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Steffen Q. Mueller, Patrick Ring, Maria Schmidt 

Forecasting economic decisions under risk:  

The predictive importance of choice-process data1 

Abstract: We investigate various statistical methods for forecasting risky choices and identify important 

decision predictors. Subjects (n=44) are presented a series of 50/50 gambles that each involves a potential 

gain and a potential loss, and subjects can choose to either accept or reject a displayed lottery. From this 

data, we use information on 8800 individual lottery gambles and specify four predictor-sets that include 

different combinations of input categories: lottery design, socioeconomic characteristics, past gambling 

behavior, eye-movements, and various psychophysiological measures that are recorded during the first 

three seconds of lottery-information processing. The results of our forecasting experiment show that 

choice-process data can effectively be used to forecast risky gambling decisions; however, we find large 

differences among models’ forecasting capabilities with respect to subjects, predictor-sets, and lottery 

payoff structures. 

Keywords: Forecasting, lottery, risk, choice-process tracing, experiments, machine learning, decision the-

ory 

JEL: C44, C45, C53, D87, D91 

Version: January 2019 

1 Introduction 

We conduct a lottery gambling experiment to assess the predictive importance of 

choice-process data (CPD) by investigating various statistical methods for forecasting 

economic decisions under risk. Our data covers 44 subjects that each played 200 lotter-

ies, thereby resulting in a total of 8800 observations. In each lottery, participants were 

offered a 50/50 gamble that involves a potential gain and a potential loss and subjects 

could decide to either play or not play the specified lottery. 

To assess how much information on choice patterns can be inferred from CPD, eye 

movements and a variety of psychophysiological measures are recorded during the first 

                                                           
1 We thank colleagues and seminar participants in Hamburg (University) and Kiel (IfW, University) for 

comments and suggestions. Particularly, we are grateful to Ingo Fiedler, René Glawion, Wolfgang 

Maennig, and Ulrich Schmidt. This project was partly funded by an Add-On Fellowship for Interdiscipli-

nary Economics by the Joachim Herz Stiftung. 
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three seconds of lottery information processing. We specify four predictor-sets that cor-

respond to various combinations of the following input categories: lottery design varia-

bles, socioeconomic characteristics, past gambling behavior, and information on eye-

movements and psychophysiological reactions (pupil size, pulse, respiration and skin 

conductance).   

Simple heuristics and decision rules can often explain a large share of the heterogeneity 

in individual decision making and they have been demonstrated to outperform ad-

vanced and knowledge-intensive methods in various forecasting domains (Goldstein & 

Gigerenzer, 2009). Similar to Stahl (2018), who evaluates lottery choices on the basis of 

judgmental heuristics, we discuss our empirical findings in comparison to two simple 

decision rules: a naive forecast that uses the most frequently observed class in the train-

ing data as a prediction for all test records and a statistical decision rule that is based on 

a lottery’s expected value.  

In addition to the naive decision rules that we use as forecasting benchmarks, we inves-

tigate methods of statistical learning, including linear (e.g., elastic net regression), non-

linear (e.g., artificial neural networks) and tree-based ensemble algorithms (e.g., random 

forest). We apply a systematic grid-search to select values for sensitive model hyperpa-

rameters. We use subjects as strata and train algorithms on resampled partitions of 80% 

of the data via 10-fold stratified cross-validation (CV). The remaining 20% of the data are 

used as a hold-out test set. First, we assess the predictive importance of individual pre-

dictor-sets. Then, we develop a full model that is comprised of all input categories. 

Data that are derived from choice-process tracing such as gaze patterns and pupil dila-

tion provide valuable information on a wide range of economic behaviors. Numerous 

examples exist: Wang et al. (2016) demonstrate that pupil size can be used to predict 

truth telling and deception in sender-receiver games; Devetag et al. (2016) use eye-

movements to identify various types of motivational attitudes in strategic behavior; 

Brocas et al. (2014) use mouse-tracking data to cluster participants according to look-up 
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patterns; and Reutskaja et al. (2011) employ an eye-tracking analysis to investigate 

search dynamics under time pressure and choice overload. 

However, CPD that are derived from sources other than eye-tracking and attention-trac-

ing also provide valuable information on predictable choice patterns; CPD are used to 

investigate facial reactions to emotional stimuli (Dimberg et al., 2002), monitor psycho-

physiological markers of stress and arousal to predict emotional states (Bendoly, 2013), 

and measure the extents to which neural activities reveal food preferences without 

choices (Smith, Douglas Bernheim, Camerer, & Rangel, 2014) and bargaining process-

features predict disagreements (Camerer, Nave, & Smith, 2018). However, although 

there is an increasing interest in the analysis of CPD, the vast majority of studies focus 

on relatively few models, datasets, and CPD measures (e.g., Krol & Krol (2017)). 

This study makes several important contributions: First, to the best of our knowledge, 

we provide the first systematic evaluation of statistical learning algorithms for forecast-

ing gambling decisions. Second, we consider several types of CPD and assess their pre-

dictive importance by analyzing various predictor-sets and input categories. Third, this 

study demonstrates how an algorithmic modeling strategy can be used to make predic-

tive inferences on correlations in complex systems using an example of the interplay 

between risky decisions and emotional and cognitive processes. 

The out-of-sample accuracy results are summarized as follows: A naive decision rule 

that is produced by predicting all test records to be not-playing yields 54% accuracy; clas-

sifying subjects’ choices on the basis of lotteries’ expected values (EV) yields 67% accu-

racy; and the forecasting method that yields the highest mean CV accuracy for the 

model, which uses all input categories, results in 87% accuracy. The best CV-fit models 

that use CPD result in a mean accuracy of 62%, even though the corresponding predic-

tor-sets do not include information on the lottery design variables. However, we observe 

large differences among models’ forecasting capabilities for individual subjects, predic-

tor-sets, and lottery payoff structures. In contrast to lotteries with positive expected val-

ues (PEV), many subjects strictly reject lotteries that have negative expected values 
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(NEV), though a small number of subjects play a relatively large share of lotteries with 

NEV. As a result, the model accuracy for the predictor-sets that include lottery design 

variables is substantially higher for NEV games compared to PEV games. 

2 Experimental setup and descriptive analysis  

We recruited 44 participants (mean age=28 years, SD=4) from the general population of 

Kiel, Germany via online advertisements. All participants gave written informed consent 

and could decide to discontinue participation at any time. The risk task consisted of 200 

rounds. In each round, participants were offered a 50/50 gamble that involved a poten-

tial gain and a potential loss. Across lotteries, we manipulated the potential gain and 

loss (range of gains: +1 EUR to +20 EUR; range of losses -1 EUR to -10 EUR; both in 1 Euro 

steps). Participants could accept or reject the offered lottery by pressing a button (left or 

right arrow). It was not possible for subjects to execute their final gambling choices dur-

ing the first three seconds that a lottery was displayed. Subjects received immediate 

feedback about the outcome of a lottery, if it was accepted. During the experiment, sub-

jects were notified when they reached the 67th and 133th rounds. The order of the lotter-

ies, the representation of gains and losses on the screen and the accept/reject buttons 

were randomized for each participant.  

Figure 1 displays the sequence of events and the displayed screens for one round of lot-

tery gambling vs. time (seconds). 

Figure 1 Sequence of events and screens for one round of lottery gambling by time 
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The first picture (left) shows a fixation cross and indicates that a lottery will be shown 

soon. The second picture shows the newly offered lottery for three seconds. The third 

picture shows the arrows that must be pressed to accept or reject the previously dis-

played lottery for a maximum of ten seconds. After a decision has been executed, the 

realized outcome is displayed. In this context, we define the reaction time as starting 

from the 5th second and ending when a final decision is executed. Hence, the reaction 

time is measured with respect to the time interval in which subjects could execute their 

gambling choices, not with respect to the first three seconds of lottery information pro-

cessing. Furthermore, the fourth screen is omitted for rejected gambles. 

All subjects started with an endowment of 10 EUR and at the end of the experiment, one 

round was randomly selected for the final payoff. If the subject had rejected the selected 

lottery, she kept the initial endowment of 10 EUR. If the subject had accepted the lottery, 

its outcome was realized and added to (subtracted from) the initial endowment in the 

case of a gain (loss). Detailed descriptions of the experimental design and descriptive 

statistics are included in the appendix.   

Figure 2 shows the relative share of the number of played lotteries for each of the 44 

individual subjects for all 200 lotteries: 155 PEVL and 45 NEVL. We note that there are 

ten lotteries that are associated with an EV of zero and we classify them as PEVL. The 

mean EV over all lotteries is 2.50 EUR (SD=3.30), the mean EV for NEV lotteries (NEVL) is 

-1.90 EUR (Min=-4.50, Max=-0.50, SD=1.20), and the mean EV for PEV lotteries (PEVL) is 

3.80 EUR (Min=0.00, Max=9.50, SD=2.50).   
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Figure 2 Share of played lotteries by subject and lotteries’ expected values  

 

Notes: Each of the 44 subjects decided on 200 lotteries: 155 with positive expected values (PEV) and 45 with nega-

tive expected values (NEV). Subjects that play five or more NEV lotteries are highlighted (bold). Dashed lines corre-

spond to mean shares of played lotteries by expected value. Subjects are ordered according to the highest share of 

the played lotteries (All). 

The mean subject plays 48% of all lotteries, but there is high heterogeneity in the indi-

vidual shares of played lotteries across subjects and within and between NEVL and PEVL. 

There are 21 subjects who do not play any NEVL and 14 subjects who play one to four 

NEVL. The remaining nine subjects play five or more NEVL. In contrast to an average 

share of played NEVL of 6%, the average share of played PEVL is 60% and no strict deci-

sion boundary that can be used to classify subjects as risk-averse for playing PEVL is 

identified. The distribution of the share of played PEVL is much smoother across individ-

uals compared to NEVL. 

3 Methods and data description 

3.1 Motivation for an algorithmic modeling approach  

Forecasting human decisions is difficult because there are many variables that impact 

choices in various and interdependent ways (Kleinberg, et al., 2018) and it is well known 

that there is considerable variation in individual risk-taking behaviors (Bruhin et al., 

2010). As an example, the choice patterns that are presented in Figure 2 show that there 

is high variation in the individual shares of played lotteries for both NEVL and PEVL. 

Many studies that investigate issues that are related to CPD and risk preferences apply 
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data modeling strategies by employing linear and parametric models that require non-

linear dependencies and higher-order interactions to be specified explicitly. However, it 

is unclear to what degree human behavior, cognitive and emotional processes, CPD, and 

experimental designs are related (Frederick, 2005; Loewenstein, 1999; Reutskaja et al., 

2011; Ring, 2015).  

Based on the high complexity and large number of relevant factors that determine the 

relationship between decisions and CPD we employ an algorithmic modeling strategy. 

Similar to Kleinberg et al. (2018, 2015) and Reutskaja et al. (2011) we posit that using a 

predictive inference approach to analyze systems that are complex by nature, such as 

the causal link between cognitive and emotional processes, can yield valuable insights 

on systematic patterns in human decision making.  

3.2 Tested models and hyperparameters   

Our study evaluates 1750 unique model specifications that correspond to four general 

modeling frameworks: naive, generalized linear, nonlinear and tree-based ensemble 

methods. In addition to a logistic regression model and linear penalized regressions 

methods (Elastic net), we evaluate methods that both automatically account for nonlin-

ear interdependencies and higher-order interactions without the need for prespecifica-

tion: Support Vector Machines (SVM), artificial neural networks (ANN), Random forests 

(RF), and tree-based gradient boosting machines (GBM). A general description for the 

machine learning methods that we employ in this study can be found in Hastie et al. 

(2009). Furthermore, we evaluate two simple forecasting benchmarks. The first predicts 

all test records as the most frequent class that we observe in the training data (not-

played). We describe this naive forecast as a risk-averse decision rule (RDR) because the 

most risk-averse behavior is to reject all lotteries to receive the 10 EUR endowment as a 

final payoff. The second benchmark can be described as a simple statistical decision rule 

(SDR) that classifies gambling-decisions according to a lottery’s expected value. Accord-

ing to this SDR, we classify NEVL (𝐸𝑉 < 0) as not-played and PEVL (𝐸𝑉 ≥ 0) as played. 
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Except for the predefined naive forecasting rules and the logistic regression model, each 

of the machine learning algorithms that is evaluated in this study requires for selecting 

values for model-specific hyperparameters. We follow standard practice for determin-

ing sensitive parameter values via a systematic grid-search (e.g., Lessmann & Voß 

(2017)).  

Table 1 presents an overview of the models and the corresponding hyperparameters that 

we evaluate in this study. Except for the two naive forecasting methods, we evaluate all 

models on the basis of four differently specified predictor-sets (see appendix for details). 
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Table 1 Summary of evaluated forecasting methods 

Classification method   # Models    Hyperparameters   Tested values 

Naive Forecasts       

Risk-averse Decission rule  1  -  - 

Statistical Decission rule  1  -  - 

Generalized linear             

Logistic regression  4 ∗ 1 = 4  -  - 

Elastic net*  4 ∗ 11 ∗ 5  Alpha*   0, 0.1, 0.2, … , 1 

  = 220  Lambda  (0.01, 0.025, 0.05,  

        0.1, 0.15) 

Nonlinear            

Support vector machines  4 ∗ 1 ∗ 5 ∗ 10  Basis function kernel   𝑅𝑎𝑑𝑖𝑎𝑙 

(SVM)  = 200  Cost  1, 2, … , 10 

    Inverse kernel width (sigma)   (0.01, 0.025, 0.05,  

        0.1, 0.15) 

Artificial neural network  4 ∗ 10 ∗ 5  Activation function  𝑆𝑖𝑔𝑚𝑜𝑖𝑑 

(ANN)  = 200  No. of nodes in the hidden layer   1, 2, … , 10 

    Weight decay  0.1, 0.2, … , 0.5 

Tree-based ensemble             

Random forest (RF)   4 ∗ 1 ∗ 1 ∗ 5 ∗ 5   Splitting rule   𝐺𝑖𝑛𝑖 

  = 100  No. of ensembled trees  1500 

    Min. no. of samples in each leaf node  1, 5, 10, 20, 40 

    No. of predictors in each split**  |𝐷𝑖|(0.1, 0.2,    

       0.4, 0.8, 1) 

Gradient boosting machines  45 = 1024  Interaction depth  5, 10, 20, 40 

(GBM)    No. of ensembled trees   20, 40, 80, 160 

    Shrinkage  0.1, 0.4, 0.7, 1 

        Min. no. of samples in each leaf node   10, 40, 70, 100 

No. of evaluated models   1750         

Notes: Except for the two naive forecasting methods, we evaluate all models on the basis of four differently speci-

fied predictor-sets. |𝐷𝑖| refers to the number of predictors for predictor-set 𝑖 with 𝑖 = {𝑃, 𝐴, 𝐿𝑆𝐺, 𝐿𝑆𝐺𝑃𝐴}. * Depending 

on the hyperparameter alpha, the model takes the form of a lasso, ridge, or elastic net regression model. ** In addition 

to RF, we implicitly evaluate a bagged classification and regression tree (CART) ensemble by offsetting RF’s random 

sub-space method via setting the number of randomly chosen predictors to the total number of predictor-set specific 

predictor variables, i.e., for |𝐷𝑖| ∗ 1.   

