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Abstract
The term ”rent-dissipation” is prominently used in the theory of rent-seeking and its (game) theoretical 
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feasible! The paper explains these differences from a principle point of view by linking the ESS-solution 
theory in contests to the Nash equilibrium solution theory of transfer contests. This insight then not only 
makes the computation of the ESS-solution of a contest from the Nash solution of a transfer contest an 
easy exercise, but-more importantly - also leads to a reassessment of the ESS-”over-dissipation” results in 
the earlier literature: if one replaces the value of the rent with its transfer value, over-dissipation becomes 
incompatible with ESS, too.
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1 Introduction

Contest theory has become the (game) theoretical vehicle of rent-seeking
theory. Early rent-seeking theory was grounded in the competitive paradigm:
the simplest model of rent seeking hypothesizes that any artificially contrived
rents will be competed away by parties seeking to secure a share of such rents.
This postulate of ”full rent-dissipation” was used to empirically estimate the
cost of rent-seeking. It was Tullock (1980), who criticized this assumption
and presented a first game-theoretic model of a contest, in which the full rent-
dissipation hypothesis did not hold in Nash equilibrium. In retrospect this
came as no big surprise: while the hypothesis was formulated under the tacit
assumption of perfect competition among contestants, Tullock contests feature
finitely many contestants and hence only model imperfect competition. The
degree of rent-dissipation consequentially depends on and increases with
the number of contestants. Under-dissipation of a rent contested by rational
contestants is the rule, full dissipation a limiting case (and - see below - ex
post overdissipation is a coincidence in Nash equilibrium).

Contests are not only pervasive in economic and political life, but also in
the non-human world. In fact, the very concept of a contest is rooted in
biology and nature. As Congleton (2015, p. 6) states: ”It bears noting that it
is completely natural (my italics) that individuals and organizations attempt
to profit from their efforts, as rent seekers do. It is not a human or cultural
defect, but a survival trait.” And, indeed, the term ’contest competition’ has a
history in theoretical biology before it entered economics: e.g. Van Den Berg
et al. (2006, p.211) attribute it to

”Nicholson (1954), who recognized two extreme forms of com-
petition which he called contest and scramble competition. In
contest competition, each successful competitor obtains all re-
sources it requires for survival or reproduction; the remaining
competitor, being deprived of its resources, will not be able to
function anymore. In scramble competition, the finite resource is
shared equally amongst the competitors so that the quantity of
food per individual declines with increasing population density.”

In economic terms contest competition represents all-pay winners-take-all
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competition, while scramble competition describes the tragedy of the com-
mons with unregulated equal access to the resource for all. These concepts
of competition turn out to be important determinants of population size and
dynamics of a species. Roughly speaking, ”as contest competition allows the
monopolization of resources... this results in stable population dynamics, in
stark contrast to scramble competition which can result in periodic or chaotic
population dynamics.” (Wikipedia.org; entry ”contest competition”). The
relevant game-theoretic methods to investigate such population behavior
are those of evolutionary game theory, most notably the solution concept
of an evolutionary stable strategy (ESS). An ESS comprises the stability
requirements for an (unmodelled) evolutionary process, that does not rely
on choice and rationality. Nevertheless in very large populations it has to
be a Nash equilibrium, while not all Nash equilibria are also an ESS. ESS as
a refinement of Nash equilibrium, however, only applies in infinitely large
populations of agents playing an evolutionary game. This in general wis-
dom often overlooked fact, has important consequences for the analysis of
contests: as Hirshleifer (2001, p. 18) notes: ”...in contrast with standard
theory, conflict theory can rarely use the ’large number - perfect competition’
simplification”. And, indeed, an ESS of a contest with finitely many contes-
tants is in general not a Nash equilibrium of the contest game (see Leininger,
2003). Moreover, ex ante overdissipation of the rent -while incompatible with
Nash equilibrium- is possible in an ESS of a Tullock contest under increasing
returns to scale in contest effort (see Hehenkamp et al., 2004).

