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Abstract

This paper examines the implications of automation capital in a Solow growth model with

two types of labour. We study the transition from standard production to production using

automation capital which substitutes low-skilled workers. We assume that despite advances

in technology, AI and machine learning, certain tasks can be performed only by high-skilled

labour and are not automatable. We show that under these assumptions, automation capital

does not generate endogenous growth without technological progress. However, assuming

presence of technological progress augmenting both effective number of workers and effective

number of industrial robots, automation increases rate of long-run growth. We analyse a

situation in which some countries do not use robots at all and other group of countries starts

the transition to the economy where industrial robots replace low-skilled labour. We show

that this has potential non-linear effects on σ-convergence and that the model is consistent

with temporary divergence of incomes per capita. We derive a set of estimable equations

that allows us to test the hypotheses in a Mankiw-Romer-Weil framework.
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1 Introduction

Increased usage of industrial robots and other forms of automation capital in production mo-

tivated the construction of economic growth models with automation-driven long-run growth.

There is a variety of economic models with automation capital that capture different aspects

of the economic consequences. What they share in common is their emphasis on the potential

of automation capital to generate constant returns to scale to producible inputs and thus gen-

erate long-run economic growth without the technological progress. Little attention is paid to

a situation currently faced by the most countries in the world. That is, the transition from an

economy where automation capital is not present or plays a marginal role, towards the econ-

omy that invests increasing proportion of savings to automation capital. Thus, we contribute

to the current literature by providing a simple framework that allows as to study the impli-

cations of a transition to economy with automation capital for economic growth, convergence

process and income inequality. We study the situation without exogenous technological progress

in which automation capital does not generate perpetual growth. However, we show that as-

suming technological progress which augments both effective number of labour and effective

number of industrial robots, automation capital increases the long-run growth. We derive a set

of estimable equations which allow us to test hypotheses suggested by the model in a Mankiw-

Romer-Weil framework. We confirm the hypothesis that the speed of convergence towards a

steady state in an economy with robots is lower than the convergence towards a pseudo steady

state where robots are not employed in the production. We also find evidence in favour of the

hypothesis that elasticity of output with respect to savings rate is higher if robots are used in

the production. Furthermore, we show that assuming that i) countries differ in fundamentals

(for example in total factor productivity) and ii) there is a convergence in fundamentals (for ex-

ample differences in TFP are decreasing), it is possible that coefficient of σ-convergence evolves

in non-linear fashion. In particular, we show that robot-technology can be a cause of temporary

divergence in output per capita what is consistent with the data.

In Figure 1 we show the development of σ-convergence, overall stock of robots and the share of

countries with robots in a sample of 65 countries. The standard deviation of incomes per capita

was decreasing until 1996, increasing in the period from 1996 to 2001 and decreasing again

thereafter. This development coincides with an increase of the share of countries producing

with automation capital from 40 % in 1993 to more than 90 % in 2014. Not only the share of

countries using robots increased during this period but the overall stock of robots in the world

economy rose dramatically. Total stock of robots more than tripled from 1993 to 2014.

The paper is structured as follows: First, we review the current literature on models with

automation capital and show our contribution. In Section 3 we propose a Solow-type growth

model with two types of labour, traditional and automation capital. We derive the model

without population growth and without technological progress. Here we analyse the transitional

dynamics from a situation without robots towards the production based on the introduction
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of robots as additional factor of production. Population growth and technological progress

are introduced into the model in Section 4. We show that wages of low-skilled workers are

stagnant despite exogenous technological progress and that the model is able to generate non-

linear development of coefficient of σ-convergence. In Section 5 we derive a set of equations

for empirical analysis, we present an empirical strategy and the first empirical results which

confirm hypotheses suggested by the model.
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Figure 1: σ-convergence, share of countries with robots and total stock of robots

2 Literature Review

Steigum (2011) was the first to investigate the automation capital in a one-sector Cass-Koopmans-

Ramsey model of optimal growth. He showed that robots can become a source of endogenous

growth some time in the future. Robots as a perfect substitute for labour where first introduced

to Solow model by Prettner (2017). Prettner (2017) shows that due to automation capital: i)

perpetual growth is possible even in the absence of technological progress; ii) the long-run

economic growth rate declines with population growth; iii) there is a unique share of savings

diverted to automation that maximizes the long-run growth rate of the economy; and iv) the

labour share declines with automation.

Gasteiger and Prettner (2017) analyse long-run growth effects of automation in the canoni-

cal overlapping generations framework. They show that standard neoclassical growth models

(Solow, 1956; Cass, 1965; Koopmans, 1965) and Diamond´s overlapping generations model (Di-

amond, 1965) lead to opposite predictions with regards to the growth effects of automation.
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In the first class of models, households save a part of their wage income and a part of their asset

income. This implies that automation could lead to perpetual long-run growth even without

(exogenous or endogenous) technological progress. On the other side, in the framework of

Diamond (1965) households save exclusively out of wage income. Because automation capital

competes closely with workers, an increase in the stock of automation capital does not raise

worker´s productivity measured by their marginal value product. Thus, automation capital

depresses the wages and therefore the prospects for future growth as well.

The first generation of growth models with automation does not differentiate among workers.

But while some fraction of workers can be replaced by automation capital (they are substitutes),

the other fraction of workers cooperates with and maintains the automation capital (they are

complements). Lankisch et al. (2019) generalize the results of Prettner (2017). They aim to

explain the simultaneous presence of increasing output per capita, declining real wages of low-

skilled workers, and a rising wage premium of higher education within a model of economic

growth in the age of automation. They work with nested CES production function with au-

tomation capital as a perfect substitute for low-skilled labor, assuming low-skilled labor and

high-skilled labor are gross substitutes. Thus, automation capital competes directly with low-

skilled labor and indirectly with high-skilled workers 1. Accumulation of automation capital

leads to diminishing wages of low-skilled workers and increases the wages of high-skilled workers.

