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Työttömyysasteen ennustaminen EU-maissa 
BVAR-mallilla ja Googlen hakudatalla

Tässä tutkimuksessa kehitetään kausiluontoinen bayesi-
läinen vektoriautoregressiivinen malli työttömyystason 
ennustamiseksi EU-maissa. Virallisten tilastojulkaisujen 
lisäksi malli käyttää ennustamiseen Googlen hakuda-
taa ja tutkimuksessa tarkastellaan Googlen hakudatan 
käyttökelpoisuuttaa työttömyystason ennustamiseksi. 
Googlen hakudatan havaitaan parantavan mallin en-
nustetarkkuutta vain hieman. Kirjoittajan tiedossa ei ole 
aikaisempia tutkimuksia, jotka tarkastelisivat Googlen 
hakudatan käyttökelpoisuutta ennustamisessa käyt-
täen bayesiläisiä vektoriautoregressiivisiä malleja. Täs-
sä tutkimuksessa tarkastellaan myös hyperparametrien 
valinnan merkitystä bayesiläisen vektoriautoregressii-
visen mallin ennustetarkkuudelle. Hyperparametreille 
muodostetun marginaalisen posteriorijakauman moo-
din käyttämisen havaitaan parantavan mallin ennus-
tetarkkuutta huomattavasti, verrattuna kirjallisuudelle 
tyypillisiin ennalta määrättyihin arvoihin.
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1 Introduction

Nowcasting can be defined as predicting the present, the near future and some-
times the very recent past. In economics the need for predicting not only the
future, but also the present and the past, arises from the publication lags and
revisions of the economic variables. The distinction between nowcasting and
short-term forecasting is not always clear, and in this paper the freedom of
treating the two terms somewhat substitutively is indulged.

As policymakers rely on accurate information on the current state of the
economy, great amount of literature in recent years has focused on making ac-
curate and timely predictions of the quarterly published Gross Domestic Prod-
uct (GDP) figures. For example, the Bank of Finland has recently published a
new nowcasting model for predicting the quarterly growth rates of the GDP in
Finland (Itkonen & Juvonen 2017) and Barnett et al. (2016) is just one exam-
ple of recent publications, where nowcasting the GDP in the United States is
addressed. Despite the GDP being the most widely studied economic variable
in the context of nowcasting, there have been prominent work on predicting the
other economic variables, such as inflation, as well. To name a couple, Stel-
masiak & Szafranski (2016) predict the monthly headline inflation in the Polish
economy with seasonal Bayesian vector autoregressive models, while Modugno
(2011) nowcasts the inflation in the Euro area and in the United States using
high frequency data.

Recently, the Bayesian vector autoregressive (BVAR) models have gained
popularity especially in the short term macroeconomic forecasting literature.
Their recent popularity stems from the fact that they have been found to pro-
duce more accurate forecasts than the popular factor augmented methods, even
in the presence of a great number of variables (see e.g Banbura et al. 2010,
Koop 2013). Apart from a few exceptions (e.g Stelmasiak & Szafranski 2016,
Raynauld & Simonato 1993), most of the preceding literature on forecasting the
macroeconomic variables with BVARs has focused on using seasonally adjusted
series. Although this is a very standard practice in economics, in the context
of nowcasting it is not perfectly innocuous. Often when nowcasting, the inter-
est lies on the actual changes on the levels of the economic variables, and not
only on the trend that might be more informative about where the economy is
headed in a slightly longer horizon. Pre-adjusting the series might also result
in a loss of information about useful dynamics. However, incorporating the sea-
sonal variation into the model often turns out to be a challenge that restricts
and complicates the analysis.

Main contribution of this paper is to develop a seasonal Bayesian vector au-
toregressive model with Google search data for nowcasting the unemployment
level in all 28 EU-countries, and to show that making a handful of simplifying
modeling choices results in a model that is both competitive and easy to imple-
ment. Those simplifying modeling choices include a simplistic way of dealing
with the so called ragged edge of the data and an efficient, theoretically well
grounded, and easy to implement method for choosing the hyperparameters by
exploiting the marginal likelihood function. That method is based on Giannone
et al. (2015).

On top of using the official data releases of economic variables from Euro-
stat, the model utilizes Google search data, and in this paper various different
methods for incorporating the Google data are considered. The most successful
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method used in this paper for incorporating the Google data into the model is
a so called Google index, that was originally proposed by Choi & Varian (2009).
It was later included in a model similar to the one developed in this paper
by Tuhkuri (2016b), and has ever since been used in the Etlanow forecasting
project1.

Although the Google search data has been previously studied in the context
of macroeconomic forecasting, to the knowledge of the author’s, the predictive
power of Google data with BVAR models has not been tested before. BVAR
models are widely considered to be the number one tool for short term macroe-
conomic forecasting, and by assessing the performance of Google search data
in this context, this paper pursues to answer the question if the Google search
data truly contains relevant information for macroeconomic forecasting, that is
not already available in more orthodox sources of economic data. The findings
of this paper are similar to those of the earlier literature. Google search data
seems to provide significant, but very limited amount of additional information
for forecasting of macroeconomic variables.

The seasonality in the model is incorporated through monthly dummy vari-
ables. One could argue in favor of a more sophisticated approach when deal-
ing with seasonality, and alternatively a steady state prior could be used (Vil-
lani 2009). In one of the few recent studies concerning forecasting with non-
seasonally adjusted series and BVAR models, Stelmasiak & Szafranski (2016)
show that both dummy variables with Minnesota-type prior and a steady state
prior work well, when predicting the non-seasonally adjusted inflation in Poland.
They also report the steady state prior to have an edge over the dummy vari-
able setup in forecasting performance, but that the differences in performance
are not massive, and that they come with computational costs, more complex
structure and need for stronger prior assumptions on seasonal factors. Using
dummy variables allows us to preserve the flexible Minnesota-type prior of the
model, which in turn allows for efficient sampling, minimum prior assumptions
on seasonal factors and easier exploitation of marginal likelihood function for
choosing the hyperparameters.