This paper explains these differences from a principle point of view by link-
ing the ESS solution theory in contests to the Nash equilibrium solution
theory of transfer contests. It thereby exploits a basic result from Leininger
(2003). This insight then leads to a reassessment of the ESS-”overdissipation”
results in the earlier literature: as a rent in Nature cannot be ”exogenously”
given, but must come out of itself, the measure stick for the dissipation
rate has to be adjusted. If one does so, i.e. replaces the value of the rent
with its transfer value, over-dissipation becomes incompatible with ESS,
too. Only in a limiting case will full dissipation of the transfer value occur;
just as full dissipation of the rent value only occurs as a limiting case in
the Nash solution theory. The commonly known fact that ESS behavior is
more ”aggressive”, even spiteful, than behavior in Nash equilibrium is now
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interpreted as survival-enhancing insurance against expropriation in the
relevant transfer contest. In animal contests there is simply more at stake
than an exogenous rent.

The paper is organized as follows: in section 2 we briefly review the Nash and
ESS solution theory for Tullock contests with emphasis on overdissipation
results. In section 3 we discuss Nash rationalizations of ESS behavior; i.e. how
an ESS of a game can be understood as Nash behavior in a modified version
of the game. The classical interpretation of an ESS in a finite population is
that players in the contest game do not maximize absolute, but relative payoff
(Schaffer, 1988, 1989). An alternative, but widely neglected interpretation is
that ESS behavior refers to the Nash equilibrium of the associated transfer
contest (Leininger, 2003). It is this interpretation which is the basis of the
analysis of section 4, that yields a reassessment of the rent-dissipation issue
in ESS. Section 5 concludes.

2 Tullock Contests

Recall that Tullock (1980) proposed a model, in whichn rent-seekers compete
for a rent of size V . If the contestants expend x = (x1, ..., xn), xi ≥ 0, the
probability of success for player i, i = 1, ..., n is given by

pi(x1, ..., xn) =
xr
i

n∑
j=1

xr
j

and expected profit for player i is given by

Πi(x1, ..., xn) = pi(x1, ..., xn)V − xi =
xr
i

n∑
j=1

xr
j

V − xi.

One can show that for r ≤ n/(n − 1), a unique Nash equilibrium in pure
strategies exists in this game, in which each player maximizes expected
payoff by bidding

x∗ = n−1
n2 rV .

Aggregate rent-dissipation then amounts to

nx∗ = n−1
n rV .
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Equilibrium expenditures never exceed V , the value of the rent, but may
be strictly less than V . The ”full rent dissipation”-hypothesis does not hold
except in the limiting case of r = n

n−1 ; yet overdissipation is incompatible
with individually rational payoff maximization. The utmost expenditures
are reached for an arbitrarily large population (n→∞) and r = n

n−1 : almost
all of V gets dissipated.
An alternative approach to the analysis of behavior in contests is presented
in Hehenkamp et al. (2004): they resort to a biologically inspired view of
human and animal behavior; namely that a behavioral pattern diffuses, sta-
bilizes, mutates and disappears along an evolutionary path that leads to
the survival of best or best adapted strategies or standards of behavior. A
particularly useful concept in this respect is the notion of an evolutionarily
stable strategy (ESS) as defined by Maynard Smith (Maynard Smith and
Price (1973); Maynard Smith (1974, 1982)), because it allows one to study
stability properties of an evolutionary system without the need to commit
oneself to specific dynamics.
A strategy is evolutionarily stable, if a whole population using that strategy
cannot be invaded by a sufficiently small group of ”mutants” using another
strategy. Similarly, a standard of behavior in an economic contest is evolu-
tionarily stable, if - upon being adopted by all participants in the contest
- no small subgroup of individuals using a different standard of behavior
can invade and ”take over”. The emphasis of the evolutionary approach
is not on explaining actions (as a result of particular choice or otherwise),
but on the diffusion of forms of behavior in groups (as a result of learning,
imitation, reproduction or otherwise).
In a finite population of n individuals the smallest meaningful number of
deviationists is one. Starting from this observation Schaffer (1988) defined a
finite population ESS as follows:

Definition 1: Let a strategy x be adapted by all players i, i = 1, . . . , n.

i) A strategy x̄ 6= x can invade x, if the pay-off for a single player using x̄

(against (n− 1) players using x) is strictly higher than the pay-off of a
player using x (against (n−2) other players using x and the deviationist
using x̄).

ii) A strategy xESS is evolutionarily stable, if it cannot be invaded by any
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other strategy.