3.3 Description of variables and data cleaning  

Table 2 briefly describes all the predictors that we employ in this paper: lottery design 

variables (𝐿), such as loss and win values; participants’ socioeconomic characteristics (𝑆), 

such as gender and age, education and income levels; past gambling behavior (𝐺); psy-

chophysiological CPD (𝑃), such as pupil dilation and skin conductance measurements; 

and attention CPD (𝐴).  
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Table 2 Description of specified predictor variables 

Lottery design (L)  

 5 variables that are related to win and loss values and expected payoff  

 4 variables that are related to the lottery trials 

 

2 variables that are related to the area where a win or a loss value is displayed on the com-
puter screen  

Socioeconomic (S) 

 44 variables that account for subject-specific effects  

 5 variables that are related to qualifications and profession levels 

 4 variables that are related to education levels 

 4 variables that are related to age levels and gender 

 3 variables that are related to income levels 

Gambling behaviora (G) 

 14 variables that are related to subjects’ past gambling behaviors and decision outcomes 

Psychophysiological reactionsb (P) 

 10 variables that are related to a subject’s skin conductance rates 

 4 variables that are related to a subject’s blood volume pulse  

 4 variables that are related to a subject’s blood volume pulse’s amplitude 

 4 variables that are related to a subject’s respiration rate 

 4 variables that are related to a subject’s respiration rate’s amplitude 

 4 variables that are related to a subject’s heart rate 

 4 variables that are related to a subject’s body temperature 

 4 variables that are related to a subject’s pupils’ sizes 

Attentionb (A)  

 
3 variables that are related to the lengths of time that a subject gazes at the displayed win 
and loss values  

Notes: a With respect to the past five displayed lotteries and the corresponding choices and outcomes.  
b Except skin conductance data, all choice-process data are measured exclusively during the first three seconds of 

lottery information processing and relate to minimum, maximum and mean values and the difference between min-

imum and maximum values. Skin conductance data have a delay of approximately one second and we adjusted the 

time window accordingly (Boucsein, 2012). 

We encode factor variables as dummy variables and specify 126 predictors. Then, we ex-

clude the most frequently observed level for each category as the corresponding refer-

ence group. This encoding results in a total of 119 predictors: 42 numeric and 77 binary 

variables. Except for skin conductance data (SCD), all CPD are measured with respect to 

the first three seconds of lottery information processing. During this time period, it was 

not possible for subjects to execute their final gambling choices. Consequently, none of 

the predictor-sets include information on the reaction time. However, SCD has a delay 

of approximately one second and we adjusted the time window accordingly (Boucsein, 

2012). SCD includes information on the number of significant (above-threshold) reac-

tions and tonic and phasic activity based on the continuous decomposition analysis as 
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suggested by Benedek & Kaernbach (2010). All other CPD predictors relate to minimum, 

maximum and mean values and the difference between minimum and maximum val-

ues. In this context, with respect to gaze patterns (𝐴), we follow Krol & Krol (2017) and 

argue that the complete scan-path sequence of information can be considered super-

fluous for games in which only two numbers are required for processing all information 

about a lottery’s payoff structure. 

Moreover, the 𝑃 and 𝐴 predictor-sets do not contain any information that relates to lot-

tery design variables such as displayed win and loss values. However, for 𝐴, we implicitly 

include the side of the computer screen (left vs. right) on which a lottery’s win and loss 

values are displayed in specifying subjects’ look-up patterns.  

In our data cleaning process, we exclude 220 observations because they include infor-

mation on past gambling behavior in the 𝐿𝑆𝐺 and 𝐿𝑆𝐺𝑃𝐴 data and we exclude 212 ob-

servations due to missing eye-tracking data. The final dataset includes 8368 records. A 

detailed description of the empirical specifications is presented in the appendix. 

3.4 Implementation  

The classification task can be modeled as a choice, which is denoted as 𝑌, that we specify 

as a binary outcome: 𝑌 = 1 for playing and 𝑌 = 0 for not-playing a lottery. Let us con-

sider a function 𝑓𝑖(·) that relates 𝑌 to a predictor-set 𝐷𝑖  with 𝑖 = {𝑃, 𝐴, 𝐿𝑆𝐺, 𝐿𝑆𝐺𝑃𝐴}. The 

predictor-sets include aggregated combinations of input categories: physiological CPD 

(𝑃); attention CPD (𝐴); lottery design, socioeconomic characteristics, and past gambling 

behavior (𝐿𝑆𝐺); and a full model that is comprised of all input categories (𝐿𝑆𝐺𝑃𝐴). We 

include dummy variables for subject-specific effects in all four datasets. The objective is 

to identify well-approximating functional relationships that relate the specified predic-

tor-sets to the decision outcome by learning and identifying systematic choice patterns 

from the training data.  

We use subjects as strata in both randomly selecting 80% of the cleaned data as a train-

ing sample and tuning models’ hyperparameters via 10-fold stratified CV on the basis of 

the training sample. The remaining 20% of the data are used as a hold-out test set to 



HCED 66 – Forecasting economic decisions under risk: The predictive importance of choice-process data 

12/19 

produce reasonable estimates of accuracy. This sampling procedure utilizes 6711 obser-

vations for model training and 1657 observations for model testing. We focus on as-

sessing the predictive importance of CPD on binary gambling choices and we have no 

interest in maximizing the accuracy for specified outcomes, e.g., true-positive predic-

tions. Since the average share of played lotteries is relatively balanced, we use the clas-

sification accuracy to assess models’ predictive capabilities. Moreover, we set the cut-

off value for classifying a record as played to a predicted probability of 50%. Last, we 

center and scale all numeric predictors separately with respect to the corresponding 10 

training CV fold-sets and the test records. 

4 Model performance evaluation 

The out-of-sample accuracy results differ only marginally from the mean 10-fold CV per-

formance on the training data. In the following sections, we focus on a visual inspection 

and a discussion of selected forecasting results. Detailed results for hyperparameter 

tuning and out-of-sample performance are included in the appendix. However, in terms 

of the Bonferroni-adjusted p-values for pairwise t-tests for detecting significant differ-

ences in models’ CV accuracies, for the 𝐿𝑆𝐺 and 𝐿𝑆𝐺𝑃𝐴 predictor-sets, both generalized 

linear model frameworks (logistic and elastic) are consistently outperformed by data-

driven algorithms (SVM, ANN, RF, and GBM).  

For all results that we report in this study, we set the models’ hyperparameters to the 

values that yield the highest mean CV accuracies. Figure 3 shows the out-of-sample clas-

sification accuracy for the 1657 records that are included in the test data.  
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Figure 3 Out-of-sample classification accuracy for playing a 50/50 gamble 

 
Notes: Test (training) data consist of 1657 (6711) records and the models’ hyperparameters are chosen as the values 

that yield the highest mean 10-fold CV accuracy using subjects as strata. We evaluate logistic (Logistic) and penalized 

regression models (Elastic), support vector machines (SVM), artificial neural networks (ANN), random forests (RF), and 

tree-based gradient boosting machines (GBM) on the basis of psychophysiological (𝑃) and attention (𝐴) choice-pro-

cess data; lottery design, socioeconomic characteristics, and information on past gambling behavior (𝐿𝑆𝐺); and a full 

model that is comprised of all input categories (𝐿𝑆𝐺𝑃𝐴). The error bars correspond to 95% confidence intervals. The 

dashed lines correspond to the accuracy that is realized on the basis of the models that yield the highest mean 10-

fold CV training data accuracy. The solid line is a naive forecast that yields a test data accuracy of 54% by predicting 

all records as not-playing.  

The naive forecast benchmark that is produced by the RDR that predicts all test records 

as not-playing (see the solid line in Figure 3) results in an out-of-sample accuracy of 54%. 

The models that we chose according to their best CV accuracy are indicated by dashed 

lines and we observe only marginal differences between the best CV-fit models and the 

best test-fit models. The best out-of-sample accuracy for 𝑃 is observed with 61% (Elastic, 

SVM), for 𝐴 with 64% (SVM, ANN, RF), for 𝐿𝑆𝐺 with 88% (GBM), and for 𝐿𝑆𝐺𝑃𝐴 with 87% 

(SVM, RF, GBM). In comparison to the generalized linear models (Logistic and Elastic), 

our results suggest that nonlinear models (SVM and ANN) and tree-based ensembles (RF 

and GBM) better utilize the information that is provided by the individual look-up pat-

terns (𝐴) and produce more accurate predictions on the basis of 𝐿𝑆𝐺 and 𝐿𝐺𝑆𝑃𝐴. Figure 

3 shows that 𝐴 can be associated with a higher predictive importance than 𝑃, but there 

appear to exist only marginal differences between the 𝐿𝑆𝐺 and 𝐿𝑆𝐺𝑃𝐴 within-model 

accuracy. However, no dominant approach is identified among the nonlinear and tree-

based algorithms when comparing mean test accuracy only.    

In Figure 4, we present models’ out-of-sample accuracy results in terms of lotteries’ EV 

and using the SDR as a forecasting benchmark instead of the naive RDR. 
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Figure 4 Out-of-sample classification accuracy for playing a 50/50 gamble by lotteries’ 

expected values 

 
Notes: Out-of-sample classification accuracy for positive expected value (PEV), negative expected value (NEV), and 

all lotteries (All) for playing a 50/50 gamble. Test (training) data consist of 1657 (6711) records and models’ hyperpa-

rameters are chosen as the values that yield the highest mean 10-fold CV accuracy using subjects as strata. We eval-

uate logistic and penalized linear regression models (Elastic), support vector machines (SVM), artificial neural net-

works (ANN), random forests (RF), and tree-based gradient boosting machines (GBM) on the basis of psychophysio-

logical (𝑃) and attention (𝐴) choice-process predictors; lottery design, socioeconomic characteristics, and information 

on past gambling behavior (𝐿𝑆𝐺); and a full-model that is comprised of all input categories (𝐿𝑆𝐺𝑃𝐴). The dashed lines 

represent the predictive accuracy on the test data that results from predicting a lottery with negative expected values 

(NEV) as not-played (95%), positive expected values (PEV) as played (58%), and the corresponding accuracy based on 

all lotteries (67%).  

SDR outperforms all tested models for 𝐴 and 𝑃 over all lotteries (All) with a test accuracy 

of 67%. In contrast to 𝐴 and 𝑃, the 𝐿𝑆𝐺 and 𝐿𝑆𝐺𝑃𝐴 datasets include information on lot-

tery design variables and both significantly outperform the SDR forecast. Moreover, the 

results for 𝐴 and 𝑃 in terms of EV do not vary substantially, except for the Elastic and 

SVM forecasts. For 𝐴, the Elastic model results in 65% for NEVL and 60% for PEVL. In 

contrast, for 𝑃, the SVM and Elastic models yield the best out-of-sample performance 

for NEVL, with accuracies of 67% and 68%, respectively. However, the SDR forecast yields 

an accuracy of 95%; hence, the vast majority of subjects do not play many NEVL. Simi-

larly, the SDR results demonstrate that the mean subject played 58% out of all PEVL that 

are included in the test data.  
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Exemplarily, in Figure 5 we present the subject-specific test accuracy results by lotteries’ 

EV for GBM for on the basis of the 𝐿𝑆𝐺𝑃𝐴 predictor-set (see appendix section 3.5 for all 

individual model results).  

Figure 5 GBM-LSGPA subject-specific out-of-sample classification accuracy for playing a 

50/50 gamble by lotteries’ expected values 

 
Notes: Out-of-sample classification accuracy for 44 subjects based on positive expected value (PEV), negative ex-

pected value (NEV), and all lotteries (All) for playing a 50/50 gamble. The test (training) data consist of 1657 (6711) 

records and models’ hyperparameters are chosen as the values that yield the highest mean 10-fold CV accuracy using 

subjects as strata. The forecast is produced using a tree-based stochastic gradient boosting machine (GBM) on the 

basis of a predictor-set that is comprised of input categories (𝐿𝑆𝐺𝑃𝐴) that relate to psychophysiological (𝑃) and at-

tention (𝐴) choice-process data and lottery designs, socioeconomic characteristics, and information on past gambling 

behavior (𝐿𝑆𝐺). Subject are ordered according to overall accuracy (All). The 9 subjects that play five or more NEV lot-

teries (NEVL) with respect to the 45 NEVL that are included in the full experimental data are highlighted (bold; see 

Figure 2, section 2). The solid line is a naive forecast that realizes an accuracy of 54% on the test data by predicting all 

records as not-playing.    

On average, GBM on the basis of 𝐿𝑆𝐺𝑃𝐴 produces accurate forecasts for gambling deci-

sions across individuals. However, while the predictions for subjects that play a rela-

tively large share of lotteries (highlighted) are less accurate for NEVL, they are more ac-

curate for PEVL when compared to the large group of subjects that almost play none of 

the NEVL that are included in their corresponding test records. Moreover, GBM produces 

100%-accurate forecasts for NEVL for 73% of the subjects (32 out of 44).   

Figure 5 shows the results for GBM on the basis of 𝐿𝑆𝐺𝑃𝐴 only. To assess the importance 

of CPD on forecasting risky choices for NEVL and PEVL across all models’ test results, in 
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Figure 6 we present the predictor-set-, and subject-specific out-of-sample accuracy re-

sults for NEVL, PEVL, and the difference between NEVL and PEVL. To highlight differ-

ences across subject-specific results we cluster subjects (rows) with respect to their cor-

responding accuracy separately for NEVL, PEVL, and the difference between NEVL and 

PEVL via k-means hierarchical clustering. 

Figure 6 Subject-specific out-of-sample classification accuracy for playing a 50/50 gam-

ble by lotteries’ expected values 

 

Notes: Out-of-sample classification accuracy results for 44 subjects for negative expected value lotteries (NEVL) 

positive expected value lotteries (PEVL), and the difference between NEVL and PEVL for playing a 50/50 gamble. The 

test (training) data consist of 1657 (6711) records and models’ hyperparameters are chosen as the values that yield the 

highest mean 10-fold CV accuracy using subjects as strata. To highlight differences across subjects’ accuracy results, 

we first cluster subjects (rows) according to their corresponding accuracy separately for lotteries’ EV via (hierarchical) 

k-means clustering, and then split models’ subject-specific accuracy results across PEVL, NEVL, and the difference 

between NEVL and PEVL into 10 groups via k-means clustering; for both using the Euclidean distance measure. We 

evaluate logistic and penalized linear regression models (Elastic), support vector machines (SVM), artificial neural 

networks (ANN), random forests (RF), and gradient boosting machines (GBM) on the basis of psychophysiological (𝑃) 

and attention (𝐴) choice-process predictors; lottery-design, socioeconomic characteristics, and information on past 

gambling behavior (𝐿𝑆𝐺); and a full-model that comprises all input categories (𝐿𝑆𝐺𝑃𝐴). RDR is naive forecast that 

predicts all records as not-playing, and SDR results from predicting a lottery with NEV (EV<0) as not-playing and PEV 

(EV≥0) as playing. 
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Figure 6 supports our previous results and reveals systematic differences in models’ 

forecasting capabilities between subject-specific NEVL and PEVL choices. The corre-

sponding subjects are characterized by the large differences within their NEVL results 

(red vs. green) and between their NEVL and PEVL results (red vs. blue). For example, Elas-

tic and SVM for 𝑃 result in more 100% accurate forecasts for individual subjects for NEVL 

than all other model-predictor-set combinations on the basis of 𝐴 and 𝑃, and, except for 

the naive forecasts, they are the model-predictor-set combinations that correspond to 

the highest number of subject-specific forecast differences that yield a higher accuracy 

for NEVL than for PEVL. For 𝐿𝑆𝐺 and 𝐿𝑆𝐺𝑃𝐴, that both provide information on lotteries’ 

payoff structures, except for RDR and SDR all evaluated forecasting methods produce 

accurate forecasts for the vast majority of subjects, especially for NEVL. In this context, 

we highlight that the SDR and RDR on average produce highly accurate forecasts for 

NEVL choices that are on par with those of advanced machine learning algorithms. 

