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Abstract

Realized volatility underestimates the variance of daily stock index returns by an average

of 14 percent. This is documented for a wide range of international stock indices, using

the fact that the average of realized volatility and that of squared returns should be the

same over longer time horizons. It is shown that the magnitude of this bias cannot be

explained by market microstructure noise. Instead, it can be attributed to correlation

between the continuous components of intraday returns and correlation between jumps

and previous/subsequent continuous price movements.
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1 Introduction and Main Finding

Volatility is at the heart of everything from risk management to derivative pricing and

asset management. While estimates of the unobserved volatility process were originally

obtained using GARCH and stochastic volatility models, today high frequency data has

become widely available and realized volatility (RV) has been adopted as the standard

measure. Due to its nature as a non-parametric estimate that is consistent for the

integrated variance in price processes that behave as semimartingales, realized volatility

is often even treated as a direct observation of the underlying volatility process. This

drastic improvement in the quality of volatility estimates has also led to major advances

in volatility forecasting and risk management.

Previous contributions on the shortcomings of realized volatility have mostly focused on

the effect of market microstructure noise and violations of the assumption that the price

process can be observed frictionless at arbitrarily small time intervals.

Here, we focus on the semimartingale assumption and show that realized volatility is a

biased estimator for the variance of stock index returns on daily and longer horizons.

The bias is negative, so that the stock market risk is systematically underestimated.

This effect is demonstrated for a wide range of international stock market indices and

the average magnitude of the bias is 14 percent. The RV of the S&P 500, for example,

underestimates the mean level of the variance by 15 percent.

We show that the reason for this bias lies in the presence of dependence between aggre-

gates of returns within a trading day, as recently documented by Gao et al. (2018).

It is customary to model the log-price process p(τ) as a jump diffusion so that

dp(τ) = µ(τ)dτ+σ(τ)dB(τ) + ξ(τ)dq(τ), (1)

where µ(τ) is of finite variation, while σ(τ) is the instantaneous or spot volatility, strictly

positive, stationary, (almost) surely square integrable and stochastically independent of

the standard Brownian motion B(τ). Furthermore, q(τ) is a Poisson process uncorrelated

with B(τ) and governed by the jump intensity λ(τ) so that P(dq(τ) = 1) = λ(τ)dτ, which

implies a finite number of jumps in the price path per time period. The scaling factor

ξ(τ) denotes the magnitude of the jump in the return process if a jump occurs at time

τ. Jumps are often associated with big unexpected events or macroeconomic announce-

ments that make the price process discontinuous, while the semimartingale component

σ(τ)dB(τ) models the continuous part of its evolution.

For the sake of the argument presented here, we will assume that µ(τ) = 0, for all τ. That

means that the equity premium is zero, which is a reasonable assumption on short time

horizons such as days because it is so small. Nevertheless, this is purely for expositional
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purposes and the arguments could easily be extended to allow for µ(τ) , 0.

Denote the continuously compounded return at day t by rt = p(t)− p(t−1), for t = 1, ...,T .

Since µ(τ) = 0, we have

rt =

∫ t

t−1
dp(τ)dτ =

∫ t

t−1
σ(τ)dB(τ) +

∑
t−1≤τ≤t

J(τ).

Therefore, E[r2
t ] = Var[rt] = IVt + E

 ∑
t−1≤τ≤t

J2(τ)

 , (2)

where IVt =

∫ t

t−1
σ2(τ)dτ,

and J(τ) = ξ(τ)dq(τ) is non-zero only if there is a jump at time τ. This is due to the

assumed independence between the continuous components and jump components, the

independence of the increments of the Brownian motion, and the independence between

successive jumps.

Equation (2) shows that squared returns are an unbiased estimator for the daily vari-

ance. It is, however, well known that squared returns are extremely noisy and incon-

sistent, since there is only a single daily return per trading day (cf. Andersen and

Bollerslev (1998a)).

Realized volatility, on the other hand, makes use of the availability of high frequency

data. If M intraday returns are observed, then the realized volatility is given by

RVt =

M∑
i=1

r2
it,

where rit is the ith intraday return. Under the assumption that the log-price process

is a semimartingale, Barndorff-Nielsen and Shephard (2001) derive the consistency and

asymptotic normality of realized volatility as an estimate for the quadratic variation QVt

of the price process.

The consistency of RVt for QVt also extends to jump diffusions (cf. Andersen and

Benzoni (2009)), but the properties of the quadratic variation depend on the properties

of the underlying price process.

For semimartingales the quadratic variation equals the integrated variance so that QVt =

IVt. If p(t) follows a jump-diffusion such as (1), on the other hand,

QVt = IVt +
∑

t−1≤τ≤t

J2(τ). (3)

That means the quadratic variation equals the integrated variance plus the sum of

squared jumps. For a review of these concepts cf. Andersen and Benzoni (2009).
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Equations (2) and (3) therefore imply that

E[r2
t ] = Var[rt] = E[RVt]. (4)

This equality is the basis for the arguments made in this paper. It implies the con-

vergence of long term averages of r2
t and RVt, so that for r2

t = T−1 ∑T
t=1 r2

t and RVt =

T−1 ∑T
t=1 RVt, we have

r2
t

p
→ RVt,

as T →∞. Furthermore, we have

√
T∆σ2 =

√
T

(
r2

t −RVt

)
d
→ N(0,V), (5)

where the long run variance V of the differential r2
t −RVt can be estimated with HAC

estimators, so that we can test the hypothesis that (4) is true using (5).

Note that the first equality in (2) and (4) holds generally as long as µ(τ) = 0. The squared

returns are an unbiased estimate of the daily variance. The equality E[RVt] = Var[rt], on

the other hand, only holds under the assumption that the log-price process p(t) follows

a jump-diffusion or a semimartingale, since this implies the independence within and

between continuous changes and jumps. A rejection of (4) is therefore indicative of a

bias in RVt and not in r2
t .

To summarize, both realized volatility and squared returns approximate the same un-

derlying volatility process with the difference being that squared returns are noisier.

Therefore, deviations between the two volatility measures should be random and cancel

each other out over time. Consequently, average squared return and average realized

volatility should be equal given a long enough horizon.