Formally, consider any expenditure level x; then non-invasibility of x in a
finite population of n players requires that

Π1(x, x, . . . , x) < Πi(x, x, . . . , x) for all x 6= x (∗)

and i = 2, . . . , n. Player 1 deviates from x to x, while players 2 to n stick
with x. Note, that this means that the deviation is not profitable in relative
terms. (Player 1’s absolute utility Π1(x, x, . . . , x) might have increased over
Π1(x, . . . , x), but the other players’ payoffs profit even more from 1’s devi-
ation). In biology x is termed an incumbent (strategy) and (x̄) a mutant
(strategy).

Definition 2: A strategy x = xESS is an evolutionary stable strategy (ESS),
if Π1(x, xESS , . . . , xESS) < Πi(x, x

ESS , . . . , xESS) for all x 6= xESS

and i = 2, . . . , n.

Hehenkamp et al. (2004) derive the following result on existence of ESS in
Tullock contests for r ≤ n

n−1 .

Theorem 1:

i) Individual expenditures and aggregate rent-dissipation in the unique evolu-
tionary equilibrium x = ((r/n)V, ..., (r/n)V ) are always higher than in the
unique efficient (Nash) equilibrium
x∗ = (((n− 1)/n2)rV, ..., ((n− 1)/n2)rV ).

ii) Aggregate rent-dissipation in the unique evolutionary equilibrium is indepen-
dent of the number of contestants, it is solely determined by the rent-seeking
technology (contest success function) and the value of the rent:
n r
nV = rV

iii) For r > 1 there is overdissipation of the rent in the unique evolutionary
equilibrium; for r = 1 there is full dissipation of the rent and for r < 1 there
is underdissipation of the rent.
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Hence ESS exists under precisely those conditons, which imply existence of
a symmetric Nash equilibrium in pure strategies. In particular part (iii) of the
Theorem attracted a great deal of attention: it demonstrates that overdissipa-
tion of the rent is ex ante compatible with pure strategy equilibrium, albeit not
w.r.t. Nash equilibrium but evolutionary equilibrium ESS. Ex ante overdis-
sipation is generally incompatible with Nash equilibrium (and individual
rationality implied by it); however, there are some overdissipation results
in the literature of Nash contest analysis that refer to ex post realisations of
Nash equilibrium strategies , which do not imply overdissipation ex ante,
i.e. in expected payoffs: Baye et al. (1999) show that overdissipation ex post
may occur incidentally as an outcome of a mixed strategy equilibrium in
Tullock contests for r > n

n−1 ; i.e. when a symmetric equilibrium in pure
strategies does not exist; but even in these cases ex ante dissipation is less
or equal 100%. Similarly, the overdissipation results obtained by Lim and
Matros (2009) and Fu et al. (2015) only apply incidentally ex post. They con-
sider Tullock contests with a stochastic number of players, in which either
each player enters with an exogenously fixed probability (Lim and Matros,
2009) or chooses a positive probability of entry (Fu et al., 2015). If then
-incidentally- too many players have entered, overdissipation occurs in pure
strategy equilibrium. But before realisations of the mixed entry strategies
have occured expected rent dissipation is less than full rent dissipation.
Gu et al. (2018) examine both models from an evolutionary point of view and
derive ex ante overdissipation results in ESS. Most notably, overdissipation-
cases exist for all r ∈ (0, n

n−1) in the case of endogeneous entry probabilities;
i.e. convexity of the impact function is not required for overdissipation. In the
following we will provide a new perspective on these overdissipation results,
in particular the ones referring to ex ante overdissipation in evolutionary
equilibrium, by giving an alternative Nash interpretation of ESS-behavior in
contests.
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3 Nash interpretations of evolutionary equilibrium ESS

a) Rational relative payoff maximizers

The standard interpretation of ESS behavior in games with finitely many
players as if it emerged from Nash equilibrium was already given in the
seminal contribution by Schaffer (1988).
The condition (∗) of non-invasibility is equivalent to the requirement that
the difference

