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A Comparison of Semiparametric Tests for Fractional

Cointegration

Christian Leschinski, Michelle Voges, and Philipp Sibbertsen

January 21, 2019

Abstract

There are various competing procedures to determine whether fractional cointegration is present in a
multivariate time series, but no standard approach has emerged. We provide a synthesis of this literature
and conduct a detailed comparative Monte Carlo study to guide empirical researchers in their choice of
appropriate methodologies. Special attention is paid on empirically relevant issues such as assumptions
about the form of the underlying process and the ability of the procedures to distinguish between short-
run correlation and long-run equilibria. It is found that several approaches are severely oversized in
presence of correlated short-run components and that the methods show different performance in terms
of power when applied to common-component models instead of triangular systems.

JEL classification: C14 · C32
Keywords: Long Memory · Fractional Cointegration · Semiparametric Estimation and Testing
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1 Introduction

The concept of cointegration derives its popularity from the fact that it allows to model equilibrium
relationships between non-stationary time series. In practice, however, standard cointegration analysis
can often not be applied, since the I(1)/I(0) framework is too restrictive. For example, the series of
interest may be persistent but not have a unit root, or the deviations from the equilibrium may be more
persistent than the I(0) model allows.

Fractional cointegration overcomes these shortcomings, by allowing for non-integer integration orders
of the variables in the system and any (possibly non-zero) memory order in the cointegrating resid-
uals as long as it is reduced compared to the original system. Consequently, fractional cointegration
promises to facilitate the modeling of a larger number of equilibrium relationships compared to standard
cointegration.

This has led to the development of various testing and rank estimation procedures to determine
whether fractional cointegration is present in a multivariate time series.

Parametric approaches include Johansen (2008), Łasak (2010), Johansen & Nielsen (2012), Łasak
& Velasco (2015), and Johansen & Nielsen (2018), among others, who consider fractional extensions of
the cointegrated VAR model of Johansen (1988). Furthermore, Breitung & Hassler (2002) introduce a
trace test to determine the cointegrating rank, Avarucci & Velasco (2009) suggest rank estimation in
a regression framework, and Hassler & Breitung (2006) develop a time domain residual-based test for
fractional cointegration.

Semiparametric approaches, on the other hand, have the advantage that they allow the researcher
to focus on the long-run relationship between the series and do not require the specification of short-
run dynamics. This literature encompasses the spectral-based rank estimation procedure of Robinson
& Yajima (2002) and its extension by Nielsen & Shimotsu (2007), a Hausmann-type test based on the
multivariate local Whittle estimator introduced by Robinson (2008a), a number of residual-based tests
for the null hypothesis of no fractional cointegration developed by Marmol & Velasco (2004), Chen &
Hurvich (2006), Hualde & Velasco (2008), and Wang et al. (2015), a variance-ratio test proposed by
Nielsen (2010), a test based on a GPH-type estimate of the cointegration strength introduced by Souza
et al. (2018) and a rank estimation procedure based on an eigenanalysis of the autocovariance function
from Zhang et al. (2018).

Unfortunately, the domain of applicability of most of these procedures is much more restrictive than
the definition of fractional cointegration. Some are only applicable in stationary systems — some only
in non-stationary systems. Some procedures require the reduction in memory to be more than 1/2 —
some only require the memory of the cointegrating residuals to be less than 1/2.

Furthermore, there are different assumptions about the form of the fractionally cointegrated system.
Some approaches assume that one of the observed series itself is an observation of the common underlying
trend. Other approaches assume an unobserved common underlying trend. We refer to these models as
the triangular system and the common-components model. Which of these assumptions is more suitable
in practice depends on the specific application. On the one hand, it may be appropriate to think of the
risk-free interest rate as an observed common component that is perturbed by risk premia if the yields
of risky bonds are realized so that a triangular model can be used. For cointegrated pairs of stocks, on
the other hand, it is unclear why the price of one stock should be interpreted as a perturbed version
of another stock price so that a common-components model is more appropriate. Finally, even though
the development of each of these procedures to determine whether fractional cointegration is present is
a major theoretical contribution, relatively little effort has been devoted to analyze how they perform
compared to each other.

Here, we try to address these issues by providing a survey of all the rank estimation and testing
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procedures discussed above. To study the relative performance of the competing approaches, we conduct
an extensive Monte Carlo analysis of their size and power properties. It is found that several procedures -
namely those of Nielsen & Shimotsu (2007) or Robinson & Yajima (2002), Marmol & Velasco (2004), and
Hualde & Velasco (2008) show severe finite sample size distortions in multivariate systems with correlated
short-run components. The relative performance in terms of power depends on the form of the system
under considerations. For triangular systems and non-stationary common-components models the test
of Souza et al. (2018) performs best overall, whereas the test of Chen & Hurvich (2006) is preferable for
stationary common-components models.

The rest of the paper is structured as follows. The next Section gives the definition and model of
fractional cointegration we adopt and briefly reviews the basic estimation methods required by the tests.
Section 3 is divided into two subsections describing two types of tests, 3.1 containing the tests based
on a spectral matrix and 3.2 summarizing the tests based on cointegrating residuals, Section 4 presents
finite sample results, and Section 5 concludes.

2 Fractional Cointegration — Models and Definitions

A p-dimensional vector-valued time series Xt has long memory if its spectral density fulfills

fX(λ) ∼ Λj(d)GΛj(d), as λ→ 0+, (1)

whereG is a real, symmetric and non-negative definite matrix, Λj(d) = diag
(
λ−d1eiπd1/2, ..., λ−dpeiπdp/2

)
is a p×p diagonal matrix, Λj(d) is its complex conjugate transpose and ‘∼’ implies that for each element
the ratio of real and imaginary parts on the left- and right-hand side tends to one.

The element in the a-th row and b-th columns of the spectral matrix fX(λ) is denoted by fab(λ) ∼
gabλ

−2d for a, b ∈ {1, ..., p} where gab denotes the respective element of G. The periodogram of Xt at
the Fourier frequencies is given by

IX(λj) = wX(λj)wX(λj), (2)

with wX(λ) = 1√
2πT

∑T
t=1Xte

iλt, and λj = 2πj/T , for j = 1, ..., bT/2c, where b·c denotes the greatest
integer smaller than the argument.

There is a number of different definitions of fractional cointegration in the literature. The most
common one goes back directly to Engle & Granger (1987). According to this definition the p-dimensional
vector-valued time series Xt is cointegrated of rank r, if all components of Xt are integrated of order d
(denoted by I(d)), and there exists a non-singular matrix β so that the r linear combinations vt = β′Xt

are I(d−ba) = I(dva) with d > ba > 0 for all a = 1, ..., r. The matrix β is called the cointegrating matrix
and each of its columns is a cointegrating vector. The elements of the vector vt are the cointegrating
residuals. Other definitions are given by Johansen (1995), Flôres Jr & Szafarz (1996), Marinucci &
Robinson (2001), and Robinson & Yajima (2002) who also provide a discussion of the implications of
the different definitions.

Standard cointegration is a special case of the definition above where d = 1 and dva = 0 for all a. In
this setup the system is non-stationary, whereas the cointegrating residuals are stationary. In contrast to
that, fractional cointegration allows for a more flexible model so that several cases can be distinguished:
weak cointegration (b < 0.5), strong cointegration (b > 0.5), stationary cointegration (0 < dv < d < 0.5),
or non-stationary cointegration (0.5 < dv < d).

In general, (fractional) cointegration is an equilibrium concept where the persistence of the cointe-
grating residual dv determines the speed of adjustment towards the cointegration equilibrium β′Xt, and
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shocks have no permanent influence on the equilibrium as long as dv < 1 holds.
As an example, consider the fractionally (co-)integrated bivariate model with Xt = (X1t, X2t)

′, where

X1t = c1 + ξ1Yt + ∆−(d−b1)u1t1(t > 0) (3)

X2t = c2 + ξ2Yt + ∆−(d−b2)u2t1(t > 0) (4)

and Yt = ∆−det1(t > 0). (5)

Here ut = (u1t, u2t)
′ is a weakly-dependent zero-mean process with constant covariance matrix Ωu and

spectral density matrix fu(λ), et (with variance σ2
e and spectral density fe(λ)) is a univariate weakly-

dependent zero-mean process that is allowed to be correlated with ut, and L denotes the lag-operator so
that LYt = Yt−1. The fractional difference operator ∆d = diag

{
(1− L)d, ..., (1− L)d

}
is defined in terms

of the binomial expansion so that (1 − L)d =
∑∞
k=0

(
d
k

)
(−1)kLk, with

(
d
k

)
= d(d−1)(d−2)...(d−(k−1))

k! , and
it is of the same dimension as the process that it is applied to. Furthermore, 1(·) denotes the indicator
function that takes the value one if its argument is true and is zero, otherwise. Finally, it is assumed
that d ∈ (0, 1] and d ≥ b1, b2 ≥ 0.

The truncated processes ∆−(d−ba)uat1(t > 0) are fractionally-integrated processes of type-II, which
means they are only asymptotically stationary for d < 1/2, but in contrast to type-I processes they are
still defined for d > 1/2. For a detailed discussion cf. Marinucci & Robinson (1999).

In this bivariate model there can be at most one cointegrating relationship. In this case r = 1 and β
itself is a cointegrating vector. Obviously, if the linear combination β′Xt = vt has reduced memory, the
same is true for every scalar multiple of it. To identify the cointegrating vector, it is therefore customary
to apply some kind of normalization such as setting the first element of the vector to unity. In Equations
(3) to (5), fractional cointegration arises if ξ1, ξ2 6= 0, and b1, b2 > 0. In this case the normalized

cointegrating vector is β =
(

1,− ξ1ξ2
)′

=
(

1,−β̃
)′

and the cointegrating residual vt is I(d − b) = I(dv),
where b = min(b1, b2).

Note that this model is a common-components model, but it also nests a triangular system. This is
obtained as a special case if Ωu,22 = 0 so that X2t is a direct (rescaled) observation of the underlying
common trend and only X1t is perturbed with a cointegration error so that b = b1.

Standard cointegration in the I(1)/I(0) framework is obtained as a special case if d = 1 and b1 =

b2 = 1. It is also possible to have ξ1, ξ2 6= 0, so that both X1t and X2t contain the common component
Yt, but they are not cointegrated. This is the case if b1 = b2 = 0.

3 Tests for no fractional cointegration

In the following, we provide a comprehensive review of semiparametric tests and estimation procedures
that can be used to determine the order of fractional cointegration in a p-dimensional vector-valued time
series Xt. According to the definition discussed above, this requires that the components of Xt are
integrated of the same order.

In practice, this can either be assumed based on domain specific knowledge, or it can be tested with
tests for the equality of memory parameters that allow for cointegration introduced by, for example,
Robinson & Yajima (2002), Nielsen & Shimotsu (2007), Hualde (2013), and Wang & Chan (2016). In
particular Robinson & Yajima (2002) discuss in detail how to partition a vector-valued time series into
subvectors with equal memory parameters. These can then be used for further cointegration analysis.

In the following, it will be assumed that all components of Xt are I(d), which means we abstract
from these pre-testing issues to focus on the actual tests for the null of no fractional cointegration. For
all tests the hypotheses are defined by
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H0: Xt is not fractionally cointegrated (d = dv),
H1: Xt is fractionally cointegrated (d > dv).

In contrast to standard I(1)/I(0) cointegration, the memory parameter d is unknown in fractionally
cointegrated systems and has to be estimated. Since we are in a setting that potentially entails coin-
tegration, multivariate memory estimation might not be feasible so that the memory parameters are
estimated univariately. If not stated otherwise, the estimates involved in the tests are the means of the
univariate memory estimates for the components of the system.

The tests presented in this Section apply the most common estimators: the log-periodogram estimator
d̂GPH of Geweke & Porter-Hudak (1983) and Robinson (1995b), the local Whittle estimator d̂LW of
Künsch (1987) and Robinson (1995a), or the exact local Whittle estimator d̂ELW of Shimotsu & Phillips
(2005) and Shimotsu (2010). All of these estimators are periodogram based and employ the first m
Fourier frequencies. The general requirement is that m < bT/2c tends to infinity more slowly than T , so
that 1

m + m
T → 0 as T → ∞ and even the largest frequency 2πm/T is asymptotically local to the zero

frequency.
To estimate the cointegrating relationship β′Xt = vt when r = 1, the vector is partitioned such that

Xt = (yt, xt), where yt is a scalar and xt is (p − 1) × 1. By doing so, the focus is on one possible
cointegrating relation yt = β̃xt + vt where β̃ is (p− 1)-dimensional.

As in standard cointgration analysis the vector β̃ can be estimated with ordinary least squares (OLS)
as long as d > 1/2 so that the series remains non-stationary. In stationary long-memory time series,
OLS is inconsistent in presence of correlation between the stationary regressors and the innovation term
vt (cf. Robinson (1994)).