Skill premium rises as a consequence of increased stock of automation capital 2. The implica-

tions of automation have been studied within the R&D based endogenous growth models by

Acemoglu and Restrepo (2018), Hémous and Olsen (2014), Prettner and Strulik (2017).

Recent models with automation capital show its possibilities to generate growth witout tech-

nological progress. Automation capital thus complements the list of other potential sources of

endogenous growth. The basic implications of most models with automation capital do not

change in a presence of exogenous technological progress. Our model differs in two dimensions:

First, we explicitly assume that high-skilled workers are a necessary input and cannot be substi-

tuted by industrial robots. We make this assumption because our focus is on current transitional

period during which automation capital is used to perform certain activities, but some activ-

ities still remain exclusive domain of humans. We argue that this framework is more suitable

when studying current economic phenomena, whereas assumption of full substitutability of both

low-skilled and high-skilled labour by automation capital is more reasonable when investigat-

ing more distant future. Due to the assumption that high-skilled labour is necessary input,

our model does not generate endogenous growth without technological progress. Technological

progress remains exogenous in our model.

1They endogenize the decision of rational investors of how much to invest in the two different stocks of capital.
They abstract from technological progress (no change in central results). There are two steady states, for low
savings a standard no growth steady state, but perpetual balance growth path is also possible.

2They show that it potentially diminishes wages of high-skilled workers in a situation with high substitutability
between low- and high- skilled workers.
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Second, we introduce technological progress which augments both effective number of workers

as well as effective number of industrial robots (it seems reasonable to call it labour- and robot-

augmenting technological progress).

To our knowledge, we are the first to explicitly study a situation in which only some fraction of

economies adopts robots even though this situation is possible in some of the models proposed

in the literature. We explicitly control for different efficiency of robots that are replacing the

low-skilled labour. It is common in recent papers to assume that one robot replaces one low-

skilled worker or that this ratio is fixed. But robots can became more efficient in terms of

replacing labour, they can operate 24 hours, and over time one robot can perform increasing

spectrum of operations. Therefore, we also consider exogenous shifts in robots’ efficiency.

3 A model without population growth and technological progress

Assume production function:

Yt = F (LH , LL, Pt,Kt) = ALαHH (LL +BPt)
αL KαK

t , (1)

where LH stands for high-skilled workers, LL are low-skilled workers, Pt are robots, Kt is

physical capital (excluding robots), At stands for TFP and B is productivity of robots relative

to low-skilled workers. Stock of both high-skilled and low-skilled workers is exogenously given.

Furthermore, assume constant returns to scale:

αH + αL + αK = 1

Total output is divided into consumption Ct and savings St, investment equal savings It = St.

Savings rate s is constant and exogenously given.

Define total capital Zt as sum of non-robot capital Kt and robots Pt, i.e.:

Zt = Kt + Pt

Total capital Zt accumulates according to:

∆Zt = It−1 − δZt−1 = sYt−1 − δZt−1

Total capital Zt can be used either as non-robot capital Kt or as robots Pt, however neither Kt
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nor Pt can be negative:

0 ≤ Kt, 0 ≤ Pt

Total capital Zt is divided into Kt and Pt by a social planner in such way that output Yt is

maximized. It is easy to see that since non-robot capital is a necessary input, constraint 0 ≤ Kt

is never binding. However, it is possible to choose zero robots Pt = 0 and produce output

solely using high-skilled and low-skilled labour and non-robot capital. It is therefore usefull to

distinguish between two cases:

3.1 Corner solution: No robots employed

Observe that as Kt approaches zero, marginal product of non-robot capital dYt/dKt tends to

infinity (standard Inada condition). However, marginal product of robots is not infite if there

are no robots employed because robots are not necessary input - they can be substituted by

low-skilled labour. Therefore, as Pt approaches zero dYt/dPt aproaches positive constant.

Therefore, for low levels of Zt it is optimal to invest only in non-robot capital if for Kt = Zt

and Pt = 0 marginal product of non-robot capital exceeds (or is equal to) marginal product of

robots, i.e.

FK(LH , LL, Zt, 0) ≥ FP (LH , LL, Zt, 0) ⇐⇒ αK
Yt
Zt
≥ BαL

Yt
LL

,

where FK and FP are partial derivatives with respect to Kt and Pt. Solving for Z yields:

Zt ≤
αK
αL

LL
B

(2)

If Zt satisfies condition (2), production function (1) is reduced to:

Yt = ALαHH LαLL ZαKt ,

Unsurprisingly, if no robots are used in the production, model reduces to simple Solow-like

version.
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3.2 Inner solution: Robots employed

Robots are employed if Zt >
αK
αL

LL
B . In this case, marginal product of non-robot and robot

capital must be equal:

FK(LH , LL,Kt, Pt) ≥ FP (LH , LL,Kt, Pt) ⇐⇒ αK
Yt
Kt

= BαL
Yt

LL +BPt

Rearranging produces expression for optimal stock of robots with respect to non-robot capital

and unskilled labour:

Pt =
αL
αK

Kt −
1

B
LL

Using this in the production function (1) yields:

Yt = ALαHH

(
B
αL
αK

Kt

)αL
KαK
t , (3)

Now use definition Zt = Kt + Pt to obtain expression for optimal stock of non-robot capital:

Kt =
Zt + 1

BLL

1 + αL
αK

(4)

Insert this into (3) to obtain:

Yt = DALαHH

(
Zt +

1

B
LL

)αL+αK
, (5)

where D ≡
(
B αL
αK

)αL (
1 + αL

αK

)−αL−αH
It is straightforward to show that for borderline case Zt = αK

αL
LL
B two versions of produc-

tion function yields the same value Yt = ALαHH LαLL ZαKt = DALαHH
(
Zt + 1

BLL
)αL+αK . Also,

dAL
αH
H L

αL
L Z

αK
t

dZt
=

dDAL
αH
H (Zt+ 1

B
LL)

αL+αK

dZt
.