Π1(x, xESS , . . . , xESS)−Πi(x, x
ESS , . . . , xESS) i ∈ 2, . . . , n

attains its maximal value 0 (as funtion of x) at x = xESS . In other words, if
all players play xESS they do not behave as absolute payoff maximizers as
the solution of the problem Max

x̄
Π1(x, xESS , . . . , xESS) need not solve the

problem
Max

x̄
Π1(x, xESS , . . . , xESS)−Πi(x, x

ESS , . . . , xESS) with i ∈ 2, . . . , n

In fact, the class of games for which this is the case is essentially restricted
to zero-sum games, respectively generalisations of them like competitive
games; see Guse et al. (2010)on the equivalence of Nash equilibrium and
ESS. The above condition rather says that in an ESS-solution players behave
as if they were relative profit maximizers. This is the essence of evolutionary
pressure on fitness in nature that can produce ’spiteful’ behaviour (Hamilton,
1970). Spiteful social behavior entails that the costs improsed to the recipient
are greater than the costs suffered by the actor, and this precisely works
to the relative advantage of the actor. E.g. a contestant increases his effort
beyond the level of the Nash equilibrium effort, because his loss in absolute
payoff by doing so (recall that the Nash effort maximizes absolute payoff)
is less than the loss of the opponents (due to decreased winning probability).

To make this argument more explict consider all players i = 1, ..., n simulta-
neously with player m being the mutant. Write any strategy combination
x = (x1, ..., xn) as x = (xi, x i) from player i′s point of view; xi denotes i’s
own strategy and x i the (n− 1)-vector of the other players’ strategies. Then
the payoff functions can be written as Πi = Πi(xi;x i), i = 1, ..., n. So the
mutant’s payoff functions is given by Πm = Πm(xm, x m). Since an ESS is
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symmetric by definition we can write the payoff of a player i 6= m as the
average of the payoffs to all players making up x m ; i.e.

Πi = ΠESS =
1

n− 1
·
∑
i 6=m

Πi(xi, x i)

The relative payoff maximization problem from above then becomes

max
xm

Πm = Πm(xm, x m)− 1

n− 1

∑
i 6=m

Πi(xi, x i) (RPM)

and an ESS as defined in Definition 2 must be a symmetric Nash equlibrium
of this ’beat-the average’ game of Shubik and Levitan (1980), in which each
player tries to realise a better result than the average result of all other players
(see Schaffer 1989, p.38/39).
So we can state

Lemma 1: An ESS strategy of a symmetric (contest) game with payoffs
Πi(xi, x i), i = 1, ..., n, is identical to the symmetric Nash equilibrium strategy of
the same (contest) game played by relative payoff maximizers with payoff functions
Πi(xi, x i)− 1

n−1

∑
i 6=j

Πj(xj , x j).

The relative payoff maximizers of the game in Lemma 1, in fact, play a zero-
sum game as

n∑
i=1

(
Πi(xi, x i)−

1

n− 1

∑
i 6=j

Πj(xj , x j)
)

= 0 for all x = (x1, ...xn).