Figure 1 shows that this is not the case for a wide cross section of stock indices. Here, and

in the following, we use 15-minute data for the years 1996 until 2017 from the Thomson

Reuters Tick History data base. The annualized average RV is plotted against the

annualized average squared return for 22 commonly considered indices, such as the S&P

500, the DAX, and the SSEC. It can be seen that for all indices, except for the DAX,

the average squared return is larger than the average realized volatility in the same time
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Figure 1: Average annualized volatility estimate for 22 indices using squared returns respec-
tively RVs. The RV estimates are calculated from 15-minute data and the squared returns are
adjusted for overnight returns such that both estimates are based on the same time horizon.

period.1

Figure 2 sheds light on the relation of average RV and average squared return over time.

In the left plot, the average volatility estimate of the two estimators in a rolling window

of 750 observations is displayed for the S&P 500. Again, it can be observed that the

average RV is systematically smaller than the average squared return. This is not only

true for isolated periods but holds all the time. However, the difference between the two

time series seems to be larger in times of high volatility, such as the subprime mortgage

crisis, indicating that average RV and average squared return differ by a factor rather

1It should be noted that the squared returns are calculated from open-to-close returns so that overnight
returns are excluded and the time horizon is the same as that for the realized volatility. As a robustness
check, Figure 7 in the appendix shows the results of the same analysis using realized volatilities for 31
stock indices from the ’Oxford-Man Institute’s realised library’ compiled by Heber et al. (2009) and
considered by Shephard and Sheppard (2010) and Han and Kristensen (2014), among others. These
RVs are calculated from 10-minute data. It can be seen that the analysis yields very similar results
which underlines the robustness of our finding.
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Figure 2: Left: average S&P 500 volatility estimate of the last 750 observations using squared
returns respectively RVs extracted from 15-minute returns. Right: ratio between rolling aver-
ages of the squared return and RV.

than a constant. This factor is plotted over time on the right hand side of Figure 2.

It seems relatively stable over time with an average of 1.15, which means that the RV

underestimates the variance of the S&P 500 by 15 percent.2

Table 1 presents more detailed results for all 22 indices. It is apparent that the effect is

especially pronounced for ATX, MCX, and SSEC with a factor between average squared

return and average RV of 1.42, 1.30, and 1.24. This results in standard deviations that

are larger by 3.25, 3.5, respectively 2.53 percentage points per annum than indicated by

the RV estimator. For DAX, FCHI, and FTSE with factors of 1.00, 1.01, and 1.02 on the

other hand, the effect is negligible. Averaged over all indices, the mean RV is 14 percent

smaller than the mean squared return. This amounts to an annualized underestimation

of the standard deviation by 1.34 percentage points.

The table further reports the test statistics tHAC =
√

T (r2
t −RVt)/

√
VHAC for robust t-tests

of the null hypothesis that E[RVt] = E[r2
t ]. Here, VHAC is the long run variance of r2

t −RVt

which is estimated using the method of Andrews (1991). As a robustification we also

report the tMAC statistic of Robinson (2005) and Abadir, Distaso, and Giraitis (2009),

which accounts for the possibility of long memory in r2
t −RVt. This might be present since

both, r2
t and RVt, are commonly found to be highly persistent (cf. Kruse, Leschinski,

and Will (2018)). To account for the fact that the unconditional fourth moment of

2Here and hereafter, we focus our analysis mostly on the S&P 500. Plots for other indices show that
investigating any of the indices for which the effect is present would have yielded similar results. These
are available from the authors upon request.
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RIC Country r2 RV r2/RV
√

r̄2−
√

RV tHAC tMAC tMOM T
.AEX Netherlands 3.50 3.15 1.11 0.96 2.91*** 2.48** 3.59*** 4,567

.ATX Austria 4.10 2.89 1.42 3.25 8.56*** 4.31*** 6.91*** 4,179

.BFX Belgium 1.63 1.54 1.06 0.38 1.91* 1.41 1.37 5,275

.BSESN India 4.21 3.56 1.18 1.65 6.63*** 3.86*** 8.03*** 4,948

.BVSP Brazil 9.15 7.94 1.15 2.07 4.08*** 2.58*** 5.13*** 4,728

.GDAXI Germany 4.29 4.29 1.00 -0.00 -0.01 -0.01 0.91 5,264

.FCHI France 3.52 3.47 1.02 0.14 0.58 0.49 1.24 5,272

.FTMIB Italy 6.53 5.66 1.15 1.76 3.23*** 3.43*** 3.77*** 1,942

.FTSE Great Britain 3.31 3.25 1.02 0.15 0.53 0.87 2.77*** 5,218

.GSPTSE Canada 2.79 2.42 1.15 1.14 2.77*** 3.73*** 7.35*** 3,654

.IBEX Spain 4.28 3.98 1.08 0.74 2.74*** 2.31** 3.40*** 5,188

.JALSH South Africa 3.46 2.98 1.16 1.32 4.72*** 4.72*** 6.27*** 3,216

.MCX Russia 7.91 6.07 1.30 3.48 6.19*** 2.36** 7.78*** 3,892

.N225 Japan 3.57 3.08 1.16 1.34 3.83*** 0.76 4.59*** 5,080

.OBX Norway 5.62 5.31 1.06 0.67 1.44 4.87*** 4.40*** 2,679

.OMXC20 Denmark 4.05 3.78 1.07 0.69 1.78* 4.42*** 4.48*** 2,821

.OMXHPI Finland 4.33 3.66 1.18 1.66 4.12*** 4.04*** 6.59*** 2,835

.OMXS30 Sweden 4.46 3.94 1.13 1.27 3.13*** 2.88*** 5.39*** 3,005

.PSI20 Portugal 2.80 2.30 1.22 1.56 4.89*** 4.24*** 5.08*** 4,866

.SPX United States 3.37 2.93 1.15 1.26 4.96*** 3.47*** 5.77*** 5,183

.SSEC China 6.15 4.96 1.24 2.53 7.24*** 5.37*** 9.10*** 5,019

.SSMI Switzerland 2.59 2.33 1.11 0.85 3.39*** 1.90* 3.90*** 4,770

Table 1: The table reports the average squared return r2 per annum in percent, the average
realized volatility RV per annum in percent, and the ratio between the two volatility measures

for all of the 22 considered indices. For better assessing the degree of the bias
√

r̄2 −
√

RV is
stated, which gives the average percentage points that the standard deviation implied by the
two measures deviates per annum. Moreover, the table reports the results of robust t-tests tHAC

for the null hypothesis that the two volatility estimates are equal. As it is commonly found
in the literature that squared returns and RV are highly persistent, tMAC (cf. Robinson (2005)
and Abadir, Distaso, and Giraitis (2009)), which accounts for this degree of persistence, is
also stated. Moreover, we report tMOM, which yields valid inference, if the return distribution
does not exhibit unconditional finite fourth moments. For all tests ***, (**), and [*] indicate
that the null hypothesis E[r2

t ] = E[RVt] is rejected at the 1%, (5%), or [10%] level. Positive
test statistics thereby imply that squared returns are significantly larger on average. Finally,
T gives the number of days considered for estimation.

