi ∼ N(0, 1), i = 1, 2, . . . , L are independent, and
define first Y1 = X1, and then recursively Yt = Yt−1 + Xt for t = 2, . . . , L.
In other words, the variables Yt are observations of a standard Brownian
motion at t = 1, 2, . . . , L. It follows that Yt ∼ N(0, t) so that the best
forecast is initially Ŷt = 0. A particularly difficult case for the nonparametric
estimation is that the target sample path deviates increasingly from 0, for
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example yt = B
√
t for some constant B. 2 Under the Brownian motion

model the best forecast for future values Yt+k at time t would then be the
current value B

√
t. In this case the true underlying process is normal and

Markovian, but in our real applications neither property would hold exactly,
so potentially the whole history up to time t might be informative.

One way to take this into account is by by taking, at time t = 1 a larger
sample, say of size N ′

1, consisting of those sample paths whose values at t = 1
are closest to y1, and then at time t = 2 leaving out some sample paths that
are furthest from y2 etc. In this manner we would have a nested sequence
of subsets of sizes N ′

1 > N ′
2 > . . . > N ′

L−1. Suppose that at each time t we
would use the neighborhood average to compute the conditional expectations
of future values based on the subset then remaining. If the target sample path
would have a very high likelihood in the beginning, the gradual depletion of
the sample would be wasteful, but on the other hand, if the target sample
path would be of the type envisioned in the previous paragraph, the influence
of far away points need to be reduced. Yet, some simple calculations suggest
that simply depleting the neighborhoods is not the preferred way to go.

Consider the path yt = B
√
t, for example. Let the first value be y1 =

B
√
1 = B. Choose 0 < δ < 1 and out of the supplementary samples se-

lect those δN ′ sample paths whose value at t = 1 is closest to B. Their
average would have some bias, as discussed in Examples 1 and 2, but this
would be small. However, at time t = 2 the value of the target process
would be B

√
2 and at this point the average of the original sample for future

times t = 3, . . . , L would continue to be B. This could not be considered as
an acceptable numerical approximation for the conditional expectation as it
would ignore the knowledge that the process is currently at B

√
2. Suppose

for definiteness that B < 0. Then, one would wish to remove some of the
sample paths with the largest values at t = 2, so as to correct for the bias.

More generally, consider any t = 2, . . . , L−1. To reduce bias, with B < 0
we would want to eliminate all values beyond a threshold at Qs such that

∫ Qs

−∞

z√
2π

e−z2/2dz = B
√
s

∫ Qs

−∞

1√
2π

e−z2/2dz (9)

for s = 1, . . . , t. Under this procedure the conditional expectation of the
remaining sample would equal the target value B

√
t. Such threshold values

obviously depend on B. The values of Qt are a bit difficult to assess directly.
However, we can translate them into probability terms by giving the fraction
of the original data that are to be excluded at each time t. Equivalently, we

2This choice is not a "typical" Brownian motion path, but it is chosen here for numerical
convenience.

9
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consider the fraction remaining out of the original sample. The analytical
evaluation of (9) becomes messy as the process is iterated for s = 1, . . . , t,
but simulation can be used. Based on 100,000 simulated random walks we
estimate that at t = 1 the fraction remaining is approximately 0.70, 0.38,
0.17, 0.06, and 0.02 for B = 0.5, 1.0, 1.5, 2.0, 2.5. Complementing these esti-
mates Figure 4 shows how the fraction remaining in the sample, as compared
to the sample remaining at t = 1 declines for t = 1, 2 . . . , 50. We see that
the patterns of decline is very similar, but as the sample sizes themselves
depend radically on B at t = 1 already, the actual remaining sample sizes
have different orders of magnitude.
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Figure 4: Fraction of the Sample Remaining As a Function of Update
Year for Path yt = B

√
t, from Top to Bottom Corresponding to B =

0.5, 1.0, 1.5, 2.0, 2.5; the Graph for B = 1.0 is Solid.

The general finding is that the requirement of unbiasedness can lead to a
very rapidly depleting sample size for paths that veer systematically off the
target. This suggests that instead of reducing the size of the neighborhood,
it is preferable to keep the neighborhood that is initially selected, but use
changing weights for different lead times to reduce the bias. At the same

10
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time, we have to watch out for schemes that lead to a too rapidly declining
effective sample sizes.

4.5 Practical Implementation of Non-parametric Esti-
mation for Population Renewal Problems

All our illustrations have been made in the scalar valued setting, to see what
happens when the details are fully known. However, in our applications the
setting is potentially a very high-dimensional one. If population is given by
single years of age (say, x = 0, 1, . . . , 100), and there are H future years of
interest, then the vector of future values for which a conditional expectation
is desired has dimension 2 × 101 × H. The components of the vector are
statistically dependent via the renewal equations and the the correlatedness
of the mortality and fertility rates and the net-migration numbers.