3.3 Combining two cases

Above mentioned analysis enables to write the model in the simple form, where final output is

produced by the following production function:
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Figure 2: Standard graphical analysis

Yt =

AL
αH
H LαLL ZαKt , Zt ≤ αKLL

αLB

DALαHH
(
Zt + 1

BLL
)αL+αK , Zt >

αKLL
αLB

Total capital Zt accumulates according to:

∆Zt = It−1 − δZt−1 = sYt−1 − δZt−1

Figure 2 gives standard graphical analysis for the following calibration: αH = 4/8, αL = 1/8,

αK = 3/8, A = 1, B = 2, s = 0.5 and δ = 0.2. Borderline value of Zt when robots begin to be

employed in the production process is in this calibration Zt = αK
αL

LL
B = 1.5.

Dotted line corresponds to corner solution. For Zt exceeding borderline value of 1.5, output

is given by the inner solution. Observe that the inner and the corner solution differs in the

elasticity of output with respect to Zt. Whereas for low values of Zt, elasticity is αK , for high

values of Zt, elasticity is αL + αK . Also, observe that for high values of Zt, actual output is

higher than what would be the case if no robots were used - introduction of robots alleviates

tendency to decreasing marginal product, but is not enough to completely overcome decreasing

returns to produced factors.
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3.4 Steady-state analysis I.: No robots employed

Steady state is reached if ∆Zt = 0, that is:

Z∗ =
sY ∗

δ

Once again, two cases are possible. Either productivity of robots relative to low-skilled workers

is so low that even in the steady state it is not optimal to use robots (Z∗ < αKLL
αLB

). In this case

model reduces to standard neoclassical model with well-known behaviour, steady state being

given by:

Z∗ =

(
sALαHH LαLL

δ

) 1
1−αK

(6)

Combining expression αK
αL

LL
B for borderline value of Z, with (6) reveals that this steady state

applies if:

B ≤ αK
αL

(
δ

sA

) 1
1−αK

(
LL
LH

) αH
1−αK

(7)

Robots are not employed in the steady state if low B is combined with high depreciation rate,

low TFP, low savings rate and high ratio of low-skilled to high-skilled labour.

Steady state output can be written as:

Y ∗ =
(s
δ

) αK
1−αK (ALαHH LαLH )

1
1−αK (8)

Assuming competitive markets, prices of factors are easy to derive:

• Wages of high-skilled workers are given by (FLH being partial derivative with respect to

LH):

w∗H = FLH (LH , LL,K
∗, 0) = αHA

1
1−αK

(s
δ

) αK
1−αK

(
LL
LH

) αL
1−αK

(9)

• Analogically, wages of low-skilled workers are given by (FLL being partial derivative with

respect to LL):
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w∗L = FLH (LH , LL,K
∗, 0) = αLA

1
1−αK

(s
δ

) αK
1−αK

(
LH
LL

) αH
1−αK

(10)

• Returns to non-robot capital are given by:

r∗K = FK(LH , LL,K
∗, 0) = αK

δ

s
(11)

• Income shares of high-skilled labour, low-skilled labour, non-robot physical capital and

physical capital on output are αH , αL, αK and 0 respectively.

Observe that wages of both skilled and unskilled workers are a positive function of overall

productivity A. Also, elasticity of both wages with respect to A is the same - 1
1−αK . Increases

in TFP produces same relative changes wages for both skilled and unskilled workers.

On the other hand, returns to non-robot capital do not depend on A. The reason is easy

to understand - higher A increases marginal product of K but also enables accumulation of

non-robot capital what produces counteracting effect.

Consumption-maximizing savings rate sgold can be obtain by differentiating Y ∗(1 − s) (Y ∗

given by (8)) with respect to s and putting it equal to zero. This yields (akin to Solow model)

sgold = αK .

3.5 Steady-state analysis II.: Robots employed

Let us focus on the second case, when use of robots is profitable in the steady state, i.e. if condi-

tion (7) is not satisfied. In this case, the inner solution applies and Yt = DALαHH
(
Zt + 1

BLL
)αL+αK ,

therefore:

Z∗ =
sDALαHH

(
Z∗ + 1

BLL
)αL+αK

δ
(12)

Closed-form solution of (12) does not exist. However, characteristics of steady state can be

inferred by assuming that B is sufficiently large what makes 1
BLL negligible. This enables to

write:

Z∗ ≈
sDLαHH A (Z∗)αL+αK

δ

Steady state value of Z is given by:
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Z∗ ≈
(
sDALαHH

δ

) 1
1−αL−αK

(13)

To obtain expression for steady-state value of output, plug (13) into (5) and once again use

assumption that B is large enough what makes 1
BLL negligible. This enables to write steady-

state output as:

Y ∗ ≈
(s
δ

) αL+αK
1−αL−αK

(
DALαHH

) 1
1−αL−αK (14)

By taking derivative of output as defined by (1) with respect to LH , LL, K and P and using

(13), wages and returns to both non-robot and robot capital can be obtained.

• Wages of high-skilled workers are given by:

w∗H = FLH (LH , LL,K
∗, P ∗) ≈ αH (DA)

1
1−αL−αK

(s
δ

) αL+αK
1−αL−αK (15)

• To express return of physical capital, use, expression for steady state Z∗ (equation (13)),

expression for optimal non-robot capital (equation (4)) and use assumption that 1
BLL is

negligible. This produces:

r∗K = FK(LH , LL,K
∗, P ∗) ≈ αK

δ

s

• Recall that marginal products of non-robot and robot capital must be equal, therefore:

r∗P = FP (LH , LL,K
∗, P ∗) = r∗K ≈ αK

δ

s

• To determine wage of non-skilled workers observe that based on (1), dYt
dLL

= 1
B
dYt
dPt

. There-

fore:

w∗L = FLL(LH , LL,K
∗, P ∗) =

r∗P
B

=
r∗K
B
≈ αK

B

δ

s
(16)

• Income shares of high-skilled labour is αH , income share of non-robot capital is αK , share

wages of low-skilled workers on total output is given by αL
LL

LL+BP ∗
, share of returns to

robot physical capital is equal to αL
BPt

LL+BP ∗
. Since P∗ > 0, income share of low-skilled

workers is lower than is the case with no robots employed.

