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TIIVISTELMÄ 

Keksintöjen tekemiseen tarvitaan tietoja, taitoja ja kokemusta. Tietoa jaetaan ihmisten ja 
organisaatioiden välillä sekä tarkoituksellisesti että vahingossa. Tahattomat tietovuodot 
ovatkin tärkeitä teknologisessa edistyksessä. Tietovuodoista toimialojen välillä ja niiden 
muutoksista pitkällä aikavälillä kuitenkin tiedetään suhteellisen vähän. Tässä tutkimuksessa 
arvioidaan onko patenttidatasta mahdollista tunnistaa ”keksintölaitteita,” joiden avulla 
kehitetään keksintöjä monilla eri tekniikan aloilla, ja pohditaan voidaanko tietovuotojen 
suunnanmuutoksilla ennustaa tulevaisuuden teknologian kehitystä. Tutkimuksessa 
analysoidaan koko PatStat patenttitietokannan 90 miljoonaa patenttia 160 kansallisesta 
patenttitoimistosta lähes sadan vuoden ajalta ja hyödynnetään variaatiota sekä maiden että 
tekniikan alojen sisällä ja välillä. Tietovuotojen suunnan ja voimakkuuden muutokset 
paljastavat siirtymän mekaanisista elektronisiin instrumentteihin, erityisesti teollisiin 
säätölaitteisiin, sekä tieto- ja viestintätekniikan nousun ”keksintölaitteiksi” 1970-luvulta 
lähtien. Tutkimusjakson viime vuosikymmenillä digitaalisten viestintätekniikoiden laaja-
alainen käyttö muiden tekniikan alojen keksinnöissä saattaa liittyä tietojen käsittelyn, datan ja 
viestinnän siirtymiseen pilvipalveluihin ja teollisiin internet-verkkoihin.   

Asiasanat: keksintö, patentti, instrumentit, säätölaitteet, tietotekniikka 

JEL luokat: O32, O31, O12 
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Abstract 

Inventions depend on skills, experience, and information exchange. Information is shared 
among individuals and organizations both intentionally and unintentionally. Unintentional 
flows of knowledge, or knowledge spillovers, are viewed as an integral element of 
technological progress. However, little is known about the overall patterns of knowledge flows 
across technology sectors or over long periods of time. This paper explores whether it is 
possible to identify “invention machines” – technologies that help create new inventions in a 
wide range of other sectors – and whether shifts in the patterns of knowledge flows can predict 
future technological change. In the spirit of big data we analyze the entire PatStat database of 
90 million published patents from 160 patent offices over a century of invention and exploit 
variation within and across countries and technology fields over time. The direction and 
intensity of knowledge spillovers measured from prior-art citations highlight the transition 
from mechanical to electrical instruments, especially industrial control systems, and the rise of 
information and communication technologies as “invention machines” after 1970. Most 
recently, the rapidly increasing impact of digital communications on other fields may herald 
the emergence of cloud computing and the industrial internet as the new dominant industrial 
paradigm. 
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1. Introduction 

The history of invention is a history of knowledge spillovers. There is persistent 

evidence of knowledge flowing from one firm, industry, sector or region to another, either by 

accident or by design, enabling other inventions to be developed (Aharonson, Baum, & 

Feldman, 2007; Breschi & Lissoni, 2001; Griliches, 1979; Jaffe, 1989). For example, Thomas 

Edison’s invention of the “electronic indicator” (US patent 307,031: 1884) spurred the 

development by John Fleming and Lee De Forest in early 20th century of early vacuum tubes 

which eventually enabled not just long-distance telecommunication but also early computers 

(e.g., Guarnieri, 2012). Edison, in turn, learned from his contemporaries including Frederick 

Guthrie (1876). It appears that little of this mutual learning and knowledge exchange was paid 

for and can thus be called a “spillover”, i.e. an unintended flow of valuable knowledge, an 

example of a positive externality. 

