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1 Introduction

Recent studies have identified health dynamics and health shocks as major sources of risk
over the life cycle. Health has implications for many economic variables including asset
accumulation, labor supply, and income and wealth inequality.1 Most studies use survey
responses on individuals’ self-assessed health status to measure health. This assessment is
by definition subjective and, as we argue, it is often not consistent across different surveys.
Moreover, ‘self-reported health status’ (SRHS from now on) is always a discrete (category)
variable. For example, individuals are asked to describe their health status by reporting a
number between 1 and 5, with 1 meaning ‘excellent’, and 5 meaning ‘poor’ health. Therefore,
an individual who reports the number 1 is considered healthier than an individual who reports
the number 2. However, this information does not help us understand how much healthier
is a 1 relative to a 2.

In this paper we construct a single, continuous variable called a frailty index (or frailty
for short) that can summarize individual health. The frailty index is simply the accumulated
sum of all adverse health events that an individual has incurred. Our construction is inspired
and based on findings in the gerontology literature.2 The idea behind the construction of
the frailty index is as follows. As individuals age, they accumulate health problems. These
health problems can range from symptoms to clinical signs, and laboratory abnormalities
to diseases and disabilities. Each health problem is referred to as a deficit. Mitnitski et al.
(2001) and Mitnitski et al. (2002) have demonstrated that health status can be represented
by combining deficits in an index variable, called a frailty index. Mitnitski et al. (2005) and
Goggins et al. (2005) find that the frailty index is comparable between databases even when
the list of deficits used to construct the index do not coincide. They also find that the frailty
index is a better predictor of mortality and institutionalization than age.

Following the guidelines described in Searle et al. (2008), we construct a frailty index for
individuals using three different datasets: the Panel Study of Income Dynamics (PSID), the
Health and Retirement Study (HRS) and the Medical Expenditure Panel Survey (MEPS).
All three datasets contain a rich set of survey questions on various aspects of individual
health conditions. In each case, we normalize the frailty index to be a variable between 0
and 1. Therefore, a frailty index of 0.2 means that a person has accumulated 20 percent of
all deficits potentially observed.

We start by comparing the frailty index to SRHS. All three datasets that we use collect
responses about SRHS by asking individuals to assess their own health using a number
between 1 and 5 which correspond to ‘excellent’, ‘very good’ , ‘good’, ‘fair’, and ‘poor’
health. We show that the frailty index has several advantages over SRHS, especially when
studying health dynamics over the life cycle.

First, SRHS underestimates the average rate of deterioration of objective health (as
measured by the frailty index) with age. Specifically, we document that the fraction of good
health individuals in the population declines faster with age when health is measured via the
frailty index as compared to SRHS. To establish this fact, we identify cutoff points of frailty

1See De Nardi et al. (2017), Blundell et al. (2017), O’Donnell et al. (2015), Kopecky and Koreshkova
(2014) and De Nardi et al. (2010), among many others.

2See Searle et al. (2008); Rockwood and Mitnitski (2007); Rockwood et al. (2007); Mitnitski et al. (2001,
2005); Kulminski et al. (2007a,b); Goggins et al. (2005); Woo et al. (2005), among others.

2



using the frailty distribution of 25 to 29 year-olds. The cutoff points are chosen to partition
the distribution into five bins where the size of each bin is equal to the fraction of individuals
in each SRHS category. We then use these fixed cutoffs to assign health status to individuals
at older ages. The result is that the fraction of the population in the ‘excellent’ and ‘very
good’ categories declines much faster with age when these categories are constructed using
the frailty index (instead of being self-reported). This finding suggests that older individuals
may be overly optimistic in their assessment or reporting of their health status. It is also
possible that individuals assess their health by comparing to their peers and, thus, SRHS
is relative to a reference point that is declining with age. Consistent with this theory, we
document more persistence in health status when health groups are determined using frailty
indices as opposed to SRHS.

Second, the frailty index is a more consistent measure of health when comparing across
datasets. The distribution of SRHS evolves very differently in MEPS than in PSID and HRS.
In contrast, in all three datasets, the dynamics of the frailty distribution are very similar.
The frailty dynamics are similar despite the fact that the set of deficit variables that we use
to construct the frailty indices is not exactly the same across the three datasets.

Third, the frailty index measures health on a finer scale than SRHS. We exploit the
richer variation in frailty as compared to SRHS to document several facts about how cross-
sectional dispersion in health evolves with age. We find that dispersion in frailty increases
with age and that the frailty distribution is significantly right-skewed. We also document
substantial variation in frailty within the ‘poor’ self-reported health status category. This
finding suggests that ‘poor’ self-reported health status is a weak indicator that an individual
is in extremely bad health.

Finally, we demonstrate that, compared to SRHS, frailty is a better predicator of major
health-related outcomes. In particular, the frailty index outperforms SRHS in predicting
mortality, nursing home entry and Social Security Disability Insurance recipiency. Frailty
can also help to account for variation in health outcomes within SRHS groups. In particular,
we find a statistically significant positive correlation between frailty and each of these health
outcomes within the group of individuals with ‘poor’ SRHS.

Next, we use the frailty index to measure the evolution of individual health over the life
cycle. To this end, we first exploit the long panel dimension of the PSID to document several
properties about the dynamics of the cross-sectional frailty distribution. Specifically, we show
how the empirical variance and covariances of frailty vary with age. We then explore which
types of statistical models of frailty dynamics are consistent with these patterns. In the
process, we estimate the models via a GMM estimation that identifies the model parameters
by targeting the empirical variance-covariance profile.

The variance of frailty is increasing and slightly convex in age. We start with a stochastic
process that has the ability to match this feature of the data. The macro/labor literature on
estimating earnings processes has favored models in which the residual consists of an AR(1)
process, a transitory shock, and a fixed effect because these processes are easier to embed
into structural life cycle models (see, for example, Storesletten et al. (2004)). Drawing on
the earnings process estimation literature, we assume a similar model for frailty dynamics.

The autocovariances of frailty are declining in lag length and the rate of their decline is
increasing with age. We show that the baseline model can only match the autocovariance
structure if we allow for a time-varying conditional variance. To this end, we estimate two
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versions of the baseline model. In the restricted version, we assume that shocks to frailty
have a constant age-invariant variance. Under this view the increasing variance of frailty
with age is driven by persistent (perhaps even unit root) shocks. The restricted version
cannot simultaneously match both the convex variance profile and declining autocovariance
profiles. Thus, our preferred version is the unrestricted one which allows for a linear trend in
age in the variance of innovations to the AR(1) shocks. This version is consistent with the
view that as individuals age, they face higher risk of adverse events, even after controlling
for observable characteristics.

We also explore two alternative, richer, model specifications: age-varying persistence and
heterogeneous profiles (similar to Guvenen (2009)). We find no significant improvement
in fit of the model after adding either of these features. In particular, in the absence of
age variation in the variance of AR(1) innovations, neither of the model specifications can
simultaneously match both the increasing pattern of variance in frailty and the fact that
autocovariances are declining with lags and the rate of decline is increasing with age.

Mitnitski et al. (2006) also estimate a frailty process. Specifically, they estimate a sta-
tionary discrete Markov process of frailty using two waves of the Canadian Study of Health
and Aging (CSHA). Although their statistical model is elegant and simple, it is essentially an
age-invariant autoregressive process. Our estimation results indicate that an age-invariant
autoregressive process cannot (simultaneously) match the qualitative features of the life cycle
variance profile and the autocovariance profiles. This finding illustrates the value of having
a long panel. The autocovariance profiles cannot be obtained from a short panel. However,
these moments are extremely informative about underlying data-generating process.

Our paper contributes to the quantitative literature that studies health dynamics over
the life cycle and their implications. For instance, De Nardi et al. (2017) estimate a process
for health dynamics that allows for history dependence. They then quantitatively evaluate
the lifetime consequences of bad health in a structural life-cycle model. Cole et al. (2019)
study the effect of labor and health insurance market policies on the the evolution of the
cross-sectional health distribution. Capatina (2015) quantifies the impact of health status
on labor supply, asset accumulation and welfare. French and Jones (2011) use a structural
model of health and labor supply to estimate the effect of health insurance on retirement
behavior. All of these studies, like most of the studies in the literature, use SRHS to measure
health status.3 We propose the frailty index as an alternative method and illustrate that it
has several attractive features relative to SRHS when studying health dynamics.4

There are a number of papers in the literature that use objective health condition vari-
ables, other than frailty, to measure health status.5 For instance, Gilleskie et al. (2017) use

3One notable exception to the use of SRHS is Dalgaard and Strulik (2014) who, also inspired by the
gerontology literature, model health evolution over the lifecycle as a deterministic process of deficit accu-
mulation to study the cross-country link between longevity and income known as the Preston curve. This
model has been used by Schünemann et al. (2017a) to study the role of gender-specific preferences in ac-
counting for gender differences in life expectancy and by Schünemann et al. (2017b) to study the impact
of deteriorating health on the value of life. Another notable exception is Ozkan (2017) who estimates the
health shock process by targeting survival probabilities and medical expenditures.

4Though it has been documented in the literature that SRHS is highly correlated with objective measures
and is a strong predictor of mortality risk (see, for example, Idler and Benyamini (1997), Van Doorsaler and
Gerdtham (2002)), the limitations of SRHS, in particular for life-cycle analysis, still remain.

5See Bound (1991), Smith (2004).
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body mass to measure health status and study the impact of health status on wages in a life-
cycle model. Amengual et al. (2017) construct an objective discrete measure of health using
information on Activities of Daily Living (ADL’s) and Instrumental Activities of Daily Liv-
ing (IADL’s) in the HRS. They estimate a panel Markov switching model of old-age health
dynamics.6 By using objective indicators of health conditions, these latter studies avoid the
disadvantages of subjective self-reported health measures. However, as argued by Blundell
et al. (2017), the objective health indicators used in these studies provide an incomplete view
of health since they only cover a subset of health conditions. The frailty index, in contrast,
serves as a comprehensive summary of an individual’s overall health status.

Poterba et al. (2017) also construct an objective health measure for HRS respondents
using a similar set of variables to ours and principle component analysis. Our constructed
frailty measure is similar in the sense that it is a summary statistic that captures the vari-
ations in a collection of indicator variables. The advantage of equally-weighting the deficit
variables when constructing the frailty index is that, aside from its simplicity, it directly
corresponds to the notion of deficit accumulations.7

This paper is also related to the literature on estimating earnings and medical expenditure
processes.8 Our statistical analysis of the underlying stochastic processes for the frailty index
draw heavily from this literature, which has favored simpler models so that the estimated
processes can be easily incorporated into quantitative life-cycle models. Following this tra-
dition, we model the frailty residual as an AR(1) process plus a transitory shock. Recently,
several papers have documented that the conditional distribution of persistent labor income
shocks is non-stationary and time or age-dependent including Baker and Solon (2003), Blun-
dell et al. (2015), De Nardi et al. (2018), Guvenen et al. (2015), Karahan and Ozkan (2013),
and Meghir and Pistaferri (2004). For instance, Karahan and Ozkan (2013) assume that the
conditional distribution of the persistent component of earnings is age-dependent, i.e. both
the persistence and the variance of the innovations to the persistent shock vary with age.
Karahan and Ozkan (2013) and De Nardi et al. (2018) show that these features of earnings
are important for understanding the impact of earnings shocks on consumption and how the
cross-sectional dispersion in consumption varies with age in the data. They also show that
this age-variation in the persistence and the variance matter for the welfare costs of earnings
risk. Fella et al. (2017) explore methods for discretizing non-stationary processes that are
applicable to discretizing the frailty process proposed in this paper.

