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Abstract

Models based on factors such as size, value, or momentum are ubiquitous in asset pricing.

Therefore, portfolio allocation and risk management require estimates of the volatility of

these factors. While realized volatility has become a standard tool for liquid individual

assets, this measure is not available for factor models, due to their construction from the

CRSP data base that does not provide high frequency data and contains a large number

of less liquid stocks.

Here, we provide a statistical approach to estimate the volatility of these factors. The

efficacy of this approach relative to the use of models based on squared returns is demon-

strated for forecasts of the market volatility and a portfolio allocation strategy that is

based on volatility timing.
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1 Introduction

Volatility permeates finance, since it is central for everything from risk management to

asset allocation. The fact that volatility is unobserved therefore poses a special challenge

to practitioners that has been alleviated by the increased availability of high frequency

data and the advent of realized volatility, which led to major improvements of volatility

estimates relative to GARCH models. For economy wide risk factors, such as the size

and value factors used in asset pricing, however, high frequency data is not available, so

that one still has to rely on GARCH-type models.

In this paper we propose a methodology to overcome this issue and estimate factor

volatility with a precision comparable to that of realized volatility estimates. This

is achieved by constructing approximate high frequency returns of the respective risk

factors.

There is a wide consensus that the cross section of asset returns is best described by

factor models that proxy for economy wide risk factors. In addition to the estab-

lished market, size, and value factors of Fama and French (1993), and the momentum

factor of Carhart (1997), a plethora of anomalies has been uncovered in the litera-

ture that largely failed to attain the status of additional factors (cf. Stambaugh and

Yuan (2016)). Recently, Fama and French (2015), Hou, Xue, and Zhang (2015), Stam-

baugh and Yuan (2016), and Fama and French (2017) suggest investment, profitability,

and mispricing factors that subsume a large proportion of these anomalies.

In a simplified form these factors are typically constructed as follows. First, all stocks

in the asset universe are sorted according to some firm characteristic. Then, two value

weighted portfolios are formed from those stocks whose firm characteristics fall into the

highest and lowest x%-quantile. The factor return is then obtained as the return from

buying one of these portfolios and selling the other.

For risk management and portfolio formation purposes it is, however, not only the

return but also the volatility of these factors that is of interest. Return volatility is a

key variable for the pricing of options, speaks directly to the risk-return trade-off central

to portfolio allocation, and even finds its way into government regulations.

For liquid individual assets the unobservability of volatility has been alleviated through

the increased availability of high frequency data and the advent of realized volatility.

Given that returns of the asset can be observed frictionless in arbitrarily small time

intervals, realized volatility provides a consistent estimate of the quadratic variation of

the stock return. For a review of these concepts cf. Andersen and Benzoni (2009).

While this approach is straightforward for individual assets, the calculation of realized

volatilities for empirical factors is challenging. This is because the COMPUSTAT and

CRSP data bases that are typically used to construct the factor returns do not provide
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high frequency data. To calculate realized factor volatilities, it would therefore be nec-

essary to match the stocks in these data bases with those from a high frequency data

provider.

This, however, is not straightforward. High frequency data is typically only available

for the most liquid stocks that are traded regularly in short time intervals. The CRSP

portfolios that are used to construct empirical factor models, on the other hand, contain

much more illiquid stocks that are simply not traded often enough to calculate realized

volatilities. Furthermore, high frequency data bases are not necessarily free of survivor-

ship bias, and finally – even if these hindrances would not exist – the matching of data

bases typically constitutes a large effort and there tend to be non-negligible matching

errors.

Practitioners or researchers that need to estimate factor volatilities are therefore re-

stricted to one of two choices: either use squared returns as a volatility measure as

for example in Moreira and Muir (2017), or estimate the underlying volatility process

through a GARCH model. Both approaches have major drawbacks. Squared returns

provide an unbiased but inconsistent estimate of the true variance and were the stan-

dard measure considered in the GARCH literature prior to the emergence of realized

volatility. It is, however, well known that squared returns are extremely noisy. Andersen

and Bollerslev (1998) show that, despite the high degree of persistence in stock return

volatility, even the true model is only able to explain five to ten percent of the daily

fluctuation in squared returns. Estimates based on GARCH models, on the other hand,

will be less volatile but are biased and inconsistent if the model is misspecified.