the return distribution might not exist, we conduct an additional test tMOM, for which

the difference between RV and squared return is standardized by an estimate of the

conditional standard deviation of the series. The test results suggest that for 16 (tHAC),

13 (tMAC), respectively 19 (tMOM) indices the squared returns are significantly larger

than the realized variances at the one percent level.

To summarize, average squared returns and average RVs are not identical in expecta-

tions. Instead, mean squared returns are larger by a factor of 1.14. This observation is
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time consistent and can be found for all of the 22 considered indices except DAX, FCHI,

and FTSE.

Recalling Equation (4) and the considerations stated thereafter, this implies that realized

volatility is a biased estimator for the variance of daily index returns. The next section

provides a detailed investigation of possible explanations for this bias. Here, we provide

evidence that the deviation between squared returns and RV is caused by dependencies

in intraday returns that violate the assumptions required for consistency of RVs as an

estimator for the daily volatility. Section 3 then concludes.

2 Explaining the Bias of Realized Volatility

To determine the source of the difference between average squared returns and average

RVs, it is useful to decompose the observed continuously compounded return rit into its

components.

It is now broadly accepted that stock prices can be represented by a jump-diffusion

model such as (1) (cf. Aı̈t-Sahalia (2004); Barndorff-Nielsen and Shephard (2007);

Corsi, Pirino, and Reno (2010)). Consequently, we can decompose the continuously

compounded stock return rit into jump component Jit, continuous component Cit, and

equity premium. As mentioned before, we assume that the equity premium is zero to

ease the presentation.3

Another important component of the observed return at high frequencies is market

microstructure noise due to price discreteness, bid-ask spreads, trades taking place at

different markets and networks, gradual response of prices to a block trade, difference

in information contained in orders of different sizes, strategic order flows, and recording

errors. Starting with Zhou (1996), numerous contributions find these effects to signifi-

cantly influence the observed intraday return at high frequencies such as 1-second data.

At low frequencies, however, the effect is often found to be negligible. To capture this

characteristic, market microstructure noise is denoted by ηit,M in the following, with M

defined as the number of intraday observations and E[ηit,M] = 0. We then assume that

market microstructure effects are not present on a daily frequency, i.e. Var(ηit,1) = 0,

and that Var(ηit,M) is monotonically increasing with the sampling frequency M.

The observed continuously compounded return can then be written as

rit = Cit + Jit +ηit,M,

3Our results would not be altered by a nonzero equity premium unless it would exhibit sizable intraday
variation (which is theoretically implausible).

- 8 -



so that for the two volatility estimators it holds that

RVt =

M∑
i=1

(
Cit + Jit +ηit,M

)2 (6)

and r2
t =

 M∑
i=1

Cit +

M∑
i=1

Jit


2

.

Calculating the difference between the two estimators yields

r2
t −RVt =

M∑
i, j=1,i, j

CitC jt +

M∑
i, j=1,i, j

JitJ jt + 2
M∑

i, j=1,i, j

CitJ jt

−

M∑
i=1

ηit,Mηit,M −2
M∑

i=1

Citηit,M −2
M∑

i=1

Jitηit,M.

To simplify the notation, let ABt =
∑M

i, j=1,i, j AitB jt and AB∗t =
∑M

i=1 AitBit, such that

r2
t −RVt =CCt + JJt + 2CJt −ηη

∗
t,M −2Cη∗t,M −2Jη∗t,M. (7)

The first two terms capture the intraday dependencies in continuous and jump compo-

nent. If for example E[CCt] is positive, then positive and negative intraday continuous

returns would tend to occur in clusters. It would therefore be more likely that Cit is a

large positive return if (C1t, ...,Ci−1t,Ci+1t, ...CMt) are large positive returns. The third

term captures the dependencies between the leads and lags of jump and continuous com-

ponent. If E[CJt] is positive, then it would be more likely to observe positive continuous

returns at days where a positive jump occurs. The fourth term captures the variance of

the market microstructure noise and the last two terms capture intraday dependencies

between the noise component and the continuous and jump components. If for example

E[Cη∗t,M] is positive, then it is more likely to observe positive microstructure noise ηit,M

if Cit is large and positive.

As mentioned before, when calculating the RV estimator it is commonly assumed that

the log-price process follows a jump diffusion such as (1) and that markets are frictionless.

This implies that all of the terms in Equation (7) are zero in expectation and the expected

values of squared returns and RVs are identical. However, Figures 1 and 2 together

with Table 1 show that the average squared return is systematically larger than the

average RV for a wide cross section of stock indices. Hence, at least one of the terms

in Equation (7) has to be significantly larger than zero to explain the negative bias of

the RV estimator as an estimator for the daily volatility. In the following, we therefore

analyze each of the terms in Equation (7) separately, to determine the source of the
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bias.

2.1 Market Microstructure Noise

It is well established that market microstructure effects cause biased RV estimates (cf.

e.g. Hansen and Lunde (2006) or Bandi and Russell (2006)). Therefore, it is tempting

to conjecture that the difference between the average squared return and the average

realized volatility can be attributed to the presence of microstructure noise. Since mi-

crostructure noise is not observable and cannot be estimated without access to tick

data, this conjecture can only be refuted on the basis of plausibility arguments. These,

however, are quite compelling.

First, the results presented here are obtained using 15-minute data to mitigate the

impact of microstructure noise right from the start. Microstructure effects are commonly

found to be relevant on high frequencies such as 1-second data. For sampling frequency

lower than five minutes, as considered here, Bandi and Russell (2008) argue that the

effect of market microstructure noise is negligible. This is also confirmed by Figures 8

and 9 in the appendix, which show that repeating our analysis for 5, and 30-minute data

yields qualitatively similar results.