The rest of the paper is organized as follows. In Section 2 we present the frailty index,
discuss its construction, and compare it to SRHS. In Section 3, we present and estimate
a dynamic stochastic process for frailty over the life cycle. In this section we also present
results from estimating the baseline model on subsamples that vary by gender and education.

6It is worth noting that Amengual et al. (2017) argue that their discrete measure has an advantage over
a continuous measure as the latter cannot be included in structural models. We would argue that it is in
fact a disadvantage as it is less flexible than a continuous measure like ours. One can always discretize a
continuous process but not so obvious how to go the other way.

7In the Appendix we show that the properties of the dynamics of the cross-sectional health distribution
we document are very similar whether the measure of health is frailty or a health index constructed using
the first principal component as weights as in Poterba et al. (2017).

8See, for example, Storesletten et al. (2004) and Guvenen (2009) for the estimation of earnings processes,
and Hubbard et al. (1995) and French and Jones (2004) for estimating medical expenses processes. See also
Jung and Tran (2014) who document facts about medical expenditures over life cycle using MEPS data.
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The last part of the section compares the baseline estimation results to those obtained from
estimating alternative statistical models. Section 4 concludes.

2 Frailty Index

As individuals age they develop an increasing number of health problems, functional impair-
ments, and abnormalities. Some of these conditions are rather mild (e.g., reduced vision)
while others are serious (e.g., cancer). However, as the number of these conditions rises, the
person’s body becomes more frail and vulnerable to adverse outcomes. We refer to each of
these individual conditions as a deficit. In their pioneering work, Mitnitski et al. (2001) and
Mitnitski et al. (2002) have demonstrated that the health status of individuals can be rep-
resented by combining deficits that an individual accumulates into an index variable, called
the frailty index. The index is constructed as the ratio of deficits a person has accumulated
to the total number of deficits considered. For example, if 30 deficits were considered and 3
were present for a person, that person is assigned a frailty index of 0.1.

Despite its simplicity Mitnitski et al. (2004) and Mitnitski et al. (2005) (among others)
have found that having a higher frailty index is associated with a higher likelihood of an
adverse health outcome, such as death or institutionalization.9 Moreover, these findings have
been shown to be robust with respect to the choice of dataset that is used to construct the
index and the number of potential deficits that are considered.10 In other words, it does not
matter if study A considered 30 deficits from the set X of deficits and study B considered 40
deficits from set Y. The frailty index constructed using each dataset grows at roughly 3% per
year, predicts mortality better than age (Mitnitski et al. (2005) and Goggins et al. (2005)),
and hardly anyone in the sample accumulates more than 2/3 of total deficits considered.
These findings suggest that the frailty index is a good and robust proxy for health status.

2.1 Frailty Index Construction

Motivated by previous studies, we construct frailty indices for samples of individuals in three
different datasets: the Panel Study of Income Dynamics (PSID), the Health and Retirement
Study (HRS) and the Medical Expenditure Panel Survey (MEPS). The construction of the
indices mostly follows the guidelines laid out in Searle et al. (2008), and uses sets of variables
similar to those used to create a frailty index in Yang and Lee (2009).

All three datasets contain a rich set of survey questions on various aspects of individual
health conditions. We include the following broad categories of variables in our calculations:11

• Restricted activity, difficulty in Activities of Daily Living (ADL) and Instrumental
ADL (IADL): such as difficulty eating, dressing, walking across room, etc.

• Cognitive impairment: such as immediate word recall, backwards, counting, etc.

9See also Searle et al. (2008); Rockwood and Mitnitski (2007); Rockwood et al. (2007); Mitnitski et al.
(2001, 2005); Kulminski et al. (2007a,b); Goggins et al. (2005); Woo et al. (2005).

10Especially when at least 30 conditions are included, see Kulminski et al. (2007a).
11See the Appendix for a complete list of variables used in each dataset.
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• Medical diagnosis/measurement: such as high blood pressure, diabetes, heart disease,
cancer, high BMI, etc.

We conduct most of our analysis using PSID data. However, for the purpose of comparison
and to demonstrate consistency and robustness of our findings we also repeat the analysis
in HRS (only available for older individuals) and MEPS (only two frailty observations per
individual). Below we briefly describe these datasets and our samples.

2.1.1 Panel Study of Income Dynamics

The PSID is a longitudinal panel survey of U.S. families that was started in 1968. Its
disability and health-related questions were expanded in 2003 to include questions on specific
medical conditions, ADL’s and IADL’s. We rely on these questions to construct individuals’
frailty indices. For this reason we restrict our sample to the 2003 to 2015 period. The
PSID is biennial over this period. We also restrict the sample to household heads and their
spouses who are at least 25 years of age. Our sample consists of 84,884 observations of 18,524
individuals (8,738 men and 9,786 women).

Table 23 in the Appendix lists the 27 variables we used to construct the frailty index for
PSID respondents. The index is constructed by summing the variables in the first column of
the table using their values which are assigned according to the rules in the second column.
Then dividing this sum by the total number of variables observed for the individual in the
year.

The second column of Table 1 shows summary statistics on the frailty index in the
PSID sample. The table shows that mean frailty is higher among the sample of women
versus men and higher in older age groups versus younger age groups. It also shows that
the distribution of frailty is right-skewed and that increases in frailty are three times more
common than decreases.

2.1.2 Health and Retirement Survey

The HRS is a biennial longitudinal survey of Americans over age 50. We use the HRS waves
spanning the period 1998 to 2014. Our sample consists of 205,711 observations of 36,032
individuals (15,860 men and 20,172 women). Table 24 in the Appendix lists the 36 variables
we used to construct the respondents’ frailty index values. The index is constructed in the
same way as for PSID respondents. The advantage of HRS over PSID is that it contains a
larger number of deficit variables. Specifically, the HRS includes information about cognitive
impairment which is not included in PSID. The disadvantage, however, is that, aside from
spouses of respondents, it does not survey individuals under the age of 51.

The third column of Table 1 shows summary statistics on the frailty index in the HRS
sample. The table shows similar patterns for the frailty distribution in HRS as in PSID.
There are two main differences. First, the HRS is a sample of older individuals so mean
frailty is higher. Second, both positive and negative changes in frailty across waves are much
more common in the HRS than in the PSID. There are two important differences between
the HRS and the PSID that help to explain this second difference. First, some of the deficit
variables in the HRS, namely the cognitive variables, take on values other than 0 and 1 and
naturally fluctuate because they are test scores. Second, the denominator of the frailty index
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PSID HRS MEPS

Mean 0.11 0.21 0.11
Mean by demographics groups

males 0.10 0.19 0.09
females 0.12 0.22 0.11
ages 25-49 0.08 NA 0.06
ages 50-74 0.14 0.19 0.14
ages 75+ 0.25 0.28 0.24

Standard deviation 0.11 0.16 0.14
Min 0.00 0.00 0.00
5th percentile 0.00 0.04 0.00
50th percentile 0.07 0.17 0.04
95th percentile 0.33 0.53 0.45
Max 0.92 0.97 0.98
Movement in frailty across waves

fraction positive change 0.30 0.58 0.41
fraction negative change 0.09 0.40 0.34

Effect of 1 additional deficit +0.037 +0.028 +0.037

Table 1: Frailty index summary statistics in the PSID, HRS, and MEPS samples. The
second and third rows from the bottom are the fraction of all consecutive observations of
frailty that show positive and negative change. One minus the sum of these numbers is the
fraction in which there is no change in frailty. The bottom row is the effect of accumulating
one additional deficit on an individual’s frailty index value. It is equal to one over the total
number deficits observable in the dataset.

is not constant over time within individuals in HRS due to occasional missing observations.
Fluctuations in frailty driven by these factors tend to be very small. If we only count changes
in frailty that are greater than or equal in magnitude to the effect of incurring one additional
deficit than positive changes account for 37% of movements and negative changes account
for 21%.

2.1.3 Medical Expenditure Panel Survey

The MEPS consists of a collection of rotating two-year panels. We use MEPS data from the
2000 to 2016 period. Our sample consists of respondents aged 25 to 84 years. We do not
include individuals aged 85 years or older because, starting in 2001, MEPS top codes age
at 85. The base sample contains 345,022 observations on 191,165 individuals (88,389 men
and 102,776 women). Table 25 in the Appendix lists the 27 variables we used to construct
respondents’ frailty index values. The index is constructed in the same way as for PSID and
HRS respondents. One advantage of the MEPS sample is its large number of observations.
However, because MEPS is a two-year rotating panel, it only has two frailty observations,
at most, per individual.

The fourth column of Table 1 shows summary statistics on the frailty index in the MEPS
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sample. The statistics show that the frailty distributions in the MEPS and the PSID have
the same mean and similar properties in general. The only large difference between the
PSID and the MEPS statistics is that, like the HRS, the MEPS has more changes in frailty
across waves. This occurs in the MEPS sample for the same reasons as in the HRS sample.
Thus, a more comparable way to compute the changes in the MEPS data is to only count
changes in frailty that, in magnitude, are greater than or equal to the effect of incurring one
additional deficit. Using this metric to identify changes, positive changes only account for
20% of movements and negative changes only account for 12%.

2.2 Frailty vs Self-reported Health Status

One of the most commonly used measures of health status is self-reported health status
(SRHS). In all the surveys we use (PSID, HRS and MEPS) respondents are asked to assess
their own health by reporting its category as either ‘excellent’, ’very good’, ‘good’, ‘fair’ or
‘poor’. In this section we briefly compare the frailty index with SRHS. We point out a few
advantages of the frailty index relative to SRHS. These advantages make the frailty index
an attractive choice for quantitative or statistical analysis, particularly, when studying the
dynamics of health status over the life cycle.

The frailty index is by construction an objective measure of health that is easily compa-
rable across different surveys (in the same way that medical expenditure or labor earnings is
comparable). Like SRHS, the frailty index is a ranking of individuals (higher frailty means
poorer health). However, in contrast to SRHS, the magnitude of the difference in the frailty
index between two individuals is informative about how much healthier one is relative to the
other.12 Another desirable feature of the frailty index is that it can be treated as, or approx-
imated by, a continuous variable. This feature is particularly useful in statistical analysis or
economic modeling.

These qualitative features are not the only advantages of the frailty index over SRHS.
The frailty index also gives a more accurate picture of how an individual’s health evolves with
age. To make this point concrete, we compare and contrast how the frailty index and SRHS
evolve over the life cycle. In each case we illustrate the main point using our constructed
frailty index and the survey responses on SRHS in the PSID. In the Appendix we show that
the same conclusions hold if instead we use the HRS or MEPS.

2.2.1 Evolution of health status over the life cycle

We start by comparing the evolution of the frailty distribution with the evolution of the
SRHS distribution over the life cycle. To facilitate the comparison between the frailty index
(a continuous variable) and SRHS (a category variable), we partition individuals within
each 5 year age group into five frailty categories. We label these categories ‘excellent’, ‘very
good’, ‘good’, ‘fair’, and ‘poor’. The cutoff values of frailty that determine which category
is assigned are age-independent and determined such that the distribution of individuals
across frailty categories and SRHS categories is the same for the 25-29 year-old age group.
For example, the fraction of 25-29 year-olds with SRHS of ‘excellent’ is 28%. We set the

12For example, a person with frailty index of 0.2 has accumulated twice as much deficits as a person with
frailty index of 0.1.
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Figure 1: Distribution of health status by age. The colored areas show the fraction of
individuals by SRHS at each age. The dashed lines show the fraction of individuals by
frailty category at each age. Source: authors’ calculation using PSID.

cutoff value for ‘excellent’ frailty such that 28% of 25-29 year-olds are also in the ‘excellent’
frailty category. The resulting cutoff value of frailty is 0.04. At each age, individuals with a
frailty index value less than 0.04 are assigned to the frailty category ‘excellent’. 13 Next, we
find the cutoff value for the 68th percentile (68% of 25-29 year-olds have a SRHS of ‘excellent’
or ‘very good’ ). This frailty cutoff is 0.07. In each age group, anyone whose frailty is larger
than 0.04 but smaller than 0.07 is assigned to the frailty category ‘very good’ and anyone
whose frailty value is exactly 0.07 is randomly assigned to either ’very good’ or ’good’. The
other two cutoffs are chosen accordingly at the 93rd and 99th percentiles and determine the
assignment of the remaining individuals to the ‘good’, ‘fair’ and ‘poor’ frailty categories.
Using this procedure the frailty categories and SRHS categories of the 25-29 year-old age
group are perfectly aligned (by construction).