It is interesting to contrast this results with situation where productivity of robots is too low

to motivate use of the automation technology. Whereas in this case both wages of high-skilled
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and low-skilled workers were positively linked to overall productivity A, in this case only wages

of high-skilled workers are positive function of productivity. Furthermore, their elasticity with

respect to A increases to 1
1−αK−αL . If robots are used in the production process, high-skilled

worker benefit even more from the increase in TFP because higher TFP leads to higher stock

of robots what increases their productivity.

On the other hand, competition of robots always drives wages of low-skilled workers down to

w∗L ≈
αK
B

δ
s not depending on A. Crucial force behind this is the fact that robots which compete

with low-skilled workers are accumulated as TFP increases.

However, recall that this results applies for large B. Therefore, Table 1 gives steady-state

analysis for intermediate values of B. Numerical solutions are produced for two levels of TFP

- A = 1.0 and A = 1.5. Other parameters are calibrated as above, i.e. αH = 4/8, αL = 1/8,

αK = 3/8, s = 0.5 and δ = 0.2. Three different B’s are assumed.

Table 1: Numerical analysis of impact of changes in TFP on incomes and income distribution:
Steady state

case wH wL rK MP of P share LH share LL share K share P

B = 0.01 A=1.0 0.866 0.217 0.150 0.002 0.500 0.125 0.375 0.000
A=1.5 1.658 0.414 0.150 0.004 0.500 0.125 0.375 0.000
Index 1.913 1.913 1.000 1.913 1.000 1.000 1.000 -

B = 1.00 A=1.0 0.875 0.163 0.163 0.163 0.500 0.093 0.375 0.032
A=1.5 1.783 0.180 0.180 0.180 0.500 0.050 0.375 0.075
Index 2.037 1.105 1.105 1.105 1.000 0.542 1.000 2.331

B = 2.00 A=1.0 0.937 0.090 0.181 0.181 0.500 0.048 0.375 0.077
A=1.5 2.001 0.095 0.190 0.190 0.500 0.024 0.375 0.101
Index 2.135 1.054 1.054 1.054 1.000 0.494 1.000 1.318

For low B = 0.01 no robots are employed (marginal product of robots is smaller than returns

to capital rK). Increase in A produces the same increase in wages of both high-skilled and

low-skilled workers (row denoted ’Index’ shows relative changes produces by increase of A from

A = 1.0 to A = 1.5). Both wages increase by factor 1.913. As mentioned, from equations (9)

and (10) it follows that elasticity of both with respect to A is 1
1−αK , 1.5

1
1−3/8 = 1.913.

Compare this to the situation with intermediate productivity of robots B = 1. Higher TFP

increases wages of both high-skilled and low-skilled workers but wage increase produced enjoyed

by high-skilled workers is much higher (2.037-fold) than that of low-skilled workers (1.105-fold).

This contrast is even more pronounced for B = 2.00. As shown above, for B large enough,

wages of low skilled workers do not depend on TFP. On the other hand, elasticity of wages of

high-skilled workers with respect to TFP is 1
1−αK−αL . In this calibration, 1.5-fold increase in A

would increase steady-state value of wH by 1.5
1

1−1/8−3/8 = 2.25.

Furthermore, Table 1 provides information about the effect of increase in robot productivity B
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holding TFP constant. Observe that since there is certain degree of complementarity between

high-skilled workers and robots, their wages increase. On the other hand, since low-skilled

labour and robots are strict complements, low-skilled workers suffer drop in wages.

Finally, to obtain consumption-maximizing savings rate sgold, differentiate Y ∗(1− s) (Y ∗ given

by (14)) with respect to s and put it equal to zero. This produces sgold = αL + αK . Note

that once robots are effectively employed in the production process, sgold increases from αK to

αL + αK because elasticity of steady-state output with respect to all produced capital (both

robot and non robot) is higher than elasticity with respect to non-robot capital only.

3.6 Transitional dynamics

To illustrate the effect of accumulation of robots we simulate transitional dynamics of the model

using above calibration (A = 1, B = 2). Starting value Z0 = 0.5 is used.

Figure 3 gives accummulation of total capital Zt, non-robot capital Kt and robots Pt (time

on horizontal axis) and output Yt. Observe that robots begin to being accumulated only after

stock of non-robot capital reaches certain level.
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Figure 3: Transitional dynamics I.: Fundamental variables

Figure 4 gives prices of factors of production. As non-robot capital are being accumulated,

its marginal product decreases. On the other hand, since K and P complement each other in

production function, marginal product of robots (denoted MP of P ) increases. Robots began to

be accumulated at the moment when their marginal product is equal to that of non-robot capital.

Observe that this is precisely the moment when wages of non-skilled worker starts to decrease.
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This is due to competition on part of robots. Observe that since B = 2, wages of non-skilled

workers are half of marginal product of robots. Whereas low-skilled workers are hurt by robot

competition, high-skilled workers enjoy sustained increase in wages (until economy converges to

the steady state).
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Figure 4: Transitional dynamics II.: Wages and returns to non-robot capital
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Figure 5: Transitional dynamics III.: Income shares

This dynamics has implications for income shares. Whereas income share of high-skilled workers

and non-robot capital is constant, accumulation of robots leads to shift in income shares from

low-skilled workers to robots. At certain point, share of robots (or rather their owners) on total

14



income can overtake share of low-skilled workers.

Finally, Figure (6) shows the effect of increase in TFP on prices of factors of production. During

the first five periods (t = 0, ..., 4), economy is in the steady state and A = 1. In period t = 5,

TFP shifts to A = 1.5. Observe that both wages of low-skilled and high-skilled workers increases

suddenly. However, as economy converges to the new steady state, wages of high-skilled workers

tend to increase due to accumulation of both non-robot and robot capital. On the other hand,

wages of low-skilled worker tend to decrease due to competition of newly created robots. In the

long run, effect is very small and in case of large B negligible (recall that for large B, wages of

low-skilled workers in steady states do not depend on A).
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Figure 6: Transitional dynamics IV.: Effects of increase in TFP on prices of factors of production

4 A model with population growth and technological progress

One of the most important results of previous analysis is that in case of sufficiently high B, wages

of low-skilled workers do not depend on level of TFP. In this section we show that this results

generalizes to environment with population growth and exogenous technological progress. We

show that wages of low-skilled labour are stagnant despite exogenous technological

progress.