Second, market microstructure noise only generates a negative bias in the realized volatil-

ity if ηη∗t,M < −2Cη∗t,M−2Jη∗t,M. This would imply negative correlation between noise and

continuous component respectively between noise and jump component which outweighs

the variance of the market microstructure noise. This is typically not the case as can be

seen for example in the volatility signature plots of Hansen and Lunde (2006), Bandi and

Russell (2006), and Aı̈t-Sahalia, Mykland, and Zhang (2011). Here, market microstruc-

ture effects generate a positive bias in the realized volatility. In contrast to that, the

bias observed here is negative.

Third, as a final robustness check, Figure 10 in the appendix repeats the analysis of

Figure 1 for realized volatilities from the Oxford Man Realized Library estimated using

the realised kernel estimator of Barndorff-Nielsen et al. (2008) that is constructed to

be robust to market microstructure noise. Again, it can be observed that the average

squared returns are significantly larger.

We therefore conclude, that market microstructure effects cannot explain the difference

between average RVs and average squared returns documented in Section 1. Since we

use 15-minute data, it seems reasonable to assume that the magnitude of ηit is negligible

and Equation (7) can be further simplified such that

r2
t −RVt ≈ CCt + JJt + 2CJt. (8)
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2.2 Jumps and Continuous Returns

To determine the relative magnitude of the remaining terms in Equation (8), we need to

decompose the intraday returns rit into their continuous and jump components. While

numerous model-free estimators and tests have been proposed to disentangle the contri-

bution of jumps and continuous components to the daily RV (cf. e.g. Barndorff-Nielsen

and Shephard (2004), Aı̈t-Sahalia and Jacod (2009), and Corsi, Pirino, and Reno (2010)),

only the methodology of Lee and Mykland (2007) is able to determine jump and con-

tinuous components for every intraday return. The idea of Lee and Mykland (2007) is

to compare each 15-minute return to an estimate of the volatility using the previous K

observations. If the 15-minute return is large in comparison to the volatility of the pre-

vious observations, then it is concluded that a jump occured. Since Var(Cit) = O(M−1),
the jump asymptotically dominates the continuous component as M →∞ and rit is a

suitable estimator for Jit. Consequently, if the test rejects the null of no jump at time i

on day t, we conclude that a jump of size rit has occurred.

Lee and Mykland (2007) suggest to estimate the volatility of the previous K observa-

tions using the bipower variation introduced by Barndorff-Nielsen and Shephard (2004).

However, Corsi, Pirino, and Reno (2010) show that this estimator is substantially biased

in finite sample leading to a large underestimation of the jump component. To circum-

vent this problem, we consider their threshold bipower variation estimator. This is less

affected by small sample bias and has the same limit as bipower variation in probability.4

The test statistic then evolves as

Lit =
rit√
σ̂2

it

, with σ̂2
it =

π

2
1

K −2

i−1∑
j=i−M+2

|r j||r j−1|I(r2
j ≤ θ)I(r2

j−1 ≤ θ).

Here, I(·) is the indicator function and θ is a threshold, which is estimated using the

approach suggested by Corsi, Pirino, and Reno (2010) that ensures that jumps do not

influence the estimation of σ̂2
it.

In the absence of jumps, a single test is standard normally distributed. For multiple

testing as it is performed here, critical values are derived based on Gaussian extreme

value theory.

Since the variance estimator σ̂2
it is the threshold bipower variation by Corsi, Pirino,

and Reno (2010), the test is still consistent if a jump has already occurred in one of

the previous K observations. As suggested by Lee and Mykland (2007) we set K = 156
and employ a significance level of one percent to decrease the likelihood of spuriously

detecting jumps.

4The results using the bipower variation estimator are qualitatively similar and available upon request.
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Figure 3: Daily values of RVt, CCt, JJt, and CJt based on 15-minute data of the S&P 500.
CCt, JJt, and CJt are determined using a slight modification of the methodology by Lee and
Mykland (2007). This means that we employ the threshold bipower variation to estimate the
instantaneous volatility instead of the bipower variation as this is biased in small samples.

The daily values of the three components of Equation (8) estimated using this method-

ology are plotted in Figure 3 for the S&P 500. The procedure indicates that of the 5,184

days in the sample, a jump occurred on 922 and there were only 77 days on which more

than one jump occurred. Consequently, for the S&P 500 the component JJt, which is

only nonzero if two jumps occur at the same day, is negligible.

Panel A of Table 2 provides t-statistics robust to autocorrelation and heteroscedasticity

for the null hypothesis that E[CCt] = 0, respectively E[CJt] = 0 or E[JJt] = 0.5 For all

indices with a significant bias, it can be seen that the component CCt is positive and

5In analogy, Tables 5 and 6 in the appendix state tMAC and tMOM, i.e. the t-statistics when accounting
for persistence respectively infinite unconditional fourth moments of the return distribution. It can be
seen that the results are qualitatively similar.
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A B C