The shaded areas in Figure 1 show how the distribution of SRHS evolves with age.
For each age group, the height of each shaded area is the fraction of individuals in the
corresponding SRHS category. As expected, the fraction of individuals with ‘excellent’ or
‘very good’ SRHS falls with age (going from 68% for age group 25-29 to less than 25% for
age group 90-94). At the same time, the fraction of individuals with ‘fair’ or ‘poor’ SRHS
increases with age (going from 7% for age group 25-29 to 46% for age group 90-94). There is
also a small increase in the share in the middle group, i.e., those with SRHS of ‘good’ (from
25% to 31%).

The dashed lines in the figure show how the distribution of frailty evolves with age when

13Individuals with a frailty index value that is equal to 0.04 are randomly assigned to either the frailty
category ‘excellent’ or the frailty category ‘very good’ such that, on average, 28% of 25-29 year-olds end up
in the frailty category ‘excellent’.
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Transition Probabilities (%)

Self Reported Health Status
‘excellent’ ‘very good’ ‘good’ ‘fair’ ‘poor’

‘excellent’ 56.5 32.3 9.1 1.6 0.5
‘very good’ 13.9 57.2 25.0 3.3 0.6

‘good’ 4.2 24.7 54.7 14.1 2.3
‘fair’ 1.6 7.0 28.9 48.9 13.6
‘poor’ 0.8 1.7 9.0 29.7 58.9

Health Status by Frailty Index
‘excellent’ ‘very good’ ‘good’ ‘fair’ ‘poor’

‘excellent’ 66.3 28.7 4.5 0.4 0.2
‘very good’ 9.0 60.1 28.1 2.4 0.4

‘good’ 0.3 14.4 62.7 20.9 1.6
‘fair’ 0.0 0.4 13.4 69.3 16.8
‘poor’ 0.0 0.2 0.7 13.2 86.0

Table 2: Transition probabilities across health status levels. Top panel: SRHS. Bottom
panel: Frailty by frailty categories. Source: authors’ calculation using PSID data.

individuals are assigned to frailty categories using the method described above. As we see,
the overall pattern is similar to that of SRHS. The important difference, however, is that the
decline in ‘excellent’/‘very good’ shares and rise in ‘fair’/‘poor’ shares happens more rapidly
with age when health is measured by frailty instead of SRHS. Up to the 45-49 age group
both measures give very similar distributions of health status. More than half of individuals
in the 45-49 age group have ‘excellent’ or ‘very good’ health according to both SRHS and
frailty. However, there is a departure for the older age groups. By ages 70 to 74, only 17%
of individuals have a frailty index low enough to fall into the ‘excellent’ or ’very good’ frailty
category. However, 39% report a SRHS of ‘excellent’ or ‘very good’. At the same time 54%
of individuals in the 70-74 age group have a frailty index higher than the cut off for ‘fair’ or
‘poor’ health, while only 28% of them report SRHS of ‘fair’ or ‘poor’.

Note that the dashed lines are constructed using fixed frailty cutoffs. For example, all
individuals in all age groups who are assigned to either the ‘excellent’ or ‘very good’ frailty
categories (represented by the red dashed line), have a frailty index of less than 0.07. The
fact that, after age 49, the fraction of these individuals declines faster than the share of
individuals who report SRHS of ‘excellent’ or ‘very good’ indicates that in older age groups
many individuals may be more optimistic about their health relative to what is implied
by objective measures. Another possible explanation is that as individuals age they adjust
the reference point they use when assessing their health.14 Regardless of the explanation

14A third possibility is that individuals have private knowledge of their health that is not captured by
the frailty index. The fact that SRHS still has a statistically significant effect on health outcomes even after
controlling for frailty supports this view. (See Tables 3 through 5 in Section 2.2.4.) However, it is unlikely
that individuals’ private knowledge systematically points to better health status than that inferred from their
frailty index. In fact, the regression results in the tables suggest the opposite, namely, that when individuals
have private information about their health it is private information that their health is worse than what it
inferred from their frailty index.
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for this discrepancy, health status appears to depreciate much more rapidly with age when
measured by the frailty index as opposed to SRHS. We interpret these patterns as evidence
that SRHS underestimates the decline in observable health. This conclusion is not specific
to PSID data. As we demonstrate in the Appendix, one arrives at the same conclusions by
comparing the frailty index distributions by age with the SRHS distributions by age in the
HRS and MEPS.

2.2.2 Persistence of health status

Next, we compare the persistence of SRHS with that of frailty. To do this we compute
the conditional probabilities of transitioning between SRHS categories and the conditional
probabilities of transitioning between frailty index categories across sample periods. Since
we observe respondents every two years, we calculate two year transition probabilities. The
top panel of Table 2 shows the transition probabilities between different SRHS categories.
Conditional on initially being in the SRHS category labeling each row, each number in the
row shows the probability of being in the SRHS category labeling the column next period.
For instance, conditional on reporting a SHRS of ‘excellent’, 56.5% of individuals report
a SRHS of ‘excellent’ two years later, 32.3% report a SRHS of ‘very good’, 9.1% report a
SRHS of ‘good’, and so on. Similarly, the bottom panel of the table shows the transition
probabilities between different frailty categories. Recall that we define what it means to
be in each frailty category by choosing frailty cutoffs so that these categories coincide with
SRHS categories for the age group 25 to 29. Thus the bottom panel of the table is essentially
showing the transition probabilities across these cutoff points.

The table shows that the frailty index is more persistent than SRHS. Notice that the
diagonal values are all higher for the frailty index relative to SRHS. For example, individ-
uals with frailty category ‘excellent’ have a 66.3% chance of maintaining this status while
individuals with ‘excellent’ SRHS have only a 56.5% chance. The difference in persistence
is largest at the poor health end of the spectrum. Once an individual’s frailty index is high
enough that he is assigned to the ‘poor’ frailty category the probability he is there two years
later is 86%. In contrast, individuals who report a SRHS status of ‘poor’ have only 59%
chance of reporting poor health two years later.

2.2.3 Dispersion in health status by age

The frailty index, by construction, measures health status on a finer scale than SRHS.15

Thus, measuring health by the frailty index, allows us to study the evolution of the health
distribution with age in more detail. The summary statistics in Table 1 indicate that the
overall distribution of frailty is right-skewed. This is also the case for the distribution of
frailty within smaller age groups. The left panel of Figure 2 shows box and whisker plots of
the top (green) and bottom (blue) frailty quintiles within 10-year age groups. As the plot
demonstrates, within each age group, there is more variation in frailty among individuals in
the top quintiles (the most unhealthy quintiles) than in the bottom quintiles. The plot also
shows that dispersion in frailty increases significantly between ages 25 and 74. Notice that

15Although it is not exactly a continuous variable, for many practical purposes in can be treated as
continuous.
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(b) Box and whisker plots of frailty for those who
report ‘excellent’ (blue) and ‘poor’ (green) SRHS
by 10 year age groups.

Figure 2: Dispersion in health by age. Source: authors’ calculation using PSID data.

across this age range, not only does mean frailty of the top quintile increase faster than the
bottom, but dispersion in frailty within the top quintile also increases.

The right panel of Figure 2 shows box and whisker plots of frailty within the ‘poor’
(green) and ‘excellent’ (blue) SRHS categories. The plots are also constructed by 10-year
age groups. Even though SRHS and frailty are positively correlated at each age, there is
substantial variation in frailty within each SRHS category. Moreover, the variation in frailty
is larger among individuals who report ‘poor’ SHRS versus those that report ‘excellent’
SRHS. Comparing across the two figures, one can see that mean frailty of individuals in
‘excellent’ SRHS and in the bottom quintile of the frailty distribution evolve similarly with
age. This is not the case when comparing ‘poor’ SRHS to the top quintile of the frailty
distribution. Individuals in ‘poor’ SRHS have similar levels of frailty, on average, to those in
the top quintile of the frailty distribution when young. However, they are significantly less
frail at older ages. In this sense, the ‘poor’ SRHS category is a poor identifier of individuals
in the bottom quintile of the health distribution at older ages.

2.2.4 Predicting health outcomes

In previous sections we argued that the frailty index is more suitable than SRHS for tracking
the dynamics of health status over the life cycle. But how do they compare in predicting
future health outcomes? To answer this question we use HRS data to run three groups of
probit regressions. Each group of regressions uses a different health outcome (mortality,
nursing home entry, and becoming a social security disability insurance recipient) as the
dependent variable.16

The first group is a series of probit regressions with mortality as the dependent vari-

16We also ran the social security disability insurance regressions in PSID. The results are essentially the
same as those found using the HRS. The sample size of elderly people in the PSID is substantially smaller
than in the HRS. For this reason, we do not run the mortality and nursing home entry regressions in PSID.

13



Table 3: Probit regression for mortality at age t

Panel A. Everyone Panel B. Poor health in t− 1
(1) (2) (3) (4) (5) (6) (1) (2)

frailtyt−1 4.096∗∗∗ 3.213∗∗∗ 3.443∗∗∗ 2.278∗∗∗ 0.780∗∗∗ 0.820∗∗∗

(0.110) (0.122) (0.121) (0.132) (0.167) (0.181)
frailty2

t−1 -2.383∗∗∗ -1.676∗∗∗ -1.881∗∗∗ -1.055∗∗∗ 0.677∗∗ 0.516∗

(0.152) (0.164) (0.159) (0.171) (0.209) (0.223)
very goodt−1 0.151∗∗∗ 0.097∗∗∗ 0.045 0.040

(0.023) (0.026) (0.024) (0.026)
goodt−1 0.405∗∗∗ 0.308∗∗∗ 0.150∗∗∗ 0.164∗∗∗

(0.022) (0.025) (0.023) (0.026)
fairt−1 0.698∗∗∗ 0.577∗∗∗ 0.226∗∗∗ 0.298∗∗∗

(0.022) (0.025) (0.025) (0.027)
poort−1 1.004∗∗∗ 0.918∗∗∗ 0.282∗∗∗ 0.463∗∗∗

(0.024) (0.027) (0.028) (0.030)

Controls NO YES NO YES NO YES NO YES
Observations 167,851 167,851 167,851 167,851 167,851 167,851 49,105 49,105
Pseudo R2 0.049 0.180 0.088 0.191 0.090 0.196 0.024 0.130

Notes: Panel includes everyone in the sample while panel B only includes those with self reported health status of ‘poor’.
Controls are gender, education, marital status and quadratic in age. *p < 0.1; **p < 0.05; ***p < 0.01.

able. The results of these regressions are reported in Table 3. Panel A in Table 3 shows
the regression results when all individuals are included in the sample. In column (1) the
explanatory variables are a set of dummies that indicate whether lagged SRHS is ‘very good’,
‘good’, ‘fair’ or ‘poor’.17 Column (2) shows a similar regression that also includes a set of
controls (gender, education, marital status and a quadratic polynomial in age). Columns
(3) and (4) show the regression results when SRHS is replaced by a quadratic polynomial in
lagged frailty. Finally, columns (5) and (6) show results from regressions that include both
a quadratic in lagged frailty and dummies indicating SRHS.