Assume rate of population growth n and rate of technological progress g. Production function

takes the following form:

Yt = A
[
(1 + g)t(1 + n)tLH,0

]αH [(1 + g)t(1 + n)tLL,0 + (1 + g)tBPt
]αL KαK

t , (17)
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where LH,0 and LL,0 are numbers of high-skilled and low-skilled workers in time t = 0. Total

number of workers in time t is equal to (1 + n)tLH,0 and (1 + n)tLL,0.

Capital is accumulated as before, i.e.:

∆Zt = It−1 − δZt−1 = sYt−1 − δZt−1

Zt = Kt + Pt

0 ≤ Kt, 0 ≤ Pt

Following the same reasoning, robots are not employed if marginal product of robots is lower

than marginal product of non-robot capital even if Pt = 0. Condition (2) changes into:

Zt ≤
αK
αL

(1 + n)tLL,0
B

(18)

In this case, corner solution is used and production function reduces to:

Yt = A
[
(1 + g)t(1 + n)tLH,0

]αH [(1 + g)t(1 + n)tLL,0
]αL ZαKt ,

Now assume without loss of generality LH,0 +LL,0 = 1 and define variables per effective worker

as x̂t = Xt
(1+g)t(1+n)t . Model can be written as:

yt = ALαHH,0L
αL
L,0ẑ

αK
t ,

∆ẑt =
sŷt−1 − (δ + g + n)ẑt−1

(1 + g)(1 + n)
(19)

When no robots are employed, model behaves as if converging to steady state when ∆ẑt = 0,

i.e.:

ẑ∗PSS =

(
sALαHH,0L

αL
L,0

δ + g + n

) 1
1−αK

(20)

We will show that steady state defined by (20) is not a true steady state, we will refer to it as

pseudo-steady state (this is what PSS in ẑ∗PSS stands for). Assume that economy converged to

ẑ∗PSS , growth rate of Zt is therefore g + n (ignoring second-order terms). Therefore, no matter

how low B is, after sufficient time, condition (18) cease to hold, robots start to be employed

in the production process and (20) is no longer applicable. However, it is important to stress
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that for low B, economy can for a relatively long time behave as if converging to ẑ∗ and growth

rate of economy can for a considerable period be close to g + n (growth rate of wages of both

low-skilled and high-skilled workers as well as of output and consumption per capita is close to

g; returns to non-robot capital rK,t converge to pseudo-steady state value αK
δ+g+n

s ). Dynamics

of the economy changes only after robots begin to be employed in the production and we will

show that growth rate will eventually converge to value higher than g + n.

If (18) is not satisfied, inner solution applies, and balancing marginal products of robot and

non-robot capital requires Pt = αL
αK
Kt − (1+n)t

B LL,0. Following the same steps as in the section

3.2 yields:

Yt = DA
[
(1 + g)t

]αL [(1 + g)t(1 + n)tLH,0
]αH [Zt +

(1 + n)t

B
LL,0

]αL+αK
,

where D is defined as before. Once again expressing variables in per-effective-worker terms

enables to write:

ŷt = DA
[
(1 + g)t

]αL LαHH,0 [ẑt +
1

B

LL,0
(1 + g)t

]αL+αK

Use assumption that B is sufficiently low and/or t sufficiently high what makes 1
B

LL,0
(1+g)t is

negligible (this is always true in the steady state as t grows to infinity). Production function

can be written as:

ŷt = DA
[
(1 + g)t

]αL LαHH,0ẑαL+αKt (21)

Law of motion of ẑ is given by (19).

Model is once again reduced to well-known Solow form. To solve the model, perform one more

transformation of variables, x̃t = x̂t(1 + g)
− αL

1−αL−αK
t
). Steady state growth rate of both ŷt and

ẑt is equal to 1− (1 + g)
αL

1−αL−αK ≈ g αL
1−αL−αK . Therefore, Yt and Zt grow at the rate:

g∗Y = g∗Z ≈ g
1− αK

1− αL − αK
+ n = g̃ + n,

where g̃ ≡ g 1−αK
1−αL−αK . Since Kt =

Zt+
(1+n)t

B
LL,0

1+
αL
αK

(analogically to (4)) and Pt = αL
αK
Kt −

(1+n)t

B LL,0, growth rate of both non-robot and robot capital approaches g∗Y .

It is interesting to contrast this result with standard Solow model where long-term growth rates
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of output and capital converge to g. In standard model, technological progress increases effective

amount of workers, i.e. of factor of production which is not produced (hence labour-augmenting

technological progress). In model with industrial robots, improvements in technology also in-

creases affective number of robots - produced factor of production. The greater αL, the more

important robots are and the higher is growth premium. As αL converges to 0, growth rate

converges to standard g + n.

Growth-rates of prices of factors of production can now be easily derived. Before providing

analytical solution, let us not that Cobb-Dougles structure of the production function ensures

that income share of high-skilled labour is constant. Since growth rate of skilled labour is equal

to n, wages of high-skilled workers exhibit steady-state growth rate g∗wH = g∗Y − n ≈ g̃.

Furthermore, income share of capital is also constant and since growth rates of Kt and Yt are

equal, returns to non-robot capital in the steady state are constant. Therefore, returns

to robot capital are also constant. Furthermore, since marginal product of non-skilled labour

is proportional to marginal product of robots ( dYt
d(1+n)tLL,0

= 1
B
dYt
dPt

), wages of low-skilled

workers are also constant.