While there exist strategies for exploiting systematic patterns in between-model accu-

racy correlation differences across subjects and lottery designs, we do not evaluate het-

erogeneous model ensemble approaches in this study; we leave this for further re-

search.  

5 Conclusions 

Our study shows that CPD can be used to forecast risky decisions. However, we observe 

high variation in the differences in predictive measures, and within and across models 

and predictor-sets. We find that the forecasting accuracy highly depends on the lotter-

ies’ payoff structures and individual risk-taking behaviors. Such heterogeneity in differ-

ences across subjects and classification measures can have severe consequences for real 

life applications of artificial intelligence systems. As an example, let us consider the eval-

uation of methods for assessing job candidates’ future risk preferences or of CPD that 

were recorded during a suspect’s interrogation for detecting lies and truths. Here, the 

heterogeneity can be important for maximizing a model’s predictive power with respect 

to specific measures such as the ratio of sensitivity to specificity.  
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Appendix 

1 Introduction 

This appendix provides additional information on the experiment design, data cleaning 

and sampling process, empirical specifications, and descriptive statistics, and is comple-

menting the main text by providing the detailed results for model training, hyperparam-

eter tuning, and models’ out-of-sample performances. Furthermore, this appendix rep-

licates some text and results from the main paper for reasons of clarity. 

2 Data and experimental design 

In this section, we provide additional information on the experiment design, descriptive 

statistics, the data cleaning process, and variable specifications.  

2.1 Experimental design 

The experiment was conducted between 2018.07.23 and 2018.08.08 at the Psychology 

Department of the Kiel University, Germany. After subjects were instructed by the ex-

perimenter, they received an info sheet with general information, the informed consent, 

a worksheet to generate a personal code, and a survey that included questions on socio-

economic characteristics such as age, gender, education and income level.  

At the beginning of the experiment, subjects were seated in front of a computer screen 

and different sensor were attached to their bodies: First, subjects were asked to place 

their heads in the corresponding headrest to adjust the eye-tracking sensors (Tobii Pro 

X2-30) and Software (Tobii Pro SDK, Tobii Pro Eye Tracker Manager) for recording gaze-

focus and pupils’ sizes. Sampling rate was 50 Hz. After that, sensors were placed. We 

assessed physiological data with a 16-channel bioamplifier (Nexus-16; Mind Media B.V., 

the Netherlands). At first, a breast strap was attached to the thorax to assess breathing 

movement. Skin conductance was measured with adhesive non-reusable electrodes. 

They were attached to the distal phalange of the index and middle fingers of the non-

dominant hand. Blood volume pulse was measured with a sensor on the annular finger. 
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A thermistor was taped to the auricular finger. Blood volume pulse was sampled with 

128 Hz. All remaining data was recorded with 32 Hz. The recording software used to rec-

ord these physiological reactions was Bio-trace (Mind Media B.V.).  

The lottery gambling experiment started after we assured a successful calibration of all 

sensors. The first screen was a welcome page and, again, subjects were presented the 

concise instructions for the lottery gambling experiment. Then, subjects were asked to 

start the experiment by pressing the space-bar and deciding on three test trials. After 

subjects were asked if they had any remaining questions, they were shielded from 

acoustic disturbances with ear protectors and the actual experiment started. After de-

ciding on 200 lottery trials, the experiment was finished, sensors were removed, and 

subjects received their final payoffs.  

2.2 Descriptive statistics 

Table A1 shows the absolute and relative number of played lotteries by subject and lot-

teries’ expected values that correspond to the individual choice patterns that we pre-

sent in Figure 2 (section 2) in the main text.   
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Table A1 Share of played lotteries by subject and lotteries’ expected values  

   All     Positive EV     Negative EV   

Subject ID   Played Played (%)   Played Played (%)   Played Played (%) 
nn07in21  162 81.00%  155 100.00%  7 15.56% 
el05nd02  156 78.00%  137 88.39%  19 42.22% 
er06er26  145 72.50%  145 93.55%  0 00.00% 
er10in30  135 67.50%  130 83.87%  5 11.11% 
hn06af11  132 66.00%  132 85.16%  0 0.00% 
er05ed04  126 63.00%  125 80.65%  1 2.22% 
er05ch04  125 62.50%  116 74.84%  9 20.00% 
lz08rd25  123 61.50%  115 74.19%  8 17.78% 
en05as01  121 60.50%  121 78.06%  0 0.00% 
ea08nn28  108 54.00%  103 66.45%  5 11.11% 
se06er29  107 53.50%  106 68.39%  1 2.22% 
pp06ai18  105 52.50%  105 67.74%  0 0.00% 
ergaas21  103 51.50%  102 65.81%  1 2.22% 
nn06ld01  103 51.50%  90 58.06%  13 28.89% 
ob04er02  103 51.50%  101 65.16%  2 4.44% 
ch07nk26  102 51.00%  102 65.81%  1 2.22% 
eechen11  98 49.00%  83 53.55%  15 33.33% 
nn05er10  98 49.00%  98 63.23%  0 0.00% 
nn08we28  98 49.00%  97 62.58%  1 2.22% 
nn06rg19  95 47.50%  95 61.29%  0 0.00% 
ce08le09  94 47.00%  75 48.39%  19 42.22% 
mz04ed19  93 46.50%  93 60.00%  0 0.00% 
os07ch18  93 46.50%  91 58.71%  2 4.44% 
le06id19  92 46.00%  91 58.71%  1 2.22% 
ix06er30  90 45.00%  87 56.13%  3 6.67% 
usnaas21  88 44.00%  88 56.77%  0 0.00% 
en05er24  85 42.50%  83 53.55%  2 4.44% 
er09as11  85 42.50%  85 54.84%  0 0.00% 
ermibe03  85 42.50%  85 54.84%  0 0.00% 
le07ed18  85 42.50%  85 54.84%  0 0.00% 
on04lf09  85 42.50%  85 54.84%  0 0.00% 
er07nd25  84 42.00%  80 51.61%  4 8.89% 
chsade20  83 41.50%  83 53.55%  0 0.00% 
in07en17  80 40.00%  79 50.97%  1 2.22% 
in07rk14  73 36.50%  73 47.10%  0 0.00% 
er03ke09  71 35.50%  71 45.81%  0 0.00% 
ersute14  71 35.50%  71 45.81%  0 0.00% 
an07co25  67 33.50%  67 43.23%  0 0.00% 
ke05rd12  65 32.50%  65 41.94%  0 0.00% 
ld05us24  61 30.50%  60 38.71%  1 2.22% 
er06er06  58 29.00%  58 37.42%  0 0.00% 
ke08el19  56 28.00%  56 36.13%  0 0.00% 
uz07im20  52 26.00%  51 32.90%  1 2.22% 
ck07nz06   50 25.00%   49 31.61%   0 0.00% 
Mean  95,25 47,62%  92,48 59.66%  2,77 6.16% 
SD   26.41 -  24.78 -  4.98 - 
N   4191 -  4069 -  122 - 

Notes: Share of played lotteries by subject and lotteries’ expected values (EV). Each of the 44 subjects decided on 

200 lotteries: 155 with positive expected values (PEV) and 45 with negative expected values (NEV). 

While Table A1 shows that there is high heterogeneity in the individual share of played 

lotteries across subjects, there are appear to exist further systematic differences in the 

relative share of subjects that play NEVL and PEVL with respect to lottery trials.  
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Figure A1 shows the relative share of subjects that played lotteries for each of the 155 

PEVL and 45 NEVL by lottery trial. We observe PEVL and NEVL decisions at each trial. 

However, with respect to the absolute number of subjects that played lotteries, the min-

imum number of subjects that were offered PEVL (NEVL) per trial is 26 (4) and the max-

imum is 40 (18). To clarify, the number of subjects that were offered NEVL and PEVL var-

ies with lottery trial. Precisely, the mean share of subjects that were offered PEVL is ap-

proximately three times as high as it is for NEVL, since the 200 lotteries include 45 NEVL 

and 155 PEVL.  

Figure A1 Relative share of subjects that played lotteries by lottery trial 

 
Notes: Relative share of subjects that played lotteries by lottery trial and lotteries’ expected values (EV). Solid lines 

correspond to locally-weighted regressions scatterplot smoothing (loess) curves. 95% confidence intervals are indi-

cated by grey-shaded areas. Each of the 44 subjects decided on playing 200 lotteries: 155 with positive EV and 45 with 

negative EV. Dashed lines indicate the 67th and 133th lottery-trial.  

Figure A1 suggests that subjects’ propensity for risking to play lotteries decreases as the 

experiment progresses; though, we observe differences for NEVL and PEVL. The mini-

mum share of subjects that play NEVL is 0% (0 out of 11), and the maximum is 43% (3 out 

of 7). For subjects that play PEVL, we observe a minimum share of 36% (12 out of 31) and 

a maximum of 85% (29 out of 34). 
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2.3 Data cleaning and variables’ specification 

We exclude all 224 observations with missing eye-tracking data and we exclude 220 ob-

servations due to including information on past gambling behavior in the 𝐿𝑆𝐺 and 

𝐿𝑆𝐺𝑃𝐴 data. There are 18 records that are associated with missing eye-tracking data and 

are related to one of the first 5 lottery gambling decisions. Hence, the cleaned dataset 

includes 8368 records.  

In Table A2 we summarize the distribution of gambling choices by lotteries’ expected 

values and data sample: the full data, the cleaned data, the training data, and the test 

data. 
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Table A2 Distribution of risky choices by data sample and lotteries’ expected values 

Data: Full sample Expected value             

Choice # All All (%)  # PEV PEV (%)  # NEV NEV (%) 

Played 4191 48  4069 60  122 6 

Not played 4609 52   2751 40   1858 94 

N 8800 100   6820  100   1980 100 

         

Data: Cleaned  Expected value             

Choice # All All (%)  # PEV PEV (%)  # NEV NEV (%) 

Played 4109 49  3235 40  629 23 

Not played 4259 51   3850 60   2153 77 

N 8368 100   7994 100   2782 100 

         

Data: Training  Expected value             

Choice # All  All (%)  # PEV PEV (%)  # NEV NEV (%) 

Played 3217 48  3217 48  93 6 

Not played 3494 52   3494 52   1406 94 

N 6711 100   6711 100   1499 100 

         

Data: Test  Expected value             

Choice # All  All (%)  # PEV PEV (%)  # NEV NEV (%) 

Played 892 54  536 42  18 5 

Not played 765 46   747 58   356 95 

N 1657 100   1283 100   374 100 

Notes: The experiment data covers 44 subjects that each were offered 200 lotteries with 50/50 outcome probabil-

ities, i.e., 8800 observations in total for the full data sample.  

In Table A3 we present the variables’ empirical specifications by predictor-set and 

groups together with distributional summary statistics. While most variables’ descrip-

tion is self-explanatory, in the following we discuss further details with respect to CPD 

and their encodings and corresponding implications. 
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Variable Predictor-set Variable group Description Min Max Mean SD 

Played Outcome Economic decision Play vs. not-play 0 1 0.48 0.50 

win_value LSG, LSGPA Win and loss values (L) Potential win (EUR) 1.00 20.00 10.50 5.76 

loss_value LSG, LSGPA Win and loss values (L) Potential loss (EUR) -10.00 -1.00 -5.50 2.87 

exp_value LSG, LSGPA Win and loss values (L) Expected value (EUR) -4.50 9.50 2.50 3.21 

neg_exp_value LSG, LSGPA Win and loss values (L) Expected value < 0  0 1 0.22 0.42 

trial LSG, LSGPA Trial (L) Lottery trial 6 200 94.84 57.17 

trial_D1_1_67 LSG, LSGPA Trial (L) Lottery trial 1 to 67 0 1 0.32 0.47 

trial_D2_68_133* LSG, LSGPA Trial (L) Lottery trial 68 to 133 0 1 0.34 0.47 

trial_D2_134_200 LSG, LSGPA Trial (L) Lottery trial 134 to 200 0 1 0.34 0.47 

win_rightLSG LSGPA LSG, LSGPA Left vs. right (L) Potential win is displayed on the right box 0 1 0.50 0.50 

accept_right LSG, LSGPA Left vs. right (L) Accept by pressing the right arrow 0 1 0.50 0.50 

personD_1 P, A, LSG, LSGPA Subject ID (S) Dummy variable for individual subject 1 0 1 0.02 0.15 

personD_2 P, A, LSG, LSGPA Subject ID (S) Dummy variable for individual subject 2 0 1 0.02 0.15 

personD_3 P, A, LSG, LSGPA Subject ID (S) Dummy variable for individual subject 3 0 1 0.02 0.15 

personD_4 P, A, LSG, LSGPA Subject ID (S) Dummy variable for individual subject 4 0 1 0.02 0.15 

personD_5 P, A, LSG, LSGPA Subject ID (S) Dummy variable for individual subject 5 0 1 0.02 0.14 

personD_6 P, A, LSG, LSGPA Subject ID (S) Dummy variable for individual subject 6 0 1 0.02 0.15 

personD_7 P, A, LSG, LSGPA Subject ID (S) Dummy variable for individual subject 7 0 1 0.02 0.15 

personD_8 P, A, LSG, LSGPA Subject ID (S) Dummy variable for individual subject 8 0 1 0.02 0.15 

personD_9 P, A, LSG, LSGPA Subject ID (S) Dummy variable for individual subject 9 0 1 0.02 0.15 

personD_10 P, A, LSG, LSGPA Subject ID (S) Dummy variable for individual subject 10 0 1 0.02 0.15 

personD_11* P, A, LSG, LSGPA Subject ID (S) Dummy variable for individual subject 11 0 1 0.02 0.15 

personD_12 P, A, LSG, LSGPA Subject ID (S) Dummy variable for individual subject 12 0 1 0.02 0.14 

personD_13 P, A, LSG, LSGPA Subject ID (S) Dummy variable for individual subject 13 0 1 0.02 0.15 

personD_14 P, A, LSG, LSGPA Subject ID (S) Dummy variable for individual subject 14 0 1 0.02 0.15 

personD_15 P, A, LSG, LSGPA Subject ID (S) Dummy variable for individual subject 15 0 1 0.02 0.15 

personD_16 P, A, LSG, LSGPA Subject ID (S) Dummy variable for individual subject 16 0 1 0.02 0.15 
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Variable Predictor-set Variable group Description Min Max Mean SD 

personD_17 P, A, LSG, LSGPA Subject ID (S) Dummy variable for individual subject 17 0 1 0.02 0.15 

personD_18 P, A, LSG, LSGPA Subject ID (S) Dummy variable for individual subject 18 0 1 0.02 0.15 

personD_19 P, A, LSG, LSGPA Subject ID (S) Dummy variable for individual subject 19 0 1 0.02 0.15 

personD_20 P, A, LSG, LSGPA Subject ID (S) Dummy variable for individual subject 20 0 1 0.02 0.15 

personD_21 P, A, LSG, LSGPA Subject ID (S) Dummy variable for individual subject 21 0 1 0.02 0.15 

personD_22 P, A, LSG, LSGPA Subject ID (S) Dummy variable for individual subject 22 0 1 0.02 0.15 

personD_23 P, A, LSG, LSGPA Subject ID (S) Dummy variable for individual subject 23 0 1 0.02 0.15 