The bottom row of the table reports the pseudo R-squared for each regression. It is
calculated as one minus the ratio of the full-model log-likelihood to the intercept-only log-
likelihood, or

pseudo R2 = 1− LL (Full model)

LL (Intercept only model)
.

For each regression, the full model log-likelihood is calculated using all the regressors while
the intercept-only log likelihood is calculated using only the intercept (constant) term.18 We
use this pseudo R-squared as a measure of explained variation in the dependent variable.

The pseudo R-squared’s in columns (3) and (4) are higher than those in columns (1) and
(2), indicating that frailty does better than SRHS in predicting mortality. Although columns
(5) and (6) demonstrate that SRHS still has independent predictive power, comparing pseudo
R-squared’s across columns shows that its additional impact is relatively small.

In Panel B of Table 3 we run the same regressions as columns (3) and (4) in Panel A, but
restrict the sample to those with SRHS of ‘poor’. Notice that the frailty index is predictive
of mortality even within this subsample of ‘poor’ SRHS individuals. Thus, the variation in

17Since we include a constant term in the regression, one of the SRHS categories is redundant. Therefore,
we drop the ‘excellent’ category.

18See McFadden (1974) for more details.
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Table 4: Probit regression for entry into nursing home at age t

Panel A. Everyone Panel B. Poor health in t− 1
(1) (2) (3) (4) (5) (6) (7) (8)

frailtyt−1 4.588∗∗∗ 3.458∗∗∗ 5.019∗∗∗ 3.374∗∗∗ 1.604∗∗∗ 1.125∗∗∗

(0.212) (0.245) (0.232) (0.262) (0.298) (0.341)
frailty2

t−1 -2.710∗∗∗ -1.497∗∗∗ -3.007∗∗∗ -1.522∗∗∗ 0.103 0.667
(0.278) (0.311) (0.292) (0.322) (0.361) (0.403)

very goodt−1 0.130∗∗ 0.077 -0.030 -0.011
(0.042) (0.050) (0.045) (0.052)

goodt−1 0.298∗∗∗ 0.198∗∗∗ -0.085 -0.027
(0.040) (0.048) (0.045) (0.051)

fairt−1 0.535∗∗∗ 0.421∗∗∗ -0.151∗∗ 0.001
(0.040) (0.048) (0.047) (0.054)

poort−1 0.800∗∗∗ 0.742∗∗∗ -0.196∗∗∗ 0.088
(0.043) (0.051) (0.052) (0.058)

Controls NO YES NO YES NO YES NO YES
Observations 149,230 149,230 149,230 149,230 149,230 149,230 43,478 43,478
Pseudo R2 0.035 0.222 0.120 0.261 0.121 0.262 0.046 0.197

Notes: Panel includes everyone in the sample while panel B only includes those with self reported health status of ‘poor’.
Controls are gender, education, marital status and quadratic in age. *p < 0.1; **p < 0.05; ***p < 0.01.

frailty within SRHS groups that is documented in the right panel of Figure 2 is positively
correlated with mortality risk. Note that, by construction, zero variation in mortality is
explained by SRHS within this subsample.

Next, we look at the relationship between health status and the probability of entering
a nursing home. We repeat the previous exercise but replace mortality with nursing home
entry as the dependent variable. This means that we restrict the sample to those individuals
who are not in a nursing home. The dependent variable is one at age t, if they enter a
nursing home at age t and zero otherwise. Table 4 reports the regression results. We observe
a similar pattern as above. Frailty is better than SRHS at explaining variations in nursing
home entry (as measured by the pseudo R-squared) and continues to have predictive power
even when we only consider individuals with SRHS of ‘poor’. Moreover, SRHS has close
to no impact on predictive power when frailty is also included in the regression. This can
be seen by comparing the pseudo R-squared’s across columns (4) and (6), or by observing
Column (6) in Panel A. Notice that when frailty is included in the regression, SRHS is no
longer statistically significant.

Finally, we examine the relationship between health status and becoming a Social Security
Disability Insurance (SSDI) beneficiary. To this end we restrict our HRS sample to those
younger than 66 years old and not receiving SSDI. The dependent variable is one at age t
if they become a SSDI beneficiary and zero otherwise. Table 5 shows the regression results.
Once again, frailty explains a larger fraction of variations in the dependent variable (as
measured by pseudo R-squared). Also, frailty explains some variations within the sample
with common SRHS of ‘poor’. While adding SRHS to the frailty regressions does increase
predictive power, Columns (5) and (6) in Panel A show that when both frailty and SRHS
are included, only ‘fair’ and ‘poor’ SRHS are statistically significant.

To summarize, frailty is a strong predictor of health outcomes. Tables 3, 4, and 5 show
that it performs better than SRHS at predicting mortality, nursing home entry, and SSDI
recipiency. The tables also shows that it can account for variation in these outcomes even
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Table 5: Probit regression for going on Social Security Disability Insurance at age t

Panel A. Everyone Panel B. Poor health in t− 1
(1) (2) (3) (4) (5) (6) (7) (8)

frailtyt−1 7.937∗∗∗ 7.886∗∗∗ 6.456∗∗∗ 6.549∗∗∗ 5.375∗∗∗ 5.573∗∗∗

(0.268) (0.277) (0.293) (0.301) (0.391) (0.400)
frailty2

t−1 -5.571∗∗∗ -5.628∗∗∗ -4.820∗∗∗ -4.953∗∗∗ -3.350∗∗∗ -3.602∗∗∗

(0.395) (0.404) (0.415) (0.423) (0.525) (0.534)
very goodt−1 0.087 0.082 -0.081 -0.071

(0.051) (0.052) (0.054) (0.055)
goodt−1 0.473∗∗∗ 0.438∗∗∗ 0.052 0.042

(0.047) (0.048) (0.052) (0.053)
fairt−1 1.060∗∗∗ 0.994∗∗∗ 0.348∗∗∗ 0.324∗∗∗

(0.046) (0.048) (0.054) (0.055)
poort−1 1.722∗∗∗ 1.635∗∗∗ 0.647∗∗∗ 0.609∗∗∗

(0.050) (0.051) (0.060) (0.061)

Controls NO YES NO YES NO YES NO YES
Observations 69,438 69,438 69,438 69,438 69,438 69,438 14,450 14,450
Pseudo R2 0.162 0.181 0.222 0.239 0.239 0.254 0.108 0.123

Notes: Panel includes everyone in the sample while panel B only includes those with self reported health status of ‘poor’.
Controls are gender, education, marital status and quadratic in age. *p < 0.1; **p < 0.05; ***p < 0.01.

within a sample of individuals with common SRHS (of ‘poor’).

3 Estimation of Frailty Process

Our goal in this section is to propose and estimate a stochastic process for frailty over the life
cycle. The statistical model we propose is designed to be as parsimonious as possible while
still being flexible enough to capture the main qualitative properties of frailty dynamics. For
instance, the model allows for innovations to frailty to be persistent. The model also allows
the variance of frailty to increase with age. Both features are consistent with the findings
in Section 2. We first present the model and describe the estimation procedure. Then
we describe the empirical moments used to estimate the model and present the estimation
results. In the second part of the section we present results from estimating the model
separately for different demographic subgroups of the population. The last part of the
section shows estimation result from modified versions of the baseline model.

3.1 Baseline Statistical Model

Our statistical model is very similar to ones used to estimate the earning process (see Guvenen
(2009), Karahan and Ozkan (2013), and Storesletten et al. (2004) among many others). In
particular, we assume that the frailty index fit for individual i at age t is the sum of a
deterministic component whose effect is common to all individuals and a residual that is
individual-specific:

fit = X ′itβ +Rit, (1)

where Xit is a set of covariates including age, age-squared, gender, marital status and edu-
cation. The set of covariates also includes a full set of year dummies. The residual consists
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of two components and is given by

Rit = αi + zit + uit. (2)

The first variable, αi, is individual-specific and allows us to capture ex-ante heterogeneity in
individuals’ initial frailty levels. We assume that αi is randomly distributed across individuals
with mean zero and variance σ2

α.
The second component captures the dynamics in frailty as individuals go through various

random health events over their life cycles. This component is the sum of an AR(1) process
and a white noise shock uit. Thus

zit = ρzit−1 + εit, (3)

where zi,0 = 0.19 The shocks εit and uit are assumed to be independent of each other and
over time, and independent of αi. We assume that uit has mean zero and variance σ2

u and
that εit has mean zero but that its variance is age-dependent. Specifically, we assume that
the variance of εit is given by

σ2
ε,t = δε,1t+ δε,0, (4)

where δε,0 is the initial variance level and δε,1 is the rate at which the variance changes with
age.

The white noise shock uit captures both measurement error and acute health events such
as a temporary inability to walk due to a broken leg. The persistence ρ and the variances of
the innovations to the persistent process σ2

ε,t determine individuals’ exposure to persistent
health shocks. As we discuss in detail below, allowing the variance of the persistent shocks
to be age dependent is crucial for matching the qualitative properties of frailty dynamics.

We estimate the model in two stages. First, we estimate β using OLS and compute the
residuals Rit. Second, we estimate the parameters of the stochastic component, equation
(2), using a minimum distance estimator. The procedure minimizes the distance between
the variances and covariances of the residuals Rit, and their empirical counterparts. This is
the GMM estimator proposed by Chamberlain (1984). We estimate the model at the annual
frequency. However, since our data is biennial, we can only compute empirical covariances
between current frailty residuals and lagged values of frailty residuals that are multiples of 2.
To deal with this discrepancy, the minimization procedure simulates the annual model and
uses the simulated data to construct model counterparts to the biennial empirical covariances.

Table 6 provides the results from the first stage of the estimation run on our main PSID
sample. Frailty is increasing with age and decreasing in years of schooling. Being male
decreases frailty by 0.0137 units. To put this number in perspective recall that having one
additional deficit increases the frailty index by 0.037 units. Thus, on average, being male
reduces the number of deficits an individual has by 0.37 deficits. Being married has a larger

19Note that t represents age and not time which means we are assuming that the stochastic component
of frailty can vary with age but is time-invariant. The variance of frailty increases with both age and time
in both the PSID and HRS samples. However, the increase with age is much more dramatic. Therefore, we
chose a specification with an age-dependent but time-invariant stochastic component.
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Variable Coefficient (×100) Std. Err. (×100)
Age -0.028 (0.013)
Age2 0.003 (0.0001)

Years of School -0.630 (0.014)
Male -1.371 (0.069)

Married -3.157 (0.077)
Const. 13.035 (0.379)

Year dummies included
N = 81, 664, R2 = 0.250

Table 6: OLS regression results for frailty using PSID sample for ages 25–95.

effect on frailty, reducing it by 0.0316 units or 0.85 deficits. The negative effect of marriage
on frailty is consistent with the Guner et al. (2017) finding that marriage has positive effect
on health.20

Figure 3 presents the empirical variances and covariances of the frailty residuals that are
targeted in the second stage of the estimation. As is commonly done in the literature on
earning dynamics, we use empirical moments that have been adjusted for cohort effects.21

The left panel shows the cross-sectional variances of the frailty residuals, Rit, by age. The
panel shows both the raw variances and the cohort-adjusted ones. To construct the variances
we group individuals into 2-year, non-overlapping, age groups (25–26 year-olds, 27–28 year-
olds, and so on). The raw variance profile is the means of the squared residuals of each age
group. To obtain the cohort-adjusted variance profile, we regress the raw variances on a full
set of age and cohort dummies to obtain cohort-adjusted squared residuals. To maintain the
same level of inequality after cohort effects are removed, the cohort-adjusted variances are
rescaled such that the adjusted variance at age 35 is the same as the raw variance at age 35.