Typically, the information set available for nowcasting has several features
that complicate the modeling design when dealing with vector autoregressive
models. Often there is a great number of variables available to choose from,
and a not-very-parsimonious lag structure easily causes the number of estimated
coefficients to explode. The frequency of the variables might also differ and
the differences in publication lags thus lead to a so called ragged edge of the
data. The former issue is known as the curse of dimensionality. Typically,
the dimensionality related issues are handled by using techniques that extract
common factors of a large number of variables (Dynamic factor models) or by
Bayesian shrinkage (e.g BVARs), whereas the ragged edge and the frequency
related issues are tackled by exploiting the state space representation of the
model and the Kalman filter.

The model in this paper is restricted to use only a few variables, which alle-
viates the issues discussed above. On top of Google data and the unemployment
rate itself, the model only uses consumer price index and confidence indicators
as additional explanatory variables. This is partly due to a lack of easily ac-
cessible and timely data that would be useful in predicting the unemployment,

1https://www.etla.fi/etlanow/
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and partly because of the non informative prior on seasonal components of the
model, which further restricts the capability of the model to handle a large
number of variables.

As all the series are of monthly frequency, we have a very reasonable num-
ber of variables and because there are always observations available for every
explanatory variable for the month in question when the official unemployment
numbers are released, we are not required to exploit the state space representa-
tion of the model nor the Kalman filter. A simplistic method for dealing with
the ragged edge, without compromising the model performance, by lagging the
explanatory variables when needed prior to estimating the model, is proposed.
This allows for exploiting the information on explanatory variables also from
the periods where the official unemployment rates are yet to be released.

After country specific forecasts have been made, they can be used to create
an aggregate forecast for the unemployment rate in the EU as a whole. The
countries are given weights according to their share of the working population
in the EU, and the point estimates of the EU forecast are essentially weighted
averages of the country specific forecasts. However, in order to construct credi-
ble prediction intervals for these forecasts, normal approximation and sampling
methods are needed. A not entirely innocuous assumption of the independence
of the country specific forecasts is made, which allows for sampling from the
joint distribution of normally approximated forecasting densities of the country
specific forecasts. This results in approximated forecasting densities for unem-
ployment rate in the EU, which are found to perform remarkably well.

The next section focuses on the structure of the model itself and discusses
more elaborately on the modeling choices mentioned above. Also, the aggre-
gation of the country specific forecasts to the EU level is discussed in more
depth. The third section covers data related topics such as the variables used
by the model, the Google search data and the ragged edge of the data. In
the fourth section the forecasting ability of the model is assessed against a few
benchmark models. For clarity, the assessment is done mostly from the point of
view of point estimates and root mean squared forecasting error of the model,
with different specifications. The results of this assessment support the mod-
eling choices made in this paper. The inclusion of Google data into the model
is found to yield modest improvements in terms of forecasting errors, and the
proposed method for choosing the hyperparameters of the model is found to
perform much better than using the so called rule-of-thumb values. Section five
concludes.

2 Model

2.1 Seasonal Bayesian vector autoregressive model

The seasonal vector autoregressive (VAR) model can be represented as:

yt = Dst +A1yt−1 + ...+Apyt−p + εt, εt ∼ N(0,Σ), (1)

where yt is an n-dimensional vector of observed variables at time t, D is a
matrix of seasonal parameters, st is a 12-dimensional vector of seasonal dummy
variables, A1, ...,Ap are the coefficient matrices and εt is a normally distributed
vector of residuals with a covariance matrix Σ.

3
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With a large number of variables and lags, vector autoregressive models
are good at capturing the complex dynamics of the economy, which leads to
a good in-sample fit. However, when adding variables and lags to the model,
the number of parameters grows quickly, which might lead to overfitting and
poor out-of-sample forecasting performance. To mitigate this issue, priors on
the parameters to be estimated can be imposed. By imposing prior believes,
the model is shrunk towards a more parsimonious model and the overfitting
problem can be resolved if the degree of shrinkage is chosen with care.

Minnesota type priors for vector autoregressions date back to Litterman
(1979, 1980). Litterman’s original prior formulation was based on stylized facts
about macroeconomic data from the United States. He argued that most of
the economic variables could be characterized by unit root processes and thus
proposed that each variable should be shrunk towards a univariate random walk
process. Although the Minnesota prior can be traced as far back as eighties,
it still has many desirable properties and it has proven to be a very efficient
approach for Bayesian shrinkage.

Later the Minnesota prior has been revised by for example Doan et al.
(1984), Sims (1993), Litterman (1986), Kadiyala & Karlsson (1997) and Sims
& Zha (1998). The prior used in this paper is very standard and the exposition
follows closely the notation in Banbura et al. (2010) and Itkonen & Juvonen
(2017) with a few minor adjustments. The prior mean for the coefficient matrix
of the model is set as:

E[(Al)ij | Σ, δ] =

{
γi, if j = i, l = 1

0, otherwise
, (2)

where γ = 1 for non stationary variables, γ = 0 for stationary variables and
coefficient matricesA1, ...,Ap are assumed to be normally distributed. In other
words, the prior suggests the non stationary variables to follow a first order unit
root process, whereas stationary variables are suggested to be white noise. The
prior for the covariance matrix is then set as:

cov[(Al)ij(Ar)hm | Σ, δ] =

{(
λ1

lλ3

)2 Σih

Ψjj
, if j = m, l = r

0, otherwise
, (3)

where l, r ∈ {1, ..., p}, i, j ∈ {1, ..., n}, λ1 accounts for overall tightness of the
prior and λ3 controls the lag decay rate. In other words, as hyperparameters λ1

and λ3 are given smaller values, the coefficients are shrank harder towards the
cautious prior, thus controlling for overfitting. On the other hand, if λ1 = ∞
the posterior coefficients coincide with the OLS estimates.

The term Σih

Ψjj
accounts for different variances of the dependent and explana-

tory variables and thus scales the prior properly. Ψ is the prior mean of the
covariance matrix of the residuals and it is set to E[Σ] = Ψ = diag(σ2

1 , ..., σ
2
n),

where the diagonal elements are chosen to equal the estimated residual variance
from the univariate ar-process for the corresponding variables. The elements
on the diagonal could also be treated as hyperparameters to be optimized as
in Giannone et al. (2015), and it must be noted that using the ar-residuals
from the data as a part of the prior is not completely innocuous. However this
practical approach has established itself in the literature and should not cause
any practical concerns. To keep the complexity of the model at minimum, the
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ar-residuals are thus used in the prior. However, in contrary to Giannone et al.
(2015) the hyperparameter λ3 is treated as endogenous and to be optimized, as
opposed to just setting λ3 = 2.