The main contribution of this paper is therefore to propose an estimation method for

factor volatility that is close in precision to realized volatility. Our approach is applicable

whenever the researcher has access to daily factor return series and some high frequency

data base. The idea is to approximate the factor return using a linear combination

of the returns in the data base. In the first step, an appropriate linear combination

is estimated using ridge regression. In the second step, the realized volatility of this

approximate factor is calculated and used as an estimate for the volatility of the actual

factor.

The details of this procedure are discussed in Section 2. Subsequently, Section 3 provides

simulation results that demonstrate its favorable performance. The empirical validity

and usefulness of this approach is demonstrated in a number of ways in Section 4. First,

we analyze the relationship between our estimate and the squared returns for the factors

considered by Fama and French (2015) and show that both are estimates of the same

underlying volatility process. Second, we consider the example of the market factor

where we can use the realized volatility of the S&P 500 to evaluate the accuracy of

volatility forecasts. Here, we find that using our measure improves forecasts of the
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factor volatility considerably compared to squared returns and GARCH-type models.

Finally, we extend the analysis of Moreira and Muir (2017), who show that trading

strategies based on timing factor volatility yield substantial alphas. It is shown that

using our volatility estimate instead of the original approach based on squared returns

improves the performance of this trading strategy. Conclusions are then discussed in

Section 5.

2 Estimating Factor Volatility: Methodology

If asset returns are driven by a given factor model, than it holds true that the return

of each asset is a linear combination of the returns of these factors and an idiosyncratic

error term. Let there be K factors and denote the return of factor k = 1, ...,K at time t

by fkt. Then the return of asset i at time t according to this model is given by

rit =

K∑
k=1

λik fkt +εit, (1)

where εit ∼ (0,σ2
ε), λik is the loading of the ith asset on the kth factor, and i = 1, ...,N. It

is assumed that the εit have limited cross-sectional and serial dependence and that they

are independent of all the λik and fkt.

Conversely, it follows that the return of each factor can be approximated by a linear

combination of the asset returns. For suitable βik, we therefore have

fkt =

N∑
i=1

βikrit + νkt, (2)

where νkt represents the approximation error which can be expected to be small for large

N, since the idiosyncratic errors εit in (1) average out.

The rationale behind this approach becomes clear if we rewrite model (1) for a vector of

N assets. With Rt = (r1t, ...rNt)′, Ft = ( f1t, ..., fKt)′, λi = (λi1, ...,λiK)′, εt = (ε1t, ..., εNt)′ and

Λ = (λ1, ...,λN)′, we obtain

Rt = ΛFt +εt.

If Λ was known (and Λ′Λ invertible), we could estimate Ft, by

(Λ′Λ)−1Λ′Rt = Ft + (Λ′Λ)−1Λ′εt = Ft +ε∗t .

Since Λ is N×K, and εt is N×1, ε∗t is K×1. Therefore, every element of ε∗t is a weighted
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average of the innovation terms ε1t, ..., εNt and the vector ε∗t converges to zero by a

suitable law of large numbers (cf. Stock and Watson (2011) for a related discussion of

cross-sectional averaging and statistical factor models).

The coefficient vector βk = (β1k, ...,βNk)′ in (2) corresponds to the kth row of the matrix

(Λ′Λ)−1Λ′. Since the returns fkt of the observed factors are readily available, the problem

in estimating βk is that it is N dimensional and therefore potentially very variable if the

time dimension T is not large enough. In fact, it is likely that N > T in empirical

applications, so that standard estimation methods cannot be applied.

Our objective is not to recover which stocks are part of the portfolios that are used to

derive the factor returns. Instead, we want to obtain a good approximation of the factor

returns in terms of mean squared error (MSE). We therefore resort to regularization and

estimate βk using ridge regression. The estimator is given by

β̂k =argmin
β1k,...,βNk


T∑

t=1

 fkt −

N∑
i=1

βikrit


2

+γ

N∑
i=1

β2
ik

 , (3)

with γ > 0. This is a least squares estimator with an additional penalty term that shrinks

the coefficients towards zero. The size of the penalty term depends on the parameter γ

that can be selected using cross validation. While the introduction of the penalty term

introduces some bias, the rationale behind ridge regression is that for suitable γ, the

reduction in variance outweighs the size of the bias, so that β̂k is more accurate than

the OLS estimator in terms of the mean squared error. Moreover, γ lowers the effective

degrees of freedom, so that N > T is permitted if γ is sufficiently large.