15-minute data seasonally adjusted 5-minute data

RIC Country CC CJ JJ CC CJ JJ CC CJ JJ

.AEX Netherlands 3.21*** 0.64 0.38 3.18*** 0.17 0.43 2.23** 1.81** 0.38

.ATX Austria 10.47*** 0.64 -0.51 10.09*** -0.21 -0.57 11.26*** 1.57 2.67***

.BFX Belgium 1.78* 0.94 -0.54 1.66* 1.20 -0.74 1.10 0.80 1.04

.BSESN India 7.17*** -0.46 -0.59 7.10*** -1.51 1.42 6.79*** 3.49*** -0.72

.BVSP Brazil 6.10*** 1.62 -1.76* 4.60*** 0.51 -1.55 6.82*** 4.12*** -0.71

.GDAXI Germany -0.02 0.38 -0.66 0.12 -0.31 0.07 -0.68 1.51 0.82

.FCHI France 0.97 -0.13 -0.69 0.51 -0.05 0.55 2.08** 2.10** 0.77

.FTMIB Italy 3.99*** 1.89* -0.40 3.46*** 1.94* -0.53 3.28*** 1.56 0.47

.FTSE Great Britain 2.04** 0.18 -2.07** 2.16** -0.98 -1.92* -3.53*** 1.06 1.90*

.GSPTSE Canada 5.05*** 0.18 -0.48 5.21*** -0.87 -1.65* 6.60*** -0.24 -1.78*

.IBEX Spain 3.53*** 0.60 -0.35 3.07*** 0.73 0.41 2.95*** 1.67* 0.27

.JALSH South Africa 5.79*** 1.91* -1.07 5.31*** 1.35 -0.17 4.97*** 3.81*** -0.66

.MCX Russia 7.31*** 1.81* -0.69 6.10*** 3.03*** -0.73 7.62*** 1.84* 0.73

.N225 Japan 3.34*** 2.17** 1.45 3.71*** 1.49 1.69* 3.58*** 4.98*** 2.76***

.OBX Norway 2.01** 0.43 -1.26 1.91* -0.26 0.53 2.87*** -1.00 -2.20**

.OMXC20 Denmark 4.11*** -0.77 -1.71* 2.00** 1.44 -2.22** 4.92*** 0.55 -2.01**

.OMXHPI Finland 5.18*** 1.65* -1.13 4.43*** 0.50 0.88 6.65*** 1.65* 0.41

.OMXS30 Sweden 2.93*** 1.86* -1.11 2.52** 2.11** -1.19 2.95*** 1.03 -0.77

.PSI20 Portugal 6.31*** -0.42 0.99 5.61*** 0.47 1.04 4.22*** 0.47 0.95

.SPX United States 4.83*** 1.12 -1.98* 4.79*** 0.68 -2.33** 5.39*** 3.27** -0.74

.SSEC China 7.68*** 2.43** 1.03 7.78*** 2.59*** 0.99 8.49*** 3.91*** 1.38

.SSMI Switzerland 2.79*** 0.78 1.49 2.37** 3.17*** 1.48 1.54 2.36** 1.46

Table 2: The table reports t-statistics for the null hypothesis that E[CCt] = 0, respectively
E[CJt] = 0 or E[JJt] = 0. ***, (**), and [*] then indicate that the null hypothesis is rejected
at the 1%, (5%), or [10%] level. In Panel A CCt, CJt, and JJt are determined using 15-minute
data and the methodology by Lee and Mykland (2007) with the threshold bipower variation
instead of the bipower variation to estimate the instantaneous volatility. In analogy, Panel B
shows the test results when the instantaneous volatility estimates are adjusted for intraday
seasonality as found by Andersen and Bollerslev (1997) and Andersen and Bollerslev (1998b)
and in Panel C the three components are estimated using 5-minute data.

significantly different from zero at the one percent level. For the S&P 500, for example,

the value of the test statistic is 4.83. The components CJt and JJt, on the other hand,

are not indicated to be significantly different from zero at the one percent level for any

of the indices. It can further be seen that for the DAX and the FCHI, for which Table

1 reports no significant bias of the RV estimator, CCt is not significantly different from

zero. For the FTSE, Table 2 reports significant dependence at the five percent level in

the continuous component, although Table 1 states that there is no significant bias. The

reason for this observation is that for the FTSE there is significant negative dependence

in the jump component JJt at the five percent level which compensates for the bias

caused by CCt.

To show the robustness of the results, Panel B of Table 2 repeats the analysis adjusting

the volatility for intraday seasonality as documented by Andersen and Bollerslev (1997)
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Figure 4: Correlation matrix for CCt for the S&P 500 using 30-minute Returns.

and Andersen and Bollerslev (1998b) among others, and Panel C reports the test statis-

tics using 5-minute instead of 15-minute data. The results are qualitatively similar with

CCt being positive and significantly different from zero for most indices and CJt and JJt

being insignificant for most indices.

The term CCt captures the dependence structure in Cit. Let ct = (C1t, ...,CMt)′ denote

the vector of continuous returns on day t and let ι be an M×1 vector of ones. Then

CCt = ι′(ctc′t)ι− c′tct.

It is well established, that the autocorrelation function of rit is essentially zero at all leads

and lags. This justifies the semimartingale assumptions imposed in (1) that implies that

all off-diagonal elements of E[ctc′t] are zero so that E[CCt] = 0.

An unfortunate property of the univariate autocorrelation function, however, is the fact

that it masks dependencies that do not depend on the lag, but on the location of the

returns within a trading day. In a recent paper Gao et al. (2018) find significant corre-

lation between 30-minute intraday returns of the S&P 500. This concerns in particular

the last two returns in a trading day and the first and last returns of the day. They

argue that these correlation patterns stem from investors infrequent re-balancing of their

portfolios and late-informed investors who trade early morning information in the last

hour, where liquidity is larger.

To shed further light into the dependence structure of the continuous components of the

intraday returns of the S&P 500, Figure 4 shows their average correlation matrix. In line
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Return locations within a trading day Correlation p-Value Critical p-Value

ρ5,8 (11:30 - 12:00, 13:00 - 13:30) -0.0888 0.0004 0.0006

ρ1,13 (09:30 - 10:00, 15:30 - 16:00) 0.1314 0.0010 0.0013

ρ1,4 (09:30 - 10:00, 11:00 - 11:30) 0.0740 0.0010 0.0019

ρ12,13 (15:00 - 15:30, 15:30 - 16:00) 0.1379 0.0016 0.0026

ρ11,12 (14:30 - 15:00, 15:00 - 15:30) 0.0815 0.0025 0.0032

Table 3: The table shows all correlations between half hour returns of the S&P 500 that are
significantly different from zero after accounting for the multiple testing problem. The last
column states the corresponding critical p-values for an alpha of five percent when applying
Simes correction (cf. Simes (1986)).

with Gao et al. (2018), the correlation matrix shows a momentum effect between first

and last half hour of the trading day and in the last hour of the trading day. However,

the plot also reveals positive as well as negative correlation between the other half hour

returns of the S&P 500. When testing for the joint significance of all pairwise correlation

coefficients we obtain a chi-square statistic of 168, which vastly exceeds the critical value

of 110 at the 1 percent level.

When testing for the significance of individual correlations, there is a multiple test-

ing problem. We account for this by applying Simes correction (cf. Simes (1986)),

which consists of ordering all p-values in ascending order and then comparing them with
α
N ,

2α
N , ...,

Nα
N , with N = 78 being the number of performed tests. If any of the ordered

p-values exceeds its respective threshold, the null hypothesis that the corresponding cor-

relation between the two returns equals zero is rejected. This approach is designed to be

less conservative and thus more powerful than the more primitive Bonferroni correction.