Next, a non informative but proper prior with zero mean is imposed on the
seasonal parameters of the model, that also work as intercepts in the model.
This prior is imposed by setting an arbitrary large prior variance λ4 for the
seasonal parameters. Unfortunately the Normal-Wishart prior does not allow
for using any sensible informal prior on the parameter estimates of the sea-
sonal components and this greatly reduces the number of variables able to be
estimated efficiently with this choice of prior. Another option for vector au-
toregressive model with seasonal data would be to use a so called steady state
prior (Villani 2009). Steady state prior would allow for sensible informal priors
on the seasonal parameters of the model, but the number of variables could in
that case also be restricted, because of the computationally more demanding
nature of that particular prior. Also, choosing a sensible prior on the seasonal
components of every EU country in the model would not be an arbitrary task
either.

In addition to the priors described above, two additional priors are imposed
to enhance the forecasting performance of the model. In the exposition of these
priors the notation in Giannone et al. (2015) is closely followed.

As the Minnesota prior only supports first order unit root processes, Doan
et al. (1984) suggested imposing a so called sum-of-coefficients (SOC) prior.
SOC can be imposed by constructing a set of n artificial observations as follows:

y+ = diag

(
ȳ0

λ5

)
(4)

x+ =
[
0,y+, ...,y+

]
, (5)

where ȳ0 is an nu×1 vector that contains the average of the p first observations
for each variable, y+ is an nu ×nu dimensional matrix, x+ is an nu × (c+nup)
dimensional matrix, c = 12 is the number of seasonal parameters by variable,
and λ5 is the hyperparameter controlling the strength of this prior. The param-
eter nu stands for the number of non stationary variables in the model. This
prior thus puts weight on the unit root processes of higher order, in addition
to those of order one implied by the Minnesota prior. As mentioned, the orig-
inal Minnesota prior reflected the stylized facts of the US macro economy in a
simplest way possible. However, the possibility of variables to a priori follow a
higher order unit root processes than of order one, and thus to have correlation
among their own lags, better fits our perception of reality. Doan et al. (1984)
show that imposing these believes through sum-of-coefficient prior can signifi-
cantly improve the forecasting accuracy of a BVAR model. It is also important
to notice that it makes no sense to impose this prior on stationary variables,
if in the prior it is assumed that the stationary variables follow a white noise
process.

The sum-of-coefficents prior is however not consistent with cointegration of
macroeconomic variables, which motivated Sims (1993) to introduce a dummy-
initial-observation (DIO) prior. It can be implemented by adding the following
artifical observation to the dataset:

y++ =
ȳ′
0

λ6
(6)
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x++ =

[
1

cλ6
, ...,

1

cλ6
,y++, ...,y++

]
, (7)

where ȳ′
0 equals ȳ0, x

++ is a 1× (c+np) vector, and λ6 controls the strength of
the prior. Thus, setting hyperparameters λ5 and λ6 to infinity would equal to
ignoring the dummy observation priors altogether, whereas setting the hyper-
parameters to zero would put all the weight on these priors, therefore ignoring
the data entirely.

Finally, the artificial observations above are stacked together with the ob-
served data, thus constructing the X and Y data matrices to be used in the
estimation of the model. The Normal-Wishart prior used here is a natural con-
jugate prior for normal multivariate regressions (Karlsson 2012). It assumes a
normally distributed coefficient matrix A conditional on the covariance matrix
Σ, that follows an Inverse-Wishart distribution. Due to convenient proper-
ties of the Normal-Wishart prior, the estimates can be obtained through direct
sampling, which makes the estimation procedure computationally very efficient.
The computational efficiency combined with the benefits of Bayesian shrinkage,
has lead to a development of very large Bayesian vector autoregressive models
with even hundred or more variables (see e.g Banbura et al. 2010, Koop 2013).
However, these large BVAR models have always used seasonally pre-adjusted
data and thus the non informativeness of the prior on the intercepts has not
become an issue. With monthly seasonal dummies, we must restrict our number
of variables to be reasonably small to avoid overfitting through seasonal com-
ponents, but in the other hand we can make use of the almost arbitrarily long
lag lengths made possible by Bayesian shrinkage.

2.2 Hyperparameter choice

Above, the prior of the model has been specified as a function of five separate
hyperparameters (λ1, λ3, λ4, λ5, λ6, ). These hyperparameters do not include λ2,
as in the original Minnesota prior it would portray the difference in prior vari-
ance between coefficients on own lags and coefficients on lags of other variables.
To impose the Normal-Wishart prior, λ2 must however be normalized to unity.

The hyperparameters controlling the lag decay and the prior variance of the
intercepts are often set to two and to some arbitrarily large number, respec-
tively. For choosing the other three, λ1, λ5, λ6, there have been various different
approaches in the literature. The rule of thumb values of 0.2, 1 and 1, respec-
tively, originally proposed by Sims & Zha (1998), have proved to perform well
in many cases, and consequently they are a popular choice in the literature.

As variables or lags are added to the model, the hyperparameters should also
be revised in order to account for the increased risk of overfitting. Therefore, to
compare models of different size the choice of hyperparameters should reflect the
number of variables in the model. Two popular choices have been to minimize
the out-of-sample forecasting error of some subjectively chosen time interval,
or to choose the hyperparameters in a way that the in-sample fit stays the
same for all the models of different size (see eg. Banbura et al. 2010). These
two approaches however lack a solid theoretical foundation and neither of the
approaches have proved to consistently outperform the rule-of-thumb values
provided by Sims & Zha (1998). This has further increased the popularity of
the rule of thumb values in the literature.
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Giannone et al.(2015) however emphasize the fact that ”the distinction be-
tween parameters and hyperparameters is mostly fictious and made only for
convenience”. This means that the hyperparameter choice could be treated
similarly to estimating the other parameters of the model. They propose im-
posing a hierarchical structure in the case of a Normal-Wishart prior. The prior
structure thus becomes:

π (A | Σ, δ)π (Σ | δ)π (δ) , (8)

where δ stands for the vector of hyperparameters and π is a probability density
function. As without the hierarchical structure it could be written as:

π (A | Σ)π (Σ) (9)

In addition to a theoretically well grounded approach for choosing the hyperpa-
rameters, the hierarchical structure allows for taking account for the estimation
uncertainty of the hyperparameters as well. This would however require the
implementation of a Metropolis algorithm for sampling, and we would have to
part ways with the computationally efficient direct sampling.