personD_24 P, A, LSG, LSGPA Subject ID (S) Dummy variable for individual subject 24 0 1 0.02 0.15 

personD_25 P, A, LSG, LSGPA Subject ID (S) Dummy variable for individual subject 25 0 1 0.02 0.15 

personD_26 P, A, LSG, LSGPA Subject ID (S) Dummy variable for individual subject 26 0 1 0.02 0.13 

personD_27 P, A, LSG, LSGPA Subject ID (S) Dummy variable for individual subject 27 0 1 0.02 0.15 

personD_28 P, A, LSG, LSGPA Subject ID (S) Dummy variable for individual subject 28 0 1 0.02 0.15 

personD_29 P, A, LSG, LSGPA Subject ID (S) Dummy variable for individual subject 29 0 1 0.02 0.15 

personD_30 P, A, LSG, LSGPA Subject ID (S) Dummy variable for individual subject 30 0 1 0.02 0.15 

personD_31 P, A, LSG, LSGPA Subject ID (S) Dummy variable for individual subject 31 0 1 0.02 0.15 

personD_32 P, A, LSG, LSGPA Subject ID (S) Dummy variable for individual subject 32 0 1 0.02 0.15 

personD_33 P, A, LSG, LSGPA Subject ID (S) Dummy variable for individual subject 33 0 1 0.02 0.15 

personD_34 P, A, LSG, LSGPA Subject ID (S) Dummy variable for individual subject 34 0 1 0.02 0.14 

personD_35 P, A, LSG, LSGPA Subject ID (S) Dummy variable for individual subject 35 0 1 0.02 0.15 

personD_36 P, A, LSG, LSGPA Subject ID (S) Dummy variable for individual subject 36 0 1 0.02 0.15 

personD_37 P, A, LSG, LSGPA Subject ID (S) Dummy variable for individual subject 37 0 1 0.02 0.15 

personD_38 P, A, LSG, LSGPA Subject ID (S) Dummy variable for individual subject 38 0 1 0.02 0.15 

personD_39 P, A, LSG, LSGPA Subject ID (S) Dummy variable for individual subject 39 0 1 0.02 0.15 

personD_40 P, A, LSG, LSGPA Subject ID (S) Dummy variable for individual subject 40 0 1 0.02 0.15 

personD_41LSG LSGPA P, A, LSG, LSGPA Subject ID (S) Dummy variable for individual subject 41 0 1 0.02 0.15 

personD_42 P, A, LSG, LSGPA Subject ID (S) Dummy variable for individual subject 42 0 1 0.02 0.15 

personD_43LSG LSGPA P, A, LSG, LSGPA Subject ID (S) Dummy variable for individual subject 42 0 1 0.02 0.15 

personD_44LSG LSGPA P, A, LSG, LSGPA Subject ID (S) Dummy variable for individual subject 44 0 1 0.02 0.15 
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Variable Predictor-set Variable group Description Min Max Mean SD 

quali_D1_abi*  Socioeconomic (S) Highest education: A-levels 0 1 0.43 0.50 

quali_D2_bach LSG, LSGPA Socioeconomic (S) Highest education: Bachelor 0 1 0.25 0.43 

quali_D3_realLSG LSGPA LSG, LSGPA Socioeconomic (S) Highest education: GCSE 0 1 0.11 0.32 

quali_D4_masterLSG LSGPA LSG, LSGPA Socioeconomic (S) Highest education: Master or similar degree 0 1 0.16 0.37 

quali_D5_fachabiLSG LSGPA LSG, LSGPA Socioeconomic (S) Highest education: "Fachabitur" 0 1 0.04 0.20 

educ_D1_psy* LSG, LSGPA Socioeconomic (S) Educational background: Psychology 0 1 0.16 0.36 

educ_D2_ecoLSG LSGPA LSG, LSGPA Socioeconomic (S) Educational background: Economics 0 1 0.16 0.36 

educ_D3_naLSG LSGPA LSG, LSGPA Socioeconomic (S) Educational background: NA 0 1 0.09 0.29 

educ_D4_otherLSG LSGPA LSG, LSGPA Socioeconomic (S) Educational background: Other 0 1 0.59 0.49 

income_D1 LSG, LSGPA Socioeconomic (S) Income level <= 800 EUR 0 1 0.36 0.48 

income_D2* LSG, LSGPA Socioeconomic (S) Income level > 800 EUR & < 1200 EUR 0 1 0.41 0.49 

income_D3 LSG, LSGPA Socioeconomic (S) Income level >= 1200 EUR 0 1 0.23 0.42 

female_D1LSG LSG, LSGPA Socioeconomic (S) Gender: Male vs. female 0 1 0.45 0.50 

age_D1_19_25LSG LSGPA LSG, LSGPA Socioeconomic (S) Age group: 19 to 25 years 0 1 0.32 0.46 

age_D2_26_32* LSG, LSGPA Socioeconomic (S) Age group: 26 to 32 years 0 1 0.57 0.49 

age_D3_33_39LSG LSGPA LSG, LSGPA Socioeconomic (S) Age group: 19 to 39 years 0 1 0.11 0.32 

played_lag_1_2 LSG, LSGPA Gambling behavior (G) lagged 1 x 2 played 0 1 0.25 0.43 

played_lag_1_2_3 LSG, LSGPA Gambling behavior (G) lagged 1 x 2 x 3 played 0 1 0.14 0.35 

played_lag_1_2_3_4 LSG, LSGPA Gambling behavior (G) lagged 1 x 2 x 3 x 4 played 0 1 0.09 0.28 

played_lag_1_2_3_4_5 LSG, LSGPA Gambling behavior (G) lagged 1 x 2 x 3 x 4 x 5 played 0 1 0.06 0.23 

lag1_pos_outcome LSG, LSGPA Gambling behavior (G) Lag 1 positive outcome: won money 0 1 0.23 0.42 

lag2_pos_outcome LSG, LSGPA Gambling behavior (G) Lag 2 positive outcome: won money 0 1 0.23 0.42 

lag3_pos_outcome LSG, LSGPA Gambling behavior (G) Lag 3 positive outcome: won money 0 1 0.23 0.42 

lag4_pos_outcome LSG, LSGPA Gambling behavior (G) Lag 4 positive outcome: won money 0 1 0.23 0.42 

lag5_pos_outcome LSG, LSGPA Gambling behavior (G) Lag 5 positive outcome: won money 0 1 0.23 0.42 

lag1_neg_outcome LSG, LSGPA Gambling behavior (G) Lag 1 negative outcome: lost money 0 1 0.24 0.43 

lag2_neg_outcome LSG, LSGPA Gambling behavior (G) Lag 2 negative outcome: lost money 0 1 0.24 0.43 

lag3_neg_outcome LSG, LSGPA Gambling behavior (G) Lag 3 negative outcome: lost money 0 1 0.24 0.43 
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Variable Predictor-set Variable group Description Min Max Mean SD 

lag4_neg_outcome LSG, LSGPA Gambling behavior (G) Lag 4 negative outcome: lost money 0 1 0.24 0.43 

lag5_neg_outcome LSG, LSGPA Gambling behavior (G) Lag 5 negative outcome: lost money 0 1 0.24 0.43 

BVP_max P, LSGPA Blood volume pulse (P) Blood volume pulse: maximum (relative (%) changes) -13.90 221.43 76.60 38.36 

BVP_minP LSGPA P, LSGPA Blood volume pulse (P) Blood volume pulse: minimum (relative (%) changes) -153.23 -14.61 -49.82 21.08 

BVP_mean P, LSGPA Blood volume pulse (P) Blood volume pulse: mean (relative (%) changes) -46.89 1.14 -16.67 9.46 

BVP_delta P, LSGPA Blood volume pulse (P) Difference BVP min and max (relative (%) changes) 19.03 347.05 126.43 55.26 

BVP_Amp_max P, LSGPA Blood volume pulse (P) Blood volume pulse amplitdue: maximum (millivolts) 14.33 247.10 104.00 43.81 

BVP_Amp_minP LSGPA P, LSGPA Blood volume pulse (P) Blood volume pulse amplitdue: minimum (millivolts) 11.68 210.87 83.75 37.06 

BVP_Amp_mean P, LSGPA Blood volume pulse (P) Blood volume pulse amplitdue: mean (millivolts) 13.36 229.88 93.98 40.53 

BVP_Amp_delta P, LSGPA Blood volume pulse (P) Difference BVP amplitdue max and min (millivolts) 1.23 85.29 20.25 10.05 

RSP_max P, LSGPA Respiration rate (P) Respiration: mean (relative (%) changes) 910.30 1237.00 1066.00 69.88 

RSP_minP LSGPA P, LSGPA Respiration rate (P) Respiration: minimum (relative (%) changes) 900.70 1223.60 1051.60 68.73 

RSP_mean P, LSGPA Respiration rate (P) Respiration: maximum (relative (%) changes) 904.90 1230.70 1057.50 69.12 

RSP_delta P, LSGPA Respiration rate (P) Difference: RSP max and min (relative (%) changes) 0.80 124.09 14.42 11.09 

RSP_rate_max P, LSGPA Respiration rate (P) Respiration rate: maximum (breathes per min) 4.46 60.00 20.47 7.63 

RSP_rate_minP LSGPA P, LSGPA Respiration rate (P) Respiration rate: minimum (breathes per min) 4.28 58.18 16.11 4.45 

RSP_rate_mean P, LSGPA Respiration rate (P) Respiration rate: mean (breathes per min) 4.46 58.18 18.30 5.59 

RSP_rate_delta P, LSGPA Respiration rate (P) Difference: RSP rate max and min (breathes per min) 0.00 48.47 4.36 6.64 

HR_max P, LSGPA Heart rate (P) Heart rate: maximum (beats per min) 48.01 128.00 83.53 12.43 

HR_minP LSGPA P, LSGPA Heart rate (P) Heart rate: minimum (beats per min) 42.67 123.87 76.71 11.80 

HR_mean P, LSGPA Heart rate (P) Heart rate: mean (beats per min) 46.66 125.91 80.15 12.08 

HR_delta P, LSGPA Heart rate (P) Difference: Heart rate max and min (beats per min) 0.01 39.10 6.82 4.05 

CDA_nSCR_D0 P, LSGPA Skin conductance (P) SCR 0 significant skin conductance rates (SCRs)  0 1 0.23 0.42 

CDA_nSCR_D1* P, LSGPA Skin conductance (P) SCR 1 significant SCRs  0 1 0.47 0.50 

CDA_nSCR_D2 P, LSGPA Skin conductance (P) SCR 2 significant SCRs  0 1 0.20 0.40 

CDA_nSCR_D3 P, LSGPA Skin conductance (P) SCR 3 significant SCRs  0 1 0.06 0.24 

CDA_nSCR_D4 P, LSGPA Skin conductance (P) SCR 4+ significant SCRs  0 1 0.03 0.17 

CDA.AmpSum P, LSGPA Skin conductance (P) Sum of SCR-amplitudes of significant SCRs (µS) 0.00 5.49 0.17 0.30 
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Variable Predictor-set Variable group Description Min Max Mean SD 

CDA.SCR P, LSGPA Skin conductance (P) Average phasic driver (µS) 0.00 0.10 0.01 0.01 

CDA.ISCR P, LSGPA Skin conductance (P) Area of phasic driver (time integral) (µS x S) 0 10.00 0.59 0.88 

CDA.PhasicMax P, LSGPA Skin conductance (P) Maximum value of phasic activity*  0 9.52 0.58 0.82 

CDA.Tonic P, LSGPA Skin conductance (P) Mean tonic activity* 1.34 33.78 8.11 5.57 

Temp_max P, LSGPA Body temperature (P) Temperature: maximum (°C) 32.02 36.78 35.81 0.65 

Temp_minP LSGPA P, LSGPA Body temperature (P) Temperature: minimum (°C) 32.02 36.77 35.80 0.65 

Temp_mean P, LSGPA Body temperature (P) Temperature: mean (°C) 32.02 36.77 35.81 0.65 

Temp_delta P, LSGPA Body temperature (P) Difference: Temperature max and min (°C) 0.00 0.14 0.01 0.01 

t1_pupil_avg_lr_min P, LSGPA Pupil size (P) Average pupil size: minimum (mm) 1.32 3.97 2.47 0.35 

t1_pupil_avg_lr_maxP LSGPA P, LSGPA Pupil size (P) Average pupil size: maximum (mm) 2.11 6.43 3.05 0.35 

t1_pupil_avg_lr_mean P, LSGPA Pupil size (P) Average pupil size: mean (mm) 1.94 4.11 2.77 0.33 

t1_delta_pupil_avg_lr P, LSGPA Pupil size (P) Average pupil size: difference max min (mm) 0.04 4.40 0.58 0.26 

t1_time_none A, LSGPA Gaze (A) Time not spent on fixating boxes (sec) 0.03 1.00 3.00 0.64 

t1_time_win A, LSGPA Gaze (A) Time spent on fixating win (sec) 0.00 2.82 1.07 0.58 

t1_time_loss A, LSGPA Gaze (A) Time spent on fixating loss (sec) 0.00 2.73 0.94 0.55 

Notes: We specified 126 predictor variables. Factor variables are encoded as dummy variables and we exclude the most frequently observed level for each category as corresponding 

reference groups. This encoding results in a total number of 119 predictors (42 numeric and 77 binary variables). We identify issues concerning multi-collinearity by QR decomposition 

for each predictor-set individually on the basis of the cleaned data. The 𝐴 data does not include multi-collinear predictors. We indicate the removed variables for the predictor-sets 𝑃, 

LSGP, and 𝐿𝑆𝐺𝑃𝐴 with P, LSG, and LSGPA, respectively. SCR Refers to the number of significant (above threshold) skin conductance rate measures. * Tonic and phasic activity based on the 

continuous decomposition analysis as suggested by (Benedek & Kaernbach, 2010).  
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3 Detailed model performance evaluation 

3.1 Implementation 

We use R (R Core Team, 2018) in combination with RStudio (RStudio Team) for the main 

computations and graphics in this paper. For the generalized linear methods employed 

in this study we use the R-package glmnet (Friedman et al., 2010), for support vector 

machines we use kernlab (Karatzoglou et al., 2004), for neural network models we use 

nnet (Venables & Ripley, 2002), for random forests we use ranger (Wright & Ziegler, 

2017), and for stochastic gradient boosting machines we use gbm (Greenwell et al., 

2018). We use caret for model training and model evaluation (Kuhn, 2018). Moreover, we 

use tidyverse (Wickham, 2016, 2017; Wickham et al., 2018), lattice (Sarkar, 2008), circlize 

(Gu et al., 2014), RColorBrewer (Neuwirth, 2014), and complexHeatmap (Gu et al., 2016) 

for data manipulations and creating the figures that are included this study. Last, we 

use doParrallel (Calaway et al., 2017) for multicore processing where applicable.  

3.2 Model tuning  

This section presents the results for the systematic-grid search that we employ to iden-

tify appropriate hyperparameter values for the machine learning algorithms that we use 

in our forecasting experiment. 

3.2.1 Psychophysiological reactions (𝑷) 

The following Figures (A2-A6) show the mean 10-fold CV results for determining sensi-

tive parameter values via a systematic grid search on the basis of the predictor-set 𝑃 

that includes 73 predictor variables. Precisely, 𝑃 includes information on individual psy-

chophysiological reactions and dummy variables that account for subject specific ef-

fects.  
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Figure A2 Mean CV accuracy results for linear penalized regression models for 𝑷  

 
Notes: Mean 10-fold cross validated classification mean accuracy results for linear penalized regression models 

(lasso, ridge, and elastic net) as a function of the mixing percentage parameter 𝑎𝑙𝑝ℎ𝑎 = {0, 0.1, 0.2, … , 1} and regular-

ization parameter 𝑙𝑎𝑚𝑏𝑑𝑎 = {0.01, 0.025, 0.05, 0.1, 0.15} on the basis of psychophysiological choice-process data (𝑃).  