Breakthrough inventions and their spillovers may generate tremendous waves of 

technological change. In particular, general-purpose technologies (Bresnahan & Trajtenberg, 

1995; Carlaw & Lipsey, 2002) such as the vacuum tube or its successor the microprocessor 

can be utilized in many different compound inventions, cumulatively leading to technological 

revolutions in the adopting sectors. Moreover, a special class of general-purpose technologies 

we call invention machines are not only applicable in many other sectors but facilitate 

invention in those other sectors. Our goal is to identify technologies that have such a broad 

and catalytic impact by enabling follow-on invention in many application sectors. 

In economic terms, general-purpose technologies have been defined as being widely 

used, capable of sustained technical improvement, and enabling innovation in application 

sectors (Bresnahan, 2010), although others have not emphasized their innovation-spawning 

nature (e.g. Hall & Trajtenberg, 2004; Helpman & Trajtenberg, 1998). Innovation in 

application sectors combined with sustained technical improvement implies that there are 

dynamic complementarities between the general-purpose and application technologies: the 

returns to innovation in application technologies are enhanced by improvements in the 



4 

general-purpose technologies, and vice versa, provided that knowledge spillovers or markets 

for technology enable such combinatory inventions.  

Further, when the invention of general-purpose technologies is associated with fixed 

costs, there may be vast economies of scale via broad adoption by different application 

sectors. In such cases the impact of the enhanced innovation opportunities may be unusually 

long-lasting, in particular, due to the “superadditivity” of invention across sectors and over 

time: each invention in the general-purpose technology enhances the incentives to invent new 

applications, and each new application enhances the incentives to improve the general-

purpose technology. General-purpose technologies are then capable of generating sustained 

aggregate growth (Bresnahan, 2010). They also involve positive externalities because each 

inventor is likely to only consider their own inventive returns and not their impact on the 

inventiveness of other sectors. Such increasing returns to R&D investment are thus unlikely 

to be fully captured by the inventing organizations, for which reason investment in the 

development of general-purpose technologies should be of keen interest to policymakers. 

Previous empirical studies have analyzed specific technologies such as steam engines 

(Crafts, 2004; Nuvolari, Verspagen, & von Tunzelman, 2011), electricity (David, 1990; 

Moser & Nicholas, 2004), and computers (Bresnahan & Greenstein, 1999) as general-purpose 

technologies through historical industry analysis. The study closest to ours is Hall and 

Trajtenberg (2004) who conduct analyses of patent citations to identify individual patents that 

can be characterized as general purpose because of their generality and association with 

rapidly evolving technology classes. Our approach is different in that, although we also 

conduct patent-level analyses, we are interested in sectoral differences in patterns of citation 

and cross-citation. We attempt to identify entire technology classes or fields that have 

generated sustained invention that was adopted and cumulatively invented upon by other 

technology areas. We suggest that this approach is more aligned with the notion of general-

purpose technologies that are rarely single inventions but particularly generative and broadly 

applicable clusters and streams of inventions (e.g. electricity). Thus it makes sense to try to 
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identify long-term patterns of invention and spillover generated by technological subfields 

that indicate exceptional impact on invention in a broad range of technology sectors. 

Equipped with significantly enhanced computing power as compared with Hall and 

Trajtenberg in 2004, we conduct a descriptive, comprehensive, and very long-term analysis of 

cross-sectoral patent citations over several decades and in many countries. We take a big-data 

approach – “N=all” – and consider the entire technological progress of the world for most of 

the past century. This allows us to describe relationships among fields of technology that are 

difficult to discover with a short random or industry sample. We find that the inventive 

impact of instruments1 and information technologies2 is exceptional and sustained over long 

periods of time. We highlight them as types of “Turing machines of invention”: instruments 

enable the manipulation of physical matter (chemical substances, artifacts, physical processes, 

biological organisms), whereas information technologies enable the manipulation of 

information. Both are “invention machines” in that they are not only general-purpose 

technologies that can be adopted in a wide variety of other sectors, but they also provide 

essential ingredients for invention in the other sectors. Instruments, through the manipulation 

of matter, facilitate discovery of new physical properties; computers, through the 

manipulation of information, facilitate discovery of new information. Together, instruments 

and computers have been used to automate a wide range of industrial processes since early 

1970s.  