To obtain an estimate of the volatility Vkt, denote the mth of M intraday returns of asset

i on day t by r(m)
it . Then, from (1), we can approximate the mth intraday return of factor

k on day t by

f̂ (m)
kt =

N∑
i=1

β̂ikr(m)
it . (4)

Consequently, an estimator analogous to realized volatility is given by

V̂kt =

M∑
m=1

(
f̂ (m)
t

)2
. (5)

We refer to V̂kt as the Ridge-RV estimator. Obviously, V̂kt is not consistent, since β̂k is

not a consistent estimate of βk. However, if f̂ (m)
kt is a good approximation of the true

unobserved high frequency return f (m)
kt of the kth factor, then V̂kt is an approximation of

the realized volatility of factor k.
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To summarize, our method proceeds as follows

1) Regress the daily factor return fkt on the daily returns of the N stocks in the data

base to obtain the coefficient vector β̂k from (3).

2) Obtain estimates f̂ (m)
kt of the intraday returns of the factors using (4).

3) Estimate the volatility of the factor from the estimated intraday returns f̂ (m)
kt using

the Ridge-RV estimator in (5).

3 Monte Carlo Simulation

To demonstrate the usefulness of the Ridge-RV estimator, we conduct a simulation study

that is tailored to resemble the setup in the empirical applications in Section 4.

It is well known that stock volatilities tend to have long memory and are well described by

fractionally integrated processes (cf. Andersen et al. (2001)). A fractionally integrated

process Xt is given by

(1−B)dXt = vt, (6)

where B defined by BXt = Xt−1 is the lag operator, vt is a short memory process, and

−1/2 < d ≤ 1. The fractional difference operator (1−B)d is defined in terms of general-

ized binomial coefficients. For details confer the original contributions of Granger and

Joyeux (1980) or Hosking (1981). A process that fulfills (6) — such as the well known

ARFIMA model — is referred to as I(d). Standard short memory processes are included

for d = 0 and unit root processes are obtained for d = 1.

To generate long memory in the daily volatilities Vkt of the K factors, we use the long

memory stochastic volatility framework of Breidt, Crato, and De Lima (1998) and sim-

ulate T daily observations for each factor using

Vkt = exp(Xkt), with Xkt ∼ ARFIMA(0,d,0).

The log-volatilities therefore follow a fractionally integrated model. Applying the expo-

nential function guarantees that all volatilities are positive. The Vkt obtained this way

are used as the true daily volatilities.

Based on these, we subsequently draw M intraday factor returns f (m)
kt ∼ N (0,Vkt/M) for

each day and factor. The daily factor returns are obtained as
∑M

m=1 f (m)
kt , so that they

have variance Vkt. Using these intraday factor returns, we can simulate intraday returns
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of N stocks. In analogy to Equation (1), the mth return of stock i at day t evolves as

r(m)
it =

K∑
k=1

λik f (m)
kt +ε(m)

it ,

with ε(m)
it ∼ N

(
0,σ2

ε/M
)

being a noise component. As for the daily factor returns, daily

stock returns are obtained as the sum over the M intraday returns so that rit =
∑M

m=1 r(m)
it .

All parameters are chosen such that the situation in our empirical application in Sec-

tion 4 is replicated as closely as possible. This means we consider K = 6 factors whose

correlation matrix matches the correlation matrix of the six factors considered there,

we chose the memory parameter d to be 0.6 for all factors as the literature suggests the

memory parameter of volatility to be in this region (cf. Wenger, Leschinski, and Sib-

bertsen (2018)), we simulate M = 78 intraday returns which corresponds to five minute

stock data, the factor loadings λik used for the simulation of stock returns are given

by regression estimates of the factor loadings of N = 500 randomly chosen stocks that

were in the S&P 500 at some point in the last 20 years, and σ2
ε evolves as the residual

variance of this regression. Moreover, we set T = 750.