Robinson (1994) and Robinson & Marinucci (2001) introduce an alternative estimator of the coin-
tegrating vector that is based on the periodogram local to the zero frequency. In contrast to OLS,
this narrow-band frequency domain least squares (NBLS) estimator is consistent under cointegration for
all values of d and has a non-normal limiting distribution in the non-stationary region. Christensen &
Nielsen (2006a) extend the asymptotic results to the stationary region where the estimate follows an
asymptotic normal distribution and Nielsen & Frederiksen (2011) provide a correction of the asymptotic
bias under weak fractional cointegration.

Estimating the linear cointegrating relationship with NBLS requires calculating the averaged cross-
periodogram of xt with itself and yt by Iavxx(λj) = 2π

T

∑m
j=1 ωx(λj)ωx(λj) and Iavxy (λj) = 2π

T

∑m
j=1 ωx(λj)

ωy(λj). The NBLS estimate of β̃ is then defined by

β̂m = Iavxx(λj)
−1Iavxy (λj). (6)

The bandwidth m has to fulfill the usual local-to-zero condition as T → ∞. If not specified otherwise,
this is the estimator we employ to estimate the cointegrating vector. Other estimators suggested in
the literature include estimation based on the eigenvectors of a version of IavX (λj) (cf. Chen & Hurvich
(2003)) and joint estimation with the memory parameters in multivariate local Whittle approaches such
as those of Robinson (2008b) and Shimotsu (2012).

The following review is divided into tests based on the spectral density local to the origin (Section 3.1)
and tests based on estimates of the cointegrating residuals (Section 3.2). Of course, this distinction is not
clear cut, since some of the residual-based approaches also use the spectral properties of the potential
cointegrating residuals and for example the test of Nielsen (2010) is presented as a variance-ratio test.
Many different categorizations would be possible. Here, we refer to those approaches as "spectral-based"
that rely on the properties of the spectrum of the observed series Xt itself, and those that rely on the
spectrum of the cointegrating residual are called "residual-based".
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3.1 Tests based on the spectral matrix

A number of procedures to determine the fractional cointegrating rank of the p-dimensional time
series Xt are based on properties of the rescaled spectral matrix local to the zero frequency. This is
denoted by G in Equation (1) and has reduced rank if and only if Xt is fractionally cointegrated. If
fractional cointegration is present, the number of eigenvalues that are equal to zero corresponds to the
cointegrating rank r and therefore to the number of cointegrating relationships.

Based on this property Robinson & Yajima (2002) introduce an information criterion to determine
the fractional cointegration rank that is extended to non-stationary processes by Nielsen & Shimotsu
(2007).

To obtain an estimate Ĝ of G, the first step of the procedure consists in applying the univariate
exact local Whittle estimator of Shimotsu & Phillips (2005) and Shimotsu (2010) to each component
of Xt separately, using bandwidth m. In contrast to a multivariate local Whittle estimate that has the
inverse of Ĝ in its objective function and is therefore not consistent under fractional cointegration, each
of the univariate estimates is consistent for the memory order d of Xt. The memory order d is therefore
estimated by the pooled estimator d̂ELW that is the arithmetic mean of the univariate estimates. The
estimate of Ĝ(d̂ELW ) is then defined by

Ĝ(d̂ELW ) =
1

m1

m1∑
j=1

Re I∆d(λj),

where I∆d is the periodogram of ∆d̂ELWXt. The bandwidths have to fulfill m1

m → 0 in order to en-
sure faster convergence of d̂ELW than of Ĝ(d̂ELW ).1 Denote the empirical eigenvalues calculated from
Ĝ(d̂ELW ) and sorted in descending order by δ̂a,G for a = 1, ..., p. The cointegrating rank can then be
estimated using a model selection criterion that is based on the partial sum of the sorted eigenvalues

r̂NS = arg min
k=0,...,p−1

(
n(T )(p− k)−

p−k∑
a=1

δ̂a,G

)
, (7)

where n(T ) is a function which fulfills n(T ) + 1√
m1 n(T ) → 0 as T → ∞ so that n(T ) goes to zero but

more slowly than the estimation error in the eigenvalues that is of order OP
(
m
−1/2
1

)
. Asymptotically,

the expression is therefore minimal if only estimates of non-zero eigenvalues are included in the sum.
To deal with situations in which the scales of the components in Xt are different, Nielsen & Shimotsu

(2007) suggest to base the procedure on the correlation matrix P̂ (d̂ELW ) = R̂(d̂ELW )−1/2Ĝ(d̂ELW )

R̂(d̂ELW )−1/2 instead of Ĝ, where R̂(d̂ELW ) = diag(ĝ11, ..., ĝpp) contains the diagonal elements of
Ĝ(d̂ELW ). This is admissible since the rank of P̂ is the same as that of Ĝ in the limit. Nielsen &
Shimotsu (2007) point out that this approach works better in simulations and also recommend to use
the bandwidth n(T ) = m−0.3

1 . The cointegrating rank estimate is consistent for r ∈ {0, ..., p − 1}. It is
applicable for systems of dimension p ≥ 2, and it does not impose restrictions on d and b.

A similar rank estimation procedure based on the average of finitely many tapered periodogram
ordinates local to the origin was also proposed by Chen & Hurvich (2003).

The aforementioned inconsistency of the multivariate local Whittle estimator under fractional coin-
tegration is the basis for a test procedure originally proposed by Marinucci & Robinson (2001). They
suggest a Hausman-type test that compares multivariate and univariate local Whittle estimates. Under
the null hypothesis of no cointegration the multivariate estimator is efficient and both estimators are
consistent. Under the alternative of fractional cointegration, on the other hand, the univariate estimator

1We follow the notation of Nielsen & Shimotsu (2007) and use m1 for the bandwidth in the estimation of G(d) and m
for that of d. Note that Robinson & Yajima (2002) chose the opposite notation.
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remains consistent, whereas the multivariate one does not.
This idea is formalized by Robinson (2008a). The test statistic is based on the objective function of

the multivariate local Whittle estimator (cf. Lobato (1999), Shimotsu (2007))

S(d) = log det Ĝ∗(d)− 2pd

m

m∑
j=1

log λj with Ĝ∗(d) =
1

m

m∑
j=1

IX(λj)λ
2d
j

and its derivative

s∗ (d) = tr
(
Ĝ∗(d)−1Ĥ∗(d)

)
(8)

with Ĥ∗(d) =
1

m

m∑
j=1

νjIX(λj)λ
2d
j and νj = log j − 1

m

m∑
k=1

log k.

Similar to the previous procedure, the memory parameter d is estimated by pooling the univariate
estimates obtained by applying the local Whittle estimator to each of the component series. The equally
weighted average is denoted by d̂LW .

To obtain a test statistic, the derivative s∗(d) from (8) is evaluated at this averaged univariate
estimate:

W ∗Rob =
ms∗(d̂LW )2

N2tr(F̂ ∗2)− p
; (9)

F̂ ∗ = R̂∗
−1/2

Ĝ∗(d̂LW ) R̂∗
−1/2

, R̂∗ = diag(ĝ∗11, ..., ĝ
∗
pp),

where ĝ∗aa, a = 1, ..., p, are the diagonal elements of Ĝ∗(d̂LW ). The scaled derivative m1/2s∗(d̂LW ) is
asymptotically normal so that the test follows a χ2

1-distribution if appropriately standardized by the
term in the denominator.

The test generates power because G(d) is singular under the alternative of fractional cointegration
so that the inverse Ĝ∗(d̂LW )−1 of the estimate and consequently the trace s∗

(
d̂LW

)
become large.

This is a score-type test that avoids the calculation of the multivariate local Whittle estimator that
can be numerically expansive. Since the efficiency of the multivariate estimate is obtained with a single
Newton step from the univariate estimate in direction of the multivariate one, s∗

(
d̂LW

)
is directly

proportionate to the difference between the efficient and the inefficient estimate.
This test allows series of dimensions larger than two, but it is restricted to processes with d ∈

(−1/2, 1/2) and focuses on the empirically relevant range d ∈ (0, 1/2). Hence, non-stationary processes
are not allowed. An extension based on a trimmed version of the local Whittle estimator is proposed,
but the size properties of this test in simulations appear to depend heavily on the sample size.2

An alternative way to allow for non-stationary processes would be to base the test on the objective
function of the multivariate exact local Whittle estimator (as in Shimotsu (2012), but without allowing
for fractional cointegration) and univariate ELW estimates. Since the exact local Whittle estimates have
the same asymptotic properties as the local Whittle estimate for d ∈ (−1/2, 1/2), the test would have
the same limiting distribution.

For a bivariate process with known d ∈ (0, 1], Souza et al. (2018) propose a test based on an estimate
of b obtained from the determinant of the trimmed and truncated spectral matrix of the fractionally
differenced process via a log-periodogram regression.

Denote the fractionally differenced process by ∆dXt = (∆dX1t,∆
dX2t)

′ with spectral density matrix
f∆d(λ), then the determinant D∆d(λ) of f∆d(λ) depends on the memory reduction parameter b ∈ [0, d]

2These results are available from the authors upon request.
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and can be approximated by

D∆d(λ) ∼ g̃|1− e−iλ|2b, as λ→ 0+, (10)

where g̃ is a constant and finite scalar.
Under cointegration, f∆d(λ) does not have full rank near the origin (like G in (1)) so that its deter-

minant D∆d(λ) approaches zero as λ→ 0+. The memory reduction b can be estimated from the logged
version of Equation (10) using a log-periodogram type regression,

logD∆d(λ) ∼ log g̃ + 2b log |1− e−iλ|+ log
g̃∗(λ)

g̃
, as λ→ 0+,

where limλ→0+ g̃∗(λ) = g̃.
In order to make the estimation of b feasible, the empirical determinant D̂∆d(λ) has to be calculated

from an estimate f̂∆d(λ) of the spectral density at the Fourier frequencies with order numbers j =

l, l+ (2l− 1), l+ 2(2l− 1), ...,m− (2l− 1),m with l+ 1 < m < T . The latter is obtained from the locally
averaged periodogram

f̂∆d(λj) =
1

2l − 1

j+(l−1)∑
k=j−(l−1)

I∆d(λk),

where I∆d(λk) is the periodogram of ∆dXt. At each j the estimate f̂∆d(λj) is thus a local average of
the periodogram at frequency j and the l + 1 frequencies to its left and right and the λj are spaced so
that the local averages are non-overlapping.

The resulting estimator for the cointegrating strength b is given by

b̂GPH =

 m∑
j=l+1

Z̃∗2j

−1
m∑

j=l+1

Z̃∗j log D̂∆d(λj),

where Z̃∗j = Z∗j − Z̄∗, Z∗j = log |1− eiλ| = log(2− 2 cos(λj)), and Z̄∗ is the mean of the Z∗j .
Under the null hypothesis of no fractional cointegration we have b = 0. Under this condition, and

assuming that l and m fulfill the condition l+1
m + m

T + 1
m + logm

m → 0 as T → ∞, the estimate b̂GPH
is consistent and asymptotic normal with variance σ2

b = 1
m (Ψ(1)(2l + 1) + Ψ(1)(2l)), where Ψ(1)(x) =

δ2 log Γ(x)
δx2 is the polygamma function of order 1 and Γ(·) denotes the gamma function.
The null hypothesis of no fractional cointegration can thus be tested using a simple t-test:

WSRFB =
b̂GPH
σb

d→ N(0, 1). (11)

The method has no restrictions regarding the range of d and b but is only applicable to bivariate processes.
For practical purposes, d is usually unknown and has to be estimated, but as shown in our simulation
study in Section 4 this has no severe implications for the quality of the test. However, a thorough
theoretical examination of this aspect would be interesting for further research.

3.2 Tests based on cointegrating residuals

By the definition of fractional cointegration the memory dv of the linear combination vt = β′Xt is
lower than that of Xt itself. Under the null hypothesis of no fractional cointegration one can still write
vt = β′Xt = yt−β̃xt, since yt can still depend on the values of the other components ofXt. The difference
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to the cointegrated case is only that dv = d. It is therefore natural to test for fractional cointegration by
testing dv = d (or b = 0) versus dv < d (or b > 0) based on an estimate v̂t of the potential cointegrating
residual.

Under weak non-stationary fractional cointegration so that d > dv > 1/2, Marmol & Velasco (2004)
suggest a Hausman (1978)-type F-test that compares the OLS estimate β̂OLS of the cointegrating vector
with an alternative estimate β̂NB with opposite consistency characteristics.