2. Method 

A new technology is potentially not only useful to its profit-motivated inventor but 

also to other economic agents, although these other agents do not always pay a price for the 

use of the invention or the underlying idea. This insight inspired a rewriting of the theory of 

economic growth that focuses attention on the role of endogenous knowledge accumulation in 

aggregate economic growth (Audretsch & Keilbach, 2008; Carlsson, Acs, Audretsch, & 

                                                      

1 Standard Industrial Classification 38 
2 Standard Industrial Classifications 357, 367 
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Braunerhjelm, 2009; Romer, 1990). Empirically, Griliches (1979) and Scherer (1982) 

suggested that the productivity of firms or industries is related to their own R&D spending, 

and also to the R&D spending of other firms and other industries. 

Knowledge spillovers may take place through various mechanisms, such as through 

the mobility of R&D workers, the exchange of information at technical conferences or in 

scientific and technical literature (including patent documents), reverse engineering, and 

industrial espionage. Given the difficulty in measuring knowledge spillovers, patent citations 

have long been considered proxies for the flow of knowledge from the inventors whose 

patents are cited to the inventors making the citations. Empirical studies using patent citations 

have demonstrated the process of technological accumulation (Caballero & Jaffe, 1993; 

Fontana, Nuvolari, & Verspagen, 2009), as well as a large body of research assessing the 

extent to which knowledge spillovers are geographically localized (Aharonson et al., 2007; 

Breschi & Lissoni, 2001; Forman, Goldfarb, & Greenstein, 2016; Jaffe, Trajtenberg, & 

Henderson, 1993; Maurseth & Verspagen, 2002). These authors find that knowledge 

spillovers between firms, or from (semi-) public knowledge institutes to firms, depend on 

geographical distance – that is, citing occurs more often the closer geographically situated the 

inventors. 

Much economic research has attempted to measure and assess the implications of 

spillovers by analyzing citations made in patent documents to predecessor inventions. To 

verify this measurement strategy, Jaffe, Trajtenberg, and Fogarty (2000) surveyed the 

meaning of patent citations and concluded that a substantial part (but by no means all) of such 

citations involve actual flows of knowledge. Thus, patent citations are a noisy but meaningful 

indicator of knowledge spillovers in an economy. However, care must be taken with using 

patent citations, as citations can be added not only by the inventors, but also by the patent 

attorneys and the patent examiners involved with the patent application, with the final 

decision ultimately lying with the patent examiner. Thus specific controls for inventor versus 

examiner additions have shown not only that geographical distance but also cognitive 

distance and time influence the probability of knowledge flows (Criscuolo & Verspagen, 
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2008). This said, patent data remains a valuable, even if imperfect, tool with which to 

measure knowledge flows. 

Our data source is PatStat, a comprehensive resource from the European Patent 

Office covering more than 170 publication authorities (patent offices), 90 million awarded 

patents, 160 million citations and more than 200 control variables covering the period from 

1920 to 2014. Table 1 shows the PatStat organization for technology sectors (5 in total) and 

fields (34 in total).3  

[Insert Table 1 here] 

Our analysis is based on a simple count-data model of the number of citations received by 

each patent, controlling for several confounding factors that may influence our estimates. The 

base model is of the type:  

Ci=βktFkt+γiΧι+εi (1) 

where Ci is the sum of all citations received by patent i, Fkt is a binary variable equal to 1 for 

patents that belong to field k and were published in year t, and 0 otherwise. This model 

reports estimators at the field-year level conditional on a broad range of controls. These 

controls are included in Xi, the vector of patent characteristics, and εi is the error term. βkt 

captures the number of citations received by each field and year, all other things being equal. 

Our analysis is done at the patent-year level allowing the maximum degree of flexibility in 

the estimates.4   

There are a few factors that may drive patent citation counts. First, the number of 

citations is strongly linked to the procedures followed by publication authorities (national or 

regional patent offices) that oversee the application and grant process. This can change over 

time as new processes within patent offices may affect the ways to attribute citations. Second, 
                                                      

3 Occasionally patent classification schemes are modified and patents can change their classification. 
For our analysis we use the most recent classifications. We do not believe that past reclassifications 
will influence our analysis, as most reclassifications happen at quite granular (3 or 4 digit) levels, and 
our analysis is at the rather coarse sectoral and field levels. Put differently, it is unlikely for a patent to 
be reclassified between technology classes. 
4 The cost of this decision is that the size of the dataset exceeds common computing capacities. 
Therefore, most of the analysis has taken place using c4.8xlarge compute optimized instances and 
r3.8xlarge memory optimized instances on the Amazon cloud service. 
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prior art citations have generally been rising in recent years thus introducing a secular trend. 