However, even though there is no growth effect of g on wages of low-skilled workers, it can be

shown that there is a level effect. Observe that model described by equations (21) and (19)

converge to:

z̃∗ ≈

(
sDALαHH,0
δ + g̃ + n

) 1
1−αL−αK

(22)

Total capital in the steady state can be written as:

Z∗t = z̃∗(1 + g)
1−αK

1−αL−αK
t
(1 + n)t (23)

Higher g have negative level effect on Z∗t and K∗t which in turn increases marginal product of

non-robot capital.

To obtain analytical solutions for prices of factors of production use (22), (23) and once again

assumption that (1+n)t

B LL,0 is negligible.

• Differentiate (17) with respect to (1 + n)tLH,0 to obtain wage of high-skilled workers:

w∗H,t ≈ αH (DA)
1

1−αL−αK

(
s

δ + g̃ + n

) αL+αK
1−αL−αK

(1 + g)
1−αK

1−αL−αK
t
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• Return to non-robot capital is obtained by differentiating (17) with respect to K:

r∗K ≈ αK
δ + g̃ + n

s

• Marginal products of robot and non-robot capital are equal:

r∗P = r∗K ≈ αK
δ + g̃ + n

s

• Marginal product of low-skilled workers (and their wage) is proportional to marginal

product of robots:

w∗L =
r∗P
B

=
r∗K
B
≈ αK

B

δ + g̃ + n

s
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Figure 7: Trans. dynamics in model with population growth and technological progress I.

Figure 7 gives growths rates of wages of high-skilled workers, low-skilled workers and output

along the transition path. Same calibration is used as before (B = 2) and g = 0.02 and

n = 0.01. Starting value Z0 = 0.5 is used. During the periods t = 1, 2, 3 growth rate wages

of both type of workers is the same. Growth rate of output is slightly higher since it is also

driven by population growth. In period t = 4 robots are introduced what causes drop in wages

of low-skilled worker. Growth rate remains negative until model reaches steady state where

gwL = 0, gwH ≈ g
1−αK

1−αL−αK = 0.025 and gY ≈ g 1−αK
1−αL−αK + n = 0.035. However, introduction of

robots into production process does not necessarily produce negative growth rate of wL, simple

reduction of growth rate is also a possible result (as shown below).

To provide more information about the transition until robots are used, Figure 8 depicts tran-

sition with lower B. Value B = 0.5 is used. Robots begin to be used in period t = 29. Until
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Figure 8: Trans. dynamics in model with population growth and technological progress II.

then, economy has Solow-like features - growth rates of high-skilled and low-skilled labour are

the same and they converge to the rate of technological progress g = 0.02. Growth rate of

output approaches g + n = 0.03. However, once robots begin to be used, growth rate of wages

of low-skilled workers decreases, even if it does not drop below zero as was the case with B = 2

(Figure 7). On the other hand, growth rate of wages of high-skilled workers begin to increase

and gradually approaches gwH ≈ g
1−αK

1−αL−αK = 0.025. Growth rate of output also increases and

approaches gY ≈ g 1−αK
1−αL−αK + n = 0.035.

Dynamics depicted in Figure 8 suggests that it is possible for a richer economy to grow faster

than a poorer economy. This creates a possibility of divergent development. To illustrate

how automation can lead to economic divergence can come abou,t we perform two simulations

assuming two developed economy R and developing economy P . We assume that in economy

R, initial stock of capital is higher than in economy P , ZR0 > ZP0 , in particular ZR0 = 3.5 and

ZR0 = 2.9. We also assume that total factor productivity is higher in developed country R than

in developing country P , i.e. AR0 > AP0 . Values of all parameters (B = 0.8, s = 0.5, δ = 0.2,

αH = 4/8. αL = 1/8, αK = 3/8, g = 0.02 and n = 0.01) are same in both economies.

In simulation 1, we assume that total factor productivity A is constant in both countries,

AR = 1 whereas AP = 0.9. Figure 9 depicts σ-convergence of log of output per capita for

the two countries (’sigma 1’). Observe that initially σ decreases since differences in initial Z

between two countries are relatively high and differences in A are relatively low (poorer economy

P is further from its steady state than richer economy R). If there had been no possibility to

employ robots in the production process, σ would have been gradually converging to σ = 0.119

(see line ’sigma 0 (no robots)’ in Figure 9). However, in period t = 4 richer country R begins
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to employ robots in the production and begin to enjoy robot-related growth premium. Poorer

country P follows suit in period t = 13, however, beginning t = 10, richer country already

enjoys higher economic growth. This creates divergence in log of output per capita. Coefficient

of σ-convergence begins to increase and gradually converges to σ = 0.149.

To better understand causes of economic divergence, recall that in steady state (or pseudo

steady state) elasticity of output with respect to all economic fundamentals such as s, A, δ,

g and n is higher if robots are used (compare 20 and 22). Once robots are employed in the

production process, differences in fundamentals are reflected in higher differences our output

per capita.
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Figure 9: Non-linear development of σ-convergence

In simulation 2, we assume that even though total factor productivity in developing economy

P is lower than in developed economy R, there is a slow convergence in TFP. In particular, we

assume ARt = 1 for all t, AP0 = 0.9 and APt = 0.9985APt−1 + 0.0015ARt what implies rate of TFP

convergence of 0.15%. Development of σ-convergence is once again given in Figure 9 (’sigma

2’).

During the initial phase, σ decreases due to standard Solow-like convergence effect (due to

our calibration, poorer economy P is further from its steady state than richer economy R) as

well as due to convergence of TFP (therefore, convergence is faster that in simulation 1). Once

robots are employed in the production process, richer country R starts to enjoy higher economic

growth due to robot premium. In other words, use of robots increases the elasticity of steady-

state output with respect to fundamentals and causes divergence of output per capita. However,

after sufficient time, convergence in TFP enables two economies to converge and σ converges

to σ = 0.
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Note that the main driver of divergence is higher elasticity of steady-state output with respect

two fundamentals. Unless two countries differ in fundamentals, robot technology is not sufficient

to generate divergence.