Table 3 reports all combinations of returns for which this is the case at an alpha level of

five percent. The table states that there is significant positive correlation between first

and fourth, first and thirteenth (last), fourth and twelfth, eleventh and twelfth and the

last two half hour returns. In contrast, negative correlation that is significantly different

from zero only exists between the fifth and the eighth half hour return. With regard to

the strength of the dependency, the correlation between first and last and second last

and last half hour return are found to be the largest.

To summarize, there is significant positive correlation in continuous index returns. This

does not only hold when considering the correlations separately but also when taking

them all together. This violates the semimartingale assumption that is necessary for the

consistency of the RV as an estimator for the variance of daily stock returns, and causes
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Figure 5: In analogy to Figure 1 with the difference that the RV estimates are corrected by
CCt. Again, the RV estimates are calculated from 15-minute data and the squared returns are
adjusted for overnight returns such that both estimates are based on the same time horizon.

a significant negative bias as observed in Figure 1.6

To further illustrate this finding, Figure 5 repeats the analysis of Figure 1 and plots the

average squared return against the sample average of the corrected realized volatility

measure R̃V t = RVt + CCt. From Equation (8), adding CJt and JJt to R̃V t would give

exactly r2
t . It can be seen that accounting for the CCt component almost completely

eliminates the difference observed in Figure 1.

This is also confirmed by the results in Table 4 that repeats the analysis from Table 1, but

for the corrected realized volatility R̃V t. Now, the ratio of the two volatility estimators

6There is a growing body of literature which provides evidence that jumps are often erroneously identi-
fied when estimating them from 5, or 15-minute data. When considering tick data, where estimation
precision is higher, the jump component is found to account for only a small fraction of the total price
variation making it almost negligible (cf. Christensen, Oomen, and Podolskij (2014) and Bajgrowicz,
Scaillet, and Treccani (2015)). It should be noted that performing our analysis without differentiating
between jump and continuous component yields qualitatively the same results, i.e. there is correlation
in index returns which cause biased RV estimates.
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RIC Country r2 R̃V r2/R̃V
√

r2−

√
R̃V tHAC tMAC tMOM T

.AEX Netherlands 3.50 3.45 1.02 0.14 0.95 0.82 0.79 4,567

.ATX Austria 4.10 4.12 1.00 -0.04 -0.15 -0.13 0.70 4,179

.BFX Belgium 1.63 1.61 1.01 0.09 0.74 0.86 0.61 5,275

.BSESN India 4.21 4.26 0.99 -0.13 -0.97 -0.87 -0.81 4,948

.BVSP Brazil 9.15 9.28 0.99 -0.22 -0.65 -0.96 0.13 4,728

.GDAXI Germany 4.29 4.30 1.00 -0.02 -0.12 -0.11 -0.23 5,264

.FCHI France 3.52 3.53 1.00 -0.02 -0.13 -0.15 -0.15 5,272

.FTMIB Italy 6.53 6.30 1.04 0.44 1.00 0.69 1.84* 1,942

.FTSE Great Britain 3.31 3.37 0.98 -0.16 -0.71 -0.91 -0.49 5,218

.GSPTSE Canada 2.79 2.78 1.00 0.03 0.09 0.05 0.73 3,654

.IBEX Spain 4.28 4.24 1.01 0.09 0.39 0.41 -0.14 5,188

.JALSH South Africa 3.46 3.34 1.04 0.32 1.43 2.12** 1.41 3,216

.MCX Russia 7.91 7.82 1.01 0.16 0.56 0.56 1.66* 3,892

.N225 Japan 3.57 3.40 1.05 0.46 2.09** 1.87* 2.65*** 5,080

.OBX Norway 5.62 5.57 1.01 0.13 0.37 1.40 0.87 2,679

.OMXC20 Denmark 4.05 4.29 0.94 -0.58 -1.88* -1.83* -0.81 2,821

.OMXHPI Finland 4.33 4.20 1.03 0.30 1.08 1.58 2.10** 2,835

.OMXS30 Sweden 4.46 4.29 1.04 0.40 1.53 5.17*** 2.69*** 3,005

.PSI20 Portugal 2.80 2.72 1.03 0.24 1.01 1.10 1.21 4,866

.SPX United States 3.37 3.32 1.02 0.15 0.86 1.33 0.28 5,183

.SSEC China 6.15 6.02 1.02 0.26 1.76* 2.30** 2.67*** 5,019

.SSMI Switzerland 2.59 2.48 1.05 0.36 2.57** 3.41*** 1.97** 4,770

Table 4: In analogy to Table 1 with R̃V t = RVt +CCt. Again, average squared return, average
adjusted realized volatility, and average deviation between the two are stated per annum in
percent.

ranges from 0.94 to 1.05 resulting in an annualized difference in standard deviation

ranging from only -0.58 to 0.46 percentage points. Accordingly, the null hypothesis that

E[r2
t − R̃V t] = 0 is rejected in only a few instances.

The relative magnitude of the effect of CCt can be seen in Figure 6 that repeats the

analysis from Figure 2, but including the rolling average of R̃V t. In line with the results

in Table 2, it can be seen that CCt captures most of the difference between squared

returns and RV for the S&P 500. This can also be seen in the right plot, which shows

that the ratio between average squared return and R̃V is close to one for the whole time

period.

To emphasize that these results do not only hold for the S&P 500 but for all considered

indices, Figures 11 to 14 in the appendix show pre and post correction plots for the SSEC,

the BSESN, the BVSP, and the DAX. For the SSEC, the BSESN, and the BVSP it can

again be observed that correcting RVt with CCt eliminates the bias. As mentioned above,

for the DAX the bias is less pronounced for the sample average but still, Figure 14 shows
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Figure 6: In analogy to Figure 2 with R̃V = RVt +CCt. Again, both plots depict the moving
average of the previous 750 observations.

that adjusting with CCt is meaningful. Plots for the other indices yield qualitatively

similar results. Since CJt and JJt are insignificant in most cases in Table 2, we therefore

conclude that the dependence in CCt explains the bias of RV.

The most intuitive idea to eliminate this bias would be to add CCt to the daily RV

estimate, i.e. use R̃V t as the volatility estimate. While this solves the bias problem, it

brings back the noise problem, since R̃V t is almost as noisy as r2
t itself.