Hence defining a new relative payoff game with these relative payoff func-
tions as ”absolute” primitives would not result in anything new. In a zero-
sum game absolute and relative payoff maximization turn out to be identical
(as the relative payoff equals n

n−1 times the absolute one).
Lemma 1 can be interpreted in the following way: for a relative payoff max-
imizer more is at stake than just winning V or not; because if he wins he
improves his relative position with regard to all non-winners, and if he loses
he worsens his relative position to the winner. More specifically, a somewhat
’loose’ argument suggests that Πi (according to RPM) increases by V , if i
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wins, whereas it decreases by 1
n−1V if he loses (as then the term∑

i 6=j

Πj(xj , x j)

must increase by V , which gets weighted by the averaging factor 1
n−1). The

total stakes are hence V − (− 1
n−1V ) = n

n−1V . And consequently, an absolute
payoff maximizer would have to face a rent of n

n−1V to be confronted with
the same stakes. This argument is made precise next from a more general
perspective; namely, from the view of transfer contest theory. Transfer con-
tests are a type of ’self-financing’ contest, in which both, winning and losing,
come with a ’prize’; winning with a positive one, losing with a negative one.

b) Transfer contests

We now specialize the general payoff fuctions Πi, i = 1, ..., n, to those used
in contest theory, i.e.

Πi(x1, ..., xn) = pi(x1, ..., xn) · V − xi for i = 1, ..., n

with
n∑

i=1
pi(x1, ..., xn) = 1 and pi(x1, ..., x1) ≥ 0 for all (x1, ..., xn) ∈ Rn

+.
pi(x1, ..., xn) denotes the probability of winning the contest for player i as a
function of all efforts made by all contestants. The contested rent is valued
at V by all contestants. For such contest games an alternative interpretation
of ESS behaviour in terms of Nash equilibrium behaviour has been sug-
gested by Leininger (2003), who notes that ”contests and evolutionary ESS
analysis...are both concepts that entered economics via biology”(p.178). In
nature competition resp. contesting exists because there is nothing on earth
which amounts to an infinite resource; everything is finite or limited. A prize
or ’rent’ appropriated from nature by an individual organism, human or
otherwise, comes at the cost of the non-winners.
The literature on rent-seeking, however, has considered a particular type of
contest, in which the losers have to provide the source of the gain for the
winners. I.e. winning the prize V entails a transfer from the unsuccessful
contestants to the winner in the size of V , the classical example is constituted
by political contestability of rents when losers are ”taxed” in the amount of
V . Since in those contests a transfer (or tax) payment of an unsuccessful
agent has to be made regardless of her expenditure decision, staying out of
the contest would not guarantee a zero pay-off; he nonetheless would have
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to finance part of the transfer to the winning agent. E.g. protectionist policies
transfer income from one group to another, and the losing group members
suffer a loss irrespective of efforts to resist (or influence) those policies or not.
Those contests have been termed transfer contests (see e.g. Appelbaum and
Katz, 1986, and Hillman and Riley, 1989 or Becker,1983 1985). In a transfer
contest players make expenditures in order to secure a reward and in order
to avoid a loss. In the symmetric world of ESS analysis we can assume that
”losses” would be distributed equally across non-winners. As a consequence
for any contestant in nature more is at stake than just the value V of the rent,
because if he does not win he loses the share 1

n−1 · V as ”payment” to the
winner. In such a contest the pay-off to player i, i = 1, ..., n reads

pi(x1, ..., xn) · V + (1− pi(x1, ..., xn))(− V

n− 1
)− xi. (TC)

It is (TC), which a contestant maximizes in Nash equilibrium of a transfer
contest for V . What effectively is at stake for a contestant is the difference
in payoffs between winning and losing and this difference now adds up to
V − (− 1

n−1 · V ) = n
n−1V.

This can be seen directly from (TC) by simply rearranging terms in the

objective function. (TC) is equivalent to

pi(x1, ..., xn) · ( n

n− 1
· V )− xi −

1

n− 1
V

which, in turn, is identical - except for the constant − 1
n−1 · V − to the payoff

function of a contestant in an (ordinary) contest for rent V̄ = n
n−1V. We refer

to V̄ as the transfer value of V .
We then state

Lemma 2: Nash behavior in a transfer contest for V is identical to Nash behavior
in the contest for V , the transfer value of V .