5 Empirical estimation

To obtain estimable equations, first assume that between time t0 and time t1, robots are not

employed in the production process. Economy therefore converges to the pseudo-steady state

defined by (20). Use lower case symbols for variables in per capita terms (i.e. xt = Xt/(1 +n)t)

and write output per capita in pseudo-steady state as:

log y∗PSS,t =
1

1− αK
logA+ t log(1 + g) +

αK
1− αK

log s+
αH

1− αK
logLH,0 + ...

...
αL

1− αK
logLL,0 −

αK
1− αK

log(δ + g + n)
(24)

Assuming rate of convergence to steady state λPSS , growth rate between t0 and t1 can be

written as:

log yt1 − log yt0 =
[
1− (1− λPSS)t1−t0

]
log y∗PSS,t −

[
1− (1− λPSS)t1−t0

]
log yt0 (25)

Now assume that in time t0 robots begin to be employed. Economy converges to the true steady

state (22). Therefore:

log y∗t =
1

1− αL − αK
logDA+ t

1− αK
1− αL − αK

log(1 + g) +
αL + αK

1− αL − αK
log s+ ...

...+
αH

1− αL − αK
logLH,0 −

αL + αK
1− αL − αK

log(δ + g̃ + n)
(26)

Growth rate between t0 and t1 is given by:

log yt1 − log yt0 =
[
1− (1− λ)t1−t0

]
log y∗t −

[
1− (1− λ)t1−t0

]
log y0, (27)

where λ is rate of convergence to the true steady state.

It is important to stress that rate of convergence to the pseudo-steady state λPSS differs from the

rate of convergence to the true steady state λ. This is due to the fact that in the neighbourhood
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of the steady state, speed of convergence is determined by (i) elasticity of production with respect

to Zt (denote it by α) and (ii) the rate of effective depreciation (denote it by δeff ). In particular,

speed of convergence is given by (1 − α)δEFF (see for example Barro - Sala-i-Martin (2004),

chapter 1.2.13). In case that no robots are employed, elasticity of production with respect to

Zt is α = αK and effective depreciation is δEFF = n+ g+ δ. In the true steady state robots are

employed, elasticity of production with respect to Zt is α = αK +αL and effective depreciation

is δEFF = n+ g̃ + δ. Therefore:

λPSS ≈ (1− αK)(n+ g + δ)

λ ≈ (1− αK − αL)(n+ g̃ + δ)

For most reasonable values of parameters λPSS > λmeaning that rate of conditional convergence

is higher for economies in which robots are not employed.

Natural way of testing the model on panel data is therefore estimating a following regression

(CS and IS standing for corner and inner solution respectively):

log yt =


βCS
0 + βCS

1 log si,t + βCS
2 logLH,i,t + βCS

3 logLL,i,t + ...

...+ βCS
4 log(δ + g + n) + βCS

5 log yi,t−1 + µCS
i + ρCS

t + εi,t
, for Pi,t−1 = 0

βIS
0 + βIS

1 log si,t + βIS
2 logLH,i,t + βIS

3 logLL,i,t + ...

...+ βIS
4 log(δ + g̃ + n) + βIS

5 log yi,t−1 + µIS
i + ρISt + εi,t

, for Pi,t−1 > 0

Coefficients from the regression are easily mapped into terms in the equation (24)-(27). For

example, βCS1 =
[
1− (1− λPSS)t1−t0

]
αL+αK

1−αL−αK , βCS5 =
[
1− (1− λPSS)t1−t0

]
, βIS3 = 0, βIS2 =

1 and so on. This allows us to test several restrictions on the parameters and derive the

values of parameters in the original model. In the following empirical analysis, we focus on

two predictions of the model. First, the speed of convergence towards a steady state should

be higher for economies without robots and thus the coefficient for a lagged income per capita

β5 should be lower for non-robot countries. Second, he long-run elasticity of income per capita

with respect to saving rate β1/(1−β5) should be higher in countries with robots (delta method

is used to calculate the standard deviation of the transformed coefficients).

5.1 Data

Data on income per capita, economic growth, population and savings are obtained from Penn

World Tables 9.0. We use the database of International Federation for Robotics (IFR) for the

stock of robots employed by countries. Other covariates are taken from World Bank´s World

Development Indicators database. Our baseline estimation covers 1993 - 2014 time period

and 65 countries. These are the countries that in some point in time adopted robots in the
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production process. In Appendix, we present the estimation for the whole sample of countries

available (111 countries).

In a line with Mankiw-Romer-Weil (1992), we droped countries with population less than 1

million of inhabitants and oil-producing countries 3. We assume that the efficient depreciation

of capital per worker equals (n+g+δ) = n+0.050 for non-robot countries and equals (n+g̃+δ) =

(n+ 0.055) for countries that produce by utilizing robots in the production process.

5.2 First empirical results

Our model predicts different speed of convergence towards steady state for countries which do

not use robots in the production and countries which employ automation technology. We test

this hypothesis by running regressions for two separate samples - countries without robots (’no

robots’ sample) and countries with robots (’robots’ sample). We split the sample based on

whether robots were used in production in period t− 1.

First, we estimate the parameters by simple OLS. However, in dynamic panels with fixed

country-specific effects Nickel bias tends to bias estimates of speed of convergence as well as

other parameters (Nickell, 1981). Therefore, we also perform GMM-estimation using Allerano-

Bond estimator (Arellano and Bond, 1991) (we restrict maximal number of lags of dependent

variables used as instruments to 3).

Table 2 gives estimation results. The coefficient for lagged income per capita is positive and sig-

nificant for both samples and estimation methods. Compared to ’robot sample’, the coefficient

is smaller in the sample of countries producing without automation technology. Significant dif-

ferences between these two coefficients (0.695 vs 0.910 from OLS estimation, and 0.419 and 0.818

from Allerano-Bond estimation; confidence intervals do not overlap) confirm the hypothesis of

higher conditional convergence towards steady state for no-robots countries.