An approach that simplifies the methodology formalized in Giannone et al.
(2015), and takes an advantage of the theoretically well grounded approach
for choosing the hyperparameters, while retaining the original Normal-Wishart
structure that allows for computionally efficient direct sampling, is proposed
here. It is achieved by using the numerical mode of the hyperposterior distri-
bution as the hyperparameter vector in the non-hierarchical setup. This comes
with a price of only not accounting for the estimation uncertainty in the hyper-
parameters.

Giannone et al. (2015) show that applying Bayes’ law implies that the hy-
perposterior distribution is proportional to the marginal likelihood (ML) times
the hyperprior distribution.

p (δ | y) ∝ p (y | δ) p (δ) (10)

Conveniently, the use of Normal-Wishart natural conjugate prior guarantees
that the marginal likelihood can be written in a closed form, since it follows
a matrixvariate t-distribution (Karlsson 2012). The hyperprior can then be
defined on every hyperparameter separately, as long as we assume the hyperpa-
rameter values to be a priori independent of each other. Here, similar gamma
denitites as in Giannone et al. (2015) are chosen, with the exeption of λ3 of
course, which was treated as exogenous in their study. The prior gamma densi-
ties for λ1, λ3, λ4, λ5, λ6 are thus chosen so that the modes are equal to 0.2, 2,
50, 1, 1, and the standard deviations are 0.4, 0.4, 30, 1 and 1, respectively.

With the marginal likelihood and hyperprior distribution defined, the mode
of the hyperposterior distribution can easily be found by using the numerical
optimization methods. In the model of this paper, an ’L-BFGS-B’ algorithm,
originally formalized in Byrd et al. (1995), is used. The mode acquired this
way depends on the data, since it essentially maximizes the marginal likelihood
function. The mode, and hence the hyperparameters used, therefore adjust
automatically to the changes in the data. If for example a variable is added to
the model, the hyperparameters adjust accordingly.

The approach described above for finding the optimal hyperparameters has
also very convenient properties in the context of nowcasting. Giannone et al.
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(2015) show that using the mode of the hyperposterior distribution is optimal in
the sense that it minimizes the one-step-ahead out-of-sample forecasting error,
which serves as a great starting point for building a nowcasting model. The
model in this paper also strives to nowcast the unemployment in each of the
28 EU-countries, and it is convenient to have the hyperparameters to adjust
automatically for each country in every period, without the need for subjective
considerations.

2.3 Forecasting

In the model developed in this paper, monthly forecasting horizons up to six
periods ahead are considered. Since most EU countries publish their official
unemployment rates few weeks after the end of the respective month, in the
nowcasting context forecasting periods from current month to five months ahead
are considered. The forecasts are obtained by simulating the predictive poste-
rior distribution. As mentioned above, the Normal-Wishart structure allows for
direct sampling from the posterior distribution. Since draws are also indepen-
dent, much less draws are needed than for example in the case of a Metropolis
algorithm.

Next the process of drawing from the posterior predictive distribution is
briefly described. First, a draw from the posterior Inverse-Wishart distribution
of the covariance matrix Σ is drawn. After this, a draw from the normally
distributed posterior distribution of the coefficient matrix A, conditional on the
previously drawn Σ, is drawn. This accounts as one draw from the posterior
distribution of the coefficient matrix. Thus, repeating this 10 000 times results
in the same number of independent draws from the posterior distribution of the
coefficient matrix.

The predictive posterior distribution follows a t-distribution and can be ap-
proximated as follows (see eg. Karlsson 2012). After every draw from the
posterior distribution of the coefficient matrix, a single draw from the predic-
tive distribution of the one-period-ahead forecast, is produced by adding a nor-
mally distributed error term, conditional on the covariance matrix Σ drawn
before, to the forecast. After the one-period-ahead forecast, two- to six-periods-
ahead forecasts can be obtained similarly, conditioning on the already obtained
forecasts of the shorter horizon. The credible prediction intervals can then be
obtained from these predictive distributions. Finally, the equation 11 illustrates
this recursive approach for approximating the predictive distribution, with a
notation following closely to that of Karlsson (2012).

ỹT+h =

h−1∑
i=1

Ai ỹT+h−i +

p∑
i=h

Ai ỹT+h−i +DsT+h + uT+h , (11)

where ỹT+h is the draw from the predictive distribution, h is the forecast hori-
zon, p is the lag length of the model, A, D and sT+h are defined as before, and
uT+h is an error term drawn from a multinormal distribution with a zero mean
and a covariance matrix Σ.

8
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2.4 EU aggregation

In order to obtain nowcasts for the unemployment level in the whole EU, the
country specific forecasts need to be aggregated. The aggregation is essentially
done in a very straight forward fashion, by giving each country a weight relative
to it’s share of the labor force in the EU. However, with this approach two
complications emerge.

First, the official unemployment rates are reported only up to one decimal
place, which when aggregating 28 separate forecasts leads to a systematic ad-
ditional measurement error. Optimally, the non rounded figures for the unem-
ployment rate should thus be computed and then used in the model. However,
the official unemployment rate is a survey based statistic, which by construc-
tion has some magnitude of measurement error in it. If the structural error
caused by rounding, is then estimated to be small enough, it can be assumed
not to have a significant effect on the point estimates, and it could then only
be taken into account when constructing the credible prediction intervals. The
systematic error caused by rounding in this study is estimated to be approxi-
mately 0.05 percentage points on average. The error is not negligible, but it is
small enough to justify the usage of the rounded official figures, as long as the
systematic error is taken into account in the credible prediction intervals.

Second, different EU countries have different publication lags for the unem-
ployment figures and this must be taken into account when producing timely
nowcasts based on the latest data releases. Because of this, the model in this
paper produces the EU forecasts from the past month to three months ahead, as
opposed to the current month to five months ahead interval used in the country
level forecasts. For example, if in April one country has yet to publish it’s offi-
cial figures for February, the forecast can only be aggregated up to July, since
the model produces forecast on a country level only five periods ahead.