Figure A3 Mean CV accuracy results for SVM for 𝑷  

 
Notes: Mean 10-fold cross validated classification accuracy results for support vector machines (SVM) with a radial 

basis function kernel as a function of a cost parameter 𝐶 = {1, 2, … , 10} and inverse kernel width 𝑠𝑖𝑔𝑚𝑎 =

{0.01, 0.025, 0.05, 0.1, 0.15} on the basis of psychophysiological choice-process data (𝑃).  

  



HCED 66 – Forecasting economic decisions under risk: The predictive importance of choice-process data 

14/48 

Figure A4 Mean CV accuracy results for ANN for 𝑷  

 
Notes: Mean 10-fold cross validated classification accuracy results for a single hidden layer artificial neural net-

works (ANN) using a sigmoid activation function, the number of neurons in the hidden layer 𝑠𝑖𝑧𝑒 = {1, 2, … , 10} and 

a regularization parameter 𝑤𝑒𝑖𝑔ℎ𝑡 𝑑𝑒𝑐𝑎𝑦 = {0.1, 0.2, … , 0.5} on the basis of psychophysiological choice-process data 

(𝑃).   

Figure A5 Mean CV accuracy results for RF for 𝑷  

 
Notes: Mean 10-fold cross validated classification accuracy results for random forests (RF) using the Gini splitting 

rule, a number of 1500 individual bagged CART trees per forest, and as a function of the minimum number of samples 

in each leaf 𝑚𝑖𝑛. 𝑛𝑜𝑑𝑒. 𝑠𝑖𝑧𝑒 = {1, 5, 10, 20, 40} and the number of randomly selected predictors at each split 𝑚𝑡𝑟𝑦 =

𝐷𝑖(0.1, 0.2, 0.4, 0.8, 1) with 𝐷𝑖 as the number of predictor variables (73) that are included in the psychophysiological 

choice-process data (𝑃).   
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Figure A6 Mean CV accuracy results for GBM for 𝑷  

 
Notes: Mean 10-fold cross validated classification accuracy results for tree-based stochastic gradient boosting ma-

chines (GBM) as a function of the maximum tree depth 𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛. 𝑑𝑒𝑝𝑡ℎ = {5, 10, 20, 40} and number of boosting 

iterations 𝑛. 𝑡𝑟𝑒𝑒𝑠 = {20, 40, 80, 160}, a shrinkage factor 𝑠ℎ𝑟𝑖𝑛𝑘𝑎𝑔𝑒 = {0.1, 0.4, 0.7, 1}, and a minimum number of 

samples in each leaf 𝑛. 𝑚𝑖𝑛𝑜𝑏𝑠𝑖𝑛𝑛𝑜𝑑𝑒 = {10, 40, 70, 100} on the basis of psychophysiological choice-process data (𝑃).   

3.2.2 Attention data (𝑨) 

The following Figures (A7-A11) show the mean 10-fold cross-validation results for deter-

mining models’ hyperparameters by a systematic grid search on the basis of a predictor-

set 𝐴 that includes 48 predictor variables. Precisely, 𝐴 includes information on individual 

gaze-patterns and dummy variables that account for subject specific effects.  
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Figure A7 Mean CV accuracy results for linear penalized regression models for 𝑨 

 

Notes: Mean 10-fold cross validated classification mean accuracy results for linear penalized regression models 

(lasso, ridge, and elastic net) as a function of the mixing percentage parameter 𝑎𝑙𝑝ℎ𝑎 = {0, 0.1, 0.2, … , 1} and regular-

ization parameter 𝑙𝑎𝑚𝑏𝑑𝑎 = {0.01, 0.025, 0.05, 0.1, 0.15} on the basis of attention choice-process data (𝐴).   

Figure A8 Mean CV accuracy results for SVM for 𝑨  

 
Notes: Mean 10-fold cross validated classification accuracy results for support vector machines (SVM) with a radial 

basis function kernel as a function of a cost parameter 𝐶 = {1, 2, … , 10} and inverse kernel width 𝑠𝑖𝑔𝑚𝑎 =

{0.01, 0.025, 0.05, 0.1, 0.15} on the basis of attention choice-process data (𝐴).   
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Figure A9 Mean CV accuracy results for ANN for 𝑨  

 
Notes: Mean 10-fold cross validated classification accuracy results for a single hidden layer artificial neural net-

works (ANN) using a sigmoid activation function, the number of neurons in the hidden layer 𝑠𝑖𝑧𝑒 = {1, 2, … , 10} and 

a regularization parameter 𝑤𝑒𝑖𝑔ℎ𝑡 𝑑𝑒𝑐𝑎𝑦 = {0.1, 0.2, … , 0.5} on the basis of attention choice-process data (𝐴). 

Figure A10 Mean CV accuracy results for RF for 𝑨  

 
Notes: Mean 10-fold cross validated classification accuracy results for random forests (RF) using the Gini splitting 

rule, a number of 1500 individual bagged CART trees per forest, and as a function of the minimum number of samples 

in each leaf 𝑚𝑖𝑛. 𝑛𝑜𝑑𝑒. 𝑠𝑖𝑧𝑒 = {1, 5, 10, 20, 40} and the number of randomly selected predictors at each split 𝑚𝑡𝑟𝑦 =

𝐷𝑖(0.1, 0.2, 0.4, 0.8, 1) with 𝐷𝑖 as the number of predictor variables (48) that are included in the attention data (𝐴).   
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Figure A11 Mean CV accuracy results for GBM for 𝑨  

 
Notes: Mean 10-fold cross validated classification accuracy results for tree-based stochastic gradient boosting ma-

chines (GBM) as a function of the maximum tree depth 𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛. 𝑑𝑒𝑝𝑡ℎ = {5, 10, 20, 40} and number of boosting 

iterations 𝑛. 𝑡𝑟𝑒𝑒𝑠 = {20, 40, 80, 160}, a shrinkage factor 𝑠ℎ𝑟𝑖𝑛𝑘𝑎𝑔𝑒 = {0.1, 0.4, 0.7, 1}, and a minimum number of 

samples in each leaf 𝑛. 𝑚𝑖𝑛𝑜𝑏𝑠𝑖𝑛𝑛𝑜𝑑𝑒 = {10, 40, 70, 100} on the basis of attention choice-process data (𝐴).   

3.2.3 Lottery design, socioeconomic and past gambling characteristics (LSG)  

The following Figures (A12-A16) show the mean 10-fold cross-validation results for de-

termining models’ hyperparameters by a systematic grid search on the basis of a predic-

tor-set 𝐿𝑆𝐺 that includes 64 predictor variables. Precisely, 𝐿𝑆𝐺 includes information on 

lottery design variables, socioeconomic characteristics, and past gambling behavior 

(𝐿𝑆𝐺). 
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Figure A12 Mean CV accuracy results for linear penalized regression models for 𝑳𝑺𝑮 

 
Notes: Mean 10-fold cross validated classification mean accuracy results for linear penalized regression models 

(lasso, ridge, and elastic net) as a function of the mixing percentage parameter 𝑎𝑙𝑝ℎ𝑎 = {0, 0.1, 0.2, … , 1} and regular-

ization parameter 𝑙𝑎𝑚𝑏𝑑𝑎 = {0.01, 0.025, 0.05, 0.1, 0.15} on the basis of information that is related to lottery design 

variables, socioeconomic characteristics, and past gambling behavior (𝐿𝑆𝐺).   

Figure A13 Mean CV accuracy results for SVM for 𝑳𝑺𝑮  

 
Notes: Mean 10-fold cross validated classification accuracy results for support vector machines (SVM) with a radial 

basis function kernel as a function of a cost parameter 𝐶 = {1, 2, … , 10} and inverse kernel width 𝑠𝑖𝑔𝑚𝑎 =

{0.01, 0.025, 0.05, 0.1, 0.15} on the basis of information that is related to lottery design variables, socioeconomic char-

acteristics, and past gambling behavior (𝐿𝑆𝐺).  
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Figure A14 Mean CV accuracy results for ANN for 𝑳𝑺𝑮  

 
Notes: Mean 10-fold cross validated classification accuracy results for a single hidden layer artificial neural net-

works (ANN) using a sigmoid activation function, the number of neurons in the hidden layer 𝑠𝑖𝑧𝑒 = {1, 2, … , 10} and 

a regularization parameter 𝑤𝑒𝑖𝑔ℎ𝑡 𝑑𝑒𝑐𝑎𝑦 = {0.1, 0.2, … , 0.5} on the basis of information that is related to lottery de-

sign variables, socioeconomic characteristics, and past gambling behavior (𝐿𝑆𝐺).   

Figure A15 Mean CV accuracy results for RF for 𝑳𝑺𝑮  

 
Notes: Mean 10-fold cross validated classification accuracy results for random forests (RF) using the Gini splitting 

rule, a number of 1500 individual bagged CART trees per forest, and as a function of the minimum number of samples 

in each leaf 𝑚𝑖𝑛. 𝑛𝑜𝑑𝑒. 𝑠𝑖𝑧𝑒 = {1, 5, 10, 20, 40} and the number of randomly selected predictors at each split 𝑚𝑡𝑟𝑦 =

𝐷𝑖(0.1, 0.2, 0.4, 0.8, 1) with 𝐷𝑖 as the number of predictor variables that are related to lottery design variables, socio-

economic characteristics, and past gambling behavior (𝐿𝑆𝐺).   
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Figure A16 Mean CV accuracy results for GBM for 𝑳𝑺𝑮  

 
Notes: Mean 10-fold cross validated classification accuracy results for tree-based stochastic gradient boosting ma-

chines (GBM) as a function of the maximum tree depth 𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛. 𝑑𝑒𝑝𝑡ℎ = {5, 10, 20, 40} and number of boosting 

iterations 𝑛. 𝑡𝑟𝑒𝑒𝑠 = {20, 40, 80, 160}, a shrinkage factor 𝑠ℎ𝑟𝑖𝑛𝑘𝑎𝑔𝑒 = {0.1, 0.4, 0.7, 1}, and a minimum number of 

samples in each leaf 𝑛. 𝑚𝑖𝑛𝑜𝑏𝑠𝑖𝑛𝑛𝑜𝑑𝑒 = {10, 40, 70, 100} on the basis of information that is related to lottery design 

variables, socioeconomic characteristics, and past gambling behavior (𝐿𝑆𝐺).   

3.2.4 Lottery design, socioeconomic and past gambling characteristics (LSG)  

The following Figures (A17-A21) show the mean 10-fold cross-validation results for de-

termining models’ hyperparameters by a systematic grid search on the basis of the pre-

dictor-set 𝐿𝑆𝐺𝑃𝐴 that includes 97 predictor variables. Precisely, 𝐿𝑆𝐺𝑃𝐴 includes infor-

mation on all predictor-sets and input categories: lottery design variables, socioeco-

nomic characteristics, and past gambling behavior (𝐿𝑆𝐺), individual psychophysiological 

reactions (𝑃), and attention data (𝐴). 
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Figure A17 Mean CV accuracy results for linear penalized regression models for 𝑳𝑺𝑮𝑷𝑨  

 
Notes: Mean 10-fold cross validated classification mean accuracy results for linear penalized regression models 

(lasso, ridge, and elastic net) as a function of the mixing percentage parameter 𝑎𝑙𝑝ℎ𝑎 = {0, 0.1, 0.2, … , 1} and regular-

ization parameter 𝑙𝑎𝑚𝑏𝑑𝑎 = {0.01, 0.025, 0.05, 0.1, 0.15} on the basis of a predictor-set 𝐿𝑆𝐺 that includes information 

that is related to lottery design variables, socioeconomic characteristics, and past gambling behavior (𝐿𝑆𝐺), infor-

mation on psychophysiological reactions (𝑃) and attention data (𝐴).  

Figure A18 Mean CV accuracy results for SVM for 𝑳𝑺𝑮𝑷𝑨  

 
Notes: Mean 10-fold cross validated classification accuracy results for support vector machines (SVM) with a radial 

basis function kernel as a function of a cost parameter 𝐶 = {1, 2, … , 10} and inverse kernel width 𝑠𝑖𝑔𝑚𝑎 =

{0.01, 0.025, 0.05, 0.1, 0.15} on the basis of information that is related to lottery design variables, socioeconomic char-

acteristics, and past gambling behavior (𝐿𝑆𝐺), information on psychophysiological reactions (𝑃) and attention data 

(𝐴). 
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Figure A19 Mean CV accuracy results for SVM for 𝑳𝑺𝑮𝑷𝑨  

 
Notes: Mean 10-fold cross validated classification accuracy results for a single hidden layer artificial neural net-

works (ANN) using a sigmoid activation function, the number of neurons in the hidden layer 𝑠𝑖𝑧𝑒 = {1, 2, … , 10} and 

a regularization parameter 𝑤𝑒𝑖𝑔ℎ𝑡 𝑑𝑒𝑐𝑎𝑦 = 0.1, 0.2, … , 0.5} on the basis of information that is related to lottery de-

sign variables, socioeconomic characteristics, and past gambling behavior (𝐿𝑆𝐺), information on psychophysiological 

reactions (𝑃) and attention data (𝐴). We note that computations for 𝑠𝑖𝑧𝑒 = 10 were not possible on the same CV 

partitions that we used for evaluating all specified models. 

Figure A20 Mean CV accuracy results for RF for 𝑳𝑺𝑮𝑷𝑨  

 
Notes: Mean 10-fold cross validated classification accuracy results for random forests (RF) using the Gini splitting 

rule, a number of 1500 individual bagged CART trees per forest, and as a function of the minimum number of samples 

in each leaf 𝑚𝑖𝑛. 𝑛𝑜𝑑𝑒. 𝑠𝑖𝑧𝑒 = {1, 5, 10, 20, 40} and the number of randomly selected predictors at each split 𝑚𝑡𝑟𝑦 =

𝐷𝑖(0.1, 0.2, 0.4, 0.8, 1) with 𝐷𝑖 as the number of predictor variables (98) that are included in data that is related to 

information that is related to lottery design variables, socioeconomic characteristics, and past gambling behavior 

(𝐿𝑆𝐺), information on psychophysiological reactions (𝑃) and attention data (𝐴). 
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Figure A21 Mean CV accuracy results for GBM for 𝑳𝑺𝑮𝑷𝑨  

 
Notes: Mean 10-fold cross validated classification accuracy results for tree-based stochastic gradient boosting ma-

chines (GBM) as a function of the maximum tree depth 𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛. 𝑑𝑒𝑝𝑡ℎ = {5, 10, 20, 40} and number of boosting 

iterations 𝑛. 𝑡𝑟𝑒𝑒𝑠 = {20, 40, 80, 160}, a shrinkage factor 𝑠ℎ𝑟𝑖𝑛𝑘𝑎𝑔𝑒 = {0.1, 0.4, 0.7, 1}, and a minimum number of 

samples in each leaf 𝑛. 𝑚𝑖𝑛𝑜𝑏𝑠𝑖𝑛𝑛𝑜𝑑𝑒 = {10, 40, 70, 100} on the basis of information that is related to lottery design 

variables, socioeconomic characteristics, and past gambling behavior (𝐿𝑆𝐺), information on psychophysiological re-

actions (𝑃) and attention data (𝐴). 