The right panel of Figure 3 shows the entire empirical variance-covariance matrix after
adjusting for cohort effects. To get the cohort-adjusted covariances we regress individual-
specific moments on cohort and age dummies separately for each age group. We then compute
cohort-adjusted individual-specific moments using the residuals and age effects rescaled in
the same manner as we rescaled the variances. The cohort-adjusted covariances are the
means of these moments for each age group.22 The first point in each line in the figure is
the variance of that age group’s frailty residual Rit at age t, the next point is the covariance
between Rit and Rit−2 followed by the covariance between Rit and Rit−4 and so on.

Several properties of the dynamics of frailty over the life cycle can be observed by studying
Figure 3. First, as individuals age, the cross-sectional variance of frailty increases. Second,
the rate at which the variance increases with age is slightly higher for older individuals. In
other words, the variance age profile is slightly convex in age. Third, the covariance between
frailty at age t and frailty at age t − k is declining in the lag length k. Fourth, the rate at

20Although they find that the positive effect is primarily due to selection, they also find that protective
effects play an important role in older ages. A summary of the literature on the effect of marriage on health
is provided by Wood et al. (2009).

21See Deaton and Paxson (1994), Guvenen (2009) and Storesletten et al. (2004).
22Additional details on the construction of the cohort-adjusted variance-covariance matrix can be found

in the Appendix.
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Figure 3: Raw and cohort-adjusted variances (left) and cohort-adjusted variances and co-
variances (right) of the residuals, Rit, by age in the PSID.

which the autocovariances decline with lag length is increasing in age (i.e., the autocovariance
profiles become steeper at older ages).

One potential concern is that the increasing rate of decline of the autocovariance profiles
with age is due to sample attrition. Highly frail individuals are more likely to die and, as
a result, are less likely to contribute to higher-order autocovariances. Since this selectivity
bias becomes more severe as the lag length increases it puts downward pressure on the
autocovariance structure. While the mortality rates, and hence attrition rates, of working-
age individuals are fairly low, retirees are more likely to both be highly frail and to die. Hence
the effect of this selectivity bias on the autocovariance structure of retirees is of particular
concern. Figure 4 plots the cohort-adjusted variance-covariance matrix of the frailty residuals
for a modified version of the sample. The modified sample excludes individuals who exit
the baseline sample due to death. The baseline variance-covariance matrix is also plotted
for purposes of comparison. Notice that the higher order covariances computed using the
modified sample due in fact tend to be larger than those for the baseline after age 75.
However, the differences are small and the steepening autocovariance pattern observed under
the baseline sample remains. This suggest that the steepening pattern of autocovariances is
not due to attrition. In Section C we show that our estimation results are robust to using
this alternative set of empirical moments as targets.

Under the statistical model presented in equations (2)-(4), for each individual i, the
cross-sectional variance of Rit and its covariance with Rit+k are given by

var(Rit) = σ2
α + var(zit) + σ2

u, (5)

cov(Rit, Rit+k) = σ2
α + ρkvar(zit), (6)
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Figure 4: Cohort-adjusted variance-covariance matrix of the residuals, Rit, by age in PSID
for two versions of the sample. The survivors-only sample is equivalent to the baseline sample
except that it excludes individuals who exit the baseline sample due to death. The baseline
sample variance-covariance matrix is provided for purposes of comparison.

where

var(zit) = ρ2var(zit−1) + σ2
ε,t = δε,0

t−1∑
j=0

ρ2j + δε,1

t−1∑
j=0

ρ2j(t− j).

Equations (5) and (6) show how the variance and covariance age profiles depend on
model parameters. From these equations one can see that the baseline statistical model has
the ability to replicate the main qualitative properties of the empirical variance-covariance
matrix presented in Figure 3. First, notice that var(Rit) will be increasing in age if δε,1 > 0.
Second, notice that the second term in var(zit) is always convex in age. If ρ is greater
than 1, then the first term will also be convex in age and so will var(Rit). If ρ is less than
1, then the first term is concave in age and the convexity of var(Rit) will depend on the
parameterization. Third, notice that the model can generate covariances that decline with
lag length, i.e., satisfy cov(Rit, Rit+k+1) < cov(Rit, Rit+k) for all k, if ρ is less than 1. Finally,
notice that the rate at which the covariances decline with lag length will increase with age
as long as var(zit) is increasing in age, which is the case when δε,1 ≥ 0.

Allowing the variance of the persistent shock to vary with age is essential if the statistical
model is to match the main qualitative features of the empirical variance-covariance matrix.
To illustrate this point, we estimate two versions of the model. Our preferred version puts no
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ρ σ2
α
a σ2

u
a δε,0

a δε,1
a

A. Restricted
1.008 4.911 5.533 3.968 –

(0.001) (1.334) (0.284) (0.129) –
B. Unrestricted
0.989 16.290 4.231 1.900 0.279

(0.001) (1.457) (0.296) (0.203) (0.016)

Table 7: Results from estimating the restricted (δε,1 = 0) and unrestricted versions of the
baseline model using the PSID sample. Standard errors are in parenthesis. The estimation
targets the variance and covariance moments in Figure 3. aEstimates and standard errors
are reported in tens of thousands.

a priori restriction on δ. We call this the unrestricted version. In our, alternative, restricted
version we do not allow for a linear age-trend in the variances of the innovations to the
persistent process by setting δε,1 = 0. Under this version of the model, σ2

ε,t = δε,0 at each
age t.

Table 7 presents the results from the GMM estimation of the restricted and unrestricted
versions of the model. Figure 5 shows the model-predicted variance-covariance matrices
together with the empirical variance-covariance matrix. Under the restricted specification,
ρ is estimated to be larger than 1 and the hypothesis that ρ = 1 is rejected at standard
significance levels. This value of ρ is driven by the slightly convex shape of the empirical
variance profile. However, notice in the left panel of Figure 5, that under the restricted
specification, the model-generated autocovariances are increasing with the lag order which
is opposite the pattern in the data. There is a tension in the restricted model between the
variance profile and the autocovariance structure. The gradually decaying autocovariances
suggest that ρ lies between 0 and 1. However, the slightly convex variance profile can only
be achieved if ρ is larger than 1.23

The unrestricted specification has the ability to simultaneously match both the slightly
convex variance pattern and the decaying auto-covariance pattern. This is because, under
the unrestricted specification, the positive linear trend in the variance of the persistent
shock can also induce a convex variance pattern in the frailty residuals, as equation (5)
shows. Therefore, with ρ less than one, the unrestricted specification can match both the
slightly convex variance pattern and the decaying auto-covariance pattern. Consistent with
this intuition, allowing the variance of the persistent shock to vary with age reduces the
estimated value of ρ. The value of ρ estimated in the unrestricted model falls well below one
and we can reject that these shocks are a permanent random walk. The estimated value of
δε,1 is positive and statistical significant. As the right panel of Figure 5 shows, the model
is able to generate both an increasing and slightly convex variance profile, and declining
auto-covariance profiles that steepen with age. The rate of steepening of the auto-covariance
profiles is equal to the rate of increase of the variance profile which is gradually converging

23As is the case for the restricted and unrestricted models in Guvenen (2009), if the true data-generating
process is the unrestricted model, then estimating the restricted model introduces significant upward bias
into the estimation of the persistence parameter.
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Figure 5: Fit of the baseline estimation. The orange closed circles are the autocovariance
matrices generated by the restricted (left) and unrestricted (right) versions of the baseline
model. The gray open circles are their empirical counterparts which are targeted in the
GMM estimations.

to δε,1/(1− ρ2) as age increases.24

3.2 Estimation Results from Subsamples

In this subsection, we present results from estimating the unrestricted models separately on
subsamples that vary by gender and subsamples that vary by education.25 Table 8 presents
the estimation results for men and women and Figure 6 shows the model-predicted variance-
covariance matrices together with their empirical counterparts. There is significantly more
variation in frailty among women than men. This additional variation results in larger
estimated values of σ2

α, σ2
u and δε,0. The variance of frailty also increases faster with age for

women. This is, in part, captured by the estimation through a higher value of δε,1.

24This suggests that, allowing the variance of the persistent shock to also be a function of higher-order
age terms can improve the model’s ability to match both the steeper rate of increase of the variance of frailty
and the steeper rate of decline of the auto-covariance profiles at later ages.

25We provided results from estimating the restricted version of the model on the subsamples in the
appendix. The appendix also contains results from estimating the model on subsamples that vary by both
education and gender.
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Figure 6: Fit of the baseline estimation using subsample of males and females. The closed
orange circles are the autocovariance matrices generated by the unrestricted version of the
baseline model estimated on males only (left) and females only (right). The gray open circles
are their empirical counterparts which are targeted in the GMM estimations.

ρ σ2
α
a σ2

u
a δε,0

a δε,1
a

All 0.989 16.290 4.231 1.900 0.279
(0.001) (1.457) (0.296) (0.203) (0.016)

Men 0.993 11.243 2.988 1.519 0.191
(0.002) (1.256) (0.316) (0.192) (0.017)

Women 0.992 18.577 4.931 2.483 0.269
(0.001) (2.202) (0.416) (0.272) (0.021)

Table 8: Results from estimating the unrestricted version of the baseline model separately
for men and women using PSID data. Standard errors are in parenthesis. The estimations
target gender-specific . aEstimates and standard errors are reported in tens of thousands.

Table 9 and Figure 6 show the results of estimating the unrestricted version of the model
separately for different education groups: people with a high school degree (or less) and
people with at least some college. There are slightly larger differences between the college
and non-college groups than between the gender groups. Variation in frailty is significantly
lower within the college group even at age 25. Consistently, the estimation finds that they
are ex-ante more homogeneous. Interestingly, the estimated degree of ex-ante heterogeneity
is lower within each education group than in the baseline sample. This suggests that some
of variation in the individual-specific effects are due to differences in education. Finally, the
variation in frailty within the high school group increases more rapidly with age than within
the college group. As a result, the growth rate of the conditional variance of their frailty
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Figure 7: Fit of the baseline estimation for different education groups. The closed orange
circles are the autocovariance matrices generated by the unrestricted version of the baseline
model estimated on the sample of individuals with at most a high school degree (left) and
on the sample of individuals some college or more (right). The gray open circles are their
empirical counterparts which are targeted in the GMM estimations.

shocks is nearly double.

ρ σ2
α
a σ2

u
a δε,0

a δε,1
a

All 0.989 16.290 4.231 1.900 0.279
(0.001) (1.457) (0.296) (0.203) (0.016)

High school 0.993 12.242 4.233 3.482 0.268
(0.001) (2.490) (0.505) (0.315) (0.024)

College 0.997 6.714 3.666 2.280 0.139
(0.001) (1.077) (0.316) (0.165) (0.015)

Table 9: Results from estimating the unrestricted version of the baseline model separately for
those with a high school degree or less and those with some college or more using PSID data.
The estimation targets all the variance moments in Figure 3 and the age 25-65 covariance
moments. aEstimates and standard errors are reported in tens of thousands.

3.3 Alternative Statistical Models

In this section we discuss two alternative specifications of the statistical model presented
in Section 3.1. We show that while allowing for an age-varying conditional variance of the
persistent shock is crucial for matching the qualitative properties of the empirical moments,
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this is not the case for the other two alternatives we consider. Both allow for a small
improvement in the fit of the baseline model when an age-varying variance is also present.
However, neither on its own, is able to simultaneously generate both an increasing and convex
variance profile and covariance profiles that decrease with age at an increasing rate.