Taken into account the issues discussed above, the aggregated unemploy-
ment nowcast for the EU is produced as follows. The first forecast is done
for the month before the reference month. With every country the predictive
distribution of the forecast with the shortest horizon is chosen. If the official
figure is available, the standard deviation of the predictive distribution for that
country is considered to be zero. The predictive distributions are then given a
weight corresponding to the labor force of a country. Next, the structural error
discussed above is incorporated to the model by constructing an additional nor-
mally distributed predictive distribution with mean zero and standard deviation
equal to the estimated structural error. When aggregating, the country specific
forecasts are assumed independent. It is acknowledged that this assumption
might be a little unrealistic, but in the short term the correlation between the
labor markets of individual countries should not pose too big of a problem. The
empirical assessment of the accuracy of these forecasts gives support to this
assumption.

Using the independence assumption, the approximated EU-level predictive
distribution is obtained by taking a million draws from the joint distribution of
the 28 independent and normally approximated predictive distributions, with
each distribution given a weight proportional to the country specific labor force.

9



12

ETLA Working Papers | No 62

3 Data

The lack of informative prior on seasonal components of the model leads to a
problem of overfitting intercepts discussed earlier. Because of this issue, the
number of variables in the otherwise very flexible model has to be restricted.
After specifying several models with different number of variables and inspecting
their out-of-sample forecasting performance, using only four or five variables
looks to be minimizing the out-of-sample forecasting error. Earlier reasonably
scarce literature on the seasonal BVAR models with non informative priors on
seasonal components supports this finding (eg. Stelmasiak & Szafranski 2016).
The fact that BVAR models with seasonally adjusted data are known to have
in principle no upper limit on the number of variables highlights the magnitude
of this problem (see eg. Banbura et al. 2010, Koop 2013).

On the other hand, there might not be that many useful, easily accessible and
timely variables, that would also be available for every EU country. With the
exception of confidence indicators and consumer price index data, most of the
monthly available data provided by Eurostat has impractically long publication
lags from the point of view of nowcasting problem discussed in this paper.
Thus, a choice of adding only a country specific economic sentiment indicator
and consumer price index to the model is made.

The economic sentiment indicator is composed of a survey based consumer
confidence and business sentiment indicators. The biggest advantage of the
survey based soft data, as opposed to the so called hard data, is the nonexistent
publication lag coupled with it. From the perspective of nowcasting it is very
practical for explanatory variables for the reference month to be available before
the official figures of the variable to be nowcasted.

The consumer price index as well is usually available only days or weeks
after the end of the reference month. And while there is no clear consensus on
the common dynamics of the inflation and unemployment, the consumer price
index was observed to have a modest but significant amount of predictive power
on the level of unemployment in the model developed in this paper, and it is
therefore included in the model.

3.1 Google data

The fourth variable in the model is extracted from the Google search data,
provided by Google Trends2. The earlier literature on using the Google search
data for forecasting of macroeconomic variables suggests that Google searches
might provide useful information for predicting the unemployment rates (see eg.
Tuhkuri 2016b, 2015, Koop & Onorante 2016).

As mentioned in the first section, to the knowledge of the author’s, the
predictive power of Google data in macroeconomic forecasting has not been
tested before in the context of Bayesian vector autoregressive models. The
results in this study regarding the predictive power of the Google search data
are however very similar to those of the earlier literature. Google search data
seems to provide a significant but very limited amount of useful information for
forecasting of macroeconomic variables. These results are assessed more closely
in the fourth section.

2https://trends.google.com/trends/
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The Google search terms used in this study are almost the same ones as
in the Etlanow project documented in Tuhkuri (2016a). The search terms for
different countries are provided by 29 European research institutions and they
can be accessed from the Etlanow project website3.

The Google data consists of multiple time series for each country, a single
time series containing the search intensity of a specific unemployment related
search term in a given geographic area. Two to fifteen search terms per country
were used. The Google data is available starting from the year 2004, which
greatly reduces the length of the other data used in the model as well.

As mentioned earlier, the seasonal BVAR model seems to perform optimally
with only a handful of variables, thus dimensionality reduction techniques must
be considered in order to incorporate the search intensity data to the model in
an adequate manner.

In the Etlanow project, Tuhkuri (2016a) uses a so called Google Index,
originally proposed by Choi & Varian (2009), for dimensionality reduction. The
Google index is a fairly simple method for compressing the data from multiple
series into a one single series by summing the search intensities of every search
term at a given point in time. More formally the Google index can be defined
as follows:

It =




Kt

Gt

max
(

Kt

Gt

)

× 100 , (12)

where It is the value of the index at time t, Kt is the amount of searches with
a given set of keywords and Gt is the amount of all Google searches in a given
geographic area at time t.

In this study, various other methods for incorporating the Google data were
considered as well. In total, 47 different dimensionality reduction methods were
considered to extract the information from the Google search data. First, using
each of those 47 methods, the out-of-sample forecasting errors when forecasting
the unemployment rate in Finland were computed. Then those errors were
compared against the errors of the benchmark model containing no Google
data at all and the most promising methods for dimensionality reduction were
chosen. Among the most promising methods were the Google Index, traditional
principal component analysis (PCA) and robust principal component analysis
(RPCA). Next, the out-of-sample forecasting errors for every EU country, using
each of these methods, were computed and compared against the benchmark
model.

Addition of Google data did not generate great improvements in forecasting
performance of the model. For horizons from one to three steps ahead the models
with and without Google data showed no significant differences in performance.
For forecasting horizons from four to six periods ahead however, the model with
Google Index seemed to perform a little, but significantly, better than the rest of
the models and thus it was chosen to be the method for dimensionality reduction
in the model. More thorough assessment of these results can be found in the
fourth section as well.

3https://www.etla.fi/en/etlanow/
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3.2 Ragged edge

The ragged edge of the data means that the last observation of every variable
is not from the same period. For example, if one variable is published at the
end of the reference month, while the other is published with a delay of several
weeks, simply dismissing the published data of the other variable until the other
gets published as well, would allow us to use vector autoregressive models. This
however, would lead to a loss of available information and thus to a suboptimal
forecast.

In the literature there have been different approaches for tackling this issue,
and most of them have taken the advantage of the Kalman filter (eg. Itkonen
& Juvonen 2017, Schorfheide & Song 2015, McCracken et al. 2015). In the case
of the model in this paper, a far simpler approach is however deemed to be
sufficient and Kalman filter is not required.