The OLS estimator β̂OLS is consistent for β̃ under the alternative (as long as d > 1/2) but inconsistent
under the null hypothesis. Marmol & Velasco (2004) propose an alternative estimator β̂NB that is
consistent for the vector β̃ under the null hypothesis but inconsistent under the alternative. The estimator
is given by

β̂NB(d̂x, d̂v) = ĜMV
xx (d̂x)−1ĝMV

xy (d̂v),

where ĜMV
xx (d) =

2π

m2

m2∑
j=1

Λ̃j(d)−1Re {Ixx(λj)} Λ̃−1
j (d),

ĝMV
xy (d) =

m2∑
j=1

Re Ixy(λj)λ
2(d−1)
j ,

Λ̃j(d) = diag(λ1−d
j , ..., λ1−d

j ) and where Ixx(λj) and Ixy(λj) are the respective elements of the peri-
odogram I∆X∆X(λj) of the differenced process ∆Xt and m2 is subject to the usual bandwidth condi-
tions.

The estimator is closely related to the narrow band least squares estimator β̂m from (6) but uses a
rescaled version of the periodogram. In fact, β̂NB(0, 0) would be equivalent to the NBLS estimate based
only on the real part of the periodogram.

Inconsistency under the alternative is only obtained through the choice β̂NB(d̂x, d̂v), where d̂v is
estimated from the OLS residuals. Since under the alternative v̂OLSt is a consistent estimate of the
cointegrating residual, d̂v → dv < d, whereas d̂x is estimated from the original series and is consistent for
d. Under the null hypothesis, on the other hand, β̂OLS is inconsistent so that v̂OLSt is just some linear
combination of I(d) series, d̂v → d, and β̂NB(d̂x, d̂v) is consistent for β̃.

Since the process is non-stationary, the memory is estimated by local Whittle from the differenced
process. ALternatively, d could be estimated using a tapered local Whittle estimator, or by the exact or
fully extended local Whittle estimator.

The test statistic compares both estimates of β̃ where the normalizing variance V̂MV is estimated
from the periodogram of the OLS residuals v̂OLSt and that of xt so that

V̂MV =

 m∑
j=−m

Ixx(λj)

−1
m∑

j=−m
Ixx(λj)Iv̂v̂(λj)

 m∑
j=−m

Ixx(λj)

−1

.

This leads to the test statistic

WMV =
1

p− 1

(
β̂OLS − β̂NB

)′
V̂ −1
MV

(
β̂OLS − β̂NB

)
. (12)

The choices of m and m2 are not linked, but both have to satisfy the condition (md−2 +mγ−1 log T )

log2 T + m
T → 0 as T →∞, with γ > 0 which is fulfilled if m ∼ T η, η ∈ (0, 1).
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The asymptotic distribution is non-standard and depends on the memory parameter d. It is given by

WMV
d→ 1

p− 1

∫ 1

0

Wy(d; r)Wx(d; r)′drV −1

∫ 1

0

Wx(d; r)Wy(d; r)dr,

with V =

∫ 1

0

γR(s) {γxx(s) + γ′xx(s) + γxx(1− s) + γ′xx(1− s)} ds,

γR(s) =

∫ 1−s

0

Wy(d; r)Wy(d; r + s)dr,

and γxx(s) =

∫ 1−s

0

Wx(d; r)Wx(d; r + s)′dr,

where Wy(d; r) is a fractional Brownian bridge, and Wx(d; r) is a p× 1 vector of independent fractional
Brownian bridges.

Critical values are tabulated in Marmol & Velasco (2004) for dimensions up to p = 5 and different
forms of detrending that affect the type of the fractional Brownian bridges. The test statistic WMV

diverges under the alternative since both β̂NB and V̂ −1
MV diverge under fractional cointegration.

Although the consistency of the test is derived assuming d > dv > 0.5, Marmol & Velasco (2004)
state that the test remains consistent if the stationarity border is crossed by the cointegrating residuals,
i.e. d > 0.5 > dv. Our simulations in Section 4 confirm this.

A direct residual based test is proposed by Chen & Hurvich (2006) who estimate the possible cointe-
grating subspaces using eigenvectors of the averaged periodogram local to the zero frequency. The process
Xt is assumed to be stationary after taking (q−1) integer differences which allows d ∈ (q − 1.5, q − 0.5).
In order to account for possible over-differentiation the complex-valued taper ht = 0.5(1 − ei2πt/T ) of
Hurvich & Chen (2000) is applied to the data. The tapered discrete Fourier transform and periodogram
of Xt are defined by

wtapX (λj) =
1√

2π
∑
t |h

(q−1)
t |2

T∑
t=1

h
(q−1)
t Xte

iλjt,

ItapX (λj) = wX(λj)wX(λj).

Next, define the averaged periodogram matrix of Xt by

IavX (λj) =

m3∑
j=1

Re
(
ItapX (λj)

)
,

where m3 is a fixed positive integer fulfilling m3 > p+3. The eigenvalues of IavX (λj) sorted in descending
order are denoted by δ̂a,IavX and the corresponding eigenvectors are given by χ̂a,IavX , for a = 1, ..., p. Under
the alternative hypothesis, if there are r > 0 cointegrating relationships, the matrix consisting of the
first r eigenvectors provides a consistent estimate of the cointegrating subspace.

To construct a test for the null hypothesis of no fractional cointegration the potential cointegrating
residuals vt are estimated by multiplying Xt with the eigenvectors χ̂a,IavX so that v̂avat = χ̂′a,IavX

Xt, for
a = 1, ..., p.

The memory of the p residual processes is estimated with the local Whittle estimator using bandwidth
m but calculated using shifted Fourier frequencies λj̃ with j̃ = j + (q − 1)/2 to account for the tapering
of order q. These estimates are denoted by d̂

va,L̃W
, and they remain consistent and asymptotic normal.

Since there can be at most p − 1 cointegrating relationships in a p-dimensional time series, the
first residual corresponding to the largest eigenvalue cannot be a cointegrating residual. Its memory
must therefore equal the common memory d of Xt. The last residual v̂avpt corresponding to the smallest
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eigenvalue, on the other hand, is most likely to be a cointegrating residual if there is cointegration so
that its memory is reduced by b under cointegration.

The test idea of Chen & Hurvich (2006) is therefore to compare the estimated memory orders from
the residual series v̂av1t and v̂avpt . Hence, the test compares the estimated memory parameters d̂ (first
residual) and d̂v (last residual). Chen & Hurvich (2006) show that

√
m
(
d̂
va,L̃W

− d̂
vb,L̃W

)
d→ N

(
0, VCH,q

(
1− G2

ab

GaaGbb

))
with VCH,q =

1

2

Γ(4q − 3)Γ4(q)

Γ4(2q − 1)
.

A conservative test statistic is therefore given by

WCH =
√
m

(
d̂
v1,L̃W

− d̂
vp,L̃W

)
√
VCH,q

. (13)

The tests rejects if WCH is larger than the standard normal quantile z1−α/2. It is very versatile, since it
does not impose restrictions on the cointegration strengh b and can be applied to stationary as well as
non-stationary long memory processes, but it requires a priori knowledge about the location of d in the
parameter space to determine the order of differencing.

Hualde & Velasco (2008) propose another testing strategy in a residual-based regression framework.
As before, the series Xt is partitioned such that Xt = (yt, x

′
t)
′ and they consider the single-equation

regression yt = β̃xt + vt.
The test idea is based on the observation that the fractionally differenced residual ∆dxvt is unrelated

to the long-run level of xt under the null hypothesis. This is because ∆dxvt is I(0) and xt is I(d). The
cross-spectrum of xt and ∆dxvt should therefore be zero at frequencies local to zero. Possible dependence
between the short-run components ut and et in (3) would manifest itself in form of a non-zero cross-
spectrum at higher frequencies.

The test statistic of Hualde & Velasco (2008) is therefore based on the quantity τ̂m defined as

τ̂m =

m∑
j=1

wx(−λj)ζ(λj)w∆dv,dX(λj)

where ∆dv,dXt =
(

∆d̂vyt,∆
d̂x′t

)′
and ζ(λj) = (1, 0′p−1) f̂X(λj)

−1. The projection vector ζ(λj) estimates
the discrete Fourier transform (DFT) of the residual process vt from w∆dv,dX(λj) — the DFT of the
fractionally differenced process ∆dv,dXt. As usual for these semiparametric approaches, it is assumed
that m ≤ T/2 and m/T → 0, as T →∞.

This leads to the test statistic

WHV = τ̂ ′mV̂
−1
HV τ̂m (14)

with V̂HV =

m∑
j=0

aj Re κ(λj)IXX(λj),

and κ(λj) = (1, 0′p−1) f̂X(λj)
−1 (1, 0′p−1)′ = ζ(λj) (1, 0′p−1)′,

where the weights are defined by aj = 1 if j ∈ {0, T/2} and aj = 2 otherwise. Under the null hypothesis
this test statistic follows an asymptotic χ2

p−1-distribution. Under the alternative the test develops power,
since dv is estimated from the NBLS estimate of the cointegrating residuals. Since these have reduced
memory under the alternative, the first component of ∆dv,dXt (yt) is I(b) instead of I(0) and the cross
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spectrum of the underdifferenced estimate of vt and xt in τ̂m becomes non-zero. As before, the memory
orders are estimated using consistent estimators that account for the (possible) non-stationarity of the
data — for example the exact local Whittle estimator of Shimotsu & Phillips (2005).

A modified test with more power in bivariate systems Xt = (X1t, X2t)
′ is calculated with τ̃m instead

of τ̂m:

τ̃m =

m∑
j=0

aj
Re
(
I∆d̂vX1,X2

(λj)− f̃12(λj)

f̂22(λj)
I∆d̂vX2,X2

(λj)
)

f̂11(λj)− f̂12(λj)f̂21(λj)

f̂22(λj)

,

with f̂∆d̂(λj) =
1

2m+ 1

j+m∑
k=j−m

I∆d̂X(λk) and f̃∆d̂v (λj) =
1

2m+ 1

j+m∑
k=j−m

I∆d̂vX(λk).

Here, the respective elements of the spectral matrices are denoted by f̂ab(λj) and f̃ab(λj) with a, b ∈
{1, 2}. This is the same as τ̂m but with f̂12(λj) replaced by f̃12(λj) that is constructed using d̂v so that
it also diverges under the alternative and constitutes an additional source of power. The asymptotic
χ2
p−1-distribution is unaffected by this modification.
It is not necessary to impose any restrictions on the range of d and dv except for those implied by

fractional cointegration, and processes of dimensions higher than two are allowed. The asymptotic χ2
p−1

distribution depends only on the dimension of the process. Furthermore, the memory parameters are
allowed to differ as long as two components of Xt share the same memory parameter and the vector is
sorted so that the component with the highest memory comes first.

Nielsen (2010) introduces a sequential testing approach in order to test the null hypothesis of no
fractional cointegration and to determine the cointegrating rank. The method is based on a variance-ratio
statistic and imposes the assumption that the processXt is non-stationary and the potential cointegrating
residual process is stationary with dv < 0.5 < d. Denote the demeaned process by Zt = Xt −Xt, where
Xt is the vector of arithmetic means of the component series. The fractionally integrated version of Zt
is denoted by Z̃t = ∆−εZt. Then the variance ratio is given by

KT (ε) = ATC
−1
T ,

with AT =

T∑
t=1

ZtZ
′
t, and CT =

T∑
t=1

Z̃tZ̃t.

Taking the ratio has the advantage of eliminating the processes’ variance from the asymptotic distribu-
tion. The eigenvalues of KT (ε) sorted in ascending order are denoted by δ̂a,K with a = 1, ..., p.

Similar to the spectral matrix G, the rank of KT (ε) is reduced to p−r under fractional cointegration.
This leads to a non-parametric trace statistic whose structure is similar to the trace statistic of Johansen
& Juselius (1990) in the parametric context

WNiel(ε) = T 2ε

p−r∑
k=1

δ̂k,K , r = 1, ..., p− 1, (15)

where r is the number of cointegrating relations under the null hypothesis. Using (15) the cointegrating
rank can be determined by a sequence of tests of the null hypothesis H0: r = r0 vs. H1: r > r0.

The limiting distribution is given by

WNiel(ε)
d→ tr

{∫ 1

0

Wn−r(d; s)Wn−r(d; s)′ds

(∫ 1

0

W̃n−r(d+ ε; s)W̃n−r(d+ ε; s)′ds

)−1
}
,
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where Wn−r(d, u) = Bn−rd (u)−
∫ 1

0
Bn−rd (v)dv, W̃n−r(d+ ε;u) = Bn−rd+ε (u)−

∫ u
0

(u−v)ε−1

Γ(ε) dv
∫ 1

0
Bn−rd+ε (v)dv,

Bn−rd is a n−r dimensional vector of mutually independent standard fractional Brownian motions of type
II, and the Brownian motions driving the fractional Brownian motions Bn−rd and Bn−rd+ε are identical.