Based on this simulated data we then apply the procedure described in Section 2 based

on Equations (3) to (5). Using the intraday factor returns f (m)
kt , we can also compute

the actual realized volatility. As a comparison, we further fit a GARCH(1,1) and a

FIGARCH(1,d,1) model as proposed by Baillie, Bollerslev, and Mikkelsen (1996), and

we consider the squared daily factor returns as an estimate of Vkt, too.

The results from 1,000 Monte Carlo repetitions can be found in Table 1 that shows the

bias compared to the true volatility Vkt and the RMSE of all the procedures considered.

As expected, the results are qualitatively similar for all factors and indicate the RV to be

the best estimator. Our Ridge-RV estimator delivers only slightly worse results which

are caused by a small downward bias due to the penalty term in (3).

This bias is, however, negligible compared to the variance of the estimates. The squared

returns are unbiased, but their large variance leads to an RMSE that is several times

larger than that of the Ridge-RV estimator. The GARCH model cannot remedy the

noise problem, and is biased since it does not allow for long memory, but the data

generating process is I(d). The FIGARCH enhances on this problem but it is noisier

than the GARCH model.

To summarize, in line with the literature the simulation study indicates that the RV

is the best estimator for the volatility. In situations where the intraday returns of a

portfolio cannot be observed, however, the Ridge-RV estimator is the best choice.
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F1 F2 F3 F4 F5 F6

RV
RMSE 1.042 1.195 1.088 1.278 1.612 1.238

Bias 0.002 -0.005 0.007 0.000 -0.011 -0.006

Ridge-RV
RMSE 1.073 1.376 1.156 1.581 1.742 1.432

Bias -0.112 -0.194 -0.161 -0.233 -0.203 -0.183

Squared Return
RMSE 8.383 9.787 8.708 12.188 12.486 10.163

Bias 0.000 0.014 -0.041 0.073 0.103 -0.010

GARCH(1,1)
RMSE 8.337 10.401 8.717 13.266 14.237 10.738

Bias 0.998 1.234 1.042 1.440 1.708 1.234

FIGARCH(1,d,1)
RMSE 13.504 14.603 13.747 14.773 15.980 15.098

Bias 0.520 0.315 0.421 0.235 0.074 0.209

Table 1: Simulation results: RMSE × 1000 and Bias × 1000 for different volatility esti-
mation approaches. The true volatility processes of the six factors (F1, F2,..) evolve as
Vkt = exp(Xkt), with Xkt ∼ ARFIMA(0,d,0). Moreover, the correlation matrix of the simulated
processes matches the correlation matrix of the six factors considered in the empirical appli-
cation.

4 Empirical Analysis

As an example for the application of the procedure described in Section 2, we consider

the market (MKT), size (SMB), and value (HML) factors included in the 3-factor model

of Fama and French (1993), the profitability (RMW) and investment (CMA) factors

added in the 5-factor model of Fama and French (2015), and the momentum factor

(MOM) included by Carhart (1997). These factors are commonly used in the asset

pricing literature and their validity is widely accepted. Daily returns of these factors are

freely available on the homepage of Kenneth R. French.

In addition to the daily factor returns we require daily returns rit and high-frequency

returns r(m)
it for the estimation of (2) and the calculation of approximate 5-minute factor

returns f (m)
kt from (4).

Since it is common to calculate realized volatilities from 5-minute returns, we extract

five-minute prices of all stocks that were part of the S&P 500 at some point between

1996 and 2017 from the Thomson Reuters Tick History data base. This results in a total

amount of 1,367 stocks that are considered. Since high frequency data is often subject

to minor recording mistakes, it is common practice to apply some form of data cleaning.

Here, we adopt the approach of Barndorff-Nielsen et al. (2009), which comprises, among

other things, the removal of observations with negative stock prices and abnormal high

or low entries in comparison to other observations on the same day.