As the model uses only soft data as additional explanatory variables, the
variable to be forecasted (ie. the unemployment rate) is always the last variable
to be published for a given period. The consumer price index and the confidence
indicators are always released at latest a couple weeks after the end of the
reference month, while daily Google search data to be aggregated to a monthly
level is available almost in real time. Official unemployment figures for most EU
countries are usually published by the end of the month following the reference
month.

Therefore, as new data becomes available the explanatory variables can sim-
ply be lagged, so that the last observation of every variable is from the same
period as the last official unemployment figure. The lagging causes no concep-
tual problems when only the forecasting densities are of interest, as is the case
of the model developed in this paper.

4 Forecasting performance

The assessment of the forecasting performance of the model is executed by
producing pseudo out-of-sample forecasts.4 It means that for every period to be
examined, the forecast is made using only the information set that would have
been available at the time. It is of course impractical to use the exact publication
dates of different variables for these pseudo out-of-sample forecasts, and thus
some assumptions must be made. Forecasts in this section are produced at the
end of every month, and for most countries it is reasonable to assume that at
the end of every month there is Google search data available for the current
month, while the last observation of every other variable is from the month
before that. In practice this means that for every forecast the Google data is
lagged by one period, and after that the data is cut so that the last observation
of every variable is from the month before the reference month.

In the literature assessing the forecasting performance of the BVAR models
the most commonly used error measure is the Root Mean Squared Forecasting
Error (RMSFE), and it is used as the primary error measure in this study as
well. RMSFE measures the squared forecasting error of every observation and
then takes the square root of the mean of those observations for improved in-

4All the analysis and computations presented in this chapter were carried out using R
software package (R Core Team 2018).
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Random Walk Seasonal RW Seasonal AR Seasonal VAR Seasonal BVAR
Austria 0.37 0.33 0.37 0.39 0.34
Belgium 0.23 0.21 0.42 0.15 0.15
Bulgaria 0.30 0.34 0.37 0.17 0.18
Croatia 0.75 0.44 0.85 0.38 0.25
Cyprus 0.92 0.68 1.06 0.51 0.56

Czech Republic 0.33 0.39 0.35 0.26 0.24
Denmark 0.20 0.16 0.24 0.29 0.15
Estonia 0.45 0.52 0.45 0.55 0.52
Finland 0.89 0.53 0.56 0.50 0.39
France 0.32 0.17 0.31 0.16 0.16

Germany 0.26 0.34 0.26 0.41 0.26
Greece 0.98 1.05 1.02 0.76 0.69

Hungary 0.19 0.34 0.17 0.17 0.19
Ireland 0.30 0.32 0.57 0.15 0.14

Italy 0.81 0.55 0.53 0.54 0.59
Latvia 0.25 0.35 0.40 0.26 0.24

Lithuania 0.49 0.47 0.74 0.43 0.42
Luxembourg 0.22 0.15 0.27 0.14 0.15

Malta 0.14 0.22 0.34 0.19 0.16
Netherlands 0.28 0.17 0.21 0.14 0.13

Poland 0.27 0.54 0.35 0.14 0.13
Portugal 0.30 0.33 0.34 0.18 0.19
Romania 0.29 0.32 0.42 0.29 0.28
Slovakia 0.21 0.45 0.35 0.15 0.14
Slovenia 0.32 0.23 0.43 0.13 0.13

Spain 0.37 0.39 0.33 0.16 0.16
Sweden 0.66 0.41 0.45 0.36 0.32

United Kingdom 0.15 0.16 0.16 0.11 0.10
EU28 0.22 0.17 0.16 0.11 0.09

Median 0.30 0.34 0.37 0.22 0.19

Table 1: Root mean squared one-step-ahead forecasting errors of out-of-sample forecasts from first
month of 2014 to the third of 2018. With seasonal RW, VAR and BVAR models the seasonality is
accounted for by monthly seasonal dummy variables.
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terpretation. Other error measure that is often considered is the Mean Absolute
Forecasting Error (MAFE), which does not punish for extreme errors as much
as the RMSFE does. On top of these measures, it is important for a forecasting
model to be unbiased. This can be inspected by computing the Mean Forecast-
ing Error (MFE) of the forecasts. For the unbiased model this should be close
to zero. In this study all the forecasts were observed to be reasonably unbi-
ased, as is often the case with BVAR models, and reporting other measures on
top of RMSFE would not add much informational value. Reporting more mea-
sures would also lead to a decreased interpretability of the tables, and therefore
only RMSFE figures are reported in this section. Using MAFE instead of the
RMSFE would not change any qualitative results reported.

As mentioned in the third section, the data used in this model starts as late
as 2004. In addition to that, the seasonal BVAR is also fairly complex and for
efficient estimation of the 256 parameters5 in the model, using at least 10 years
of data is desirable. This shortens our out-of-sample forecasting time interval
to a little bit over four years of data, from the first month of 2014 to the third
of 2018. While the data is thus reasonably short, it is however quite wide, since
we have data from 28 separate countries, which alleviates the issue.

One further aspect to pay attention to, when executing this out-of-sample
forecasting study, is how the dimensionality reduction of the Google search data
is to be executed. If the Google index is used for dimensionality reduction, no
further attention is required when executing the study, but if principal compo-
nent analysis is used, the principal component must be computed separately for
each period prior to every forecast from the raw search term intensities. It is not
enough to cut the already computed series of principal components to achieve
true out of sample forecast, since earlier observations of this series may contain
information from yet to be observed observations.

Another aspect worth mentioning is that since the unemployment rate is a
survey based measure, the revisions to the data do not play as big of a role as
in the case of GDP. Therefore, there is no compulsive need to worry about data
revisions.

4.1 Benchmarks

In order to conduct any meaningful analysis of the forecasting performance of
the model, we need to have some benchmarks to compare the model against.
First naive benchmark model to be used is the Random Walk (RW). It accounts
to forecasting each period, that there is to be no change at all from the last
observation in the variable to be forecasted. Since the model is seasonal and the
data is not seasonally adjusted, the other naive benchmark model that could
be considered is the Seasonal Random Walk (SRW). SRW could be constructed
in a lot of ways. For example, it could be defined as a no-change-forecast from
the observation one year ago. However, SRW defined this way was found to
perform very poorly for most countries, especially on short horizons. For one-
period-ahead forecasts it performed just a little better than RW for only three
countries, where the seasonal variation in the unemployment rate seemed to
be the strongest6. Due to these issues, the SRW is defined in this paper as an

5Hyperparameters not included
6These countries were Finland, Italy and Sweden
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ordinary RW adjusted for seasonal variation by estimating seasonal constants for
every month. The constants are estimated by ordinary least squares after which
the SRW forecast is defined as a sum of no-change forecast and the difference
in monthly constants estimated. This results in a naive benchmark model, that
should more closely resemble the forecasting performance of an ordinary RW
observed in the case of seasonally pre-adjusted data.