This asymptotic distribution is non-standard and depends on the dimension p, the cointegrating rank
r, the order of fractional integration ε and d. In practice d can be estimated consistently, and the other
parameters are known. Critical values for d = 1, ε = 0.1, and p − r = 1, 2, ..., 8 are given by Nielsen
(2010), who recommends to use ε = 0.1 to integrate the process because it leads to higher power than
larger values whereas smaller values improve power slightly but lead to size distortions at the same time.
For more details confer Nielsen (2009). Note that choosing a different order of fractional summation
changes the limiting distribution which implies that the test performance is free from user-chosen tuning
parameters.

To see why this test can be considered to be residual-based, note that

δ̂a,K =
η̂a
′AT η̂a

η̂a
′CT η̂a

=

∑T
t=1 v̂

2
t∑T

t=1 ṽ
2
t

,

where η̂a denotes the eigenvector corresponding to the ath eigenvalue. Since the first r eigenvectors are
consistent estimates of the cointegrating space (cf. Theorem 3 in Nielsen (2010)), the first r eigenvalues
are thus given by the ratio of the sum of the squared cointegrating residuals and the sum of squares of
their ε times integrated version ṽt.

Here the squares are estimators of the respective process variances and it is assumed that d > 1/2 >

dv. Therefore, under the null hypothesis of no fractional cointegration the enumerator grows with rate
OP (T 2d) and the more persistent denominator grows with rate OP (T 2(d+ε)), so that the eigenvalue has
rate OP (T−2ε).

Under the alternative of fractional cointegration with dv < 1/2, the process vt is stationary so that
the process variance is finite and the enumerator grows with rate OP (T ). The denominator that may or
may not be stationary due to the integration with ε is OP (Tmax{1/2,d−b+ε}). Consequently, the eigenvalue
is OP (Tmin{0,1−2(d−b+ε)}), so that it goes to zero more slowly than under the null hypothesis.

The test is restrictive in that it requires non-stationary processes and, preferably, stationary residual
processes, but as shown by his Monte Carlo simulation the test still exhibits power if dv > 0.5 and b > 0.
Furthermore, it is applicable to multivariate systems and is able to estimate the number of cointegrating
relations.

Wang et al. (2015) propose a simple residual-based test in a bivariate setting, where Xt = (X1t, X2t)
′.

The test statistic is based on the partial sum of ∆dvZ2t, which is the demeaned second component series
fractionally differenced with the memory order of the potential cointegrating residual vt. It is given by

WWWC = T−1/2

∑T
t=1 ∆d̂vZ2t√
2πf̂22(0)

,

where f22 is the spectral density of either u2t or et in (3), depending on whether a triangular model or
a common-components model is assumed.

Under the null hypothesis dv = d so that ∆dvZ2t is I(0) and the appropriately rescaled sum is
asymptotically standard normal. Under the alternative ∆dvZ2t is I(b), so that the test statistic diverges
with rate OP (T b).

To make this test statistic feasible the spectral density f22 can be estimated from the periodogram
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of the fractionally differenced process ∆d̂Z2t following the approach of Hualde (2013):

f̂22(0) =
1

(2m+ 1)

m∑
j=−m

I∆d̂Z2
(λj),

where I∆d̂Z2
(λj) is the periodogram of ∆d̂Z2t.

While Wang et al. (2015) are agnostic about the method that is used for the estimation of the memory
parameters d and dv, they assume that d > 1/2 so that the cointegrating vector can be estimated using
ordinary least squares. The memory orders can then be estimated from v̂OLSt and Z2t using any of
the common semiparametric estimates such as ELW with bandwidth m as in f̂22 that fulfills the usual
bandwidth conditions.

The method does not impose any restrictions on the fractional cointegrating strength b. As the Monte
Carlo simulations below show, the non-stationarity requirement (d > 1/2) can be circumvented if the
cointegrating residual vt is based on the NBLS estimate of the cointegrating vector instead of the OLS
estimate.

Zhang et al. (2018) propose an alternative estimator of the cointegrating space that is based on the
eigenvectors of the non-negative matrix

M̂ =

j0∑
j=0

Ω̂Z(j)Ω̂Z(j)′,

where Ω̂Z(j) = 1
T

∑T−j
t=1 Zt+jZ

′
t is the autocovariance matrix at lag j and j0 is a fixed integer. The

matrix M̂ is thus the sum of the outer products of the first j0 autocovariance matrices with themselves.
The outer product is used instead of the covariance matrices Ω̂Z(j) to ensure that there is no information
cancellation over different lags in M̂ . It is assumed that d > 0.5 and dv < 0.5.

The eigenvalues of M̂ in descending order are denoted by δ̂a,M for a = 1, ..., p and the corresponding
eigenvectors are denoted by χ̂a,M . Similar to the matrix G in (1), the first p − r eigenvalues of M are
non-zero, whereas the remaining r are zero. For known r the eigenvectors corresponding to the r smallest
eigenvalues provide a consistent estimate of the cointegrating space.

If r is unknown, the p potential cointegrating residuals are estimated using the eigenvectors so that
v̂Mat = χ̂′a,MXt. By the same argument as in the procedure of Chen & Hurvich (2006), the residual
corresponding to the smallest eigenvalue is most likely a cointegrating residual with reduced memory of
dv = d− b and the residual corresponding to the largest eigenvalue is I(d).

The cointegrating rank can be estimated using a simple criterion based on the summed autocorrela-
tions of the potential cointegrating residuals. Define

Qa(k0) =

k0∑
k=1

ρ̂a(k),

with ρ̂a(k) =
1

T−k
∑T−k
t=1 (v̂Ma,t+k − v̂Mat )(v̂at − v̂Mat )′

1
T

∑T
t=1(v̂Mat − v̂Mat )2

,

where v̂Mat is the mean of v̂Mat . The cointegrating rank estimator counts the instances when the averaged
autocorrelation is smaller than a threshold c0 ∈ (0, 1):

r̂ZRY =

p∑
a=1

1

{
Qa(k0)

k0
< c0

}
. (16)
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If the residual v̂Mat is stationary (dv < 1/2), the rescaled sum of autocorrelations Qa(k0)/k0 converges to
zero asymptotically for k0 →∞, since the autocorrelations are asymptotically proportionate to k2dv−1.
Under certain regularity conditions this estimate is consistent. Even though the consistency is only
proven for r ≥ 1 in Theorem 4.2 of Zhang et al. (2018), our simulations below show that it also works
well in discriminating between r = 0 and r = 1.

It should be noted that the authors define r = p if all components of Xt are I(0). This leads to some
abuse of notation and r cannot be interpreted as the cointegrating rank in a narrow sense. Based on
their simulations Zhang et al. (2018) recommend to use j0 = 5, k0 = 20 and c0 = 0.3. The estimator is
easy to implement and applicable to higher dimensional processes. However, the requirement of d > 0.5

and dv < 0.5 is restrictive.

4 Monte Carlo Study

The asymptotic properties of all tests and rank estimates presented in Section 3 are derived by the
respective authors, and some of them also present simulations to explore the finite sample results of the
test statistics. This however is not the case for all tests and a comprehensive comparative study suited to
guide the choice of appropriate methods in practical applications is entirely missing. To close this gap,
we conduct an extensive Monte Carlo study. In addition to general results, we are particularly interested
in answering two empirically motivated questions.

i.) How does correlation between the underlying short-run components influence the size of the
tests? This question is particularly important, since applied researchers will generally want to test for
fractional cointegration if two related series seem to be co-moving. Similar trajectories however, can also
be generated by persistent processes with highly correlated innovations. Tests for the null hypothesis of
no fractional cointegration should therefore be robust to a relatively high degree of correlation between
the short-run components of the series.

ii.) Is there a notable difference in the power of the tests depending on whether the data is generated
from a triangular model or from a common-components model? Both models are used in the literature
to motivate and construct testing procedures, but to our knowledge simulation results are typically
based on the triangular representation. In practice, either model could be justified — depending on
the application. For example, if one is considered with potential fractional cointegrating relationships
between stock prices, it is not clear why one of the stock prices should be seen as a perturbed version of
the other one (as it is the case in the triangular model that treats the series in an asymmetric way) so
that the common-components model is more suitable. In contrast to that, in the case of the potential
parity between implied volatility and the expected average realized volatility over the next month (the so-
called implied-realized parity analyzed by Christensen & Prabhala (1998), Christensen & Nielsen (2006b),
and Nielsen (2007), among others), there is theoretical reason to assume that the implied volatility is
a perturbed version of the expected average future realized volatility, since it contains a variance-risk
premium (cf. Chernov (2007)). Therefore, a triangular model is more suitable.

We focus on three data generating processes (DGPs) based on the general model from equations (3)
to (5). For simplicity we set c1 = c2 = 0 and b = b1 = b2, so that the processes are mean zero and have
a common memory reduction parameter.

A simple bivariate model without fractional cointegration is constructed by setting ξ1 = ξ2 = 0. This
model - referred to as DGP1 - is given by

X1t = ∆du1t1{t > 0}, (17)

X2t = ∆du2t1{t > 0}, (18)
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where correlation between u1t and u2t is allowed. This is our size-DGP.
For the power simulations, we consider a triangular model and a common-components model. In

both cases we set ξ1 = ξ2 = 1, which implies a cointegrating vector of β = (1,−1)′.
The triangular model DGP2 is given by

X1t = Yt + ∆d−bu1t1{t > 0}, (19)

X2t = Yt, (20)

and the common-components model DGP3 is defined by

X1t = Yt + ∆d−bu1t1{t > 0}, (21)

X2t = Yt + ∆d−bu2t1{t > 0}. (22)

In both DGP2 and DGP3 we have Yt = ∆det1{t > 0}. The underlying short-run components u1t and
u2t, or u1t and et — depending on the DGP — have unit variance and correlation ρ.

We consider sample sizes of T ∈ {100, 500, 1000, 2500} and values of d ∈ {0.4, 0.7, 1} in the sta-
tionary and non-stationary region. Under fractional cointegration, the memory reduction b is linked to
the value of d so that b ∈ {d/3, d}. Consequently, there is either a memory reduction to 0 if b = d or
a weaker form of cointegration if b = d/3. In order to examine the impact of correlation between the
short-run components, we consider ρ ∈ {0, 0.45, 0.9, 0.99}.

The semiparametric nature of the tests and rank estimates requires several bandwidth choices. The
memory estimation with (E)LW estimators involved in all methods is based on the bandwidth m that
determines the number of frequencies included in the estimation. We use m = bT δmc with δm =

{0.65, 0.75} to account for sensitivities regarding bandwidth choice. With regard to the other bandwidth
choices, we follow the recommendations by the authors: m1 = bT δm−0.1c and p(T ) = m−0.3

1 for Nielsen
& Shimotsu (2007) or Robinson & Yajima (2002), l = 1 for Souza et al. (2018), m3 = 25 for Chen &
Hurvich (2006), c0 = 0.3, j0 = 5 and k0 = 20 for Zhang et al. (2018), and for Marmol & Velasco (2004)
we set m = bT 2/3c and m2 = bT δmc. All tests are carried out allowing for a non-zero mean.

The results presented are based on 5000 replications and a nominal significance level of α = 0.05.
Since the tests impose different conditions on d and dv, we mark the cells in the tables in gray where the
methods have well-defined asymptotic properties and are supposed to deliver good results. In some cases
the methods give satisfactory results beyond these limitations. For example, we implement the method
of Wang et al. (2015) using a NBLS estimate of the cointegrating vector instead of the OLS estimate.
This makes the test applicable in stationary time series as well as in non-stationary ones.

Since the limiting distributions of the non-pivotal test statistics of Marmol & Velasco (2004) and
Nielsen (2010) depend on d and it is assumed that d > 1/2, it is unclear which critical values would be
used in the stationary region. The respective fields are therefore left blank.

It should be noted that the methods of Nielsen & Shimotsu (2007) (or Robinson & Yajima (2002))
and Zhang et al. (2018) are not tests but rank estimates. Instead of the rejection frequency, we therefore
report the ratio of correctly estimated cointegrating ranks. Therefore, the results cannot be interpreted
as size or power and in the size table and graphs the estimates should yield 0 instead of 0.05.