We therefore control for year and patent office effects in our model allowing direct 

comparisons across jurisdictions and over time. Third, a patent may also belong to a family of 

inventions that are submitted to multiple patent offices. The size of such a patent family can 

affect the visibility of the invention and hence increase the likelihood of the patent being 

cited. We compute and control for the numbers of patents that belong to each family and each 

“extended” family.5 Fourth, different technology sectors have varying publication and citation 

patterns. We control for the total number of inventions granted (annual patent flows) and the 

total number of citations within each patent class each year. These metrics correct for 

potentially inflated citation counts in sectors with more inventions (hence with a higher 

likelihood of being cited) and sectors that cite patents and non-patent literature more 

extensively than others. Further, we control for the citations made by patent examiners and 

the number of claims to capture the extent and scope for protection sought. Lastly, we capture 

seasonal effects with controls for the month of publication.  

All these controls reassure us about the validity of comparisons over time, across 

patent offices, and across technology fields. Our assumption thus is that patents submitted in a 

patent office, at the same time, within the same field, and with the same family size will be 

treated equally by the authorities.  

3. Results 

We first look at the relative influence of the primary technology classes (the highest 

level of classification within PatStat), namely electrical engineering, instruments, mechanical 

engineering, and chemistry over the period 1920 to 2014 (Figure 1).6  Given the shorter 

window of observations for recently published patents we observe that their citation counts 

drop quickly after 2000. To avoid a systematic bias, we consider results until 2000 in our 

                                                      

5  This broader definition of a patent family takes domestic application numbers as additional 
connecting elements and includes patents having the same scope but lacking a common priority 
(www.epo.org). 
6 We do not present the results for the “Other Fields” technology classes as there is only limited data. 
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analysis. Given the increasing patenting activity in recent years – for which we explicitly 

control – this choice reduces our sample to approximately 54 million (from 88 million in 

total).7 

Although the four technology classes display distinct citation profiles, all of them 

present a changing pattern starting around year 1970s. Prior to 1970 mechanical engineering 

and chemistry technology classes closely followed the general trend. Soon after this period 

their influence starts to drop. In contrast, the electrical engineering technology class also 

follows the mean until the 1970s, after which it begins to increase more rapidly, peaking just 

before the 2000s. Amidst these changes, the instruments class remains above the citation 

mean for the whole period of study, and, similar to electrical engineering, also begins to 

attract more interest after 1970. These patterns correspond to a shift from mechanical and 

chemical technologies to electrical ones. 

[Insert Figure 1 here] 

To explore the exceptional patterns of the instrument and electrical engineering sectors we 

discovered in Figure 1, we break down sector-level citations into more specific technology 

fields including analysis of biological materials, control, measurement, medical technology, 

and optics (Figure 2). The fields of optics and measurement generally track the mean of all 

technology classes while the other three fields show some distinct patterns. With the 

exception of the 1920s, medical technology appears to consistently receive fewer citations 

than other instrument fields; this points to the increasing specialization of medicine over the 

20th century, whereby medical technologies are not frequently used in other fields. Analysis 

of biological materials generally follows the mean of all citations until the 1980s, when it 

appears to increase its overall influence. Whereas this could suggest the emergence of 

biological analysis as an invention machine, a closer analysis suggests otherwise: the rise of 

biological analysis appears to reflect the adoption of digital technologies within this field – 

                                                      

7  Full tables are available in the Appendix for all technology sectors (Electrical, Mechanical, 
Instruments and Chemistry), Table A1, and the sub-classes (34 in total), Table A2. 
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the highly cited patents in this technology class tend to be co-listed in the digital 

communications and data processing classes (see Figure A3 in the Appendix for more detail).  