3.3.1 Age-varying persistence

First, we consider a variation of the baseline statistical model that allows the persistence of
the AR(1) component to vary with age. The model is identical to the baseline model except
that we assume that

zit = ρz,tzit−1 + εit, (7)

and

ρz,t = γz,1t+ γz,0, (8)

where γz,0 is the initial level of persistence and γz,1 is the rate the persistence increases
with age. Under this specification of the dynamic process, both the variance of εit and the
persistence of zit are allowed to vary linearly with age. The cross-sectional variances and
covariances of the residual at age t are given by

var(Rit) = σ2
α + var(zit) + σ2

u, (9)

cov(Rit, Rit+k) = σ2
α + var(zit)

k∏
j=1

ρz,t+j, (10)

where

var(zit) = ρ2z,tvar(zit−1) + σ2
ε,t = δε,0

t−1∑
j=0

j∏
i=1

ρ2z,t+1−i + δε,1

t−1∑
j=0

(t− j)
j∏
i=1

ρ2z,t+1−i.

Notice that with a linear time trend in the persistence alone (δε,1 = 0), the model
cannot simultaneously match both the convex variance profile and the pattern of declining
covariances with age. The former requires ρz,t > 1 at all ages while the latter requires ρz,t < 1
at all ages. Moreover, allowing the persistence of the AR(1) shock to vary with age does
little in terms of improving the model’s ability to generate variance-covariance moments that
match those constructed from the data. To demonstrate these two points, as in Section 3.1,
we estimate both a restricted and unrestricted version of the model. Under the restricted
version, we only allow for age-variation in the persistence of the AR(1) shock. In other
words, we shut-down age-variation in its conditional variance by setting δε,1 = 0. Under the
unrestricted version, we put no a priori restrictions on the parameters. We estimate these
two versions of the age-varying persistence model using the same procedure and targeted
empirical moments as for the baseline model.

Table 10 presents the estimation results. Figure 8 plots the model-generated variance-
covariance matrices together with their empirical counterparts. The estimated value of γz,1
under the restricted version of the model is zero and the estimated values of the other
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γz,0 γz,1 σ2
α
a σ2

u
a δε,0

a δε,1
a

A. Restricted
1.008 0.000 4.911 5.533 3.969 –
0.002 0.000 1.341 0.302 0.200 –

B. Unrestricted
1.005 -0.0004 16.900 4.585 1.081 0.299

(0.003) (0.0001) (1.467) (0.305) (0.223) (0.016)

Table 10: Results from estimating the restricted (δε,1 = 0) and unrestricted versions of the
age-varying persistence model using the PSID sample. Standard errors are in parenthesis.
The estimation targets the variance and covariance moments in Figure 3. aEstimates and
standard errors are reported in tens of thousands.

parameters are essentially the same as those under the restricted version of the baseline
model. Allowing for a linear age trend in the persistence of the AR(1) shock, in the absence
of an age trend in the variance, does nothing in terms of improving the model’s ability to
match the data.

Under the unrestricted specification, the estimated value of the initial persistence is above
1, while the estimated value of γz,1 is negative. Relative to the unrestricted version of the
baseline model, there is a small improvement in overall fit. Compare Figure 8b with Figure
5b. The variance profile of the baseline unrestricted model is convex at all ages. In contrast,
with age-varying persistence, the variance profile is relatively more convex at younger ages
but concave at older ages. The time-varying persistence allows for a slightly better fit of
the (more heavily weighted) variance-covariance moments at younger ages, at the cost of a
worse fit at older ages.

3.3.2 Heterogeneous profiles

In this section we consider a variation of the baseline model presented in Section 3.1 that
allows for ex-ante heterogeneous frailty profiles. A highly persistence AR(1) shock is needed
to match the empirical variance-covariance profile under the baseline model specification even
when the conditional variance of the persistent shock is allowed to vary with age. However,
the increasing and convex variance profile observed empirically could, in part, be due to ex-
ante heterogeneity in individuals’ frailty growth rates. Guvenen (2009) argues that ex-ante
heterogeneity in earnings growth rates may be an important source of earnings inequality
over the lifecycle. Similarly, individuals could have heterogeneous growth rates of frailty
during their adult lives driven by differences in their genes and/or the investments made in
their health as children.

We now consider a version of the baseline model that allows for ex-ante heterogeneous
frailty profiles. The heterogenous profile model is identical to the baseline model except that
we assume that the residual is given by

Rit = αi + γit+ zit + uit. (11)

The term γit allows for individual-specific effects on the growth rate of frailty. We assume
that (αi, γi) is randomly distributed across individuals with mean zero, variances σ2

α and σ2
γ,
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Figure 8: Fit of the estimation for model with age-varying persistence. The orange closed
circles are the autocovariance matrices generated by the restricted (left) and unrestricted
(right) versions. The gray open circles are their empirical counterparts which are targeted
in the GMM estimations.

and covariance σαγ. The individual-specific growth rate, γi, is assumed to be independent
of εit and uit. Under this specification of the dynamic process, the cross-sectional variances
and covariances of the residual at age t are given by

var(Rit) = σ2
α + 2σαγt+ σ2

γt
2 + var(zit) + σ2

u, (12)

cov(Rit, Rit+k) = σ2
α + σαγ(2t+ k) + σ2

γt(t+ k) + ρkvar(zit), (13)

where

var(zit) = ρ2var(zit−1) + σ2
ε,t = δε,0

t−1∑
j=0

ρ2j + δε,1

t−1∑
j=0

ρ2j(t− j).

Recall that, under the baseline model with δε,1 = 0, the variance of the residuals is only
convex in age when ρ is larger than 1. This is not the case under the heterogeneous profile
model. As equation (12) shows, when σ2

γ > 0, the variance of the residuals can be convex
in age even if ρ > 1 and δε,1 = 0. In addition, unlike the restricted version of the baseline
model, the model with heterogeneous profiles does not require ρ < 1 to generate covariances
that decline with age length (at least a early ages). To see this observe that

cov(Rit, Rit+k+1)− cov(Rit, Rit+k) = σαγ + σ2
γt+ (ρk+1 − ρk)var(zit), (14)

and note that even if ρ > 1, making the third term positive, the differential can be negative
if σαγ is negative and sufficiently large in magnitude.
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ρ σ2
α
a σ2

γ
a σαγ

a σ2
u
a δε,0

a δε,1
a

A. Restricted
1.004 8.776 0.033 -0.541 5.148 4.413 –

(0.007) (1.758) (0.044) (0.151) (0.305) (0.218) –
B. Unrestricted
0.931 12.434 0.046 0.753 4.206 0.00 0.407

(0.012) (1.698) (0.007) (0.095) (0.368) (0.349) (0.023)

Table 11: Results from estimating the restricted (δε,1 = 0) and unrestricted versions of the
heterogeneous profiles model using the PSID sample. Standard errors are in parenthesis.
The estimation targets the variance moments in Figure 3. aEstimates and standard errors
are reported in tens of thousands.

We estimate two versions of the heterogeneous profiles model using the same procedure
and targeted empirical moments as for the baseline model. Under the restricted version, we
allow for heterogeneous frailty growth rates but remove the age-variation in the conditional
variance of the AR(1) shock by setting δε,1 = 0. Under the unrestricted version, we put no
a priori restrictions on the parameters.

Table 7 presents the results from the GMM estimation. The model predicted variance-
covariance matrices and their empirical counterpart are presented in Figure 9. Adding het-
erogeneous frailty growth rates to either the restricted or unrestricted versions of the baseline
model does little in terms of improving the model’s ability to match the data. This can be
seen by comparing the parameter estimates in Table 11 to those in Table 7 or by comparing
Figure 9 to Figure 5.

First, compare across the two restricted versions of the baseline and heterogeneous profiles
models. The addition of heterogeneous profiles has little impact on the estimated values of
the other model parameters or the model predicted variance-covariance matrix. Finally,
notice that the estimated value of σ2

γ is not statistically different from zero. The primary
reason that allowing for heterogeneous profiles does not significantly improve the model is
that the profiles generate a covariance pattern that is opposite to the one in the data. Recall
that the empirical covariance profiles are declining and that the rate of decline is increasing
with age. In contrast, in the heterogeneous profiles model with δε,1 = 0 the covariance profiles
either increase with age or, if they decline, become less steep with age. To see this note that
the first term in equation 14 is independent of age. If ρ ≥ 1 then both the second and third
terms increase with age. If ρ < 1, then the third term decreases with age. However, the third
term decreases with age at a decreasing rate, while the second term increases at a constant
rate. Hence, the covariance profiles become less steep with age.

Now, compare across the two unrestricted versions. Relative to the restricted baseline
model, the addition of heterogeneous profiles to the unrestricted version has a bigger impact
on the estimated parameter values. However, the effect on the model’s fit of the empirical
variance-covariance moments is still very small. Consistent with the intuition above, the
estimated value of ρ declines because the convexity of the variance profile is now in part due
to the heterogeneous frailty growth rates. The heterogeneous profiles model also generates
a much higher estimated value of δε,1. Comparing across Figure 9 and 5 one can see a slight
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Figure 9: Fit of the estimation for heterogeneous profile model. The orange closed circles
are the autocovariance matrices generated by the restricted (left) and unrestricted (right)
versions. The gray open circles are their empirical counterparts which are targeted in the
GMM estimations.

improvement in model fit. Essentially, the additional degrees of freedom provided under the
heterogeneous profiles model allows for a slightly better fit of the shape of the covariance
profiles at later ages without compromising the fit of the variance profile.

4 Conclusion

The most commonly used measure of health status in economics is self-reported health status.
In this paper, we propose an alternative measure: the frailty index. We show that the
frailty index is easy to construct and has several advantages over self-reported health status,
especially when studying health dynamics over the life cycle. First, the frailty index is a more
objective measure of health than self-reported health status and is more consistent across
datasets. Second, self-reported health status underestimates the average rate of deterioration
of objective health (as measured by the frailty index) with age. Third, the frailty index
measures health on a finer scale than self-reported health status. Exploiting the richer
variation in frailty compared to self-reported health status, we show that the dispersion in
frailty increases with age and the frailty distribution is significantly right-skewed. We also
document substantial variation in frailty in the ‘poor’ self-reported health status category.
This finding suggests that ’poor’ self-reported health status is a weak indicator that an
individual is in the top quintile of the frailty distribution. Fourth, we demonstrate that the
frailty index has an edge over self-reported health status in terms of predicting major health
related outcomes.
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Using the frailty index, we document facts about the dynamics of the cross-sectional
health distribution over the lifecycle. We show that the variance of frailty increases with
age (at an increasing rate). In addition, we show that the autocovariances of frailty at each
age decline with lags and the rate of decline increases with age. We then turn to proposing
and estimating a stochastic process for frailty that is consistent with these facts. In doing
so we restrict attention to a model in which the stochastic component of frailty consists of
a transitory shock and an AR(1) shock. This modeling choice is motivated by the fact that
these models can be easily incorporated into structural analysis. We show that, within this
class of stochastic processes, only models that allow the variance of shocks to vary with age
can match the qualitative features of the empirical variance-covariance profile.

We have shown that the frailty index is a useful way to measure health when studying
health dynamics. In addition, we have documented several facts about the evolution of
frailty over the lifecycle. In related work, we use these findings to study the impact of health
inequality and its evolution on earnings inequality and labor supply over the life cycle.

Appendix

A Frailty v. Self-reported Health Status in HRS and

MEPS

In Section 2, we compare SRHS with the frailty index using PSID data. In this section we
repeat this comparison using HRS and MEPS data and show that all the patterns we report
for the PSID are also found in the HRS and the MEPS.