Table 1 displays size results based on DGP 1 with δm = 0.75 and a nominal size level of 5%. The
methods that have well defined asymptotic properties across all parameter constellations covered in the
table are those of Nielsen & Shimotsu (2007), Chen & Hurvich (2006), Hualde & Velasco (2008), and
Souza et al. (2018). It can be observed that all of these methods achieve good size properties for ρ = 0,
except for the test of Chen & Hurvich (2006), when d = 0.4. If ρ increases, however, only the tests
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ρ 0 0.45 0.9 0.99
method T/d 0.4 0.7 1 0.4 0.7 1 0.4 0.7 1 0.4 0.7 1

NS07* 100 0.000 0.000 0.014 0.130 0.138 0.241 1.000 1.000 0.998 1.000 1.000 1.000
500 0.000 0.000 0.001 0.000 0.000 0.049 1.000 1.000 0.994 1.000 1.000 1.000
1000 0.000 0.000 0.000 0.000 0.000 0.021 1.000 1.000 0.989 1.000 1.000 1.000
2500 0.000 0.000 0.000 0.000 0.000 0.006 1.000 1.000 0.976 1.000 1.000 1.000

CH06 100 0.219 0.119 0.021 0.105 0.073 0.029 0.077 0.040 0.032 0.075 0.033 0.033
500 0.177 0.058 0.032 0.076 0.031 0.021 0.060 0.026 0.017 0.064 0.027 0.020
1000 0.136 0.051 0.031 0.064 0.025 0.018 0.045 0.018 0.018 0.046 0.020 0.017
2500 0.129 0.044 0.023 0.059 0.023 0.015 0.039 0.018 0.012 0.040 0.017 0.012

HV08 100 0.001 0.008 0.015 0.017 0.022 0.024 0.128 0.098 0.058 0.312 0.263 0.130
500 0.002 0.018 0.020 0.027 0.029 0.022 0.309 0.141 0.028 0.764 0.440 0.098
1000 0.003 0.023 0.022 0.039 0.029 0.021 0.399 0.128 0.028 0.805 0.501 0.076
2500 0.003 0.027 0.022 0.060 0.035 0.021 0.494 0.140 0.024 0.835 0.535 0.057

SRFB18 100 0.114 0.117 0.101 0.107 0.111 0.110 0.112 0.121 0.114 0.109 0.115 0.105
500 0.054 0.054 0.049 0.049 0.052 0.052 0.046 0.055 0.046 0.056 0.052 0.045
1000 0.041 0.047 0.042 0.043 0.043 0.040 0.044 0.047 0.048 0.045 0.043 0.044
2500 0.037 0.039 0.029 0.035 0.037 0.037 0.036 0.036 0.034 0.033 0.035 0.035

R08 100 0.174 0.183 0.092 0.050 0.059 0.066 0.036 0.048 0.039 0.042 0.045 0.039
500 0.233 0.254 0.104 0.049 0.080 0.063 0.052 0.066 0.041 0.049 0.062 0.043
1000 0.239 0.275 0.090 0.053 0.080 0.064 0.051 0.076 0.046 0.057 0.074 0.042
2500 0.265 0.304 0.084 0.055 0.094 0.056 0.054 0.084 0.039 0.050 0.084 0.040

WWC15 100 0.080 0.095 0.090 0.079 0.087 0.094 0.081 0.096 0.098 0.078 0.091 0.094
500 0.069 0.068 0.075 0.068 0.068 0.074 0.065 0.074 0.074 0.072 0.072 0.068
1000 0.066 0.064 0.067 0.069 0.062 0.066 0.065 0.056 0.067 0.055 0.060 0.068
2500 0.057 0.059 0.056 0.059 0.052 0.061 0.060 0.057 0.059 0.055 0.049 0.061

ZRY18* 100 0.101 0.644 0.652 0.071 0.597 0.627 0.057 0.560 0.573 0.062 0.565 0.576
500 0.401 0.058 0.000 0.288 0.043 0.000 0.270 0.036 0.000 0.281 0.030 0.000
1000 0.548 0.000 0.000 0.410 0.000 0.000 0.408 0.000 0.000 0.401 0.000 0.000
2500 0.677 0.000 0.000 0.517 0.000 0.000 0.505 0.000 0.000 0.510 0.000 0.000

N10 100 0.035 0.059 0.041 0.061 0.053 0.053 0.058 0.063
500 0.048 0.055 0.048 0.052 0.064 0.057 0.060 0.055
1000 0.057 0.056 0.056 0.055 0.070 0.060 0.064 0.055
2500 0.067 0.054 0.078 0.056 0.078 0.056 0.076 0.053

MV04 100 0.034 0.057 0.036 0.066 0.104 0.101 0.332 0.219
500 0.041 0.052 0.047 0.056 0.158 0.092 0.496 0.234
1000 0.039 0.052 0.047 0.055 0.141 0.081 0.490 0.224
2500 0.036 0.052 0.045 0.056 0.127 0.069 0.442 0.197

Table 1: Size (*rank estimation) based on DGP1 with δm = 0.75. We abbreviate the methods with the
initial letters of the authors’ names and the year of publication.

of Souza et al. (2018) and Chen & Hurvich (2006) do not over-reject.3 For low values of d the test of
Hualde & Velasco (2008) already becomes oversized for ρ = 0.45 and as ρ increases it becomes oversized
for higher values of d, too. The rank estimation procedure of Robinson & Yajima (2002) and Nielsen
& Shimotsu (2007) is even more affected and estimates a cointegrating rank of one in nearly all cases if
ρ ≥ 0.9.

In addition to the tests of Souza et al. (2018) and Chen & Hurvich (2006), the modified version
of the test by Wang et al. (2015) that is based on the NBLS estimator instead of OLS also maintains

3The test of Chen & Hurvich (2006) is conservative by construction as discussed in the previous section.
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Figure 1: Size (*rank estimation) based on DGP1 depending on correlation ρ ∈ {0, 0.99} and bandwidth
δm ∈ {0.65, 0.75} with T = 1000.

satisfactory size properties across all values of ρ and d.
The group of procedures that is only applicable to non-stationary systems consists of Marmol &

Velasco (2004), Nielsen (2010), and Zhang et al. (2018). It can be observed that the procedure of
Marmol & Velasco (2004) behaves similar to that of Hualde & Velasco (2008) in the sense that it is very
liberal for higher values of ρ and lower values of d. Zhang et al. (2018) estimate the cointegrating rank
based on the mean autocorrelation of the residuals under the assumption that the original processes are
non-stationary and the residual process is stationary. For non-stationary series and larger sample sizes
the procedure correctly estimates the cointegrating rank to be zero — independently of the degree of
correlation. The variance-ratio statistic of Nielsen (2010) turns out to be slightly liberal for d = 0.7 in
larger samples, but this effect is independent of the degree of correlation.

Finally, the test of Robinson (2008a) is only applicable for stationary systems. Here, it can be
observed that the test does not hold its size for ρ = 0. This is because the Hausman-testing principle
requires one of the estimates of the memory parameter to be more efficient than the other one, but the
multivariate estimate is not more efficient in absence of correlation. For other values of ρ, however, the
test has good size properties. Interestingly, the test also has good size properties if d = 1, even though
it assumes stationarity. The intermediate value of d = 0.7, on the other hand, leads to a moderately
oversized test.

Figure 1 analyzes the interaction between the degree of correlation ρ and the choice of the bandwidth
δm. It shows the size of the tests in scatterplots where the results with high correlation (ρ = 0.99)
are plotted against results with no correlation (ρ = 0). On the left-hand side only tests that allow for
stationary processes (with d = 0.4) and on the right-hand side (where d = 1) the non-stationarity-robust
tests, i.e. all except that of Robinson (2008a) are displayed. The dashed lines mark the nominal size level
of 0.05, so that ideally all points would lie on the intersection between these two lines. The dotted line
is the bisector implying that methods above the bisector do better with correlation and methods below
the bisector do better without. Black symbols give results with a bandwidth parameter of δm = 0.75

and gray symbols with δm = 0.65.
Overall, it can be observed that the bandwidth choice has a limited effect on the performance of the

procedures. A notable exception is the test by Wang et al. (2015), where the size improves considerably
as the bandwidth is increased. In general, correlation in the underlying short-run component is mistaken
for cointegration more often in stationary systems than in non-stationary ones.

As a robustness check for the finite sample analysis of the size properties conducted here, we consider
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two alternative size DGPs in Tables 4 and 5 in the appendix. These results are obtained from DPG2
and DGP3 where we set b = 0, so that the time series are not cointegrated. In this case, the processes
share a common trend Yt, but the linear combination vt = X1t − X2t does not have reduced memory
so that the definition of cointegration is not fulfilled. The results show that the tests that are already
heavily affected by correlation show even more distorted size results if there is a common component in
the DGP. The general picture, however, remains unaffected.

Overall, in terms of size for bivariate systems and taking the range of admissible parameter values
into account, we find that the test of Souza et al. (2018) has the best performance, followed by those of
Chen & Hurvich (2006) and Wang et al. (2015).

To analyze the power of the procedures, we focus on the triangular representation in DGP2 with
b = d so that the memory reduces to zero in the cointegrating relation. Again δm is set to 0.75. The
results are shown in Table 2. In the following, we focus on the results for parameter constellations for
which the tests have reasonable size properties. It should be noted that the procedure of Marmol &
Velasco (2004) is not theoretically justified for any of the parameter constellations considered, since it
assumes that the series are non-stationary, and dv > 1/2.

It can be seen that the rank estimate of Nielsen & Shimotsu (2007) correctly identifies the presence
of fractional cointegration even in relatively small samples. Since the estimate works well under the null
hypothesis if ρ is low, it clearly outperforms its competitors in this situation. The power of the test of
Hualde & Velasco (2008) is also high, but it suffers from similar size issues in case of strongly correlated
short-run components.

Among the tests that are more widely applicable the approach of Souza et al. (2018) generates higher
power than that of Wang et al. (2015) (except for ρ = 0.99), which in turn outperforms the approach of
Chen & Hurvich (2006). Furthermore, it can be seen that the test of Souza et al. (2018) also outperforms
more restrictive approaches such as those of Robinson (2008a) and Nielsen (2010). For the test of Chen &
Hurvich (2006) we can observe that the power is lower for d = 0.7 than for other values of d. Furthermore,
the power becomes non-monotonic in T in some cases. This effect is likely to be caused by the fact that
the order of differentiation required may be estimated incorrectly for intermediate values of d. The
approach of Zhang et al. (2018) performs similar to that of Nielsen (2010).

With regard to the test of Robinson (2008a), it is noteworthy that the power is considerably lower
for ρ = 0.9 than it is for ρ = 0.45 or ρ = 0.99. Further simulation results on this V-shaped dependence
pattern between the power of the test and ρ (not reported here) show that the test has no power if
ρ = 0.8 and its power is very low in a neighborhood of this point. The size of this neighborhood shrinks
to zero as the sample size increases.

The test of Marmol & Velasco (2004) develops good power for non-stationary values of d, even though
its theoretical properties are not derived under this alternative.

Overall, we find that the rank estimation of Nielsen & Shimotsu (2007) performs best in identifying
the correct order of fractional cointegration if the correlation between the series is low. Among the more
broadly applicable methods the test of Souza et al. (2018) clearly performs best in terms of size and
power.

The same experiment is repeated for a weakly cointegrated scenario where we set b = d/3. In this
case the test of Marmol & Velasco (2004) becomes applicable for d = 1 and those of Nielsen (2010) and
Zhang et al. (2018) are no longer applicable for d = 1. Table 6 in the appendix shows the results. It
can be seen that the general ordering of the tests in terms of power remains the same in the weakly
cointegrated case.

Both tables so far are generated based on the triangular model (DGP2), but we are also interested in
the performance based on the common-components model (DGP3). Those results are displayed in Table
3. It can be seen that there is a number of striking differences in the relative performance of the tests.
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ρ 0 0.45 0.9 0.99
method T/d 0.4 0.7 1 0.4 0.7 1 0.4 0.7 1 0.4 0.7 1

dv 0 0 0 0 0 0 0 0 0 0 0 0

NS07* 100 0.989 0.998 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
500 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2500 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

CH06 100 0.556 0.349 0.337 0.317 0.291 0.110 0.046 0.205 0.020 0.007 0.179 0.010
500 0.998 0.443 1.000 0.991 0.179 1.000 0.999 0.081 1.000 1.000 0.071 1.000
1000 1.000 0.811 1.000 1.000 0.518 1.000 1.000 0.277 1.000 1.000 0.241 1.000
2500 1.000 0.998 1.000 1.000 0.972 1.000 1.000 0.869 1.000 1.000 0.833 1.000

HV08 100 0.788 0.989 1.000 0.882 0.998 1.000 0.958 1.000 1.000 0.959 1.000 1.000
500 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2500 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

SRFB18 100 0.720 0.976 0.999 0.709 0.982 0.999 0.642 0.928 0.993 0.259 0.586 0.914
500 0.993 1.000 1.000 0.994 1.000 1.000 0.983 1.000 1.000 0.794 0.961 0.993
1000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.949 0.994 0.999
2500 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 1.000 1.000

R08 100 0.044 0.245 0.572 0.009 0.023 0.200 0.049 0.060 0.065 0.671 0.463 0.147
500 0.870 1.000 1.000 0.368 0.869 0.998 0.202 0.239 0.454 1.000 0.957 0.599
1000 0.997 1.000 1.000 0.799 0.999 1.000 0.347 0.343 0.573 1.000 0.991 0.709
2500 1.000 1.000 1.000 0.999 1.000 1.000 0.576 0.486 0.707 1.000 1.000 0.804

WWC15 100 0.634 0.896 0.966 0.618 0.887 0.970 0.426 0.855 0.965 0.307 0.832 0.959
500 0.829 0.967 0.993 0.807 0.968 0.994 0.694 0.961 0.993 0.630 0.956 0.995
1000 0.867 0.982 0.998 0.850 0.979 0.998 0.763 0.977 0.997 0.695 0.978 0.997
2500 0.917 0.992 0.998 0.896 0.988 0.999 0.817 0.990 0.999 0.787 0.990 0.999

ZRY18* 100 0.020 0.403 0.797 0.007 0.339 0.780 0.006 0.289 0.770 0.008 0.289 0.764
500 0.082 0.983 1.000 0.032 0.974 1.000 0.016 0.953 1.000 0.010 0.954 1.000
1000 0.119 1.000 1.000 0.042 1.000 1.000 0.011 0.998 1.000 0.011 0.998 1.000
2500 0.200 1.000 1.000 0.049 1.000 1.000 0.013 1.000 1.000 0.007 1.000 1.000

N10 100 0.431 0.978 0.356 0.965 0.270 0.950 0.262 0.954
500 0.996 1.000 0.988 1.000 0.981 1.000 0.974 1.000
1000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2500 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

MV04 100 0.481 0.974 0.748 0.994 0.854 0.998 0.866 0.999
500 0.985 1.000 0.993 1.000 0.997 1.000 0.997 1.000
1000 0.997 1.000 0.999 1.000 1.000 1.000 1.000 1.000
2500 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Table 2: Power (*rank estimation) with b = d and δm = 0.75 for the triangular model (DGP2).