[Insert Figure 2 here] 

The most striking field of instruments is control technologies, which consistently receive 

more citations than the mean of all classes for the entire period. Control technologies relate to 

the electrical or mechanical manipulation and management of machinery (see Appendix A1 

and A2 for examples of each). The above-average citations to the instruments sector can 

almost entirely be attributed to this specific field. Control technologies thus appear to qualify 

as invention machines that enable the manipulation of information or physical properties in a 

broad range of applications, inciting follow-on invention in those application sectors.  

[Insert Figure 3 here] 

We carry out a similar analysis of the subfields of electrical engineering. Figure 3 reports the 

yearly coefficients for these fields. Again, the red dotted line marks the average of all sectors 

and the blue dotted lines the coefficients of the specific field in question. AV technologies, 

basic communication, electrical machinery, and telecommunications are all not different from 

the average in any sustained pattern. In contrast, semiconductors had a long (albeit variable) 

spike prior to 1960; computer technology has been above average after 1970 and particularly 

in the 1990s; and digital communications have experienced a seemingly exponential growth 

after 1970 (ignoring the 2000s for which we do not yet have comprehensive data). Perhaps 

surprisingly, computer technologies have not been as impactful or persistent in their influence 

on other fields as have control technologies or digital communications. We have left out the 

field of IT methods for management which is included in the Appendix A3. Because of a 

relatively small number of patents in this field, its coefficients are very unstable and therefore 

difficult to interpret. 

Next we exploit the fact that patents can be classified in multiple patent classes via 

co-listed patent classes. We define as “mechanical instruments” those patents that list both 

mechanical engineering and instrument classes while “electrical instruments” list both 

electrical engineering and instrument classes. We utilize a differences-in-differences approach 
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around the year 1970, when Electrical Engineering patent citations counts first rose above the 

mean (cf. Figure 1). The simple model from Eq. 1 now becomes: 

Ci=αktPostyear=1970+βktFElectrical,t*FInstruments,t + δktPostyear=1970*FElectrical,t*FInstruments,t +γiΧι+εi (2) 

Ci=αktPostyear=1970+βktFMechanical,t*FInstruments,t + δktPostyear=1970*FMechanical,t*FInstruments,t +γiΧι+εi (3) 

where Ci is the sum of all citations received by patent i, FElectrical,t*FInstruments is a binary 

variable equal to 1 for patents that belong to Electrical and Instruments sectors published in 

year t, and 0 otherwise.  Similarly FMechanical,t*FInstruments,t is a binary variable equal to 1 for 

patents that belong to Mechanical and Instruments sectors published in year t, and 0 

otherwise. The Postyear=1970 binary variable is 1 for years after 1970 and 0 otherwise. The 

interaction of Postyear=1970 by the selected Electrical X Instruments or Mechanical X 

Instruments patents measures the post 1970 effect in the treatment groups. As before the 

model reports estimators at the field-year level conditional on a broad range of controls. 

These controls are included in Xi, the vector of patent characteristics, and εi is the error term. 

βkt captures the number of citations received by each field and year, all other things being 

equal. 

We also modify models (2) and (3) to assess the impact of spillovers to other sectors. 

More often patents are cited heavily within their own field as their inventions are more 

relevant in adjacent technological fields. To alleviate this shortcoming and look into the 

broader impact of certain inventions we calculate the sum of citations received by patents that 

are not classified in the same technological fields. We construct Sik as the sum of citations that 

originate from sectors j other than k (݇ ≠ ݆), hence   ܵ = ∑ ஷܥ <  . The new modelsܥ

for spillovers in a difference in differences framework now become: 

ܵ=αktPostyear=1970+βktFElectrical,t*FInstruments,t + δktPostyear=1970*FElectrical,t*FInstruments,t +γiΧι+εi (4) 

ܵ=αktPostyear=1970+βktFMechanical,t*FInstruments,t + δktPostyear=1970*FMechanical,t*FInstruments,t +γiΧι+εi (5) 

Figure 4 and Table 2 present analyses of those technology classes that instrument patents are 

co-listed with. We report the results for both types of instruments, mechanical and electrical, 

from Eq. (2) and (3) in specifications 1 and 3. We also consider the narrower definition of 
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sectoral spillovers ( ܵ ) by estimating cross-sector citations based on Eq. (4) and (5) in 

specifications 2 and 4. 