3.3 Cross validated accuracy results 

Table A4 we show the selected models’ hyperparameters according to highest CV mean 

accuracy. All other models’ hyperparameter values are set to their default values (see 

the corresponding R packages, section 3.1). Moreover, we evaluate the model perfor-

mance on the same left out CV observations for each round of CV. 
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Table A4 Selected model hyperparameters according to highest mean CV accuracy 

Model: Elastic Dataset       

Hyperparameter P A LSG LSGPA 

Alpha 0.4 0.4 0.3 0.4 

Lambda 0.01 0.01 0.01 0.01 

CV Accuracy 0.60 0.60 0.85 0.85 

          

Model: SVM Dataset       

Hyperparameter P A LSG LSGPA 

Kernel Radial Radial Radial Radial 

Sigma 0.01 0.01 0.01 0.01 

Cost 1 10 3 4 

Accuracy 0.60 0.61 0.87 0.86 

          

Model: ANN Dataset       

Hyperparameter P A LSG LSGPA 

Activation function Sigmoid Sigmoid Sigmoid Sigmoid 

No. of neurons in the hidden layer 1 9 6 3 

Weight decay 0.5 0.4 0.5 0.3 

Accuracy 0.61 0.62 0.87 0.86 

         

Model: RF Dataset       

Hyperparameter P A LSG LSGPA 

Splitting rule Gini Gini Gini Gini 

No. of ensembled trees 1500 1500 1500 1500 

Min. no. of samples in each leaf node 5 40 5 1 

No. of predictors in each split 7 5 65 39 

Accuracy 0.59 0.62 0.87 0.87 

     
Model: GBM Dataset       

Hyperparameter P A LSG LSGPA 

Shrinkage 0.1 0.1 0.1 0.1 

Interaction depth 5 5 20 40 

Min. no. of samples in each leaf node 40 10 10 10 

No. of ensembled trees 80 80 160 160 

Accuracy 0.59 0.62 0.88 0.87 

Notes: We determined models’ hyperparameters via a systematic-grid search using 10-fold mean cross validation 

classification accuracy with subjects as strata. We evaluate logistic and penalized linear regression models (Elastic), 

support vector machines (SVM), artificial neural networks (ANN), random forests (RF), and tree-based gradient boost-

ing machines (GBM) on the basis of psychophysiological (𝑃) and attention (𝐴) choice-process predictors; lottery-de-

sign, socioeconomic characteristics, and information on past gambling behavior (𝐿𝑆𝐺); and a full-model that is com-

prised of all input categories (𝐿𝑆𝐺𝑃𝐴).  

For all results that we report in this study, we set the models’ hyperparameters to the 

values that yield the highest mean CV accuracies. Figure 3 shows the out-of-sample clas-

sification accuracy for the 1657 records that are included in the test data.  
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Figure A22 Mean CV accuracy results for playing a 50/50 gamble 

 
Notes: Mean 10-fold cross validation (CV) accuracy using 6711 observations for playing a 50/50 gamble with one 

potential loss- and one win-outcome using subjects as strata. We evaluate logistic (Logistic) and penalized linear re-

gression models (Elastic), support vector machines (SVM), artificial neural networks (ANN), random forests (RF), and 

tree-based gradient boosting machines (GBM) on the basis of psychophysiological (𝑃) and attention (𝐴) choice-pro-

cess predictors; lottery-design, socioeconomic characteristics, and information on past gambling behavior (𝐿𝑆𝐺); and 

a full-model that is comprised of all input categories (𝐿𝑆𝐺𝑃𝐴). Error bars correspond to 95% confidence intervals with 

respect to the 10 CV folds. The dashed lines correspond to the models that achieves the highest mean CV accuracy 

with respect to the different predictor-sets. The solid line is a naive forecast benchmark that yields a training data 

accuracy of 52% by predicting all records as not-playing.  

Figure A22 shows that the more data-driven algorithms (SVM, ANN, RF, GBM) consist-

ently outperform the generalized linear models that we evaluate in this study (Logistic 

and Elastic). While the nonlinear and tree-based ensemble methods result in more ac-

curate forecasts based on 𝐴 than on 𝑃, the corresponding differences for the linear 

methods are negligible. Moreover, the best CV-fit model’s accuracy on 𝐿𝑆𝐺 is marginally 

higher than on 𝐿𝑆𝐺𝑃𝐴, but as well negligible when considering the 10 CV-fold based 95% 

confidence intervals.  

Table A5 shows the differences in models’ CV accuracy estimates together with pair-

wise t-tests for detecting significant differences with Bonferroni-adjusted p-values.  

  



HCED 66 – Forecasting economic decisions under risk: The predictive importance of choice-process data 

27/48 

Table A5 Models’ differences in mean CV accuracies and pairwise t-test results  

Data: P Accuracy Logistic Elastic SVM ANN RF GBM 

Logistic 0.61  0.01 0.01 0.00 0.01 0.01 
Elastic 0.60 0.08  0.00 -0.01 0.00 0.00 

SVM 0.60 0.29 1.00  -0.01 0.00 0.00 

ANN 0.61 1.00 0.03** 0.11  0.01 0.01 

RF 0.59 0.11 1.00 1.00 0.03**  0.00 

GBM 0.59 0.97 1.00 1.00 0.72 1.00   

        
Data: A Accuracy Logistic Elastic SVM ANN RF GBM 

Logistic 0.60  0.00 -0.03 -0.02 -0.02 -0.02 
Elastic 0.60 1.00  -0.02 -0.02 -0.01 -0.02 

SVM 0.61 0.01*** 0.22  0.00 0.01 0.01 

ANN 0.62 0.10 0.26 1.00  0.01 0.01 

RF 0.62 0.05** 0.44 1.00 1.00  0.00 

GBM 0.62 0.00*** 0.11 1.00 1.00 1.00   

        
Data: LSG Accuracy Logistic Elastic SVM ANN RF GBM 

Logistic 0.85  0.00 -0.02 -0.02 -0.02 -0.03 
Elastic 0.85 1.00  -0.02 -0.02 -0.02 -0.03 

SVM 0.87 0.00*** 0.00***  -0.00 0.00 -0.01 

ANN 0.87 0.01*** 0.01*** 1.00  0.00 -0.01 

RF 0.87 0.03** 0.05** 1.00 1.00  -0.01 

GBM 0.88 0.00*** 0.00*** 0.13 1.00 0.24   

        
Data: LSGPA Accuracy Logistic Elastic SVM ANN RF GBM 

Logistic 0.85  -0.01 -0.02 -0.02 -0.02 -0.03 
Elastic 0.85 0.37  -0.01 -0.01 -0.02 -0.02 

SVM 0.86 0.00*** 0.01***  0.00 -0.01 -0.01 

ANN 0.86 0.00*** 0.21 1.00  -0.01 -0.01 

RF 0.87 0.01*** 0.01*** 0.67 1.00  0.00 

GBM 0.87 0.01*** 0.01*** 0.11 0.90 1.00   

Notes: Mean 10-fold CV accuracy differences for 6711 observations for playing a 50/50 gamble using subjects as 

strata. The upper triangle shows the pair-wise estimates of accuracy differences between models, and the lower tri-

angle shows the Bonferroni adjusted p-values (with indicating significance as *** 0.01 ** 0.05 * 0.1) for pair-wise t-tests 

for detecting differences between models’ accuracies with 𝐻0 as a difference of zero. We evaluate logistic (Logistic) 

and penalized linear regression models (Elastic), support vector machines (SVM), artificial neural networks (ANN), 

random forests (RF), and tree-based gradient boosting machines (GBM) on the basis of psychophysiological (𝑃) and 

attention (𝐴) choice-process predictors; lottery-design, socioeconomic characteristics, and information on past gam-

bling behavior (𝐿𝑆𝐺); and a full-model that is comprised of all input categories (𝐿𝑆𝐺𝑃𝐴). Model hyperparameters are 

selected via a systematic grid-search based on 10-fold CV.  

Moreover, we report the linear correlation coefficients between models’ CV accuracy es-

timates Table A6 to assess to which extent combining different modeling approaches 

may enhance our forecasting results.  

  



HCED 66 – Forecasting economic decisions under risk: The predictive importance of choice-process data 

28/48 

Table A6 CV model accuracy correlations 

Data: P Mean 

 

Logistic Elastic SVM ANN RF GBM 

Logistic 0.81 
 

0.92 0.82 0.93 0.78 0.60 
Elastic 0.90 0.92 

 
0.94 0.94 0.93 0.78 

SVM 0.86 0.82 0.94 
 

0.88 0.86 0.78 

ANN 0.86 0.93 0.94 0.88 
 

0.87 0.68 

RF 0.85 0.78 0.93 0.86 0.87 
 

0.82 

GBM 0.73 0.60 0.78 0.78 0.68 0.82 
 

        
Data: A Mean 

 

Logistic Elastic SVM ANN RF GBM 

Logistic 0.71 
 

0.63 0.83 0.58 0.69 0.84 
Elastic 0.51 0.63 

 
0.43 0.47 0.45 0.59 

SVM 0.73 0.83 0.43 
 

0.82 0.86 0.69 

ANN 0.67 0.58 0.47 0.82 
 

0.87 0.62 

RF 0.72 0.69 0.45 0.86 0.87 
 

0.73 

GBM 0.69 0.84 0.59 0.69 0.62 0.73 
 

        
Data: LSG Mean 

 

Logistic Elastic SVM ANN RF GBM 

Logistic 0.59 
 

0.87 0.75 0.25 0.36 0.72 
Elastic 0.41 0.87 

 
0.60 -0.05 0.06 0.59 

SVM 0.46 0.75 0.60 
 

0.00 0.26 0.70 

ANN 0.09 0.25 -0.05 0.00 
 

0.01 0.24 

RF 0.22 0.36 0.06 0.26 0.01 
 

0.41 

GBM 0.53 0.72 0.59 0.70 0.24 0.41 
 

        
Data: LSGPA Mean 

 

Logistic Elastic SVM ANN RF GBM 

Logistic 0.62 
 

0.90 0.82 0.84 0.32 0.22 
Elastic 0.65 0.90 

 
0.85 0.63 0.46 0.40 

SVM 0.67 0.82 0.85 
 

0.63 0.47 0.57 

ANN 0.46 0.84 0.63 0.63 
 

0.09 0.10 

RF 0.38 0.32 0.46 0.47 0.09 
 

0.57 

GBM 0.37 0.22 0.40 0.57 0.10 0.57 
 

Notes: Linear correlation coefficients and mean correlation for 10-fold mean cross validation classification accuracy 

on 6711 observations for playing a 50/50 gamble with one potential loss- and one win-outcome using subjects as 

strata. The diagonal correlations are left out for reasons of clarity We evaluate logistic (Logistic) and penalized linear 

regression models (Elastic), support vector machines (SVM), artificial neural networks (ANN), random forests (RF), and 

tree-based gradient boosting machines (GBM) on the basis of psychophysiological (𝑃) and attention (𝐴) choice-process 

predictors; lottery-design, socioeconomic characteristics, and information on past gambling behavior (𝐿𝑆𝐺); and a 

full-model that is comprised of all input categories (𝐿𝑆𝐺𝑃𝐴). Model hyperparameters were selected via a systematic 

grid-search based on 10-fold CV. We highlight correlations that are smaller than 0.5 (bold) and negative (bold, under-

lined).  

Table A6 shows that there is large between model accuracy correlation for the 𝑃 data. 

With respect to the 𝐴 data, Elastic, SVM, ANN, and RF show a correlation smaller than 

0.5. However, we observe more variation for model-accuracy correlations for the , 𝐿𝑆𝐺, 

and 𝐿𝑆𝐺𝑃𝐴 predictor-sets. For 𝐿𝑆𝐺𝑃𝐴, there are 7 out of 15 relevant inter-model accuracy 

correlations that are smaller 0.5, and for 𝐿𝑆𝐺 there are 9 correlations smaller than 0.5. 

Moreover, for 𝐿𝑆𝐺 the correlation between ANN and Elastic predictions is negative (-
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0.05); however, ANN is consistently outperforming the linear penalized regression 

methods. 

3.4 Out-of-sample forecasting results by model, lotteries’ expected values, and predic-

tive measures 

Table A7 reports various predictive measures for classification accuracy for the best 

training data CV fit methods together with the corresponding results for the RDR and 

SDR predictions. 

Table A7 Out-of-sample classification performance measures for the best CV-fit models 

Dataset: Model RDR 

  

  

  P: Logistic 

  

  A: SVM 

  

  
Expected value All PEV NEV   All PEV NEV   All PEV NEV 

Accuracy 0.54 0.42 0.95   0.60 0.60 0.62  0.64 0.65 0.64 

Sensitivity 0 0 0  0.50 0.50 0.72  0.56 0.56 0.53 

Specificity 1 1 1  0.69 0.73 0.62  0.71 0.76 0.64 

Pos pred value 0 0 0  0.58 0.72 0.09  0.62 0.76 0.07 

Neg pred value 0.54 0.42 0.95   0.62 0.51 0.98  0.65 0.56 0.96 

Dataset: Model SDR       LSG: GBM     LSGPA: GBM   

Expected value All PEV NEV   All PEV NEV   All PEV NEV 

Accuracy 0.67 0.58 0.95   0.88 0.85 0.95   0.87 0.85 0.95 

Sensitivity 0.98 1 0  0.88 0.89 0.39  0.87 0.89 0.28 

Specificity 0.40 0 1  0.87 0.80 0.98  0.87 0.80 0.98 

Pos pred value 0.58 0.58 0  0.85 0.86 0.47  0.85 0.86 0.45 

Neg pred value 0.95 0 0.95   0.90 0.84 0.97   0.89 0.84 0.96 

Notes: Out-of-sample classification performance metrics based on positive expected value (PEV), negative ex-

pected value (NEV), and all lotteries (All) for playing a 50/50 gamble. We evaluate two naive benchmark forecasts 

(RDR and SDR), logistic and penalized linear regression models (Elastic), support vector machines (SVM), artificial neu-

ral networks (ANN), random forests (RF), and tree-based gradient boosting machines (GBM) on the basis of psycho-

physiological (𝑃) and attention (𝐴) choice-process data; lottery-design, socioeconomic characteristics, and infor-

mation on past gambling behavior (𝐿𝑆𝐺); and a full-model is comprised of all input categories (𝐿𝑆𝐺𝑃𝐴). Models’ hy-

perparameters were determined via a systematic grid-search using 10-fold cross validation and subjects as strata. The 

highest value for classification measure-specific performance by lotteries expected values is highlighted (bold). 

Table A7 shows the differences across predictive measures for models’ test data perfor-

mance by lotteries’ EV. Among the models that we would choose based on their CV per-

formance with respect to the four predictor-sets, we find the logistic regression model 

using 𝑃 to yield the best predictions for forecasting risky choices for NEVL in terms of 

negative predicted value accuracy with 98%. At the same time, the corresponding pre-

dictive accuracy in terms of positive predicted value (PPV) is only 9%. However, there are 

347 NEVL included in the 1557 observations that we specify as test data, and we observe 
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18 played lotteries out of these 347 NEVL. As a consequence, the SDR shows a sensitivity 

of 98% over all test records.  