For low values of d, the rank estimation procedure of Nielsen & Shimotsu (2007)/Robinson & Yajima
(2002) loses precision. At the same time, the test of Chen & Hurvich (2006) becomes more powerful, so
that overall the two procedures become comparable in terms of their ability to identify the correct rank.
Unfortunately, the non-monotonicity of the test of Chen & Hurvich (2006) for intermediate values of d
becomes even more apparent.

The test of Souza et al. (2018) still performs relatively well - especially for larger values of d. The
same holds true for that of Wang et al. (2015) which reaches a relatively high power in smaller samples
but approaches 1 only slowly.
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ρ 0 0.45 0.9 0.99
method T/d 0.4 0.7 1 0.4 0.7 1 0.4 0.7 1 0.4 0.7 1

dv 0 0 0 0 0 0 0 0 0 0 0 0

NS07* 100 0.624 0.866 0.968 0.993 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000
500 0.658 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1000 0.688 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2500 0.803 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

CH06 100 0.646 0.912 0.696 0.599 0.896 0.628 0.530 0.872 0.547 0.532 0.873 0.524
500 0.995 0.756 1.000 0.991 0.661 1.000 0.985 0.611 0.999 0.981 0.592 1.000
1000 1.000 0.783 1.000 1.000 0.592 1.000 1.000 0.437 1.000 1.000 0.423 1.000
2500 1.000 0.988 1.000 1.000 0.950 1.000 1.000 0.871 1.000 1.000 0.847 1.000

HV08 100 0.172 0.711 0.986 0.387 0.875 0.994 0.725 0.977 1.000 0.887 0.995 1.000
500 0.883 1.000 1.000 0.986 1.000 1.000 0.999 1.000 1.000 1.000 1.000 1.000
1000 0.994 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2500 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

SRFB18 100 0.366 0.775 0.979 0.417 0.837 0.986 0.467 0.868 0.990 0.474 0.874 0.990
500 0.800 1.000 1.000 0.856 1.000 1.000 0.895 1.000 1.000 0.904 1.000 1.000
1000 0.964 1.000 1.000 0.983 1.000 1.000 0.992 1.000 1.000 0.991 1.000 1.000
2500 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

R08 100 0.109 0.533 0.860 0.054 0.368 0.770 0.018 0.183 0.601 0.013 0.158 0.573
500 0.950 1.000 1.000 0.904 1.000 1.000 0.837 1.000 1.000 0.816 1.000 1.000
1000 0.999 1.000 1.000 0.999 1.000 1.000 0.996 1.000 1.000 0.996 1.000 1.000
2500 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

WWC15 100 0.391 0.769 0.933 0.477 0.798 0.939 0.500 0.835 0.939 0.509 0.833 0.942
500 0.634 0.928 0.989 0.688 0.942 0.988 0.733 0.943 0.989 0.742 0.945 0.990
1000 0.721 0.959 0.992 0.761 0.968 0.994 0.806 0.966 0.990 0.802 0.970 0.993
2500 0.807 0.979 0.997 0.826 0.982 0.997 0.856 0.983 0.999 0.873 0.982 0.998

ZRY18* 100 0.015 0.363 0.785 0.010 0.347 0.770 0.005 0.308 0.754 0.006 0.300 0.756
500 0.045 0.978 1.000 0.029 0.966 1.000 0.016 0.958 1.000 0.014 0.955 1.000
1000 0.072 1.000 1.000 0.035 0.999 1.000 0.017 0.999 1.000 0.014 0.998 1.000
2500 0.091 1.000 1.000 0.042 1.000 1.000 0.018 1.000 1.000 0.015 1.000 1.000

N10 100 0.151 0.879 0.175 0.887 0.202 0.881 0.201 0.874
500 0.962 1.000 0.965 1.000 0.966 1.000 0.967 1.000
1000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2500 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

MV04 100 0.162 0.439 0.141 0.611 0.297 0.919 0.548 0.975
500 0.217 0.999 0.553 1.000 0.911 1.000 0.953 1.000
1000 0.491 1.000 0.872 1.000 0.992 1.000 0.993 1.000
2500 0.952 1.000 0.996 1.000 1.000 1.000 1.000 1.000

Table 3: Power (*rank estimation) with b = d and δm = 0.75 with the common-component model
(DGP3).

With respect to the other tests, it can be seen that the variance ratio approach of Nielsen (2010)
needs larger samples to develop power, but the test of Hualde & Velasco (2008) has very good power
properties — also for low values of ρ where it maintains its size. The procedure of Zhang et al. (2018)
turns out to perform better than that of Nielsen (2010) in very small samples.

As for the triangular model, the same analysis is repeated for a weakly cointegrated common-
components model where b = d/3. The results are shown in Table 7 in the appendix. As before,
the general ordering remains the same. However, it can be seen that the non-monotonicity of the Chen
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Figure 2: Power (*rank estimation) depending on model specification (DGP2 or DGP3) and bandwidth
δm ∈ {0.65, 0.75} with T = 1000, ρ = 0.45, and b = d/3.

& Hurvich (2006) test for d = 0.7 disappears. This means the appearance of the effect depends on the
cointegrating strength. In addition to that, the rank estimation procedure of Nielsen & Shimotsu (2007)
completely loses its ability to identify the cointegrating relationship for low values of ρ.

To analyze the effect of the bandwidth choice on the power of the procedures, we conduct a similar
analysis to that for the size in Figure 2. As before, black symbols represent results with δm = 0.75 and
gray symbols represent δm = 0.65. The values of d and b are selected so that the power of the procedures
tends to be low and changes in their behavior are easier to identify. While an increase of the bandwidth
leads to a considerable power gain for the tests of Chen & Hurvich (2006), Robinson (2008a), and Souza
et al. (2018), the approaches of Marmol & Velasco (2004), Hualde & Velasco (2008) and Nielsen &
Shimotsu (2007) have higher power with a smaller bandwidth — at least in the common-components
model. This, however, might be due to the larger size distortions visible in Figure 1. The performance of
the other approaches of Nielsen (2010) and Wang et al. (2015) is relatively independent of the bandwidth
choice. For the test of Nielsen (2010) this is explained by the fact that the bandwidth only influences the
estimate of d that determines the correct set of critical values. The test statistic itself does not depend
on the bandwidth.

To explore the behavior of the tests in higher dimensional systems, we conduct another set of sim-
ulations in a triangular system of dimension p = 3 to determine the size, the power and the precision
of estimates of the cointegrating rank r. The results are shown in Tables 8, 9 and 10 in the appendix.
In general, it can be seen that general patterns observed for p = 2 are magnified. For example, the
test of Chen & Hurvich (2006) becomes oversized in stationary systems also if the series are correlated.
Noteworthy is that the test of Robinson (2008a) shows very good size properties across all sample sizes,
but requires larger sample sizes to accurately estimate the rank if r > 0, and it does overestimate the
rank if r = 1 and ρ = 0.99. Furthermore, in larger samples of T = 1000 or more the rank estimation
procedure of Zhang et al. (2018) shows a very good performance for all values of r.

Overall, in the bivariate setup we find that the methods of Robinson & Yajima (2002) and Hualde &
Velasco (2008) have the highest power but they have size issues in case of strongly correlated short-run
components. The test of Souza et al. (2018) tends to have the best power among the methods that
have satisfactory size properties across all scenarios. In stationary systems with common components
the test of Chen & Hurvich (2006) also has good power properties. For p = 3, where the test of Souza
et al. (2018) is no longer applicable and that of Chen & Hurvich (2006) becomes liberal in stationary
(triangular) systems, especially the rank estimation procedure of Zhang et al. (2018) for non-stationary
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systems can be recommended due to its robustness.

5 Conclusion

This review is written with the objective to provide guidance for the selection of methods in practical
applications. We judge the methods based on i.) the range of values of d and b that are allowed,
ii.) the ability to distinguish correctly between common trends and correlated innovations, and iii.) the
performance across different DGPs — namely triangular systems as well as common-components models.

Based on our Monte Carlo studies, we find that some of the proposed approaches have weaknesses in
their finite sample behavior in some empirically relevant scenarios — especially in presence of correlated
short-run components. This concerns mostly the methods of Nielsen & Shimotsu (2007) (or Robinson &
Yajima (2002)), Marmol & Velasco (2004), and Hualde & Velasco (2008). With regard to iii.), we find
that the size properties of the tests in the triangular case and the common-components model is generally
comparable. For the power of the tests, however, there are important differences between the two cases.
In particular, the test of Chen & Hurvich (2006) has much better power for stationary systems under
the common components specification, whereas the methods of Robinson & Yajima (2002) and Hualde
& Velasco (2008) become worse in their ability to detect fractional cointegration.

Overall, we conclude that the test of Souza et al. (2018) for bivariate systems has the best properties,
both theoretically and empirically, and is a good choice for the applied econometrician. It allows for
the whole empirically relevant range of d and b, it is robust to correlation, and it provides comparable
performance in both — triangular systems and common-components models.

Although the methods of Robinson (2008a), Nielsen (2010), and Zhang et al. (2018) turn out to be
robust to short-run correlation and are appealing due to their simplicity, they impose practically relevant
restrictions on the permissible range of d and b, and they are outperformed by their competitors in terms
of power in bivariate systems.