[Insert Table 2 here] 

We find that mechanical instruments are the most frequently cited patents across all 

instruments but electrical instruments gradually replace them after 1970. Specifically, prior to 

1970 mechanical instruments receive on average 0.364 more citations (compared to other 

technology fields at the same time period) whereas electrical instruments increase their share 

after this milestone to receive 1.026 citations (columns 1 and 3, Table 2) more. Regarding 

cross-sector spillovers, we find that electrical instrument spillovers increase by 0.388 citations 

after 1970 whereas mechanical instrument spillovers drop by 0.307 during the same period 

(columns 2 and 4). This take-off of electrical instruments coincides with the information 

technology revolution since the early 1970s and continued in the following decades. 

Nevertheless, instrument technologies appear to have generated substantial and sustained 

knowledge spillovers over several decades regardless of the underlying technological base.  

[Insert Figure 4 here] 

Figure 4 illustrates the dramatic switch to electric engineering as the basis of 

industrial instruments around the watershed year 1970. The difference between mechanical 

and electric instruments is particularly clear and consistent for the cross-sectoral spillovers 

post 1970 (panel on the right). 

[Insert Figure 5 here] 

In our final illustration of technological discontinuities involving industrial control 

and electronics, we delve into the technology areas cross-listed with control technologies 

(Figure 5). We find that pre-1970 the above-average knowledge spillovers from control 

technologies (above the solid line that represents average citation rate of control technologies) 

take place when inventions are co-listed with a variety of mechanical technology fields, 

including thermal, transport, materials, and machine tools (square symbols). In contrast, post-

1970, the most frequent senders of control technology spillovers are co-listed with electrical 

engineering technology fields (round symbols) and dominated by digital communications. 
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Although computer technologies have been assumed to play a central role in automation, it 

appears that communication technologies actually generate the most invention impact. 

4. Discussion and Conclusion 

Expanded data storage and processing capabilities allow social scientists to tackle 

ever-larger datasets in comprehensive and complex analyses of networks and dynamics. We 

analyzed the entire global history of patenting since about 1920 to detect long-term patterns 

of technological influence via prior-art citations of patented inventions. 

The history of knowledge spillovers as measured by patent citations is dominated 

throughout the 20th century by instrument technologies and, after 1970, by electrical 

engineering, particularly information and communication technologies. We described these 

technologies as “invention machines” because they play critical roles in the processes of 

invention in many sectors of the economy. Thus, they are not only general-purpose 

technologies that can be utilized in many different sectors but also general invention 

technologies that facilitate the discovery of other technologies. Instruments enable the 

manipulation of physical processes whereas information and communication technologies 

enable the manipulation of data. Both capabilities are fundamental to most economic and 

industrial activity. 

Our analyses imply that industrial automation technologies coming out of the subfield 

of control instruments have been the most generative (and probably the most valuable) 

general-purpose technologies over the past century of invention. Meanwhile, the sources and 

implications of control technologies have rarely been considered in the debates around 

computerization, digitization, and productivity. Our analysis suggests that automation actually 

requires a great deal of instrumentation which, to our knowledge, has not been studied in 

detail by historians or economists. An exception here is Rosenberg (1992), who dramatically 

demonstrates the positive spillover effect of the emergence and diffusion of new technologies 

of instrumentation. In particular, he emphasized the outsized the role of the computer in 

driving across-discipline and across-industry collaboration. 
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We also find a watershed moment around year 1970 when the modal invention 

trajectory switched from mechanics to electronics. Here we confirm the finding of Jovanovic 

and Rousseau (2005) of the ICT revolution commencing about this time. Electronics 

invention in technologies such as semiconductors and data processing, and later computer 

technologies and particularly digital communications paved the way for digitization and 

automation of production and economic coordination. In particular, digitized industrial 

control systems appear to have had a tremendous technological impact since 1970. We leave 

it for future research to connect these technological advances with effects on productivity and 

competition that probably continue to this day.  

In spite of the volume of information we have analyzed in this process this study is 

subject to several limitations. First, patents represent only a subset of human knowledge that 

may appear in other forms and channels including the non-patent literature, open innovation 

or software. Capturing these links would strengthen the interpretation of within and cross 

sectoral spillovers and could also help explain or even predict the launch of new inventions 

and technologies. We consider this addition along with a parallel research of academic and 

open source software as a promising area of future research.  