Third benchmark model to be used is the seasonal autoregressive (AR) model
of order one from Tuhkuri (2016a). It uses the same Google search data and
Google index as the model developed in this paper. The model can be written
as follows:

log(yt) = β0 + β1log(yt−1) + β2log(yt−12) + β3google+ et, (13)

where yt is the unemployment rate at time t and google is the value of the
Google index at time t, or at the latest time available. As exactly the same
model as in Tuhkuri (2016a) is used, the model only produces forecasts from h
= 0 to h = 3.

The last benchmark model to be used is an ordinary vector autoregressive
model (VAR) equipped with monthly dummy variables to account for seasonal
variation. As the model developed in this paper does not have more than four
variables, the Bayesian VAR (BVAR) might not have too big of an edge over the
ordinary VAR and the difference in performance might turn out to be not too
massive. The lag length of the VAR-model prior to every forecast is selected by
choosing the model specification with the smallest Akaike information criterion
(AIC). Otherwise the VAR is defined as the BVAR earlier, only without the
prior.

Median RMSFE h = 0 h = 1 h = 2 h = 3 h = 4 h = 5
Random Walk 0.30 0.49 0.66 0.80 0.88 0.94
Seasonal RW 0.34 0.42 0.51 0.58 0.65 0.68
Seasonal AR 0.30 0.47 0.57 0.65 - -

Seasonal VAR 0.22 0.32 0.42 0.48 0.52 0.56
Seasonal BVAR 0.19 0.30 0.40 0.45 0.47 0.50

EU aggregate RMSFE h = 0 h = 1 h = 2 h = 3
Random Walk 0.22 0.34 0.44 0.52
Seasonal RW 0.34 0.42 0.51 0.58
Seasonal AR 0.16 0.30 0.38 0.43

Seasonal VAR 0.11 0.13 0.15 0.17
Seasonal BVAR 0.09 0.12 0.14 0.15

Table 2: Root mean squared forecasting errors for all the horizons of out-of-
sample forecasts from first month of 2014 to the third of 2018.

4.2 Out-of-sample performance

In order to compare the performance of the models on a country level, the Table
1 presents the one-step-ahead root mean squared forecasting errors of the models
for every country. In practice the one-step-ahead forecast is the nowcast for the
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current month that uses the information of the preceding months. The seasonal
BVAR seemed to perform better than the benchmark models in most of the
countries. In only eight out of twenty-eight countries did the seasonal BVAR
not provide the best performance. In most cases however, the BVAR produced
much more accurate forecasts, while at worst it was only barely less accurate
than the most accurate model. In other words, in none of the 28 countries
did any benchmark model yield significantly more accurate forecasts than the
BVAR. Those few times the BVAR performed worse than a benchmark model,
could also be owing to the short length of the sample used for computing the
errors.

On the other hand, in many countries the ordinary VAR was approximately
as accurate as the BVAR. There were however a few countries, such as Finland,
Germany and Denmark, in which the VAR performed significantly worse, pos-
sibly due to overfitting. These results emphasize the fact that the seasonally
non-adjusted data poses a major challenge for the BVAR models, and the gains
of using Bayesian techniques remain very limited when working with vector
autoregressive models and seasonally non-adjusted data.

The forecasting errors produced by the BVAR for EU aggregate forecast
were almost half the errors of the seasonal AR-model and clearly smaller than
those of the VAR as well. The same story holds for the median errors. The
median RMSFE of the BVAR for a country level forecast was almost half the
median RMSFE of the seasonal AR-model, and a little bit less than that of a
VAR. Random walks produced slightly more accurate median forecasts than the
AR-model, but the errors of the EU level forecasts were clearly smaller for the
AR-model.7

Thus, at least the one-step-ahead forecasts of the seasonal BVAR seem to be
most accurate of the models compared, the VAR claiming the second place by a
narrow margin. In Table 2 however, is the median RMSFE of the country level
forecasts and RMSFE for the EU aggregate forecast, with forecasting horizons
up to six-periods-ahead8. The median forecasts of the BVAR seemed to be more
accurate than those of the VAR for all forecasting periods, with both of these
models outperforming the other benchmarks by a wide margin. The forecasting
errors of the BVAR for EU aggregate forecasts were also smaller than those of
the benchmark models, the VAR model coming as a close second.

The forecasting errors of the BVAR model thus seemed to be the smallest for
every forecasting horizon and the difference in performance between the BVAR
and the VAR stayed reasonably constant over all the horizons.

4.3 Performance of Google variables

As mentioned in the third chapter, the addition of the Google data leads only to
minor improvements in the performance of the model. Similar findings regarding
the limited but statistically significant role of Google data in forecasting of
macroeconomic variables are presented for example in Tuhkuri (2015, 2016b)
and Koop & Onorante (2016). In this study the seasonal nature of the model
restricted greatly the number of variables in the BVAR model, and thus only the

7The median was chosen here instead of the mean, so that the extremely bad forecasts
would not affect the metric more than the extremely good ones. All the qualitative results
would however hold had the mean being chosen instead of the median.

8Here six-periods-ahead equals h = 5
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Median RMSFE h = 0 h = 1 h = 2 h = 3 h = 4 h = 5
No Google 0.18 0.30 0.39 0.47 0.51 0.55

Google Index 0.19 0.30 0.40 0.45 0.47 0.50
PCA 0.19 0.30 0.38 0.46 0.52 0.55

RPCA 0.20 0.29 0.39 0.47 0.51 0.58

EU aggregate RMSFE h = 0 h = 1 h = 2 h = 3
No Google 0.09 0.12 0.15 0.18

Google Index 0.09 0.12 0.14 0.15
PCA 0.10 0.13 0.16 0.20

RPCA 0.09 0.13 0.16 0.19

Table 3: Root mean squared forecasting errors of the seasonal BVAR model for
all the horizons of out-of-sample forecasts from first month of 2014 to the third
of 2018, with different methods for dimensionality reduction.

one dimensional specification of Google data could be considered. That might
have been a major reason for the lack of increased forecasting performance
when testing the several dimensionality reduction techniques. As in the case
of a seasonally adjusted BVAR model one would not have to worry about the
number of variables, the inclusion of Google search data with more principal
components, or even without any dimensionality reduction steps, could turn
out to be more successful. This is something to consider in further studies on
the matter but falls beyond the scope of this study.