In higher dimensional systems, however, the test of Souza et al. (2018) is no longer applicable and that
of Chen & Hurvich (2006) turns out to be liberal in finite samples from stationary processes. Here the
test of Robinson (2008a) can be recommended for stationary processes and the rank estimation procedure
of Zhang et al. (2018) should be preferred for non-stationary systems if the cointegrating residuals can
be expected to be stationary.
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Appendix

model triangular common component noise
method T/d 0.4 0.7 1 0.4 0.7 1 0.4 0.7 1

NS07* 100 1.000 0.999 0.985 0.924 0.920 0.849 0.133 0.133 0.240
500 1.000 1.000 0.963 0.712 0.684 0.644 0.000 0.000 0.049
1000 1.000 1.000 0.937 0.335 0.345 0.448 0.000 0.000 0.027
2500 1.000 1.000 0.883 0.009 0.013 0.241 0.000 0.000 0.008

CH06 100 0.076 0.049 0.035 0.089 0.048 0.028 0.093 0.087 0.027
500 0.057 0.022 0.018 0.058 0.026 0.020 0.081 0.036 0.025
1000 0.049 0.021 0.016 0.054 0.020 0.017 0.068 0.029 0.016
2500 0.040 0.017 0.016 0.043 0.020 0.013 0.050 0.025 0.020

HV08 100 0.137 0.113 0.099 0.088 0.091 0.079 0.030 0.052 0.059
500 0.251 0.121 0.072 0.130 0.078 0.062 0.041 0.048 0.053
1000 0.334 0.133 0.065 0.186 0.075 0.062 0.051 0.054 0.060
2500 0.413 0.121 0.057 0.238 0.077 0.057 0.069 0.052 0.054

SRFB18 100 0.108 0.113 0.143 0.115 0.114 0.140 0.112 0.119 0.146
500 0.050 0.054 0.067 0.054 0.057 0.072 0.053 0.051 0.072
1000 0.039 0.047 0.055 0.041 0.046 0.065 0.045 0.046 0.059
2500 0.030 0.038 0.052 0.034 0.033 0.049 0.034 0.041 0.051

R08 100 0.044 0.045 0.040 0.038 0.050 0.039 0.053 0.059 0.075
500 0.050 0.066 0.038 0.045 0.069 0.047 0.053 0.078 0.053
1000 0.050 0.070 0.040 0.055 0.072 0.046 0.054 0.080 0.056
2500 0.048 0.082 0.043 0.052 0.090 0.048 0.056 0.091 0.056

WWC15 100 0.077 0.090 0.095 0.083 0.093 0.095 0.082 0.092 0.099
500 0.070 0.078 0.075 0.065 0.073 0.077 0.064 0.071 0.079
1000 0.059 0.064 0.073 0.056 0.068 0.064 0.066 0.064 0.069
2500 0.056 0.059 0.057 0.060 0.054 0.061 0.053 0.061 0.060

ZRY18* 100 0.061 0.565 0.577 0.067 0.564 0.594 0.068 0.591 0.615
500 0.295 0.029 0.000 0.281 0.032 0.000 0.281 0.039 0.000
1000 0.413 0.000 0.000 0.407 0.000 0.000 0.401 0.000 0.000
2500 0.511 0.000 0.000 0.503 0.000 0.000 0.526 0.000 0.000

N10 100 0.055 0.063 0.046 0.059 0.044 0.057
500 0.050 0.054 0.056 0.058 0.046 0.057
1000 0.062 0.056 0.063 0.057 0.056 0.056
2500 0.073 0.054 0.071 0.063 0.068 0.052

MV04 100 0.081 0.082 0.053 0.068 0.036 0.067
500 0.132 0.080 0.084 0.067 0.051 0.062
1000 0.117 0.067 0.073 0.061 0.040 0.057
2500 0.093 0.062 0.068 0.052 0.044 0.049

Table 4: Size (*rank estimation) with DGP2 (b = 0), DGP3 (b = 0), DGP1, ρ = 0.45, and δm = 0.75.
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model triangular common components noise
method T/d 0.4 0.7 1 0.4 0.7 1 0.4 0.7 1

NS07* 100 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.997
500 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.994
1000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.990
2500 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.976

CH06 100 0.075 0.036 0.032 0.078 0.035 0.028 0.078 0.041 0.035
500 0.052 0.023 0.018 0.057 0.022 0.019 0.051 0.027 0.021
1000 0.046 0.021 0.016 0.056 0.024 0.018 0.053 0.019 0.013
2500 0.040 0.018 0.012 0.037 0.019 0.013 0.045 0.017 0.012

HV08 100 0.318 0.249 0.164 0.235 0.183 0.122 0.165 0.135 0.106
500 0.630 0.336 0.110 0.491 0.226 0.091 0.349 0.156 0.076
1000 0.693 0.352 0.098 0.584 0.251 0.074 0.418 0.164 0.063
2500 0.753 0.385 0.077 0.655 0.257 0.066 0.517 0.169 0.059

SRFB18 100 0.103 0.123 0.131 0.109 0.122 0.132 0.114 0.119 0.138
500 0.057 0.053 0.078 0.052 0.057 0.070 0.052 0.052 0.069
1000 0.043 0.047 0.057 0.043 0.046 0.064 0.043 0.040 0.058
2500 0.036 0.036 0.049 0.035 0.044 0.051 0.035 0.039 0.052

R08 100 0.044 0.043 0.035 0.045 0.045 0.040 0.044 0.045 0.040
500 0.048 0.066 0.039 0.052 0.061 0.044 0.049 0.068 0.035
1000 0.052 0.072 0.041 0.052 0.074 0.035 0.054 0.072 0.043
2500 0.054 0.084 0.041 0.047 0.090 0.042 0.049 0.082 0.043

WWC15 100 0.080 0.099 0.095 0.080 0.094 0.098 0.080 0.090 0.095
500 0.065 0.071 0.076 0.069 0.073 0.070 0.071 0.074 0.078
1000 0.064 0.061 0.067 0.064 0.067 0.074 0.062 0.063 0.067
2500 0.060 0.059 0.065 0.055 0.053 0.069 0.055 0.059 0.057

ZRY18* 100 0.062 0.549 0.566 0.064 0.557 0.577 0.066 0.548 0.565
500 0.282 0.031 0.000 0.277 0.026 0.000 0.285 0.035 0.000
1000 0.400 0.000 0.000 0.418 0.000 0.000 0.400 0.000 0.000
2500 0.529 0.000 0.000 0.513 0.000 0.000 0.512 0.000 0.000

N10 100 0.056 0.063 0.049 0.059 0.055 0.069
500 0.060 0.059 0.050 0.060 0.053 0.064
1000 0.064 0.056 0.061 0.057 0.059 0.052
2500 0.071 0.050 0.080 0.048 0.069 0.052

MV04 100 0.222 0.153 0.159 0.126 0.103 0.100
500 0.344 0.150 0.232 0.117 0.157 0.092
1000 0.321 0.148 0.231 0.107 0.145 0.078
2500 0.298 0.123 0.197 0.096 0.130 0.070

Table 5: Size (*rank estimation) with DGP2 (b = 0), DGP3 (b = 0), DGP1, ρ = 0.9, and δm = 0.75.
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ρ 0 0.45 0.9 0.99
method T/d 0.4 0.7 1 0.4 0.7 1 0.4 0.7 1 0.4 0.7 1

dv 0.267 0.467 0.667 0.267 0.467 0.667 0.267 0.467 0.667 0.267 0.467 0.667

NS07* 100 0.946 0.973 0.991 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
500 0.921 0.995 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1000 0.848 0.994 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2500 0.585 0.998 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

CH06 100 0.163 0.091 0.179 0.132 0.048 0.075 0.076 0.023 0.010 0.009 0.030 0.003
500 0.347 0.353 0.868 0.258 0.178 0.660 0.345 0.057 0.404 0.771 0.025 0.284
1000 0.524 0.718 0.990 0.401 0.487 0.947 0.645 0.302 0.924 0.995 0.292 0.953
2500 0.815 0.983 1.000 0.728 0.925 1.000 0.961 0.918 1.000 1.000 0.932 1.000

HV08 100 0.192 0.354 0.433 0.342 0.585 0.679 0.649 0.944 0.962 0.863 0.988 0.991
500 0.691 0.883 0.926 0.872 0.987 0.990 0.976 1.000 1.000 0.992 1.000 1.000
1000 0.888 0.979 0.992 0.971 0.999 1.000 0.997 1.000 1.000 0.999 1.000 1.000
2500 0.991 1.000 1.000 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

SRFB18 100 0.246 0.432 0.600 0.250 0.431 0.605 0.236 0.377 0.621 0.162 0.208 0.605
500 0.352 0.748 0.952 0.352 0.766 0.957 0.349 0.715 0.967 0.247 0.449 0.942
1000 0.506 0.926 0.999 0.491 0.924 0.997 0.488 0.901 0.997 0.364 0.668 0.991
2500 0.774 0.997 1.000 0.784 0.999 1.000 0.766 0.996 1.000 0.666 0.909 1.000

R08 100 0.018 0.017 0.029 0.017 0.012 0.012 0.027 0.025 0.017 0.252 0.354 0.141
500 0.095 0.391 0.765 0.046 0.157 0.479 0.029 0.055 0.224 0.880 0.948 0.448
1000 0.244 0.746 0.980 0.109 0.384 0.810 0.030 0.091 0.383 0.990 0.995 0.600
2500 0.596 0.985 1.000 0.337 0.803 0.990 0.034 0.180 0.560 1.000 1.000 0.748

WWC15 100 0.225 0.401 0.557 0.244 0.419 0.565 0.194 0.420 0.640 0.081 0.421 0.644
500 0.350 0.579 0.750 0.326 0.595 0.759 0.328 0.663 0.828 0.279 0.737 0.863
1000 0.380 0.647 0.810 0.383 0.652 0.810 0.375 0.755 0.872 0.363 0.808 0.898
2500 0.458 0.712 0.847 0.461 0.737 0.865 0.461 0.825 0.909 0.456 0.873 0.925

ZRY18* 100 0.026 0.442 0.738 0.020 0.395 0.720 0.016 0.379 0.723 0.017 0.363 0.736
500 0.097 0.626 0.053 0.069 0.626 0.052 0.053 0.623 0.052 0.051 0.606 0.046
1000 0.123 0.348 0.001 0.093 0.359 0.000 0.066 0.357 0.001 0.065 0.340 0.000
2500 0.189 0.062 0.000 0.134 0.057 0.000 0.087 0.063 0.000 0.072 0.058 0.000

N10 100 0.115 0.215 0.122 0.220 0.013 0.134 0.302 0.172 0.404
500 0.303 0.355 0.297 0.372 0.438 0.531 0.598 0.680
1000 0.468 0.414 0.474 0.412 0.678 0.614 0.855 0.732
2500 0.706 0.463 0.715 0.469 0.906 0.685 0.983 0.806

MV04 100 0.139 0.368 0.328 0.580 0.664 0.865 0.789 0.948
500 0.644 0.861 0.882 0.963 0.990 1.000 0.996 1.000
1000 0.861 0.968 0.974 0.996 0.998 1.000 1.000 1.000
2500 0.984 0.999 0.999 1.000 1.000 1.000 1.000 1.000

Table 6: Power (*rank estimation) under with b = d/3 and δm = 0.75 for the triangular model (DGP2).
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ρ 0 0.45 0.9 0.99
method T/d 0.4 0.7 1 0.4 0.7 1 0.4 0.7 1 0.4 0.7 1

dv 0.267 0.467 0.667 0.267 0.467 0.667 0.267 0.467 0.667 0.267 0.467 0.667

NS07* 100 0.347 0.490 0.707 0.963 0.984 0.994 1.000 1.000 1.000 1.000 1.000 1.000
500 0.017 0.147 0.661 0.951 0.995 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1000 0.000 0.029 0.636 0.895 0.998 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2500 0.000 0.000 0.599 0.664 0.998 1.000 1.000 1.000 1.000 1.000 1.000 1.000

CH06 100 0.221 0.251 0.298 0.181 0.212 0.288 0.171 0.153 0.262 0.154 0.150 0.259
500 0.389 0.481 0.903 0.317 0.345 0.875 0.288 0.268 0.837 0.267 0.245 0.822
1000 0.539 0.715 0.994 0.461 0.595 0.987 0.393 0.454 0.978 0.394 0.443 0.980
2500 0.805 0.981 1.000 0.723 0.956 1.000 0.649 0.905 1.000 0.632 0.896 1.000

HV08 100 0.042 0.080 0.151 0.101 0.170 0.239 0.317 0.418 0.511 0.548 0.661 0.757
500 0.130 0.237 0.479 0.353 0.533 0.698 0.745 0.892 0.946 0.926 0.976 0.993
1000 0.215 0.431 0.731 0.523 0.777 0.895 0.856 0.981 0.995 0.960 0.996 1.000
2500 0.423 0.796 0.965 0.786 0.975 0.995 0.963 1.000 1.000 0.991 1.000 1.000

SRFB18 100 0.167 0.204 0.324 0.149 0.241 0.356 0.171 0.256 0.395 0.170 0.248 0.402
500 0.134 0.326 0.663 0.151 0.387 0.721 0.170 0.456 0.774 0.170 0.454 0.782
1000 0.159 0.489 0.889 0.185 0.580 0.919 0.218 0.635 0.943 0.225 0.649 0.952
2500 0.262 0.805 0.996 0.322 0.875 1.000 0.385 0.916 1.000 0.402 0.930 1.000

R08 100 0.021 0.035 0.060 0.018 0.017 0.032 0.016 0.010 0.013 0.016 0.008 0.013
500 0.132 0.504 0.845 0.081 0.392 0.777 0.061 0.305 0.700 0.050 0.279 0.685
1000 0.294 0.848 0.988 0.209 0.762 0.980 0.156 0.659 0.966 0.138 0.643 0.964
2500 0.668 0.995 1.000 0.545 0.988 1.000 0.447 0.972 1.000 0.420 0.973 1.000

WWC15 100 0.142 0.255 0.401 0.146 0.271 0.426 0.168 0.272 0.425 0.171 0.275 0.432
500 0.187 0.407 0.619 0.211 0.430 0.632 0.225 0.458 0.632 0.226 0.431 0.635
1000 0.209 0.479 0.708 0.240 0.505 0.712 0.261 0.514 0.697 0.253 0.513 0.703
2500 0.249 0.577 0.778 0.282 0.580 0.778 0.293 0.595 0.784 0.317 0.606 0.785