4.6 Forecasting Increments

A practical aspect is the starting value of the updated conditional expectation
calculations. Continuing with the notation of the previous discussion, sup-
pose the population at the time of the update is denoted by y1, the simulated
values for the population in the (χ2-distance) neighborhood are Y1i, i, . . . , n,
and suppose the simulated population counts for some later year are noted as
Y2i, i = 1, . . . , n. Then, it seems natural to base the conditional expectation
on the latest observed value, and use the supplementary paths to provide the
increments, so the updated forecast for the later time point would be

Ŷ2 = y1 +
1

n

n∑
i=1

(Y2i −Y1i) (10)

This has the advantage that it eliminates the jump-off error.

4.7 Choosing a Metric for Weighting

Based on the considerations of Section 4.4 we will keep the neighborhood
as fixed, after it has first been chosen, but allow weights to adapt within
the neighborhood, as more is learned with increasing lead times. After some
experimentation the following heuristic approach was developed for the n-
nearest neighbor estimation.

First, distance between a given target count V(t) and the corresponding
supplementary samples Vi(t), i = 1, . . . , N ′ we have used the so-called χ2-
distance

Di(t) ≡ (V(t)−Vi(t))
TD(V(t))−1(V(t)−Vi(t)), (11)

11
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where D(V(t)) is a diagonal matrix with diagonal elements V(t). This mea-
sure controls relative error. 3

Second, at first update year T = 1 a neighborhood of size n of the given
sample path was chosen with the smallest distances Di(1). This subset of
supplementary sample paths was kept fixed in forecast updates at T > 1, but,
reweighted each year. For convenience, we index the neighborhood paths by
i = 1, . . . , n.

Third, given the rapid increase of variability, the Di(t) tended to increase
rapidly with t. To make the values comparable for different t, we computed
each year med(t) = the median of Di(t), i = 1, . . . , n, and used Di(t)/med(t)
as the measure of distance. The reweighting involved two parameters u > 0
and 0 < q ≤ 1 so that the kernel function evaluated for sample path i during
update year T was Ki(T ) ≡ exp(−uq1−TDi(T )/med(T )). The intuition is
that u gives the average level of decay for the weights, and q determines how
rapidly the decay should increase with T .

Under this formulation, the nonparametric regressions depended on the
parameters θ ≡ (n, u, q), where n/N ′ can be interpreted as the δ of Section
4.1. Alho (2014) discusses further, how cross validation can be used to select
the parameters. Very briefly, a systematic grid search can be performed to
find a parameter combination that reduces the distance between n-nearest
neighbor estimator and the (known) target value. This proved to be quite
time consuming.

We have written short scripts in R (http://CRAN.R-project.org) that
provide a simple illustration of how the preceding approach can be numeri-
cally implemented. This is described in the Appendix.
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A Appendix. Directions for the Use of FPATH
Commands Given as R Scripts with PEP
output

R-version of FPATH programs uses files created by programs PEP and COM-
BINE as input. It produces numerical estimates of conditional forecasts for
future population for target sample paths. These are given as text files.

To use the FPATH programs, do the following. (The directions are tai-
lored for use in Windows.)

0. Create a folder D:\fin09 (change the name to whatever you wish to
use).

1. Produce a forecast for Finland with jump-off time January 1, 2009,
for years 2010-2060 (i.e. 51 forecast years), using PEP, with output in the
folder D:\fin09. After the run, aggregated files for ages 0-4, 5-9, ..., 105+,
both sexes combined, are assumed to exist. I.e., there are 22 age-groups, and
the number of sample paths is 9,300. The first 300 are the target paths, and
the remaining 9,000 are used to form the neighborhood samples. File names
are of the form D:\fin09\Pxxxx_0.C1, D:\fin09\Yyy_0.C1.

2. Start R. Copy the text in file fpath-input.txt, and paste it into R.
This file is given below. This sets up the necessary input data, but does not

13
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calculate anything. Save the workspace (from the pull-down menu File of R)
into file D:\fin09\f09.RData. (Exit R at this point if you like.)

3. (If you exited, start R again by clicking on the icon of file D:\fin09\f09.RData.)
Copy the text in file fpath-output.txt, and paste it into R. This produces
FPATH output in the form of text files D:\fin09\Fzzz_0.DAT. There will be
300 such files.

4. The files D:\fin09\Fyyy_0.DAT have 22 columns, one for each age
group. There are a total of 55 lines. These form 10 blocks: the first has 10
lines, the second 9 lines,..., the tenth has 1 line.

The first block differs from the rest. The first line has the point forecast
for 2014, the second for 2019,..., the tenth has the point forecast for 2059.
These are taken directly from the file D:\fin09\P0_0.C1, lines 5, 10, 15,...,50,
and they are identical for all files D:\fin09\Fzzz_0.DAT. The remaining lines
differ according to sample path to which the file corresponds.

The first line of second block gives the conditional forecast for year 2019
given that data of 2014 have been observed, the second line of second block
gives the conditional forecast for 2024 given that data of 2014 have been
observed,..., the ninth line of second block gives the conditional forecast of
2059 given that data of 2014 have been observed. These, and subsequent
values are computed from files D:\fin09\Yyy_0.C1.

The eight lines of third block give conditional forecasts for 2024, 2029,...,
2059, given that data of 2019 have been observed.