Due to the long time span, it cannot be expected that the coefficients βik stay constant

over time. The loading of individual stocks on factors can change as competitors are
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MKT SMB HML MOM RMW CWA

R2 97.72 76.60 84.51 88.00 79.99 87.17

Table 2: Ridge regression results: coefficient of determination R2 in percent for the ridge
regression as considered in (2).

acquired that have a different exposure to market risk, small firms grow into large firms,

and growth stocks turn into value stocks as companies mature. We therefore conduct

the estimation of the coefficient vector β̂k according to (3) in a rolling window of size W.

For the factors MKT, SMB, and HML which are based on firm characteristics that are

relatively stable over time we set W = 750. The factors MOM and CMA that are based

on more dynamic features are estimated in a window of size W = 125.

To demonstrate the empirical validity of our factor volatility estimates, the next sec-

tion shows a number of model diagnostics. Afterwards, Section 4.2 demonstrates that

volatility forecasts can be improved by using our measure and Section 4.3 presents an

application to portfolio management that highlights the importance of factor volatility

forecasting.

4.1 In-Sample Model Diagnostics

When trying to evaluate the performance of the Ridge-RV estimator, we face the problem

that the true volatility process is unobserved and realized volatilities are not available

for the factors. Only squared returns can be observed. We therefore consider a number

of model diagnostics that demonstrate the satisfactory performance of our procedure,

before turning to the applications in Sections 4.2 and 4.3.

The Ridge-RV estimate is based on the approximation of the factor of interest by a linear

combination of stock returns. If this approximation in (2) is sufficiently accurate, so are

those in (4) and (5). Consequently, we should obtain large coefficients of determination

R2 in the regression shown in (2). Table 2 shows that the measure ranges from 97.72

percent for the market factor to 76.60 percent for the size factor. Since the R2 is above

75% for all factors the ridge regression seems to approximate the factor returns with

sufficient accuracy.

Squared returns and Ridge-RV are both estimates of the same unobserved volatility

process. They can therefore both be understood as differently perturbed versions of

it. A first approach to test the validity of the Ridge-RV estimator in this empirical

setup is therefore to test for fractional cointegration between the squared returns and

V̂kt. Fractional cointegration is a natural generalization of cointegration to fractionally

integrated series. Two time series Xt and Yt are said to be fractionally cointegrated, if

both are I(d) and there exists a linear combination Xt−α−βYt = ut, so that ut is I(d−b)
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MKT SMB HML MOM RMW CMA

CH 5.731 2.972 3.843 4.036 0.986 5.205 (1.697)

SRF 4.640 1.499 2.910 2.596 2.517 4.194 (1.960)

Table 3: Fractional cointegration test results: test statistics and critical values for the tests by
Chen and Hurvich (2006) (CH) and Souza et al. (2017) (SRF). Here, the null of no fractional
cointegration between log squared returns and log Ridge-RVs is tested against the alternative
of fractional cointegration. The values in brackets are critical values at the five percent level.

for some 0 < b ≤ d. As in standard cointegration, both series must be highly persistent

and they are (fractionally) cointegrated if a linear combination of them has reduced

persistence. The extension lies in the fact that the reduction of persistence does not

have to be from I(1) to I(0), but can be from I(d) to I(d−b).
When modeling volatility time series it is common practice to work with the log of the

volatility series since it is better approximated by the normal distribution (cf. Andersen

et al. (2001)). If lnσ2
t denotes the true volatility process, then ln f 2

kt = lnσ2
t +ωkt and

ln V̂kt = lnσ2
t + ηkt, where ωkt and ηkt are the respective estimation errors. Therefore, if

lnσ2
t is I(d), then V̂kt can only be a reasonable estimator of lnσ2

t , if it is fractionally

cointegrated with ln f 2
kt, so that ln V̂kt − ln f 2

kt = ηkt −ωkt is I(d−b).
Figure 1 plots the logarithms of the squared returns and our volatility estimate over time.

Two main observations can be made. First, our measure is comoving with the squared

factor returns, which is a first indication for the existence of a fractional cointegrating

relationship. Larger values of the squared factor returns are associated with larger values

of the Ridge-RV and vice versa. This holds for all factors and all time periods, except

for the size factor where a short time period between 2004 and 2006 exists for which the

two time series seem to diverge. Second, the Ridge-RV appears to be far less perturbed

than the squared returns.