The long-run elasticity of income per capita with respect to saving rate (calculated as
βCS1

1−βCS5

and
βIS1

1−βIS5
) is higher for ’robot’ sample (0.18 from OLS estimates and 0.04 from Allerano-Bond

estimates) than in ’no robot’ sample (0.49 and 0.44 respectively).

The simple rule for a sample split suggested above seems to be too sharp. For example, in 2014

Pakistan was using 2 industrial robots, therefore, it is included in ’robots sample’. However,

do two industrial robots in the country of 185 million people signify beginning of the transition

to automation technology? Most likely not. Therefore, we spilt the sample based on non-zero

threshold for number fo robots per population of 1 million. We perform estimations moving the

threshold from 0 to 10 robots per 1 million.

3United Arab Emirates, Bahrain, Gabon, Iran, Iraq, Kuwait, Lesotho, Saudi Arabia, Oman.
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Table 2: Estimation results for 65 countries

(1) (2) (3) (4)

Sample No robots sample Robots sample No robots sample Robots sample

Est. method OLS OLS Allerano-Bond Allerano-Bond

log yi,t−1 0.695*** 0.910*** 0.419*** 0.818***
(0.045) (0.014) (0.077) (0.017)

log si,t -0.056* 0.044*** -0.023 0.081***
(0.031) (0.015) (0.053) (0.007)

logLH,i,t -0.053 -0.019 -0.110* 0.043
(0.125) (0.070) (0.056) (0.029)

logLL,i,t -0.382 0.087 -0.986 0.519***
(0.524) (0.161) (0.764) (0.060)

log(n+ g + δ) 0.026 - 0.392*** -
(0.061) (0.181)

log(n+ g̃ + δ) - -0.066* - -0.010***
(0.039) (0.017)

Constant 3.023*** 0.744** -11.240 1.784***
(0.627) (0.282) (14.530) (0.186)

Country-specific fixed ef. yes yes yes yes
Time-specific fixed ef. yes yes yes yes

Observations 366 937 1683 909
R2 0.881 0.952 - -

Number of id 38 65 38 65

Note: OLS-estimation: robust standard errors in parentheses; Allerano-Bond estimation: two-step
estimation used; ***, **, * denote significance on 1%, 2% and 5% level.

Figure 10 gives estimation results for βCS5 and βIS5 (coefficients corresponding to lagged GDP per

capita), value of threshold according to which sample is split is on the horizontal axis. Observe

that value of the coefficient is always higher in ’robot sample’ than in ’no robots’ sample. Until

the threshold value of approximately 9 confidence intervals do not overlap. This is true both

for OLS and Allerano-Bond estimation. This suggest higher speed of convergence in ’no robots’

irrespective of how sample is split into two sub-samples.

Implicit long-run elasticity of income per capita with respect to saving rate is given in Figure

11. Once again, estimation results are consistent with the predictions of the theoretical model.

Long run elasticity is higher in the ’robot’ sample, the difference in coefficients disappearing

around the threshold equal to 3 robots per population of 1 million. However, standard errors

(produced using delta-method) from OLS estimates are relatively high and since two confidence

intervals overlap, hypothesis of significant differences in the coefficients has to be rejected. On

the other hand, Allerano-Bond estimation produces much more precise lower standard errors of

the elasticities and confirms that there is a statistically significant difference between them.
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Figure 10: Beta coefficients for lag of income per capita
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Figure 11: Long-run elasticity of income per capita with respect to saving rate

6 Conclusion

We study the transition to production using automation capital which substitutes low-skilled

workers but many tasks can still be performed only by high-skilled labour and are not au-
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tomatable. Under these assumptions, automation capital does not generate endogenous growth

without technological progress. However, technological progress augmenting both effective num-

ber of workers and effective number of industrial robots increases rate of long-run growth in an

economy with automation capital.

We show that assuming that i) countries differ in fundamentals (for example in total factor

productivity) and ii) there is a convergence in fundamentals (for example differences in TFP

are decreasing), it is possible that coefficient of σ-convergence evolves in non-linear fashion. In

particular, we show that robot-technology can be a cause of temporary divergence in output

per capita what is consistent with the data.

We derive a set of estimable equations which allow us to test hypotheses suggested by the model

in a Mankiw-Romer-Weil framework. We show that the speed of convergence towards a steady

state in an economy with robots is lower than the convergence towards a pseudo steady state

where robots are not employed in the production. These differences are robust to different

sample splits and estimators. We also find evidence in favour of the hypothesis that elasticity

of output with respect to savings rate is higher if robots are used in the production.
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Appendix - Full sample estimations (111 countries)

Table 3: Estimation results for 111 countries

(1) (2) (3) (4)

Sample No robots sample Robots sample No robots sample Robots sample

Est. method OLS OLS Allerano-Bond Allerano-Bond

log yi,t−1 0.901*** 0.910*** 0.474*** 0.818***
(0.021) (0.014) (0.011) (0.017)

log si,t -0.0109 0.044*** -0.044*** 0.081***
(0.016) (0.015) (0.007) (0.007)

logLH,i,t 0.007 -0.019 -0.051*** 0.043
(0.026) (0.070) (0.013) (0.029)

logLL,i,t -0.174 0.087 0.166* 0.519***
(0.280) (0.161) (0.098) (0.060)

log(n+ g + δ) 0.110*** - 0.129*** -
(0.027) (0.011)

log(n+ g̃ + δ) - -0.066* - -0.010***
(0.039) (0.017)

Constant 1.095*** 0.744** 4.767*** 1.784***
(0.160) (0.282) (0.111) (0.186)

Country-specific fixed ef. yes yes yes yes
Time-specific fixed ef. yes yes yes yes

Observations 1793 937 1683 909
R2 0.927 0.952 - -

Number of id 111 65 111 65

Note: OLS-estimation: robust standard errors in parentheses; Allerano-Bond estimation: two-step
estimation used; ***, **, * denote significance on 1%, 2% and 5% level.
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Figure 12: Beta coefficients for lag of income per capita, 111 countries
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Figure 13: Long-run elasticity of income per capita with respect to saving rate, 111 countries
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