Similarly, for the other blocks, so that the one line of tenth block gives a
conditional forecast for 2059 given that data of 2054 have been observed.

5. The intended use of the FPATH output files. The Decision Makers of
the OLG model are assumed, first to make a lifetime plan in the beginning
of 2009, based on the point forecast that is given by the ten lines of the
first block, for 2014-2059, for each of the three hundred sample paths. These
plans are identical. After the population evolution until the beginning of
2014 becomes known, the Decision Makers will change their plan according
to what now seems optimal, in view of the conditional forecast given in the
second block for 2019-2059.

6. FPATH calculations have not been extensively tested, nor have the
calculations of the conditional expectations been optimized. The latter in-
volves a study of how the subset of paths is best chosen for these calculations,
for each path. In this example, 350 paths are chosen at first step based on
a Chi-squared distance. The nearest neighbor kernel estimator involves two
parameters that regulate the weights at different lead times.

14
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A.1 fpath-input

#fpath-input.txt
#compute conditional expectations from PEP-output
#n = number of output paths and conditional forecast files
#N = number of files available for the computation of conditional expecta-
tions
#S = pick every Sth year
#J = number of age-groups
#ne = number of vector paths that form the neighborhood of the output
path
#fy = number of forecast years in the source forecast produced with PEP
n<-300
N<-9000
S<-5
T<-10
J<-22
ne<-100
fy<-51
#a is used for the computation of distances
a<-as.vector(rep(1,N))
#end and beginning rows of blocks in output files
e<-cumsum(T:1)
st<-c(0,e[c(1:T-1)])+1
#addresses of files for input and output
os1<-"D:\\fin09\\P0_0.C1"
os2<-paste("D:\\fin09\\P",1:n,"_0.C1",sep="")
os3<-paste("D:\\fin09\\Y",1:T*S,"_0.C1",sep="")
os4<-paste("D:\\fin09\\F",1:n,"_0.DAT",sep="")
#read in the point forecast into p0
p0<-matrix(rep(0,fy*J),ncol=J)
p0<-as.matrix(read.fwf(file=os1,widths=rep(10,J),skip=1))
#read in the target sample paths into ps
ps<-array(rep(0,fy*J*n),dim=c(fy,J,n))
for (k in 1:n) {
ps[„k]<-as.matrix(read.fwf(file=os2[k],widths=rep(10,J),skip=1))
}
#read in the annual files for the computation of the conditional expectations
Y<-array(rep(0,N*J*T),dim=c(N,J,T))
for (k in 1:T)
Y[„k]<-as.matrix(read.fwf(file=os3[k],widths=rep(10,J),skip=n+1))
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}

A.2 fpath-output

#fpath-output.txt
#compute conditional expectations from PEP-output
#ASSUMES that fpath-input has been run and the results saved to an
.RData file,
#such as f09.RData
#The following parameters were set:
#n = number of target paths and conditional forecast files
#N = number of files available for the computation of conditional expecta-
tions
#S = pick every Sth year
#T = number of forecast update years are required
#J = number of age-groups
#ne = number of vectors that form the neighborhood of the output path
#fy = number of forecast years in the source forecast made by PEP
#a = vector of N ones, used for the computation of distances
#e, st = end and beginning rows of blocks in output files
#os1-os4 = names of files for input and output
#p0 = point forecast
#ps = target sample paths
#Y = annual files
#START by clicking on the icon of the saved f09.RData
#the following are the output files as a 3-dimensional array
F<-array(rep(0,n*J*T*(T+1)/2),dim=c(T*(T+1)/2,J,n))
#the number of vectors that form the size of the of the neighborhood (may
be different from ne)
ns1<-350
#the value of the scale parameter is
hs1<-7.4
#the parameters controlling the reduction in the effective size of the neigh-
borhood
qs1<-0.95**c(=:T-2)
#k enumerates output sample paths
for (k in 1:n)
#this is the first block at jump-off
for (i in 1:T) {
F[i„k]<-p0[i*S,]}
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#select the neighborhood of size ns1
Di<-rowMeans(((aRa<-rand(Di)
Ne<-Y[Ra<=ns1„]
a1<-as.vector(rep(1,ns1))
#now do the remaining blocks b = 2:T
for (b in 2:T) {
#form the neighborhood of the chosen sample path
#based on chi-squared distance to the target data available at time (b-1)*S,
#and form weights for kernel estimation of the means of the increments
D<-rowMeans(((a%*%t(ps[(b-1)*S,c(1:19),k])-Ne[,c(1:19),b-1])**2)%*%diag(1/ps[(b-
1)*S,c(1:19),k]))
sc<-median(D)
w<-exp(-(hs1/qs1[b-1])*D/sc)/sum(exp(-(hs1/qs1[b-1])*D/sc))
F1<-ps[(b-1)*S„k]
for (j in st[b]:e[b])
F[j„k]<-round(abs(F1+colSums(w*(Ne[„ j-st[b]+b]-Ne[„ j-st[b]+b-1]))))
F1<-F[j„k]
}
}
write(t(F[„k]),file=os4[k],ncolumns=J)
}
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