Figure 4 indicated that for the S&P 500 there is primarily correlation in the first and

last hour of the trading day. As a final check whether this correlation is the reason

for the observed bias, we repeated our analysis excluding the first and last hour of the

trading day for the calculation of RV and squared return. As expected, average squared

return and average RV now have a ratio of 0.97 and are not indicated to be significantly

different from another at any level. For the other indices, however, it is not necessarily

correlation in the first and last hour of the trading day that causes the negative bias

reported in Table 1. If we repeat our analysis for these indices excluding the first and last

hour of the trading day, then there is still a significant negative bias of the RV estimator

for 12 (tHAC), 8 (tHAC), respectively 11 (tMOM) indices at the one percent level. More

detailed results can be found in Table 7 in the appendix that repeats the analysis of

Table 1 when excluding the first and last hour of the trading day.
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3 Conclusion

As an ex post measure of the quadratic variation of the price process, realized volatility

has become the standard measure for volatility estimation. While RV is often used to

estimate the variance of daily stock returns, this is only a valid approach if the log-price

process is a semimartingale or a jump-diffusion.

As shown here, there are significant correlations between intraday returns that are in

contradiction to the semimartingale assumption and cause a considerable bias if RV is

used as an estimate for the variance of daily or weekly index returns.

While previous research on market microstructure effects has focused on frictions in

event time, these results indicate that structural effects in calendar time should be

investigated further to illuminate the source of these intraday dependencies.

Another important task for further research is the development of bias-corrected RV

estimates that combine the unbiasedness of squared returns with the low variance of RV

estimates. A simple way to do this would be to assume that the sum of the correlations

between the intraday returns is constant, so that E[CCt/σ
2
t ] = ρ. In this case E[RVt]

and E[r2
t ] differ by the constant 1 +ρ, that can be estimated by r2

t /RVt.
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Figure 7: In analogy to Figure 1 using the data of the realized library for the 31 indices. The
RV estimates are calculated from 10-minute data and the squared returns are adjusted for
overnight returns such that both estimates are based on the same time horizon.
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Figure 8: In analogy to Figure 1 with the RV estimates now calculated from 5-minute data.
As before, squared returns are adjusted for overnight returns such that both estimates are
based on the same time horizon.
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Figure 9: In analogy to Figure 1 with the RV estimates now calculated from 30-minute data.
As before, squared returns are adjusted for overnight returns such that both estimates are
based on the same time horizon.
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Figure 10: In analogy to Figure 7 again using the data of the realized library for the 31 indices.
Now, however, the realized kernel variance, which is robust to market microstructure noise, is
depicted on the y-axis.
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A B C

15-minute data seasonally adjusted 5-minute data

RIC Country CC CJ JJ CC CJ JJ CC CJ JJ

.AEX Netherlands 3.09*** 0.56 0.29 2.32** 0.23 0.42 1.50 1.21 0.67

.ATX Austria 2.81*** 0.50 -0.47 2.49** -0.18 -0.54 3.07*** 1.18 0.72

.BFX Belgium 0.74 1.63 -0.42 0.74 1.16 -0.94 0.60 0.66 0.89

.BSESN India 2.21** -0.40 -0.58 2.42** -1.08 1.29 2.23** 3.51*** -0.71

.BVSP Brazil 1.74* 1.40 -1.35 2.32** 0.46 -1.31 1.58 1.91* -0.69

.GDAXI Germany -0.04 0.35 -0.66 0.14 -0.33 0.06 -0.53 1.60 1.29

.FCHI France 1.17 -0.15 -0.69 0.64 -0.05 0.64 1.68* 1.81* 0.72

.FTMIB Italy 4.16*** 1.19 -0.40 4.15*** 1.75* -0.54 2.19** 2.90*** 0.99

.FTSE Great Britain 1.46 0.24 -1.83 2.60*** -0.60 -1.85* -2.70*** 1.67* 3.32***

.GSPTSE Canada 2.53** 0.05 -0.61 1.92* -0.24 -0.87 2.68*** -0.34 -1.58

.IBEX Spain 3.73*** 0.57 -0.34 3.01*** 0.76 0.41 2.80*** 2.31** 0.23

.JALSH South Africa 8.44*** 2.57** -0.96 7.96*** 2.00** -0.17 6.98*** 2.55** -1.01

.MCX Russia 2.42** 1.88* -0.62 1.71* 2.35** -0.53 1.68* 1.98** 0.46

.N225 Japan 2.71*** 1.16 1.13 1.33 0.65 1.71* 0.26 3.37*** 2.92***

.OBX Norway 5.51*** 1.56 -0.33 7.41*** -1.08 0.36 5.36*** -2.81** -1.69*

.OMXC20 Denmark 4.31*** -1.11 -0.56 3.77*** 2.56** -0.94 4.19*** 1.89* -1.30

.OMXHPI Finland 5.85*** 2.83*** -0.95 11.05*** 1.06 0.95 4.14*** 3.94*** 0.46

.OMXS30 Sweden 2.86*** 3.77*** -1.11 2.66*** 2.49** -1.16 2.25** 1.92* -0.89

.PSI20 Portugal 3.24*** -0.49 1.03 4.19*** 0.41 1.08 0.84 0.53 0.87

.SPX United States 1.39 1.68* -2.52** 1.47 0.67 -2.43** 2.26** 3.73*** -0.62

.SSEC China 4.97*** 3.10*** 0.79 5.54*** 3.86*** 0.63 4.12*** 3.21*** 1.22

.SSMI Switzerland 2.33** 0.87 1.56 1.66* 3.88*** 1.54 0.96 2.38** 1.50

Table 5: In analogy to Table 2 with MAC instead of HAC test statistics. Again Panel A is
based on 15-minute data, Panel B adjusts for intraday seasonality and Panel C is based on
5-minute data.
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A B C