Figure 10a shows how the distributions of SRHS and frailty evolve as individuals age
according to the HRS data. Since the HRS is a survey of Americans over age 50 and
their spouses, the earliest age group we include is ages 50-54. However, because the HRS
oversamples older Americans, we are able to include an additional age group relative to PSID:
the 95-99 age group. For each age group, the height of each shaded area is the fraction of
individuals in the corresponding SRHS category. We construct partitions of the HRS frailty
distribution following the same procedure as is used for PSID. This procedure is described in
Section 2. When constructing the partitions in the HRS, the frailty cutoffs are calculated so
that the partitions of the frailty distribution match the distribution of SRHS for age group
50-54 (instead of age group 25-29). As in the PSID, the distribution of frailty in the HRS
evolves more rapidly with age than the distribution of SRHS. For example, 17% of 95-99
year-olds assess their health to be ‘excellent’ or ‘very good’. However, only 3% of 95-99
year-olds have a frailty index value below the cutoff for ‘very good’ frailty determined using
the 50-54 year-old age group. Figure 10b shows similar patterns using MEPS respondents
ages 25 to 84. Note that we can only observe these distributions for 5 year age groups up to
age 84 because MEPS topcodes age at 85.

It is worth noting that the evolution of the frailty distribution in the MEPS and the
HRS is remarkably similar to that in the PSID. To see this compare Figure 1 with Figures
10a and 10b. Note that the age ranges plotted differ across the three figures. In contrast,
in the MEPS and the HRS, the fraction of people in different SRHS categories evolves very
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Figure 10: Distribution of health status by age. The colored areas show the fraction of
individuals by SRHS at each age. The dashed line shows the fraction of health status
according to frailty index. Panel (a) is based on calculation in the HRS. Panel (b) is based
on calculations in MEPS.

differently with age as compared to PSID. For instance, in the MEPS these fractions are less
variable with age as compared to the PSID and the HRS has a larger fraction of individuals
at each age who report that they are in ‘poor’ health as compared to PSID. This is another
indication that the frailty index is a more consistent indicator of health status than SRHS.

Finally Table 12 shows transition probabilities between different SRHS categories and
frailty categories in the HRS and Table 13 shows the same transition probabilities in the
MEPS. As in the PSID, the frailty index is more persistent than SRHS and the difference in
persistence is the largest at the poorer health end of the spectrum in both the HRS and the
MEPS.

B Computation of Cohort-adjusted Empirical Moments

This section describes how we obtain the cohort-adjusted variance and covariance moments
that we target in the GMM estimations of the frailty process described in Section 3. The
cohort-adjusted moments for the main PSID sample are shown in Figure 3. The correspond-
ing raw moments are in Figure 11.

First, cohorts are defined. Cohort 1 consists of all individuals born before 1911 (this is
35 individuals with birth years from 1905–1910). Cohorts then increment with every two
birth years, so that the second cohort includes birth years 1911 and 1912, and the third 1913
and 1914. Denote the number of cohorts by nc. Next, age groups are defined. Each age
group spans 2 years and age groups are non-overlapping. Denote an individual’s age group
by agef . The initial OLS regression is then run on the sample of individuals meeting the
desired age restrictions for the particular covariance matrix being computed. The means of
the squared residuals R2

it for each age group are the raw variance profile. Denote the raw
variance of the 35–36 year old age group by R2

35.
To obtain the cohort-adjusted variances and covariances, we first define the individual-
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Transition Probabilities (%)

Self Reported Health Status
‘excellent’ ‘very good’ ‘good’ ‘fair’ ‘poor’

‘excellent’ 50.3 35.1 9.9 2.5 2.2
‘very good’ 11.3 54.6 25.6 5.3 3.2

‘good’ 2.8 21.7 50.2 17.8 7.6
‘fair’ 1.1 6.3 24.7 45.3 22.6
‘poor’ 0.4 1.9 7.5 25.5 64.7

Health Status by Frailty Index
‘excellent’ ‘very good’ ‘good’ ‘fair’ ‘poor’

‘excellent’ 60.0 34.0 4.9 0.8 0.2
‘very good’ 11.1 57.3 27.9 3.3 0.5

‘good’ 0.9 16.3 58.5 21.9 2.3
‘fair’ 0.1 1.5 19.2 60.6 18.6
‘poor’ 0.0 0.2 1.4 20.0 78.5

Table 12: Transition probabilities for health status in the HRS. Left panel: Self Reported
Health Status. Right panel: health status by frailty index. Source: authors’ calculation
using HRS data.

specific moments
mt,t+k
i = RitRit+k,

for k ∈ {0, 1, 2, . . . , 5}. We regress these moments on age and cohort dummies as follows:

mt,t+k
i = η +

35∑
a=0

5∑
j=0

δtjI[k = j]I[a = 25 + 2t] +
nc∑
c=1

θcI[Ci = c] + εtik.

Note that the omitted age effect dummy is δ350 . Individual-specific cohort-adjusted moments
are then given by

m̃t,t+k
i = δ̂tk + εtik +R2

35 − m̃35
0 ,

where m̃35 is the mean variance moment for individuals in the 35–36 year-old age group.
The last two terms scale the moments so that the raw and cohort-adjusted variances are the
same for this age group. The cohort-adjusted variance/covariance profiles are the means of
these individual-specific cohort-adjusted moments for each age group:

m̃t
k =

∑
i

m̃t,t+k
i .

C Estimation using Alternative Empirical Moments

In this section we show that our baseline estimation results are robust to concerns about
selectivity bias due to mortality. To this end we run our estimations using two alternative
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Transition Probabilities (%)

Self Reported Health Status
‘excellent’ ‘very good’ ‘good’ ‘fair’ ‘poor’

‘excellent’ 52.6 32.2 12.9 1.8 0.5
‘very good’ 19.2 50.5 25.6 3.9 0.8

‘good’ 8.8 30.0 47.7 11.5 2.1
‘fair’ 4.1 13.4 37.3 35.9 9.3
‘poor’ 1.5 5.3 18.8 34.5 39.8

Health Status by Frailty Index
‘excellent’ ‘very good’ ‘good’ ‘fair’ ‘poor’

‘excellent’ 66.6 27.9 3.9 1.3 0.4
‘very good’ 15.0 61.9 18.4 3.8 0.9

‘good’ 9.3 17.8 52.5 17.8 2.7
‘fair’ 0.6 2.3 8.4 75.0 13.7
‘poor’ 0.4 1.3 3.2 23.8 71.3

Table 13: Transition probabilities for health status in the MEPS. Left panel: Self Reported
Health Status. Right panel: health status by frailty index. Source: authors’ calculation
using MEPS data.

set of moments as target. In one version we estimate the model to match the moments in a
subsample that excludes individuals who exit the baseline sample due to death. In another
version we estimate the model using subsample that is restricted to individuals aged 25 to
65.

C.1 Estimation using the subsample of survivors only

Table 14 presents the results from estimating the restricted and unrestricted versions of
the model by targeting the empirical variance-covariance matrix plotted in Figure 4. This
matrix is constructed using a sample that is equivalent to the baseline sample except that
it excludes individuals who exit the baseline sample due to death. The parameter estimates
are very similar to those of the baseline estimation.

C.2 Estimation using subsample of working age individuals.

Table 15 presents results from estimating the baseline model using the variances and auto-
covariances only of working-age individuals (those ages 25 to 65) as target moments. The
results are also very similar to our baseline estimation results. The estimated values of ρ
are slightly above their counterparts in the estimation where we target the entire empirical
variance-covariance matrix (Table 15). This is likely due to the fact that in the data the age
profile of variance is slightly more convex between ages 25 and 65 than for the entire age
distribution.
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Figure 11: Raw covariances of the residuals, Rit, by age in PSID.

ρ σ2
α
a σ2

u
a δε,0

a δε,1
a

A. Restricted
1.009 4.373 5.562 3.921 –

(0.001) (1.298) (0.280) (0.127) –
B. Unrestricted
0.993 14.227 4.284 2.114 0.250

(0.001) (1.412) (0.293) (0.193) (0.015)

Table 14: Results from estimating the restricted and unrestricted versions of the baseline
model using the survivors-only PSID sample. Standard errors are reported in parenthesis.
The estimation targets the variance and covariance moments in Figure 4. aEstimates and
standard errors are reported in tens of thousands.

D Additional Subsample Estimations

Tables 16 and 17 report the estimation results by education for each gender separately. The
pattern in these tables are mostly similar to the ones observed in Section 3.2. The estimates
reflect larger and more rapidly increasing variation in frailty for women relative to men and
for the high school group relative to the college group. Interestingly, under the unrestricted
model, the estimated degree of persistence of the AR(1) shock is significantly larger for
college-educated women relative to the other three groups.

E Estimation using Principal Component

One interpretation of the frailty index is that it is essentially a weighted average of all
available health indicators with all indicators assigned an equal weight. Throughout the
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ρ σ2
α
a σ2

u
a δε,0

a δε,1
a

A. Restricted
1.014 6.352 5.410 3.337 –

(0.001) (1.351) (0.295) (0.153) –
B. Unrestricted
0.999 15.823 4.418 1.363 0.271

(0.002) (1.490) (0.306) (0.222) (0.019)

Table 15: Results from estimating the restricted and unrestricted versions of the baseline
model using the PSID sample but a limited set of target moments. Standard errors are
reported in parenthesis. The estimation targets the variance and covariance moments for
individuals ages 25-65 in the right panel of Figure 3. aEstimates and standard errors are
reported in tens of thousands.

paper we do not provide any justification for this simple weighting scheme other than its
simplicity and usage in the gerontology literature. To what extent does our analysis depend
on this particular weighting scheme? In this section we show that the results of our main
estimation are robust to using an index constructed via a principal component analysis.

We start by obtaining the first principal component of the health indicators reported in
Table 23. The first principal component accounts for as much variability in the indicators as
possible. We construct a health index by taking a weighted average of the health indicators
using the first principal component weights. We normalize the weights so that they sum to
1. We refer to this index as the principal component index.

The principal component loadings (weights) are reported in Table 18. Notice that the
index places most of the weight on ADL and IADL variables as compared to the variables
relating to specific health conditions. This is consistent with the principal component weights
documented by Poterba et al. (2017) for health indicator variables in the HRS.

We now repeat the estimation of the baseline model presented in Section 3.1 with the
frailty index replaced by the principal component index. Table 19 presents the results of the
initial OLS regression. The estimated effects of age, years of schooling, gender, and marital
status on health as measure by the principal component index are very similar to those found
when health is measure by frailty.
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ρ σ2
α
a σ2

u
a δε,0

a δε,1
a

A. Restricted
All 1.009 4.815 3.973 2.818 –

(0.001) (1.137) (0.305) (0.124) –
High school 1.010 5.241 3.781 3.510 –

(0.001) (1.838) (0.480) (0.184) –
College 1.010 0.502 2.257 2.093 –

(0.001) (1.009) (0.260) (0.099) –
B. Unrestricted

All 0.993 11.243 2.988 1.519 0.191
(0.002) (1.256) (0.316) (0.192) (0.017)

High school 0.998 10.947 2.933 2.397 0.177
(0.002) (2.010) (0.496) (0.273) (0.026)

College 0.999 4.872 1.595 1.421 0.097
(0.002) (1.153) (0.273) (0.147) 0.013

Table 16: PSID samples: separate estimation by education, only men. The estimation tar-
gets all the variance moments in Figure 3 and the age 25-65 covariance moments. aEstimates
and standard errors are reported in tens of thousands.
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Figure 12: Raw and cohort-adjusted variances (left) and cohort-adjusted covariances (right)
of the residuals, Rit, by age using the principal component index as the measure of health
and the PSID sample.