The Table 3 presents the root mean squared forecasting errors for median
and EU aggregate forecasts using no Google data at all and three different
dimensionality reduction techniques. As can be seen from the table, the mod-
est improvements in forecasting performance of the model with Google Index
become evident, to a little surprise, only when forecasting three or more peri-
ods ahead. The principal component analysis or the robust principal component
analysis did not seem to perform any better than the model without any Google
data. This was probably because the first principal component alone might not
contain much information of interest for the forecasting problem at hand. For
example, the first component might only capture the long term trend of the
series, while the Google index, despite of it’s simplicity, might be better able to
capture relevant information about the unemployment.

Another aspect that might have affected the performance of Google variables
is how the Google search terms were chosen. More time and effort were probably
used for choosing the search terms for some countries, and less for others. A
rigorous testing and inspection of different sets of search terms were found to
improve the out-of-sample forecasting performance of the model for Finland,
but unfortunately the same testing could not be carried out in the same way for
the other countries, as different languages set certain restrictions for the author.

Even though Google search data did not seem to provide major improve-
ments in forecasting performance, it however seems to contain some useful in-
formation for economic forecasting. Addition of Google search data to the model
should thus be considered especially when large set of explanatory variables is
not a problem, or when the forecasting accuracy of the model is of great impor-
tance.
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Median RMSFE h = 0 h = 1 h = 2 h = 3 h = 4 h = 5
Sims-Zha 0.20 0.34 0.44 0.51 0.57 0.61

Hyperposterior Mode 0.19 0.30 0.40 0.45 0.47 0.50

EU aggregate RMSFE h = 0 h = 1 h = 2 h = 3
Sims-Zha 0.10 0.14 0.18 0.21

Hyperposterior Mode 0.09 0.12 0.14 0.15

Table 4: Root mean squared forecasting errors of the seasonal BVAR model for
all the horizons of out-of-sample forecasts from the first month of 2014 to the
third of 2018, using rule-of-thumb values of Sims & Zha (1998) and hyperpos-
terior mode.

4.4 Assessment of the hyperparameter choice

One interesting modeling choice that we can assess by inspecting the out-of-
sample forecasting errors of the model is the hyperparameter choice. In the
second section, a method for choosing the hyperparameters according to the
numerical mode of the hyperposterior distribution was proposed. In order to see
if that method truly improved the forecasting performance of the model, we can
compare the out-of-sample errors attained by using the numerical mode to those
that would have been attained using some other method for hyperparameter
choice. A natural choice for a benchmark is a model with the rule-of-thumb
values originally proposed by Sims & Zha (1998). These rule-of-thumb values
are also the prior means for the hyperparameters when constructing the prior
distribution for the hyperparameters.

The Table 4 presents the results of this assessment. The out-of-sample point
estimates seem to be more accurate with all the forecasting horizons when us-
ing the hyperparameter values implied by the mode of the hyperposterior dis-
tribution. Using this theoretically well grounded and computationally efficient
method seems to yield significantly more accurate forecasts, than using the com-
mon rule-of-thumb values would. It must however be noted that the model in
this study was fairly parsimonious, as despite of it’s 256 parameters it only had
four variables. In Giannone et al. (2015) it is suggested, that the rule-of-thumb
values might be closer to optimal with more variables in the model. Also, only
the accuracy of the point estimates is assessed here, and to attain a full picture
of the performance of the model, the whole predictive distributions should be
assessed. This could lead to speculation in favor of using the whole hyperpos-
terior distribution to account for hyperparameter uncertainty, instead of using
only the mode of the hyperposterior distribution. Computational costs of using
the whole hyperposterior distribution are however significant, and it might not
always be advisable to part ways with the computationally efficient way of not
imposing the full hierarchical layer to the model. Empirical evidence in this
study suggests that using only the mode of the hyperposterior distribution, in-
stead of the whole hyperposterior distribution, yields very competitive results
and should be considered whenever optimal forecasting performance is pursued,
and the computational efficiency of the model must be considered.
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5 Conclusions

In this paper, a seasonal Bayesian vector autoregressive model for nowcasting the
unemployment rate in the EU-countries, and in the EU as a whole, is developed.
This paper adds to the reasonably scarce literature on economic forecasting of
seasonally non-adjusted variables with Bayesian vector autoregressive models.
It is shown, that even with reasonably simple modeling choices a seasonal model
for unemployment with considerable forecasting accuracy can be build. Further
research on the topic could include a comparison of seasonally adjusted forecasts
attained from a typical BVAR model with seasonally adjusted data, and from
a seasonal model like the one developed in this paper. This way the effect of
addition of seasonal factors on the dynamics of the model and on it’s forecasting
accuracy could be assessed.

Another contribution of this paper was to test the predictive power of Google
search data and various methods for incorporating it within an already accurate
BVAR model. Dimensionality reduction methods were not found to lead to any
improvements in forecasting accuracy of the model in this paper. This could
however be due to the fact, that the first principal component alone did not
contain enough information to be of use in forecasting. Unfortunately, adding
more than one principal component to the model was found to decrease the
accuracy of the model due to non-informative prior on the seasonal components.
In further studies on the topic, the predictive power of Google search data could
be tested in a context of a BVAR model using seasonally adjusted data, since
there is found to be in practice no upper bound on the number of variables in
those kind of models.

Finally, this paper contributes to the already existing empirical literature
on the hyperparameter choice with Bayesian vector autoregressive models. A
method exploiting the numerical mode of the hyperposterior distribution is pro-
posed, and the out-of-sample forecasting study of 28 separate countries implies
that using the marginal likelihood function for hyperparameter choice, instead
of the rule-of-thumb values often used in the literature, can lead to a significant
increase in forecasting accuracy.
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