ZRY18* 100 1.973 1.562 1.030 1.979 1.590 1.053 1.979 1.602 1.073 1.985 1.621 1.068
500 1.909 0.656 0.046 1.931 0.651 0.042 1.951 0.647 0.050 1.948 0.663 0.046
1000 1.878 0.356 0.001 1.907 0.353 0.001 1.933 0.352 0.000 1.942 0.341 0.001
2500 1.806 0.062 0.000 1.881 0.054 0.000 1.923 0.064 0.000 1.924 0.065 0.000

N10 100 0.060 0.161 0.077 0.177 0.096 0.179 0.096 0.183
500 0.197 0.297 0.204 0.285 0.230 0.304 0.241 0.301
1000 0.341 0.341 0.359 0.345 0.369 0.352 0.374 0.343
2500 0.586 0.392 0.605 0.396 0.602 0.405 0.610 0.401

MV04 100 0.043 0.129 0.058 0.196 0.234 0.452 0.559 0.751
500 0.080 0.300 0.200 0.529 0.707 0.901 0.901 0.986
1000 0.100 0.474 0.353 0.751 0.865 0.979 0.963 0.999
2500 0.195 0.811 0.665 0.960 0.979 1.000 0.996 1.000

Table 7: Power (*rank estimation) with b = d/3 and δm = 0.75 with the common-component model
(DGP 3).
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ρ 0 0.45 0.9 0.99
method T/d 0.4 0.7 1 0.4 0.7 1 0.4 0.7 1 0.4 0.7 1
NS07* 100 0.002 0.003 0.059 0.375 0.385 0.498 1.000 1.000 0.993 1.000 1.000 1.000

500 0.000 0.000 0.001 0.000 0.001 0.107 1.000 1.000 0.980 1.000 1.000 1.000
1000 0.000 0.000 0.000 0.000 0.000 0.057 1.000 1.000 0.967 1.000 1.000 1.000
2500 0.000 0.000 0.000 0.000 0.000 0.022 1.000 1.000 0.928 1.000 1.000 1.000

CH06 100 0.477 0.238 0.016 0.214 0.139 0.020 0.183 0.066 0.023 0.170 0.058 0.024
500 0.472 0.094 0.050 0.181 0.049 0.031 0.147 0.034 0.031 0.143 0.035 0.030
1000 0.404 0.090 0.052 0.164 0.041 0.033 0.126 0.033 0.028 0.122 0.033 0.022
2500 0.300 0.081 0.044 0.128 0.035 0.025 0.098 0.029 0.021 0.095 0.031 0.019

HV08 100 0.005 0.046 0.104 0.040 0.096 0.154 0.488 0.549 0.484 0.883 0.889 0.853
500 0.002 0.034 0.079 0.043 0.077 0.103 0.562 0.508 0.356 0.891 0.900 0.799
1000 0.002 0.037 0.075 0.061 0.068 0.096 0.596 0.501 0.299 0.901 0.882 0.756
2500 0.003 0.030 0.066 0.065 0.060 0.080 0.614 0.481 0.250 0.906 0.885 0.727

R08 100 0.114 0.109 0.052 0.036 0.047 0.030 0.034 0.038 0.035 0.035 0.040 0.033
500 0.192 0.190 0.060 0.050 0.062 0.038 0.047 0.060 0.039 0.046 0.064 0.041
1000 0.213 0.224 0.049 0.056 0.064 0.043 0.049 0.065 0.036 0.049 0.072 0.039
2500 0.232 0.259 0.050 0.049 0.083 0.040 0.050 0.083 0.039 0.053 0.088 0.039

ZRY18* 100 0.003 0.161 0.528 0.002 0.157 0.528 0.006 0.156 0.512 0.012 0.165 0.385
500 0.061 0.209 0.002 0.067 0.155 0.001 0.053 0.129 0.001 0.072 0.091 0.001
1000 0.134 0.004 0.000 0.151 0.002 0.000 0.149 0.001 0.000 0.141 0.001 0.000
2500 0.356 0.000 0.000 0.372 0.000 0.000 0.373 0.000 0.000 0.325 0.000 0.000

MV04 100 0.036 0.054 0.042 0.065 0.126 0.124 0.382 0.272
500 0.030 0.053 0.047 0.055 0.152 0.089 0.467 0.247
1000 0.036 0.049 0.050 0.054 0.129 0.078 0.461 0.211
2500 0.035 0.053 0.042 0.055 0.122 0.075 0.428 0.188

N10 100 0.033 0.048 0.038 0.058 0.053 0.061 0.058 0.065
500 0.048 0.059 0.049 0.049 0.062 0.059 0.063 0.052
1000 0.056 0.060 0.063 0.055 0.068 0.054 0.073 0.061
2500 0.075 0.053 0.075 0.059 0.089 0.058 0.083 0.053

Table 8: Size (*rank estimation) based on DGP1 with p = 3 and δm = 0.75.
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ρ 0 0.45 0.9 0.99
method T/d 0.4 0.7 1 0.4 0.7 1 0.4 0.7 1 0.4 0.7 1

r = 1

CH06 100 0.650 0.407 0.249 0.408 0.358 0.082 0.083 0.182 0.009 0.027 0.005 0.004
500 0.999 0.491 1.000 0.997 0.259 1.000 0.999 0.171 1.000 0.254 0.059 0.561
1000 1.000 0.853 1.000 1.000 0.616 1.000 1.000 0.525 1.000 0.815 0.323 0.991
2500 1.000 0.998 1.000 1.000 0.987 1.000 1.000 0.969 1.000 0.996 0.957 1.000

HV08 100 0.691 0.985 1.000 0.721 0.979 1.000 0.695 0.980 1.000 0.616 0.982 1.000
500 0.999 1.000 1.000 0.999 1.000 1.000 0.995 1.000 1.000 0.994 1.000 1.000
1000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2500 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

R08 100 0.039 0.133 0.212 0.010 0.014 0.039 0.047 0.065 0.038 0.285 0.188 0.073
500 0.686 0.960 0.989 0.123 0.324 0.766 0.192 0.230 0.159 0.971 0.762 0.279
1000 0.955 0.998 1.000 0.325 0.712 0.981 0.308 0.325 0.286 0.999 0.912 0.415
2500 0.999 1.000 1.000 0.767 0.984 1.000 0.565 0.499 0.443 1.000 0.988 0.597

MV04 100 0.454 0.977 0.686 0.991 0.762 0.994 0.771 0.992
500 0.995 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2500 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

N10 100 0.214 0.832 0.149 0.785 0.110 0.712 0.109 0.716
500 0.911 1.000 0.833 1.000 0.756 1.000 0.726 1.000
1000 0.999 1.000 0.996 1.000 0.994 1.000 0.994 1.000
2500 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

r = 2

CH06 100 0.565 0.900 0.508 0.437 0.891 0.482 0.402 0.832 0.545 0.401 0.829 0.559
500 0.994 0.753 1.000 0.969 0.842 0.997 0.926 0.936 0.985 0.927 0.952 0.982
1000 1.000 0.762 1.000 0.999 0.651 1.000 0.997 0.809 1.000 0.996 0.828 1.000
2500 1.000 0.983 1.000 1.000 0.642 1.000 1.000 0.449 1.000 1.000 0.464 1.000

HV08 100 0.604 0.941 0.997 0.729 0.946 0.997 0.924 0.987 0.999 0.982 0.999 1.000
500 0.997 1.000 1.000 0.998 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2500 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

R08 100 0.052 0.345 0.780 0.006 0.028 0.290 0.009 0.002 0.086 0.132 0.024 0.067
500 0.934 1.000 1.000 0.422 0.964 1.000 0.037 0.009 0.620 0.865 0.342 0.508
1000 0.999 1.000 1.000 0.871 1.000 1.000 0.059 0.015 0.793 0.989 0.550 0.636
2500 1.000 1.000 1.000 1.000 1.000 1.000 0.110 0.038 0.988 1.000 0.806 0.757

MV04 100 0.366 0.879 0.465 0.934 0.841 0.993 0.994 1.000
500 0.763 0.999 0.813 0.999 0.982 1.000 1.000 1.000
1000 0.847 1.000 0.879 1.000 0.998 1.000 1.000 1.000
2500 0.915 1.000 0.936 1.000 1.000 1.000 1.000 1.000

N10 100 0.190 0.860 0.066 0.690 0.037 0.527 0.035 0.504
500 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2500 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Table 9: Power with p = 3, b = d, and δm = 0.75 for the triangular model.
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ρ 0 0.45 0.9 0.99
method T/d 0.4 0.7 1 0.4 0.7 1 0.4 0.7 1 0.4 0.7 1

r = 1

NS07 100 0.991 0.997 0.998 0.958 0.966 0.903 0.000 0.000 0.009 0.000 0.000 0.000
500 1.000 1.000 1.000 1.000 1.000 0.989 0.000 0.000 0.027 0.000 0.000 0.000
1000 1.000 1.000 1.000 1.000 1.000 0.995 0.000 0.000 0.044 0.000 0.000 0.000
2500 1.000 1.000 1.000 1.000 1.000 0.999 0.000 0.000 0.077 0.000 0.000 0.000

CH06 100 0.597 0.330 0.247 0.390 0.321 0.089 0.098 0.180 0.036 0.039 0.280 0.032
500 0.948 0.468 0.981 0.984 0.249 0.990 0.910 0.125 0.743 0.748 0.128 0.439
1000 0.951 0.841 0.982 0.989 0.612 0.987 0.888 0.423 0.835 0.186 0.174 0.016
2500 0.969 0.985 0.987 0.996 0.982 0.994 0.879 0.860 0.852 0.005 0.018 0.003

R08 100 0.190 0.247 0.263 0.041 0.085 0.113 0.054 0.098 0.074 0.317 0.183 0.079
500 0.524 0.568 0.839 0.187 0.615 0.883 0.205 0.279 0.370 0.039 0.070 0.186
1000 0.527 0.522 0.844 0.567 0.837 0.903 0.305 0.338 0.415 0.002 0.019 0.212
2500 0.446 0.463 0.861 0.879 0.832 0.902 0.425 0.409 0.460 0.000 0.001 0.207

ZRY18 100 0.001 0.053 0.308 0.000 0.053 0.299 0.008 0.049 0.285 0.003 0.054 0.263
500 0.008 0.939 1.000 0.003 0.937 1.000 0.014 0.751 1.000 0.001 0.943 0.858
1000 0.028 0.999 1.000 0.007 0.999 1.000 0.010 0.925 1.000 0.007 0.999 0.933
2500 0.091 1.000 1.000 0.023 1.000 1.000 0.012 0.994 1.000 0.013 0.996 0.999

N10 100 0.201 0.810 0.143 0.767 0.107 0.700 0.105 0.706
500 0.900 0.973 0.827 0.979 0.754 0.983 0.723 0.983
1000 0.982 0.974 0.988 0.972 0.990 0.975 0.991 0.974
2500 0.970 0.962 0.982 0.967 0.991 0.972 0.991 0.974

r = 2

NS07 100 0.761 0.918 0.981 0.994 0.996 0.993 1.000 1.000 1.000 1.000 1.000 1.000
500 0.822 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1000 0.867 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2500 0.943 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

CH06 100 0.266 0.834 0.321 0.058 0.607 0.375 0.002 0.290 0.479 0.000 0.226 0.494
500 0.978 0.745 1.000 0.888 0.838 0.997 0.882 0.932 0.985 0.918 0.949 0.982
1000 1.000 0.757 1.000 0.998 0.645 1.000 0.997 0.805 1.000 0.996 0.823 1.000
2500 1.000 0.983 1.000 1.000 0.639 1.000 1.000 0.443 1.000 1.000 0.457 1.000

R08 100 0.002 0.011 0.088 0.001 0.000 0.006 0.021 0.077 0.058 0.618 0.565 0.213
500 0.438 0.995 1.000 0.019 0.204 0.854 0.173 0.619 0.362 1.000 0.993 0.527
1000 0.940 1.000 1.000 0.188 0.845 0.999 0.324 0.858 0.536 1.000 1.000 0.656
2500 1.000 1.000 1.000 0.831 1.000 1.000 0.657 0.988 0.660 1.000 1.000 0.763

ZRY18 100 0.012 0.342 0.769 0.003 0.233 0.746 0.007 0.169 0.705 0.020 0.153 0.701
500 0.034 0.973 1.000 0.003 0.918 1.000 0.002 0.826 1.000 0.023 0.824 1.000
1000 0.045 0.999 1.000 0.003 0.994 1.000 0.001 0.980 1.000 0.007 0.975 1.000
2500 0.061 1.000 1.000 0.000 1.000 1.000 0.000 1.000 1.000 0.000 1.000 1.000

N10 100 0.048 0.575 0.010 0.314 0.005 0.180 0.005 0.164
500 0.806 1.000 0.611 1.000 0.490 0.999 0.475 0.999
1000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2500 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Table 10: Rank estimation with p = 3, b = d, and δm = 0.75 for the triangular model.
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