Second the contextual information of similar inventions can range substantially 

across regions or time and this is hard to homogenize in a global panel spanning over a 

century. In this context the use of coarse sector-level specifications allows for a higher 

tolerance towards this issue that is mainly found in lower level classifications and their 

interpretations. Third we have managed to ex-post identify influential patents but have not 

created a robust method that predicts the new patents that will appear. One approach for this 

could combine the spectrum of possible applications of a patent (assuming this is not the 

results of a patent troll) though the use of our baseline specification and machine-learning 

techniques from a very granular dataset.  

Forth, there is a long literature linking the inventor capacity, networks, legislation and 

resource allocation to the subsequent success of their inventions (Alcácer & Gittelman, 2006; 

Becker & Gerhart, 1996; Moser, 2005; Paruchuri, 2010; Subramaniam & Youndt, 2005). Our 
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work has not utilized this type of information to predict the success of various inventions or 

estimate the elasticity of subsequent inventions, and we believe there is some fruitful research 

that can be undertaken here. Fifth, the importance of an invention is also linked to the level of 

technological development in the area of interest. For example, some influential patents 

appear to have a long-lasting effect while other die very quickly. Looking into the 

characteristics of these patents in terms of technological maturity or monetization 

opportunities has not been a focal point of our research and are also potentially fruitful 

avenues of further research. 

As the control and communication revolution appears to continue, we may wonder 

what is in store for the future. We investigated the conspicuous rise of biological analysis 

technologies but concluded that their initial rise is primarily caused by the adoption of 

electronics, not necessarily by the application of biological techniques in other industries. 

However, the convergence of digital communication technologies and control technologies 

may well prove to generate the next generation of invention machines. Advanced digital 

communications make it possible to simultaneously and immediately utilize information in a 

wide variety of contexts. This bodes well for the integration of techniques related to cloud 

computing, big data, and the industrial internet with control technologies such as different 

types of sensors and actuators that, together, allow observing and manipulating physical, 

chemical, biological, and social processes in connected industrial activities in a vast set of 

contexts. Perhaps one can view theses as an enabler for “Second Machine Age” vision of the 

future of Brynjolfsson and McAfee (2014).  

As the onslaught of automation may continue to create tremendous industrial value 

but also societal upheaval via creative destruction of jobs, occupations, and organizations, it is 

interesting to notice that the set of technologies that fundamentally enables this, control 

instruments, has gone relatively unnoticed in the economics of technology. In ongoing 

research, we examine the geographic origins and implications of these patterns of knowledge 

flows.  
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Figure 1  Predicted patent citation coefficients by sector and by year 

  

Notes: Blue dots represent the sector-level coefficients βkt while the red dots represent the mean of all technology classes 
(reported as a reference in all figures. These results control for year and publication authority fixed effects, citations added 
by examiners, publication claims, family and broad family size, stock of published patents by sector and year and stock of 
citations by field. 
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Figure 2  Predicted patent citation coefficients by instrument field and by year 
 

 
 
Notes: Blue dotted line represents the coefficients for the technology class in question while the red dotted line represents 
the mean of all technology classes. These results control for year and publication authority FE, citations added by examiners, 
publication claims, family and broad family size, stock of published patents by sector and year and stock of citations by 
field. 
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Figure 3 Predicted electrical engineering patent citations by technology field and 
by year 

 

 
 
Notes: Blue dotted line represents the coefficients for the technology class in question while the red dotted line represents 
the mean of all technology classes. These results control for year and publication authority FE, citations added by examiners, 
publication claims, family and broad family size, stock of published patents by sector and year and stock of citations by 
field. 
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Figure 4  All predicted citations and cross-sector spillovers of mechanical and 
electrical instruments 
 

 
 
Notes: These results control for year and publication authority FE, citations added by examiners, publication claims, family 
and broad family size, stock of published patents by sector and year and stock of citations by field. 
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Figure 5  Predicted control patent citations with co-listed technology fields 

 
 