A second observation is all important now: Observe that we can write

1− pi(x1, . . . , xn) =
∑
j 6=i

pj(x1, . . . , xn)
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and hence maximization of (TC) is seen to be equivalent to maximization of

pi(x1, . . . , xn) · V − xi −
1

n− 1
·
∑
j 6=i

pj(x1, . . . , xn) · V,

which in turn is equivalent to (RPM), if we set i = m and add the constant
1

n−1 ·
∑n

j=2 xj :

max
x̄

p1(x̄, x2, . . . , xn) · V − x̄− 1

n− 1
·

n∑
j=2

[
pj(x̄, x2, . . . , xn) · V − xj

]

Hence it follows

Lemma 3: (Leininger, 2003) Behavior in an evolutionary equilibrium ESS of a
contest for V is identical to (rational) behavior in a symmetric Nash equilibrium of
the corresponding transfer contest for V .

Lemma 3 gives an exact measure for the degree of spite involved in evolution-
arily stable behavior in a contest for V : a contestant increases expenditures
(over the Nash level) up to the level he would choose (as a Nash player),
if the contest were for the transfer value of V . Alternatively, one can argue
that it is always the transfer value of V which is at stake in a contest for V in
nature. This is done in the last section. As for now we exploit Lemmas 2 and
3 for the derivation and computation of ESS in contests.

4 Nash and ESS solutions

We are now exploring implications of the last two Lemmas. A first obvious
implication of them is, that one can read off from the Nash equilibrium
solution of a contest its ESS-solution. If the former is known for a rent
V , it must be known for rent n

n−1 · V as well and, hence, the evolutionary
stable strategy ESS becomes known. It neither is necessary to do direct ESS
calculations nor to perform relative pay off maximization.
Recall the results for Tullock contest from section 2:
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Tullock’s (1980) solution for Nash equilibrium is

xNE =
n− 1

n2
· r · V

if we replace V by V̄ = n
n−1V , the transfer value of V, we get

x̄NE =
n− 1

n2
· r
( n

n− 1
V
)

=
r

n
· V

which is the ESS solution derived from the ESS definition in Hehenkamp
et al. (2004), see Theorem 1.

Our transfer contest interpretation gives a general relationship between Nash
and ESS solution of contests:

XESS =
n

n− 1
· xNE

and, consequently, for rent dissipation RD in these solution concepts

RDESS =
n

n− 1
·RDNE =

n

n− 1
(n · n− 1

n2
rV ) = rV

Note again, that for r > 1 this implies overdissipation of V in ESS, but not
overdissipation of the transfer value V̄ = n

n+1 · V as r ≤ n
n+1 . Similarly , for

Tullock contests with stochastic participation, in which each of n potential
contestants only enters the contest with a fixed probability p > 0, so that
the number of actual contestants is ex ante unknown to a contestant, Lim
and Matros (2009) have shown, that for r ≤ n

n−1 the Nash equilibrium en-

tails xNE = r · V

[
n−1∑
i=1

Cn−1
i · pi(1− p)n−1−i · i

(i+1)2

]
with Cn−1

i = (n−1)!
i!(n−i−1)! ,

whereas Gu et al. (2018) show in their Theorem 2, that this expression mul-
tiplied by the factor n

n−1 constitutes the ESS solution for any r ≤ n
n−1 .

Interestingly, this relationship between Nash an ESS solutions in contests
holds beyond Tullock contest and pure strategy Nash equilibrium: the es-
sential substitution of (1 − pi) by ∑

j 6=i

pj in (TC), which turned the transfer
contest into the beat-the-average game, still holds for all-pay auctions:
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Consider the (first-price) all pay auction, which is obtained as the limiting
contest of the Tullock family for r →∞:

pi(x1, ..., xn) =


1 if xi > max

j 6=i
{xj}

0 if xi < max
j 6=i
{xj}

1
m if there are m maxima

Hillman and Samet (1987) provided the symmetric Nash equilibrium so-
lution for n contestants in mixed strategies by the following distribution
function of bids in equlibrium:

F ∗(x) =
( x

V

) 1
n−1 on [0, V ];

i.e. for n = 2 both bidders would choose their bid from a uniform distribu-
tion on [0, V ]. F ∗(x) denotes the probability that no other contestant’s bid
exceeds x (and the contestant considered hence wins). The expected bid of
a contestant in equlibrium then is given by E∗(x) = V

n and as a consequence
full rent dissipation applies:

E∗(RD) = n · E∗(x) = V

The ESS solution for the (first-price) all pay auction is then obtained from
Hillman and Samet (1987) by using our two Lemmas for V̄ = n

n−1V :

F̄ ∗(x) =
( x

V̄

) 1
n−1 on [0, V̄ ] i.e.

F̄ ∗(x) = FESS(x) =
(n− 1

n
· x
V

) 1
n−1 on

[
0,

n

n− 1
V
]
.

It can be checked directly (and much more elaborately as shown by Gu
(2018)) that this, indeed, is the unique ESS. Note, in particular, that the
support of F̄ ∗ extends beyond V. Note also that the ESS strategy first-order
stochastically dominates the Nash solution as

FESS(x) < F ∗(x) for all x ∈ (0, V̄ ) (as F ∗(x) = 1 for all x > V ).
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We can now compute the expected behavior under FESS as

E(xESS) =

∫ V̄

0
xdF̄ ∗(x) =

∫ V̄

0
x(F̄ ∗)′(x)dx

=

∫ n
n−1

V

0
x
(n− 1

n
· 1

V

) 1
n−1 · 1

n− 1
· x−

n−2
n−1 dx

=
V

n− 1
=

V̄

n

and we see that

E(xESS) =
V

n− 1
=

n

n− 1
· V
n

=
n

n− 1
· E∗(x)

So the expected bid in ESS equilibrium equals n
n−1 times the expected bid in

Nash equilibrium.

Analogously, the symmetric Nash equilibrium solution of the second-price
all-pay auction under complete information, which is given in Vartiainen
(2007) as the mixed strategy

G∗(x) =
(

1− e−
x
V

) 1
n−1 on [0,∞)

translates into the ESS-solution by replacing V with n
n−1V as

GESS(x) =
(

1− e−
n−1
n
· x
V

) 1
n−1 on [0,∞)

We are not aware of both of these all-pay auction ESS solutions in the existing
literature.

5 Rent-dissipation in Nature: a Reassessment

The interpration of ESS behavior as a symmetric Nash equilibrium solution
in a transfer contest is from an evolutionary point of view appealing because
it captures the idea of a closed system (like ”nature”) containing the entity
of all resources. There is simply no natural outside-world left that could
account for further -exogenously given- resources. If we also rule out the
existence of further resources of super-natural origins; e.g. manna from
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heaven which according to the Bible (and, notably, the Quran) was provided
by God to the Isrealites with the morning dew during their travels in the
desert, then any rent V up for contest must result in a transfer contest for V ; i.e.
V must come from the total stock of resources that could potentially become
contestable (and consumable) among the contestants. Note that we do not
assign (common) property rights in these resources. They just exist (and
must be won) for potential consumption by any one agent. The definition of
contest competition by Nicholson (see Introduction) clearly suggests that
it is a zero-sum game in resources for survival at subsistence level; neither
side can win without the other losing. Hence, if a particular contestant -the
winner- obtains V from a contest, the group of losers experiences a reduction
of V in the stock of potentially consumable resources (just as the winner
does), for which they exclusively have to share the burden; so each single
loser accounts with a loss of 1

n−1V for it. Consequently, what is at stake in
a contest for V in nature is V − (− 1

n−1V ) = n
n−1V = V̄ , the difference in

payoffs between winning and losing. And this is precisely mirrored in the
”aggressiveness” inherent to ESS.

It follows that the evolutionary solution concept ESS behaves w.r.t. V̄ , the
transfer value of V , exactly in the same way as the solution concept Nash
equilibrium w.r.t. V . Since V̄ , the transfer value of V , is the correct ”effec-
tive” value of the rent in nature this sheds a new light on known results, in
particular it qualifies the extensive ”overdissipation”-debate as somewhat
contrived.