To formally test the hypothesis of fractional cointegration between both volatility mea-

sures, we apply the tests of Chen and Hurvich (2006) and Souza et al. (2017) for the

null hypothesis of no fractional cointegration. Under the alternative a fractional cointe-

gration relationship exists.

Table 3 reports the results of the tests. In line with Figure 1 the test by Chen and

Hurvich (2006) rejects the null of no fractional cointegration for all factors, except for

the RMW factor, and the test by Souza et al. (2017) rejects the null for all factors, except

for the size factor. Therefore, we can conclude that squared returns and Ridge-RV are

fractionally cointegrated.

All of the statistics presented so far show that our Ridge-RV estimator works well.

However, as discussed above, all of the evidence provided is indirect, since the actual

volatility process is unobserved. For the market factor, we can, however, conduct one
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Figure 1: Time series plots of the logarithms of Ridge-RV and squared returns for the six
factors.

- 10 -



2000 2005 2010 2015

−
1

4
−

1
0

−
6

−
4

L
o

g
 V

o
la

ti
lit

y

RV

Ridge−RV

−12 −10 −8 −6

−
1

2
−

1
0

−
8

−
6

RV

R
id

g
e

−
R

V

Figure 2: Both plots display the Ridge-RV estimate of market factor volatility and the true
volatility of the market factor approximated by the realized volatility of the S&P 500. While
the left plot shows the two measures over time, the right plot displays a scatter plot.

experiment that provides insight into the actual accuracy of the Ridge-RV estimate.

Even though we do not have realized volatilities for the market factor, it is well known

that the value weighted CRSP return which is generally regarded as the best available

market proxy is highly correlated with that of the S&P 500. The correlation coefficient

is about 99 percent, meaning that the direction of the variation and its scaling over

time is essentially the same. For the S&P 500 it is possible to obtain intraday prices,

meaning that we can calculate realized volatilities. Consequently, we can compare our

estimate of the market volatility with the realized volatility of the S&P 500. As Andersen

and Benzoni (2009) stress, the realized volatility is the natural ex post measure of the

underlying volatility process to consider. Figure 2 shows that the two measures are close

to identical. In fact, they have a correlation of 93 percent, are fractionally cointegrated,

and regressing our volatility estimate on the realized volatility yields an insignificant

intercept and a slope that is almost one (0.98).

We therefore conclude that our estimate is appropriate for describing the volatility of the

market factor. Even though the results in Tables 2 and 3 indicate that the procedure

works slightly better for the market factor than for the other factors, the degree of

precision obtained for the market implies that the Ridge-RV should still be a good

estimate for the volatility of the other factors.

It should be noted, however, that the procedure is based on the assumption that the

factors under consideration are actually relevant for the cross section of stock returns.

This may be an issue if one wishes to apply the procedure to any of the many weak

factors discussed in the literature.
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4.2 Out-of-Sample Forecasts of Market Volatility

For portfolio allocation and risk management purposes, accurate forecasts are needed

in addition to ex post and on-line estimates of the factor volatility. In this section we

therefore compare the performance of forecasts using squared returns and GARCH-type

models with those using Ridge-RV.

When trying to evaluate these forecasts, we again face the problem that the true fac-

tor volatility is unobserved. As shown by Andersen and Bollerslev (1998), considering

squared returns as a proxy for the true factor volatility when evaluating volatility fore-

casts is not suitable since the tremendous amount of noise in the return generating

process inevitably causes a poor performances of the forecasting models. On the other

hand, it is seems tautological to show superior performance of our Ridge-RV measure

when considering it as the true factor volatility. We therefore proceed as in the previous

section and conduct a forecast comparison for the volatility of the market factor, where

we can use realized volatilities of the S&P 500 to proxy for the true factor volatility.

This makes for a fair comparison, since both types of models (Ridge-RV and models

based on squared returns) do not use the realized volatilities of the S&P 500 in any way.

The Ridge-RV is predicted using the HAR model of Corsi (2009). We refer to this

forecast as the HAR-Ridge-RV model. As a benchmark, we also consider the standard

HAR-RV model, which is possible for the market but not for the other factors. It

can thus be interpreted as the ”infeasible” model that we try to approximate when

predicting factors such as SMB, HML, or others. As feasible benchmark models we

include a GARCH(1,1) and due to the long range dependence in factor volatility we also

use a FIGARCH(1,d,1) model fitted to the squared returns. All estimations are carried

out in a rolling window of 750 observations.