Moreover, Table A7 reveals the large differences between the PPV results for NEVL that 

are produced for the Logistic model for 𝐴 (7%) and SVM for 𝑃 (9%) in comparison to GBM 

for 𝐿𝑆𝐺 (46%) and GBM for 𝐿𝑆𝐺𝑃𝐴 (63%). The best performing models that only include 

CPD input categories and dummy variables for subjects (SVM for 𝐴 and Logistic for 𝑃) 

result in a mean test accuracy of 97% in terms of PPV for NEVL. With a corresponding 

PPV of 95% that is produced by the RDR and SDR forecasts, this increase in predictive 

power equates to a 60% classification error decrease. In contrast, with respect to GBM’s 

test specificity for NEVL, the additional information that is included in 𝑃 and 𝐴 results in 

increasing the classification error from 1% (𝐿𝑆𝐺) to 2% (𝐿𝑆𝐺𝑃𝐴), i.e., by 100%. 

The detailed out-of-sample results for all models, predictor-sets, and predictive classifi-

cation measures by lotteries’ expected value are reported in Table A8, A9, and A10. 
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Table A8 Model out-of-sample performance metrics over all lotteries 

Measure Logistic Elastic SVM ANN RF GBM Data 

Accuracy 0.60 0.61 0.61 0.60 0.59 0.60 P 

Lower accuracy 0.58 0.58 0.58 0.58 0.57 0.58 P 

Upper accuracy 0.63 0.63 0.63 0.63 0.62 0.63 P 

Sensitivity 0.50 0.40 0.44 0.49 0.48 0.49 P 

Specificity 0.69 0.79 0.75 0.70 0.69 0.70 P 

Positive predicted value 0.58 0.61 0.60 0.59 0.57 0.58 P 

Negative predicted value 0.62 0.60 0.61 0.62 0.61 0.62 P 

Balanced accuracy 0.60 0.59 0.60 0.60 0.59 0.60 P 

                

Measure Logistic Elastic SVM ANN RF GBM Data 

Accuracy 0.61 0.60 0.64 0.64 0.64 0.63 A 

Lower accuracy 0.58 0.58 0.62 0.61 0.61 0.60 A 

Upper accuracy 0.63 0.63 0.66 0.66 0.66 0.65 A 

Sensitivity 0.51 0.48 0.56 0.57 0.59 0.55 A 

Specificity 0.69 0.71 0.71 0.69 0.68 0.69 A 

Positive predicted value 0.59 0.59 0.62 0.61 0.61 0.61 A 

Negative predicted value 0.62 0.61 0.65 0.65 0.66 0.64 A 

Balanced accuracy 0.60 0.60 0.63 0.63 0.63 0.62 A 

                

Measure Logistic Elastic SVM ANN RF GBM Data 

Accuracy 0.85 0.85 0.87 0.87 0.87 0.88 LSG 

Lower accuracy 0.84 0.83 0.86 0.85 0.85 0.86 LSG 

Upper accuracy 0.87 0.86 0.89 0.88 0.88 0.89 LSG 

Sensitivity 0.86 0.85 0.88 0.88 0.85 0.88 LSG 

Specificity 0.85 0.84 0.86 0.86 0.88 0.87 LSG 

Positive predicted value 0.83 0.82 0.85 0.84 0.86 0.85 LSG 

Negative predicted value 0.88 0.87 0.90 0.89 0.87 0.90 LSG 

Balanced accuracy 0.85 0.85 0.87 0.87 0.87 0.88 LSG 

                

Measure Logistic Elastic SVM ANN RF GBM Data 

Accuracy 0.85 0.85 0.87 0.86 0.87 0.87 LSGPA 

Lower accuracy 0.83 0.83 0.85 0.84 0.85 0.85 LSGPA 

Upper accuracy 0.87 0.86 0.89 0.88 0.89 0.89 LSGPA 

Sensitivity 0.87 0.86 0.86 0.85 0.87 0.87 LSGPA 

Specificity 0.84 0.84 0.87 0.87 0.88 0.87 LSGPA 

Positive predicted value 0.82 0.82 0.86 0.85 0.86 0.85 LSGPA 

Negative predicted value 0.88 0.87 0.88 0.87 0.88 0.89 LSGPA 

Balanced accuracy 0.85 0.85 0.87 0.86 0.87 0.87 LSGPA 

Notes: Out-of-sample classification performance metrics for all lotteries’ EV for playing a 50/50 gamble. We evalu-

ate two naive benchmark forecasts (RDR and SDR), logistic (Logistic) and penalized linear regression models (Elastic), 

support vector machines (SVM), artificial neural networks (ANN), random forests (RF), and tree-based gradient boost-

ing machines (GBM) on the basis of psychophysiological (𝑃) and attention (𝐴) choice-process data; lottery-design, 

socioeconomic characteristics, and information on past gambling behavior (𝐿𝑆𝐺); and a full-model is comprised of all 

input categories (𝐿𝑆𝐺𝑃𝐴). Models’ hyperparameters were determined via a systematic grid-search using 10-fold CV 

and subjects as strata.  
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Table A9 Out-of-sample performance metrics for positive expected value lotteries 

Measure Logistic Elastic SVM ANN RF GBM Data 

Accuracy 0.60 0.59 0.59 0.60 0.59 0.59 P 

Lower accuracy 0.57 0.56 0.56 0.57 0.57 0.57 P 

Upper accuracy 0.62 0.61 0.62 0.62 0.62 0.62 P 

Sensitivity 0.50 0.39 0.44 0.48 0.48 0.49 P 

Specificity 0.73 0.85 0.80 0.76 0.75 0.74 P 

Positive predicted value 0.72 0.79 0.76 0.73 0.73 0.72 P 

Negative predicted value 0.51 0.50 0.51 0.51 0.51 0.51 P 

Balanced accuracy 0.62 0.62 0.62 0.62 0.62 0.61 P 

                

Measure Logistic Elastic SVM ANN RF GBM Data 

Accuracy 0.61 0.60 0.65 0.64 0.64 0.63 A 

Lower accuracy 0.58 0.57 0.62 0.62 0.62 0.60 A 

Upper accuracy 0.63 0.62 0.67 0.67 0.67 0.66 A 

Sensitivity 0.51 0.47 0.56 0.57 0.59 0.55 A 

Specificity 0.74 0.76 0.76 0.74 0.72 0.74 A 

Positive predicted value 0.73 0.73 0.76 0.75 0.75 0.75 A 

Negative predicted value 0.52 0.51 0.56 0.55 0.56 0.54 A 

Balanced accuracy 0.62 0.62 0.66 0.66 0.66 0.65 A 

                

Measure Logistic Elastic SVM ANN RF GBM Data 

Accuracy 0.83 0.82 0.85 0.84 0.84 0.86 LSG 

Lower accuracy 0.81 0.80 0.83 0.82 0.82 0.84 LSG 

Upper accuracy 0.85 0.84 0.87 0.86 0.86 0.87 LSG 

Sensitivity 0.88 0.88 0.90 0.89 0.86 0.90 LSG 

Specificity 0.76 0.75 0.79 0.78 0.82 0.80 LSG 

Positive predicted value 0.84 0.83 0.85 0.85 0.87 0.86 LSG 

Negative predicted value 0.82 0.81 0.85 0.84 0.81 0.85 LSG 

Balanced accuracy 0.82 0.81 0.84 0.83 0.84 0.85 LSG 

                

Measure Logistic Elastic SVM ANN RF GBM Data 

Accuracy 0.83 0.82 0.85 0.83 0.85 0.85 LSGPA 

Lower accuracy 0.81 0.80 0.83 0.81 0.83 0.83 LSGPA 

Upper accuracy 0.85 0.84 0.87 0.85 0.87 0.87 LSGPA 

Sensitivity 0.89 0.88 0.88 0.86 0.88 0.89 LSGPA 

Specificity 0.75 0.75 0.81 0.79 0.80 0.80 LSGPA 

Positive predicted value 0.83 0.83 0.86 0.85 0.86 0.86 LSGPA 

Negative predicted value 0.83 0.81 0.83 0.80 0.83 0.83 LSGPA 

Balanced accuracy 0.82 0.81 0.84 0.83 0.84 0.84 LSGPA 

Notes: Out-of-sample classification performance metrics for positive expected value (PEV) lotteries for playing a 

50/50 gamble. We evaluate two naive benchmark forecasts (RDR and SDR), logistic and penalized linear regression 

models (Elastic), support vector machines (SVM), artificial neural networks (ANN), random forests (RF), and tree-based 

gradient boosting machines (GBM) on the basis of psychophysiological (𝑃) and attention (𝐴) choice-process data; lot-

tery-design, socioeconomic characteristics, and information on past gambling behavior (𝐿𝑆𝐺); and a full-model that 

a full-model is comprised of all input categories (𝐿𝑆𝐺𝑃𝐴). Models’ hyperparameters were determined via a systematic 

grid-search using 10-fold cross validation and subjects as strata.  
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Table A10 Out-of-sample performance metrics for negative expected value lotteries 

Measure Logistic Elastic SVM ANN RF GBM Data 

Accuracy 0.62 0.68 0.67 0.63 0.59 0.64 P 

Lower accuracy 0.57 0.63 0.62 0.58 0.54 0.59 P 

Upper accuracy 0.67 0.73 0.71 0.68 0.64 0.69 P 

Sensitivity 0.72 0.50 0.44 0.78 0.56 0.61 P 

Specificity 0.62 0.69 0.68 0.62 0.59 0.64 P 

Positive predicted value 0.09 0.08 0.07 0.09 0.06 0.08 P 

Negative predicted value 0.98 0.96 0.96 0.98 0.96 0.97 P 

Balanced accuracy 0.67 0.59 0.56 0.70 0.57 0.63 P 

                

Measure Logistic Elastic SVM ANN RF GBM Data 

Accuracy 0.64 0.65 0.64 0.62 0.62 0.63 A 

Lower accuracy 0.58 0.60 0.58 0.57 0.57 0.58 A 

Upper accuracy 0.68 0.70 0.68 0.67 0.67 0.68 A 

Sensitivity 0.74 0.68 0.53 0.58 0.68 0.68 A 

Specificity 0.63 0.65 0.64 0.62 0.61 0.62 A 

Positive predicted value 0.09 0.09 0.07 0.07 0.08 0.09 A 

Negative predicted value 0.98 0.98 0.96 0.97 0.97 0.97 A 

Balanced accuracy 0.68 0.67 0.58 0.60 0.65 0.65 A 

                

Measure Logistic Elastic SVM ANN RF GBM Data 

Accuracy 0.94 0.94 0.95 0.95 0.95 0.95 LSG 

Lower accuracy 0.91 0.91 0.92 0.92 0.93 0.92 LSG 

Upper accuracy 0.96 0.96 0.97 0.97 0.97 0.97 LSG 

Sensitivity 0.11 0.00 0.33 0.28 0.39 0.39 LSG 

Specificity 0.98 0.98 0.98 0.98 0.98 0.98 LSG 

Positive predicted value 0.20 0.00 0.46 0.45 0.54 0.47 LSG 

Negative predicted value 0.96 0.95 0.97 0.96 0.97 0.97 LSG 

Balanced accuracy 0.54 0.49 0.66 0.63 0.69 0.68 LSG 

                

Measure Logistic Elastic SVM ANN RF GBM Data 

Accuracy 0.93 0.93 0.94 0.95 0.96 0.95 LSGPA 

Lower accuracy 0.90 0.90 0.91 0.93 0.93 0.92 LSGPA 

Upper accuracy 0.95 0.96 0.96 0.97 0.98 0.97 LSGPA 

Sensitivity 0.11 0.00 0.28 0.44 0.28 0.28 LSGPA 

Specificity 0.97 0.98 0.97 0.98 0.99 0.98 LSGPA 

Positive predicted value 0.17 0.00 0.36 0.53 0.63 0.45 LSGPA 

Negative predicted value 0.96 0.95 0.96 0.97 0.96 0.96 LSGPA 

Balanced accuracy 0.54 0.49 0.63 0.71 0.63 0.63 LSGPA 

Notes: Out-of-sample classification performance metrics for negative expected value (NEV) lotteries (All) for play-

ing a 50/50 gamble. We evaluate two naive benchmark forecasts (RDR and SDR), logistic and penalized linear regres-

sion models (Elastic), support vector machines (SVM), artificial neural networks (ANN), random forests (RF), and tree-

based gradient boosting machines (GBM) on the basis of psychophysiological (𝑃) and attention (𝐴) choice-process 

data; lottery-design, socioeconomic characteristics, and information on past gambling behavior (𝐿𝑆𝐺); and a full-

model a full-model is comprised of all input categories (𝐿𝑆𝐺𝑃𝐴). Models’ hyperparameters were determined via a 

systematic grid-search using 10-fold cross validation and subjects as strata.  
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3.5 Out-of-sample forecasting results by model, predictor-set and subjects 

In this section we present the omitted out-of-sample accuracy results for the 44 subjects 

by lotteries’ EV that are produced by the models’ hyperparameter specifications that 

yield the most accurate mean 10-fold subject specific stratified CV accuracy results on 

the training data.  

3.5.1 Psychophysiological reactions (𝑷) 

Figure A23 Out-of-sample accuracy results for the logistic regression model for 𝑷  

  
Notes: Out-of-sample accuracy for 44 subjects by positive expected value (PEV), negative expected value (NEV), and 

all lotteries (All) for playing a 50/50 gamble by a logistic regression model on the basis of predictors that relate to 

individual psychophysiological (𝑃) choice-process data. The 9 subjects that play five or more NEV lotteries (NEVL) with 

respect to 45 NEVL that are included in the full experiment data are highlighted (bold; see Figure 2, section 2). Dashed 

lines correspond to average subject mean accuracy by lotteries’ EV. The solid line is a naive forecast that achieves an 

accuracy of 54% on the test data by predicting all records as not-playing.  
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Figure A24 Out-of-sample accuracy results for the elastic regression model for 𝑷  

 
Notes: Out-of-sample accuracy for 44 subjects by positive expected value (PEV), negative expected value (NEV), and 

all lotteries (All) for playing a 50/50 gamble by an Elastic regression model on the basis of predictors that relate to 

individual psychophysiological (𝑃) choice-process data. The 9 subjects that play five or more NEV lotteries (NEVL) with 

respect to 45 NEVL that are included in the full experiment data are highlighted (bold; see Figure 2, section 2). Dashed 

lines correspond to average subject mean accuracy by lotteries’ EV. The solid line is a naive forecast that achieves an 

accuracy of 54% on the test data by predicting all records as not-playing.  

Figure A25 Out-of-sample accuracy results for SVM for 𝑷  

 
Notes: Out-of-sample accuracy for 44 subjects by positive expected value (PEV), negative expected value (NEV), and 

all lotteries (All) for playing a 50/50 gamble by an SVM model on the basis of predictors that relate to individual psy-

chophysiological (𝑃) choice-process data. The 9 subjects that play five or more NEV lotteries (NEVL) with respect to 45 

NEVL that are included in the full experiment data are highlighted (bold; see Figure 2, section 2). Dashed lines corre-

spond to average subject mean accuracy by lotteries’ EV. The solid line is a naive forecast that achieves an accuracy 

of 54% on the test data by predicting all records as not-playing.  
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Figure A26 Out-of-sample accuracy results for ANN for 𝑷 

 
Notes: Out-of-sample accuracy for 44 subjects by positive expected value (PEV), negative expected value (NEV), and 

all lotteries (All) for playing a 50/50 gamble by an ANN model on the basis of predictors that relate to individual psy-

chophysiological (𝑃) choice-process data. The 9 subjects that play five or more NEV lotteries (NEVL) with respect to 45 

NEVL that are included in the full experiment data are highlighted (bold; see Figure 2, section 2). Dashed lines corre-

spond to average subject mean accuracy by lotteries’ EV. The solid line is a naive forecast that achieves an accuracy 

of 54% on the test data by predicting all records as not-playing. 