15-minute data seasonally adjusted 5-minute data

RIC Country CC CJ JJ CC CJ JJ CC CJ JJ

.AEX Netherlands 2.84*** 0.32 0.81 2.85*** 1.81* 0.24 0.88 2.22*** 1.09

.ATX Austria 12.13*** 1.17 -0.35 12.46*** 0.48 -0.61 13.05*** 0.77 2.67***

.BFX Belgium 1.42 1.00 -0.52 1.80* 1.61 -0.79 0.70 -0.75 1.52

.BSESN India 8.25*** -0.24 -0.96 8.75*** -0.46 0.79 6.67*** 4.31*** -2.12**

.BVSP Brazil 7.37*** 0.22 -1.74* 6.22*** 0.60 -1.54 11.63*** 2.97*** -0.51

.GDAXI Germany 0.85 1.02 0.04 0.87 -0.46 0.56 -2.41** 2.70*** 2.04**

.FCHI France 0.98 0.79 -0.67 0.49 0.55 0.39 -0.98 2.93*** 1.46

.FTMIB Italy 3.90*** 2.64*** -0.44 4.38*** 1.95* -0.68 2.15** 3.02*** 0.60

.FTSE Great Britain 3.99*** 1.44 -1.48 5.01*** -0.01 -1.86* 6.34*** 1.99** 1.27

.GSPTSE Canada 8.71*** 1.34 -0.13 8.00*** -1.39 -1.33 12.14*** 0.60 -1.13

.IBEX Spain 4.94*** 0.98 -0.28 4.15*** 1.58 0.22 4.03*** 1.71* 0.20

.JALSH South Africa 6.97*** 1.36 -0.84 6.36*** 2.46** -0.52 6.88*** 3.65*** 0.10

.MCX Russia 12.04*** 1.88* -0.68 10.79*** 3.57*** -0.68 13.38*** 4.10*** 1.33

.N225 Japan 3.87*** 1.62 2.05** 2.38** 1.63 1.70* 3.91*** 5.09*** 3.32***

.OBX Norway 4.19*** 1.89* -1.19 4.64*** 0.35 0.08 5.21*** -0.02 -1.58

.OMXC20 Denmark 6.22*** 0.43 -1.87* 4.98*** 1.45 -2.11* 6.40*** 1.52 -1.71*

.OMXHPI Finland 8.12*** 2.53** -0.61 7.82*** 1.29 0.91 9.56*** 2.67*** 3.02***

.OMXS30 Sweden 4.86*** 1.74* -1.06 5.03*** 2.35** -1.12 3.82*** 1.23 -0.86

.PSI20 Portugal 6.85*** -0.34 1.00 6.64*** 0.82 1.03 5.45*** 1.59 0.99

.SPX United States 5.66*** 2.83*** -1.81* 5.87*** 0.95 -2.35** 6.44*** 3.74*** -0.10

.SSEC China 9.43*** 2.51** 0.63 9.30*** 2.52** 0.83 13.29*** 4.95*** 1.76*

.SSMI Switzerland 4.36*** 1.16 1.46 4.36*** 3.82*** 1.48 2.63*** 2.21** 1.47

Table 6: In analogy to Table 2 with MOM instead of HAC test statistics. Again Panel A is
based on 15-minute data, Panel B adjusts for intraday seasonality and Panel C is based on
5-minute data.
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RIC Country r2 RV r2/RV
√

r̄2−
√

RV tHAC tMAC tMOM T
.AEX Netherlands 2.01 1.93 1.04 0.28 1.28 0.83 1.58 4,567

.ATX Austria 1.92 1.28 1.49 2.52 8.44*** 2.79*** 9.04*** 4,179

.BFX Belgium 0.88 0.85 1.05 0.21 1.46 0.65 1.76* 5,274

.BSESN India 1.82 1.78 1.02 0.15 0.74 1.10 1.76* 4,947

.BVSP Brazil 3.83 3.25 1.18 1.52 3.15*** 3.28*** 5.96*** 4,728

.GDAXI Germany 2.43 2.55 0.95 -0.40 -1.97** -1.69* -2.05** 5,263

.FCHI France 2.09 2.18 0.96 -0.32 -1.68* -0.65 -0.65 5,272

.FTMIB Italy 3.20 2.89 1.11 0.91 2.71*** 1.80* 2.96*** 1,942

.FTSE Great Britain 1.42 1.40 1.01 0.07 0.46 0.29 1.58 5,218

.GSPTSE Canada 0.86 0.73 1.17 0.71 3.26*** 5.87*** 9.21*** 3,654

.IBEX Spain 2.39 2.24 1.07 0.49 2.63*** 2.44** 2.90*** 5,188

.JALSH South Africa 1.30 1.14 1.14 0.74 4.12*** 3.49 5.20*** 3,216

.MCX Russia 4.05 3.30 1.23 1.95 5.74*** 3.51*** 7.97*** 3,892

.N225 Japan 1.33 1.18 1.12 0.65 3.44*** 3.39*** 3.60*** 5,080

.OBX Norway 2.14 1.89 1.14 0.91 2.68*** 4.51*** 5.00*** 2,678

.OMXC20 Denmark 1.64 1.42 1.15 0.89 3.51*** 3.26*** 3.93*** 2,821

.OMXHPI Finland 2.16 1.76 1.22 1.40 4.35*** 2.83*** 6.42*** 2,835

.OMXS30 Sweden 1.97 1.86 1.06 0.39 1.52 0.71 1.19 3,005

.PSI20 Portugal 1.44 1.29 1.11 0.62 3.30*** 1.66* 2.43** 4,866

.SPX United States 1.18 1.22 0.97 -0.18 -1.16 -0.55 1.41 5,183

.SSEC China 2.14 2.08 1.03 0.22 1.01 0.68 1.73* 5,019

.SSMI Switzerland 1.46 1.37 1.07 0.39 1.51 1.67* 2.19** 4,770

Table 7: In analogy to Table 1 with the difference that average RV and average squared return
are now calculated without including the first and last hour of the trading day. Again, average
squared return, average adjusted realized volatility, and average deviation between the two are
stated per annum in percent.
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Figure 11: In analogy to Figure 2 with R̃V = RVt +CCt for the SSEC. Again, both plots depict
the moving average of the previous 750 observations.
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Figure 12: In analogy to Figure 2 with R̃V = RVt + CCt for the BSESN. Again, both plots
depict the moving average of the previous 750 observations.
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Figure 13: In analogy to Figure 2 with R̃V = RVt +CCt for the BVSP. Again, both plots depict
the moving average of the previous 750 observations.
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Figure 14: In analogy to Figure 2 with R̃V = RVt +CCt for the DAX. Again, both plots depict
the moving average of the previous 750 observations.
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