For the evaluation of the forecasts we consider the RMSE and the QLIKE loss function,

since Patton (2011) shows that these are the only commonly used measures that preserve

the true ordering of the forecasts if they are evaluated on a perturbed volatility proxy.

Furthermore, we report the R2 from Mincer-Zarnowitz (Mincer and Zarnowitz (1969))

regressions given by RVkt = b0k +b1kV̂ (h)
kt +ukt. Here, RVkt is the observed realized volatility,

V̂ (h)
kt the predicted volatility based on all information available in t−h with h being the

forecast horizon, and ukt is an error term. Consequently, larger values of the coefficient

of determination R2 in this regression imply that the forecasts are performing better in

predicting the true volatility.

Table 4 shows the results of this forecasting exercise for 1-step, 5-step, and 22-step

forecasts. It can be seen that for all forecasting horizons and for all evaluation measures

the HAR-Ridge-RV model performs better than all of the models based on squared daily

returns. For 1-step forecasts, for example, the RMSE of the HAR-Ridge-RV model is
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1-step 5-steps 22-steps

RMSE QLIKE R2 RMSE QLIKE R2 RMSE QLIKE R2

GARCH(1,1) 0.208 0.290 0.491 0.232 0.383 0.382 0.280 0.536 0.164

FIGARCH(1,d,1) 0.219 0.293 0.443 0.229 0.373 0.397 0.275 0.523 0.178

HAR-Ridge-RV 0.174 0.252 0.624 0.199 0.374 0.482 0.237 0.545 0.257

HAR-RV 0.172 0.208 0.604 0.201 0.324 0.469 0.238 0.486 0.265

Table 4: Forecast results: RMSE ×103, QLIKE, and R2 from Mincer-Zarnowitz regressions for
the competing models and different forecast horizons. GARCH and FIGARCH use squared
returns to forecast the market factor volatility, HAR-Ridge-RV uses the Ridge-RV estimate,
and HAR-RV uses the true volatility given by the realized volatility of the S&P 500.

0.174, QLIKE is 0.252 and the R2 is 0.624, while for the GARCH model, which is the

best model using squared returns, the RMSE is 0.208, QLIKE is 0.29 and the R2 is

0.491. As can be expected, the forecasting performance of the models becomes worse

on longer horizons. The ranking of the models, however, stays the same.

When comparing the forecasts based on our volatility estimate with the HAR-RV fore-

casts based on the realized volatility of the S&P 500, it can be seen that the two models

deliver qualitatively similar results.

Consequently, forecasts based on Ridge-RV achieve their objective to approximate those

that are obtained if realized volatilities are available and they strongly outperform fore-

casts of the market volatility compared to models using squared returns. For factors

other than the market, where realized volatilities are not available, they can therefore

be expected to provide results that are far better than standard approaches. Whether

the performance actually carries over to other factors is analyzed in an indirect way in

the next section that also provides an example for the application of our method for

practical purposes.

4.3 Volatility Timing Using Ridge-RV

As an illustration of the potential applications of Ridge-RV, we reconsider a volatility

timing strategy recently proposed by Moreira and Muir (2017), who show that timing

the volatility of the risk factors considered here can lead to substantial alphas. This is

because the risk premia associated with the factors appear to be relatively stable over

time, whereas their volatility exhibits considerable time variation.

Moreira and Muir (2017) consider the returns of a strategy that entails to scale monthly

factor returns by the inverse of their previous month’s volatility. Consequently, the

strategy invests more heavily if volatility is low and stays out of the market if volatility

is high. Since a regression of the unweighted factor returns on the volatility weighted
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MKT SMB HML MOM RMW CWA