Figure A27 Out-of-sample accuracy results for RF for 𝑷 

 
Notes: Out-of-sample accuracy for 44 subjects by positive expected value (PEV), negative expected value (NEV), and 

all lotteries (All) for playing a 50/50 gamble by an RF model on the basis of predictors that relate to individual psycho-

physiological (𝑃) choice-process data. The 9 subjects that play five or more NEV lotteries (NEVL) with respect to 45 

NEVL that are included in the full experiment data are highlighted (bold; see Figure 2, section 2). Dashed lines corre-

spond to average subject mean accuracy by lotteries’ EV. The solid line is a naive forecast that achieves an accuracy 

of 54% on the test data by predicting all records as not-playing. 
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Figure A28 Out-of-sample accuracy results for GBM for 𝑷 

 
Notes: Out-of-sample accuracy for 44 subjects by positive expected value (PEV), negative expected value (NEV), and 

all lotteries (All) for playing a 50/50 gamble by a GBM model on the basis of predictors that relate to individual psy-

chophysiological (𝑃) choice-process data. The 9 subjects that play five or more NEV lotteries (NEVL) with respect to 45 

NEVL that are included in the full experiment data are highlighted (bold; see Figure 2, section 2). Dashed lines corre-

spond to average subject mean accuracy by lotteries’ EV. The solid line is a naive forecast that achieves an accuracy 

of 54% on the test data by predicting all records as not-playing. 

3.5.2 Attention data (𝑨) 

Figure A29 Out-of-sample accuracy results for the logistic regression model for 𝑨  

 
Notes: Out-of-sample accuracy for 44 subjects by positive expected value (PEV), negative expected value (NEV), and 

all lotteries (All) for playing a 50/50 gamble by a logistic regression model on the basis of predictors that relate to 

attention (𝐴) choice-process data. The 9 subjects that play five or more NEV lotteries (NEVL) with respect to 45 NEVL 

that are included in the full experiment data are highlighted (bold; see Figure 2, section 2). Dashed lines correspond 

to average subject mean accuracy by lotteries’ EV. The solid line is a naive forecast that achieves an accuracy of 54% 

on the test data by predicting all records as not-playing. 
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Figure A30 Out-of-sample accuracy results for the elastic regression model for 𝑨 

 
Notes: Out-of-sample accuracy for 44 subjects by positive expected value (PEV), negative expected value (NEV), and 

all lotteries (All) for playing a 50/50 gamble by an Elastic regression model on the basis of predictors that relate to 

attention (𝐴) choice-process data. The 9 subjects that play five or more NEV lotteries (NEVL) with respect to 45 NEVL 

that are included in the full experiment data are highlighted (bold; see Figure 2, section 2). Dashed lines correspond 

to average subject mean accuracy by lotteries’ EV. The solid line is a naive forecast that achieves an accuracy of 54% 

on the test data by predicting all records as not-playing. 

Figure A31 Out-of-sample accuracy results for SVM for 𝑨 

 
Notes: Out-of-sample accuracy for 44 subjects by positive expected value (PEV), negative expected value (NEV), and 

all lotteries (All) for playing a 50/50 gamble by an SVM model on the basis of predictors that relate to attention (𝐴) 

choice-process data. The 9 subjects that play five or more NEV lotteries (NEVL) with respect to 45 NEVL that are in-

cluded in the full experiment data are highlighted (bold; see Figure 2, section 2). Dashed lines correspond to average 

subject mean accuracy by lotteries’ EV. The solid line is a naive forecast that achieves an accuracy of 54% on the test 

data by predicting all records as not-playing. 
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Figure A32 Out-of-sample accuracy results for SVM for 𝑨 

 
Notes: Out-of-sample accuracy for 44 subjects by positive expected value (PEV), negative expected value (NEV), and 

all lotteries (All) for playing a 50/50 gamble by an ANN model on the basis of predictors that relate to attention (𝐴) 

choice-process data. The 9 subjects that play five or more NEV lotteries (NEVL) with respect to 45 NEVL that are in-

cluded in the full experiment data are highlighted (bold; see Figure 2, section 2). Dashed lines correspond to average 

subject mean accuracy by lotteries’ EV. The solid line is a naive forecast that achieves an accuracy of 54% on the test 

data by predicting all records as not-playing. 

Figure A33 Out-of-sample accuracy results for ANN for 𝑨 

 
Notes: Out-of-sample accuracy for 44 subjects by positive expected value (PEV), negative expected value (NEV), and 

all lotteries (All) for playing a 50/50 gamble by an ANN model on the basis of predictors that relate to attention (𝐴) 

choice-process data. The 9 subjects that play five or more NEV lotteries (NEVL) with respect to 45 NEVL that are in-

cluded in the full experiment data are highlighted (bold; see Figure 2, section 2). Dashed lines correspond to average 

subject mean accuracy by lotteries’ EV. The solid line is a naive forecast that achieves an accuracy of 54% on the test 

data by predicting all records as not-playing. 
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Figure A34 Out-of-sample accuracy results for RF for 𝑨  

 
Notes: Out-of-sample accuracy for 44 subjects by positive expected value (PEV), negative expected value (NEV), and 

all lotteries (All) for playing a 50/50 gamble by an RF model on the basis of predictors that relate to attention (𝐴) 

choice-process data. The 9 subjects that play five or more NEV lotteries (NEVL) with respect to 45 NEVL that are in-

cluded in the full experiment data are highlighted (bold; see Figure 2, section 2). Dashed lines correspond to average 

subject mean accuracy by lotteries’ EV. The solid line is a naive forecast that achieves an accuracy of 54% on the test 

data by predicting all records as not-playing. 

Figure A35 Out-of-sample accuracy results for GBM for 𝑨 

 
Notes: Out-of-sample accuracy for 44 subjects by positive expected value (PEV), negative expected value (NEV), and 

all lotteries (All) for playing a 50/50 gamble by a GBM model on the basis of predictors that relate to attention (𝐴) 

choice-process data. The 9 subjects that play five or more NEV lotteries (NEVL) with respect to 45 NEVL that are in-

cluded in the full experiment data are highlighted (bold; see Figure 2, section 2). Dashed lines correspond to average 

subject mean accuracy by lotteries’ EV. The solid line is a naive forecast that achieves an accuracy of 54% on the test 

data by predicting all records as not-playing. 
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3.5.3 Lottery design, socioeconomic and past gambling characteristics  

Figure A36 Out-of-sample accuracy results for the logistic regression model for 𝑳𝑺𝑮 

 
Notes: Out-of-sample accuracy for 44 subjects by positive expected value (PEV), negative expected value (NEV), and 

all lotteries (All) for playing a 50/50 gamble by a logistic regression model on the basis of information that is related 

to lottery design variables, socioeconomic characteristics, and past gambling behavior (𝐿𝑆𝐺). Subjects that play five 

or more NEVL with respect to the full experiment data are highlighted (bold; see Figure 2, section 2). Dashed lines 

correspond to average subject mean accuracy by lotteries’ EV. The solid line is a naive forecast that achieves an accu-

racy of 54% on the test data by predicting all records as not-playing. 

Figure A37 Out-of-sample accuracy results for the elastic regression model for 𝑳𝑺𝑮 

 
Notes: Out-of-sample accuracy for 44 subjects by positive expected value (PEV), negative expected value (NEV), and 

all lotteries (All) for playing a 50/50 gamble by an Elastic regression model on the basis of information that is related 

to lottery design variables, socioeconomic characteristics, and past gambling behavior (𝐿𝑆𝐺). Subjects that play five 

or more NEVL with respect to the full experiment data are highlighted (bold; see Figure 2, section 2). Dashed lines 

correspond to average subject mean accuracy by lotteries’ EV. The solid line is a naive forecast that achieves an accu-

racy of 54% on the test data by predicting all records as not-playing. 
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Figure A38 Out-of-sample accuracy results for SVM for 𝑳𝑺𝑮 

 
Notes: Out-of-sample accuracy for 44 subjects by positive expected value (PEV), negative expected value (NEV), and 

all lotteries (All) for playing a 50/50 gamble by an SVM model on the basis of information that is related to lottery 

design variables, socioeconomic characteristics, and past gambling behavior (𝐿𝑆𝐺). Subjects that play five or more 

NEVL with respect to the full experiment data are highlighted (bold; see Figure 2, section 2). Dashed lines correspond 

to average subject mean accuracy by lotteries’ EV. The solid line is a naive forecast that achieves an accuracy of 54% 

on the test data by predicting all records as not-playing. 

Figure A39 Out-of-sample accuracy results for ANN for 𝑳𝑺𝑮 

 
Notes: Out-of-sample accuracy for 44 subjects by positive expected value (PEV), negative expected value (NEV), and 

all lotteries (All) for playing a 50/50 gamble by an ANN model on the basis of information that is related to lottery 

design variables, socioeconomic characteristics, and past gambling behavior (𝐿𝑆𝐺). Subjects that play five or more 

NEVL with respect to the full experiment data are highlighted (bold; see Figure 2, section 2). Dashed lines correspond 

to average subject mean accuracy by lotteries’ EV. The solid line is a naive forecast that achieves an accuracy of 54% 

on the test data by predicting all records as not-playing. 
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Figure A40 Out-of-sample accuracy results for RF for 𝑳𝑺𝑮 

 
Notes: Out-of-sample accuracy for 44 subjects by positive expected value (PEV), negative expected value (NEV), and 

all lotteries (All) for playing a 50/50 gamble by an RF model on the basis of information that is related to lottery design 

variables, socioeconomic characteristics, and past gambling behavior (𝐿𝑆𝐺). Subjects that play five or more NEVL with 

respect to the full experiment data are highlighted (bold; see Figure 2, section 2). Dashed lines correspond to average 

subject mean accuracy by lotteries’ EV. The solid line is a naive forecast that achieves an accuracy of 54% on the test 

data by predicting all records as not-playing. 

Figure A41 Out-of-sample accuracy results for GBM for 𝑳𝑺𝑮 

 
Notes: Out-of-sample accuracy for 44 subjects by positive expected value (PEV), negative expected value (NEV), and 

all lotteries (All) for playing a 50/50 gamble by a GBM model on the basis of information that is related to lottery 

design variables, socioeconomic characteristics, and past gambling behavior (𝐿𝑆𝐺). Subjects that play five or more 

NEVL with respect to the full experiment data are highlighted (bold; see Figure 2, section 2). Dashed lines correspond 

to average subject mean accuracy by lotteries’ EV. The solid line is a naive forecast that achieves an accuracy of 54% 

on the test data by predicting all records as not-playing. 
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3.5.3 Lottery, socioeconomic, gambling, psychological, and attention data (LSGPA) 

Figure A42 Out-of-sample accuracy results for the logistic regression model for 𝑳𝑺𝑮𝑷𝑨 

 
Notes: Out-of-sample accuracy for 44 subjects by positive expected value (PEV), negative expected value (NEV), and 

all lotteries (All) for playing a 50/50 gamble by a logistic regression model on the basis of information that is related 

to lottery design variables, socioeconomic characteristics, and past gambling behavior (𝐿𝑆𝐺), information on psycho-

physiological reactions (𝑃) and attention data (𝐴). Subjects that play five or more NEVL with respect to the full exper-

iment data are highlighted. Dashed lines correspond to average subject mean accuracy by lotteries’ EV. The solid line 

is a naive forecast that achieves an accuracy of 54% on the test data by predicting all records as not-playing. 

Figure A43 Out-of-sample accuracy results for the elastic regression model for 𝑳𝑺𝑮𝑷𝑨 

 
Notes: Out-of-sample accuracy for 44 subjects by positive expected value (PEV), negative expected value (NEV), and 

all lotteries (All) for playing a 50/50 gamble by an Elastic regression model on the basis of information that is related 

to lottery design variables, socioeconomic characteristics, and past gambling behavior (𝐿𝑆𝐺), information on psycho-

physiological reactions (𝑃) and attention data (𝐴). The 9 subjects that play five or more NEV lotteries (NEVL) with 

respect to 45 NEVL that are included in the full experiment data are highlighted. Dashed lines correspond to average 

subject mean accuracy by lotteries’ EV. The solid line is a naive forecast that achieves an accuracy of 54%. 
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Figure A44 Out-of-sample accuracy results for SVM for 𝑳𝑺𝑮𝑷𝑨 

 
Notes: Out-of-sample accuracy for 44 subjects by positive expected value (PEV), negative expected value (NEV), and 

all lotteries (All) for playing a 50/50 gamble by an SVM model on the basis of information that is related to lottery 

design variables, socioeconomic characteristics, and past gambling behavior (𝐿𝑆𝐺), information on psychophysiolog-

ical reactions (𝑃) and attention data (𝐴). The 9 subjects that play five or more NEV lotteries (NEVL) with respect to 45 

NEVL that are included in the full experiment data are highlighted (bold; see Figure 2, section 2). Dashed lines corre-

spond to average subject mean accuracy by lotteries’ EV. The solid line is a naive forecast that achieves an accuracy 

of 54% on the test data by predicting all records as not-playing. 

Figure A45 Out-of-sample accuracy results for ANN for 𝑳𝑺𝑮𝑷𝑨 

 
Notes: Out-of-sample accuracy for 44 subjects by positive expected value (PEV), negative expected value (NEV), and 

all lotteries (All) for playing a 50/50 gamble by an ANN model on the basis of information that is related to lottery 

design variables, socioeconomic characteristics, and past gambling behavior (𝐿𝑆𝐺), information on psychophysiolog-

ical reactions (𝑃) and attention data (𝐴). The 9 subjects that play five or more NEV lotteries (NEVL) with respect to 45 

NEVL that are included in the full experiment data are highlighted (bold; see Figure 2, section 2). Dashed lines corre-

spond to average subject mean accuracy by lotteries’ EV. The solid line is a naive forecast that achieves an accuracy 

of 54% on the test data by predicting all records as not-playing. 
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Figure A46 Out-of-sample accuracy results for RF for 𝑳𝑺𝑮𝑷𝑨 

 
Notes: Out-of-sample accuracy for 44 subjects by positive expected value (PEV), negative expected value (NEV), and 

all lotteries (All) for playing a 50/50 gamble by an RF model on the basis of information that is related to lottery design 

variables, socioeconomic characteristics, and past gambling behavior (𝐿𝑆𝐺), information on psychophysiological re-

actions (𝑃) and attention data (𝐴). The 9 subjects that play five or more NEV lotteries (NEVL) with respect to 45 NEVL 

that are included in the full experiment data are highlighted (bold; see Figure 2, section 2). Dashed lines correspond 

to average subject mean accuracy by lotteries’ EV. The solid line is a naive forecast that achieves an accuracy of 54% 

on the test data by predicting all records as not-playing. 

Figure A47 Out-of-sample accuracy results for GBM for 𝑳𝑺𝑮𝑷𝑨 

 
Notes: Out-of-sample accuracy for 44 subjects by positive expected value (PEV), negative expected value (NEV), and 

all lotteries (All) for playing a 50/50 gamble by a GBM model on the basis of information that is related to lottery 

design variables, socioeconomic characteristics, and past gambling behavior (𝐿𝑆𝐺), information on psychophysiolog-

ical reactions (𝑃) and attention data (𝐴). The 9 subjects that play five or more NEV lotteries (NEVL) with respect to 45 

NEVL that are included in the full experiment data are highlighted (bold; see Figure 2, section 2). Dashed lines corre-

spond to average subject mean accuracy by lotteries’ EV. The solid line is a naive forecast that achieves an accuracy 

of 54% on the test data by predicting all records as not-playing. 
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