Look, again, at the classical Tullock contest with parameter r: Nash equlib-
rium and ESS (in pure strategies) both exist if and only if r ≤ n

n−1 ; let us
consider two cases for a given n

i) r < n
n−1 , then RDNE = n ·xNE = n−1

n · rV < V and underdissipation
of V in Nash equlibrium applies; and RDESS = r ·V < n

n−1V = V̄ and
underdissipation of V̄ in ESS applies.

ii) r = n
n−1 , then RDNE = V and full dissipation of V applies;

and RDESS = r · V = n
n−1V = V̄ and full dissipation of V̄ applies.

This is summerized in Table 1.
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Tullock parameter NE ESS

r < n
n−1

n−1
n · rV < V r · V < n

n−1 · V = V̄

underdissipation of V underdissipation of V̄

r = n
n−1 V r · V = n

n−1 · V = V̄

full dissipation of V full dissipation of V̄

Table 1: Total rent dissipation in Nash equilibrium and ESS of Tullock contests.

Moreover, if we look at the influence of n for any given r, r ≤ n
n−1 , then we

see that
lim
n→∞

RDNE = lim
n→∞

(
n− 1

n
rV ) = r · V = RDESS

(recall from Theorem 1 above that rent dissipation in an ESS is independent
of the number of contestants). At the same time lim

n→∞
V̄ = lim

n→∞
( n
n−1V ) = V,

so in the limit transfer value and value of the rent coincide, as the contribution
of a single loser in the transfer contest becomes negligible; while the range
for (simultaneous) existence of Nash equilibrium and ESS in pure strategies
shrinks to {r|r ≤ 1}. And only in the boundary case of r = 1 does full
rent-dissipation of the same rent V = V̄ apply in both solutions.

To summarize, for increasing values of r Nash equilibrium underdissipates
V less and less until value r = n

n−1 is reached, at which V gets fully dis-
sipated. Further increases in r lead to non-existence of (symmetric) pure
strategy equilibrium and full dissipation of V in symmetric mixed strategy
equilibrium up to (and including) r =∞, which is the all-pay auction. Com-
pletely analogously, for increasing values of r ESS underdissipates V̄ less
and less until the value r = n

n−1 is reached, at which V̄ gets fully dissipated.
Further increases in r lead to non-existence of ESS in pure strategies and
full dissipation of V̄ in symmetric mixed strategy equilibrium up to (and
including) the value r =∞; which describes the all-pay auction.

A final result is

Lemma 4: Rent dissipation in Nash equilibrium of a contest for rent V is limited
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by the value of the rent V ; whereas rent dissipation in evolutionary equlibrium ESS
of a contest for V is limited by V̄ , the transfer value of V ; irrespective of the number
of contestants and the nature of equilibrium as mixed or pure.

We have argued that contests in nature are by nature transfer contests and
hence should be analysed as such; i.e. the relevant measure stick for overdis-
sipation is the transfer value, not the value of the rent at stake (if we em-
ploy Nash equilibrium as the solution concept). As a consequence an anti-
overdissipation result w.r.t. the solution concept ESS is obtained.

Theorem 2: Ex ante overdissipation of (the transfer value of) a rent cannot occur
in evolutionary equilibrium ESS of a contest.

6 Conclusion

The interpretation of the ESS solution of a contest as the Nash equilibrium of
the corresponding transfer contests identifies the effective rent at stake as its
transfer value. We have then argued that the ”biological” solution concept
ESS from evolutionary game theory precisely accounts for this effective value
of the rent, because contests in nature are transfer contests. The bottom line
then is: if we analyse a contest with the solution concept ESS, we analyse
it as a transfer contest, in which the (transfer) value of the rent cannot get
overdissipated. The straightforward relationship between value and transfer
value allows us to compute ESS solutions, which refer to the transfer value,
from Nash solutions, which refer to the value.
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