Monthly Re-Balancing

MM17 6.49** -0.12 1.31 8.70*** -0.25 -0.44

Ridge-RV 6.67** 1.53* 3.01* 9.92*** 0.29 0.86

Daily Re-Balancing

GARCH(1,1) 1.90 -0.10 0.15 9.34*** 0.05 -0.99

FIGARCH(1,d,1) 2.10 0.00 0.84 9.28*** 0.09 -1.07

HAR-Ridge-RV 1.25 1.93* 3.25* 9.81*** 0.07 -0.08

Table 5: Volatility timing results: Annualized intercepts (alphas) of a time series regression
with the volatility weighted factor return as endogenous variable and the ordinary factor return
as exogenous variable. The first row reports the values of the original strategy with monthly
re-balancing based on average squared returns. This is the benchmark. The second row
contains the results of the same analysis based on our Ridge-RV measure. The last three rows
correspond to daily factor re-balancing using volatility forecasts made by GARCH, FIGARCH
and HAR-Ridge-RV. Moreover, *** (**) [*] indicates alpha to be significantly larger zero at
the 1% (5%) [10%] level.

factor returns yields a significant intercept, this strategy expands the mean-variance

frontier.

We extend the strategy in the following two ways using our estimate of factor volatility.1

First, Moreira and Muir (2017) use a monthly volatility estimate obtained by averaging

squared daily returns. As squared returns are extremely noisy, replicating their proce-

dure using our less noisy Ridge-RV estimate should therefore be beneficial. Comparing

the first two rows of Table 5 shows that this is the case for all six factors.

It can further be seen that alpha is significant for four out of six factors when using our

measure while it is only significant for two out of six factors when using the measure

based on daily squared returns.

Second, since volatilities exhibit considerable variation on a day-to-day basis, there is

reason to assume that the volatility trading strategy might be even more successful

if the strategy is executed with daily portfolio re-balancing. Therefore, we replicated

the procedure using daily volatility forecasts from the HAR-Ridge-RV model and, as a

comparison, using GARCH(1,1) and FIGARCH(1,d,1) forecasts.

The lower panel of Table 5 show that for all factors, except for the market factor,

the alphas obtained when using our volatility measure are larger than those of the

GARCH models. Moreover, the table reports that daily volatility timing leads to alphas

that are significant for three out of six factors. Similar to the results obtained by

1It should be noted that, due to the requirement of intraday data, all results are based on the period from
2002 until 2017. Therefore, the results presented here differ from those in Moreira and Muir (2017) as
they use a longer time period.
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the monthly strategy, alpha is particularly large for the momentum factor and not

significant for the two more recently introduced factors RMW and CMA. Daily volatility

timing using the Ridge-RV is further beneficial compared to the original strategy for five

out of six factors. However, when comparing among the daily and monthly Ridge-RV

based strategies, we find that less frequent portfolio re-balancing leads to better results.

Furthermore, frequent trading would likely cause considerable transaction costs that

negate the abnormal returns generated by the strategy.

The finding that the strategy improves when using our measure instead of squared

returns for both the daily and the monthly horizon underlines that our measure is

capable of forecasting factor volatility better than squared returns. In particular the

improvements in the volatility timing strategy for the SMB and HML factors is evidence

that the good performance of Ridge-RV for the market volatility documented in Sections

4.1 and 4.2 carries over to other factors.

5 Conclusion

Although the volatilities of economy wide risk factors such as the size and value factors of

Fama and French (1993) are of importance for risk management and portfolio allocation

purposes, the development of methods for their estimation has lagged behind that for

liquid individual assets or indices, where intraday returns are available.

The Ridge-RV approach suggested in this paper circumvents the lack of high frequency

data for factor returns and provides a volatility measure that is closely related to real-

ized volatility. This is achieved by approximating the daily factor returns by a linear

combination of the returns of assets for which intraday returns are available. Holding

the weights in the linear combination constant then allows to obtain approximate high

frequency factor returns that are the basis for the estimation of the factor volatility. Due

to the large number of parameters in the linear combination that have to be estimated,

it is necessary to apply a regularized estimation method such as ridge regression. Even

though this introduces some bias, our simulations show that the bias is negligible in

comparison to the reduction in variance relative to existing methods.

The subsequent applications to the market, size, value, momentum, investment, and

profitability factors demonstrate that the proposed measure performs well in practice

and outperforms competing approaches such as GARCH-type models. We therefore find

that adopting the proposed approach has the potential for significant improvements in

asset allocation decisions and risk management.
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