Notes: The results presented include controls for year and publication authority FE, citations added by examiners, 
publication claims, family and broad family size, stock of published patents by sector and year and stock of citations by 
field. For clarity, hollow circles represent the Electrical X Control categories and the squares the Mechanical X Control 
categories. Colors indicate the relevant sup-group. 
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Table 1  Technology Sectors and Technology Fields in PatStat patent data 

Technology Sector Technology Field 
Chemistry Basic materials chemistry 
Chemistry Biotechnology 
Chemistry Chemical engineering 
Chemistry Environmental technology 
Chemistry Food chemistry 
Chemistry Macromolecular chemistry, polymers 
Chemistry Materials, metallurgy 
Chemistry Micro-structural and nanotechnology 
Chemistry Organic fine chemistry 
Chemistry Pharmaceuticals 
Chemistry Surface technology, coating 
Electrical Engineering Audio-visual technology 
Electrical Engineering Basic communication processes 
Electrical Engineering Computer technology 
Electrical Engineering Digital communication 
Electrical Engineering Electrical machinery, apparatus, energy 
Electrical Engineering IT methods for management 
Electrical Engineering Semiconductors 
Electrical Engineering Telecommunications 
Instruments Analysis of biological materials 
Instruments Control 
Instruments Measurement 
Instruments Medical technology 
Instruments Optics 
Mechanical Engineering Engines, pumps, turbines 
Mechanical Engineering Handling 
Mechanical Engineering Machine tools 
Mechanical Engineering Mechanical elements 
Mechanical Engineering Other special machines 
Mechanical Engineering Textile and paper machines 
Mechanical Engineering Thermal processes and apparatus 
Mechanical Engineering Transport 
Other Fields Civil engineering 
Other Fields Furniture, games 
Other Fields Other consumer goods 
 
Notes: Technology fields consist of non-overlapping IPC codes that are available from the PatStat dataset. 
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Table 2  Citations for electrical and mechanical instruments, before and after 1970 
 

(1) (2) (3) (4) 

Estimation method FE FE FE FE 

Dependent variable All citations 
X-sector 

Spillovers 
All citations 

X-sector 
Spillovers 

Postt 1.735 0.096 1.706 0.095 

dummy=1 after 1970 (70.18)** (143.23)** (68.86)** (33.92)** 

Electrical Instruments 4.23 1.32 

(238.42)** (432.28)** 

Electrical Instruments X Post 1.026 0.388 

(56.24)** (123.53)** 

Mechanical Instruments 5.14 1.39 

(346.00)** (829.03)** 

Mechanical Instruments X Post -0.364 -0.307 

(23.53)** (175.63)** 

Observations 53,980,888 53,980,888 53,980,888 53,980,888 

R2 0.24 0.14 0.25 0.12 

Year FE yes yes yes yes 

Publication Authority yes yes yes yes 
Stock of published patents by 
field & year 

yes yes yes yes 

Family Size yes yes yes yes 

Family Size Broad yes yes yes yes 

Publication Claims yes yes yes yes 

Citations (#) by examiners yes yes yes yes 

Stock of citations by field&year yes yes yes yes 
 
Notes: The dependent variable is the total number of citations per patent i in year t (columns 1 
and 3) and the number of citations from all other sectors excluding Electrical Instruments 
(column 2) and Mechanical Instruments (column 4). Standard errors clustered at the patent 
family level are reported in parenthesis below coefficients: *significant at 5%; **significant at 
1%. 
Source: Authors’ calculations based on data from PATSTAT.
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Appendix  

Figure A1  US Patent 9,268,320 B2: Wireless Industrial Control User Interface 
with Configurable Software Capabilities (2016) 
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Figure A2  US Patent 3,444,896: Hydraulic Interval Timer (1969) 
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Figure A3 Biological analysis patent citations with co-listed technology fields  

 
 
Notes: These results control for year and publication authority FE, citations added by examiners, publication claims, family 
and broad family size, stock of published patents by sector and year and stock of citations by field. 
 
Table A1 Full Sectoral Regression Tables 
 
Presented in separate file (Appendix-Table-A1-Sectoral-Regressions.pdf). 
 
Table A2 Full Sectoral and Subsector Regression Tables 
 
Presented in separate file (Appendix-Table-A2-Sector-Subsector-Regressions.pdf). 
 