The qualitative properties of the variance-covariance matrix of the principal component
index are very similar to those of the frailty index. Figure 12 presents the moments. As
we did with frailty, we adjust the moments for cohort effects. The left panel of the figure
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ρ σ2
α
a σ2

u
a δε,0

a δε,1
a

A. Restricted
All 1.008 5.701 6.369 4.480 –

(0.001) (2.012) (0.397) (0.180) –
High school 1.004 0.000 6.054 6.952 –

(0.001) (3.318) (0.653) (0.310) –
College 1.014 3.289 4.996 2.994 –

(0.001) (1.353) (0.418) (0.145) –
B. Unrestricted

All 0.992 18.577 4.931 2.483 0.269
(0.001) (2.202) (0.416) (0.416) (0.021)

High school 0.993 11.401 4.309 5.358 0.224
(0.002) (3.646) (0.694) (0.413) (0.028)

College 1.002 6.191 4.301 2.642 0.108
(0.002) (1.459) (0.433) (0.202) (0.019)

Table 17: PSID samples: separate estimation by education, only women. The estima-
tion targets all the variance moments in Figure 3 and the age 25-65 covariance moments.
aEstimates and standard errors are reported in tens of thousands.

shows both the raw and cohort-adjusted variances. The right panel of the figure shows
the entire variance-covariance matrix adjusted for cohort effects. Comparing Figure 12 to
Figure 3 reveals that properties of the variance profile and autocovariance profiles for the
principal component index are very similar to those for the frailty index. The variance
increases monotonically with age and the auto-covariances decay as the lag order increases.
In addition, the auto-covariances decay faster at older ages. The biggest difference between
the two set of moments is that the variance profile of the principal component index is more
convex than the one for frailty. Notice also that the difference between the variance and
the first autocovariance at each age is larger for the principal component index than for the
frailty index. These differences will lead to slightly different parameter estimates.

The GMM estimation results for the restricted and unrestricted versions of the baseline
model are presented in Table 20. The fits of the two versions of the model along with
the age profiles of variances and covariances are plotted in Figure 13. Recall that in the
restricted model, convexity of the variance profile is generated by a persistence that is larger
than one. Since the principal component index has a more convex variance profile, the
estimated value for ρ is higher (relative to the one estimated using the frailty index) under
the restricted model. Moreover, the principal component index process has a much larger
variance of the transitory shock and much smaller variance of the fixed effect relative to the
frailty index process. This is true under both the restricted and unrestricted specifications.
This is consistent with the larger difference between the variances and first autocovariances
observed for the principal component index as compared to the frailty index.

Overall, the dynamics of the frailty index and the principal component index appear to be
extremely similar. Both have variance-covariance profiles that strongly support a statistical
process featuring a highly persistent shock with an age-varying conditional variance. The
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Table 18: Principal component loadings on health variables in the PSID

Variable Loading
Some difficulty with bathing/showering 0.285
Some difficulty with walking 0.278
Some difficulty with dressing 0.276
Some difficulty with getting outside 0.275
Some difficulty with getting in/out of bed or chair 0.268
Some difficulty with shopping for personal items 0.265
Some difficulty with preparing meals 0.258
Some difficulty with light housework 0.250
Some difficulty with using the toilet 0.245
Some difficulty with heavy housework 0.232
Some difficulty with managing money 0.190
Ever had loss of memory or mental ability 0.181
Some difficulty with using the telephone 0.180
Ever diagnosed with arthritis 0.170
Some difficulty with eating 0.166
Ever diagnosed with stroke 0.153
Ever diagnosed with heart disease 0.146
Ever diagnosed with high blood pressure 0.130
Ever had a heart attack 0.126
Ever diagnosed with other serious, chronic condition 0.122
Ever diagnosed with psychological problems 0.122
Ever diagnosed with diabetes 0.114
Ever diagnosed with lung disease 0.107
Ever diagnosed with cancer 0.086
Ever diagnosed with asthma 0.059
Has ever smoked 0.053
BMI ≥ 30 0.036

estimated parameters of the process are also very similar. Given, the simple and intuitive
construction of the frailty index, we see no obvious advantage to using a more sophisticated
weighting, like principal component.

F Estimation using the HRS Sample

Table 21 provides results from running the first stage OLS regression on HRS respondents
aged 51–95. The regression yields similar estimates to those found for the PSID. Frailty
is increasing in age and declining in years of schooling. On average, males and married
individuals are less frail then females and singles. The coefficients on male and married are
similar in magnitude to those from the OLS regression on the PSID data.

Figure 14 shows the empirical variances and covariances of the frailty residuals. As we
did with the PSID moments, we adjust the HRS moments for cohort effects. The left panel
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Variable Coefficient (×100) Std. Err. (×100)
Age -0.239 (0.015)
Age2 0.005 (0.0001)

Years of School -0.525 (0.015)
Male -1.113 (0.076)

Married -2.948 (0.084)
Const. 13.236 (0.418)

Year dummies included
N = 81, 815, R2 = 0.179

Table 19: OLS regression results for the health index constructed using the principal com-
ponent of health deficits as weights and the PSID sample for ages 25–95.

ρ σ2
α
a σ2

u
a δε,0

a δε,1
a

A. Restricted
1.013 0.000 26.44 3.050 –

(0.001) (1.130) (1.107) (0.138) –
B. Unrestricted
0.987 3.985 23.25 0.758 0.393

(0.002) (1.229) (1.13) (0.288) (0.029)

Table 20: Estimation results for the health index using the principal component of health
deficits as weights. The variance-covariance moments are shown in Figure 13 . aEstimates
and standard errors are reported in tens of thousands.

of the figure shows both the raw and cohort-adjusted variances. The right panel of the
figure shows the entire variance-covariance matrix adjusted for cohort effects. We rescale the
variances and covariances after removing the cohort effects so that the adjusted variance at
age 58 is the same as the raw variance. Comparing Figure 14 to Figure 3 reveals that both
the variances and the auto-covariances show patterns similar to those in the PSID data. The
variance increases monotonically with age from ages 65 to 95,26 and the auto-covariances also
decay as the lag order increases. In addition, the auto-covariances decay faster at older ages.

Table 22 shows the results from estimating the restricted and unrestricted versions of
the baseline model on the HRS data. The model predicted variance-covariance matrices
are shown in Figure 15. The unrestricted process has much lower persistence in the HRS
estimation relative to the PSID one. Also the estimated variances are much higher relative
to those for the PSID. This is expected. Individuals enter the HRS at a much older age on
average than the PSID. The initial variance in frailty in the HRS sample is higher due to
the fanning out of frailty that occurs at younger ages. The rate of growth of the conditional
variance of the persistent shock is also larger in HRS relative to PSID. This is likely due
to two facts. First, the covariances decline much more rapidly with lag length in the HRS.
Second, in the PSID estimation most of the weight is put on the variances and covariances

26Note that the non-monotonicity of the variance over the 50–65 age range is a robust feature of the HRS
sample that is most likely due to survey design.
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Figure 13: Fit of the model estimated using the health index constructed with the principal
components of health deficits as weights. The orange closed circles are the autocovariance
matrices generated by the restricted (left) and unrestricted (right) versions of the baseline
model estimated using principal component. The gray open circles are their empirical coun-
terparts which are targeted in the GMM estimations.

of the young because the sample sizes at older ages are much smaller. In contrast, the HRS
estimation does not target any moments constructed off of individuals under age 51.
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HRS ages 51–95 sample
Variable Coefficient (×100) Std. Err. (×100)

Age -1.256 (0.038)
Age2 0.012 (0.0001)

Years of School -1.135 (0.009)
Male -1.585 (0.064)

Married -3.254 (0.068)
Const. 66.570 (1.302)

Year dummies included
N = 202, 914, R2 = 0.185

Table 21: OLS regression results for frailty using HRS sample: ages 51–95.

ρ σ2
α
a σ2

u
a δε,0

a δε,1
a

A. Restricted
0.954 59.50 24.98 14.18 –

(0.002) (2.270) (0.482) (0.390) –
B. Unrestricted
0.865 101.48 18.33 0.00 1.516

(0.004) (1.814) (0.619) (0.700) (0.044)

Table 22: Estimation results using the HRS sample and all the variance-covariance moments
in Figure 14 . aEstimates and standard errors are reported in tens of thousands.
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Figure 15: Fit of the baseline estimation using HRS sample. The orange closed circles
are the autocovariance matrices generated by the restricted (left) and unrestricted (right)
versions of the model. The gray open circles are their empirical counterparts which are
targeted in the GMM estimations.
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Figure 14: Raw and cohort-adjusted variances (left) and cohort-adjusted covariances (right)
of the residuals, Rit, by age in HRS.

G Health Variables used in Frailty Indices

Table 23 lists the health variables used to construct the frailty index for PSID respondents,
Table 24 lists the variables used to construct the index for HRS respondents, and Table 25
lists the variables used for MEPS respondents.
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Table 23: Health Variables used to construct frailty index for PSID respondents

Variable Value
Some difficulty with ADL/IADLs:

Eating Yes=1, No=0
Dressing Yes=1, No=0
Getting in/out of bed or chair Yes=1, No=0
Using the toilet Yes=1, No=0
Bathing/showering Yes=1, No=0
Walking Yes=1, No=0
Using the telephone Yes=1, No=0
Managing money Yes=1, No=0
Shopping for personal items Yes=1, No=0
Preparing meals Yes=1, No=0
Heavy housework Yes=1, No=0
Light housework Yes=1, No=0
Getting outside Yes=1, No=0

Ever had one of following conditions:
High Blood Pressure Yes=1, No=0
Diabetes Yes=1, No=0
Cancer Yes=1, No=0
Lung disease Yes=1, No=0
Heart disease Yes=1, No=0
Heart attack Yes=1, No=0
Stroke Yes=1, No=0
Arthritis Yes=1, No=0
Asthma Yes=1, No=0
Loss of memory or mental ability Yes=1, No=0
Psychological problems Yes=1, No=0
Other serious, chronic condition Yes=1, No=0

BMI ≥ 30 Yes=1, No=0
Has ever smoked Yes=1, No=0

Notes: for “Ever had one of following conditions”, we make the following adjustment to the raw data: if in any wave an
individual has a positive answer to any the conditions below, we assign the value of 1 to that conditions when calculating

frailty in all future waves.
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Table 24: Health Variables used to construct frailty index for HRS respondents

Variable Value
Some difficulty with ADL/IADLs:

Eating Yes=1, No=0
Dressing Yes=1, No=0
Getting in/out of bed Yes=1, No=0
Using the toilet Yes=1, No=0
Bathing/shower Yes=1, No=0
Walking across room Yes=1, No=0
Walking several blocks Yes=1, No=0
Using the telephone Yes=1, No=0
Managing money Yes=1, No=0
Shopping for groceries Yes=1, No=0
Preparing meals Yes=1, No=0
Getting up from chair Yes=1, No=0
Stooping/kneeling/crouching Yes=1, No=0
Lift/carry 10 lbs Yes=1, No=0
Using a map Yes=1, No=0
Taking medications Yes=1, No=0
Climbing 1 flight of stairs Yes=1, No=0
Picking up a dime Yes=1, No=0
Reaching/ extending arms up Yes=1, No=0
Pushing/pulling large objects Yes=1, No=0

Cognitive Impairment:
Immediate Word Recall +.1 for each word not recalled (10 total)*
Delayed Word Recall +.1 for each word not recalled (10 total)*
Serial 7 Test +.2 for each incorrect subtraction (5 total)
Backwards Counting Failed=1, 2nd attempt=.5, 1st attempt=0
Identifying obejcts & Pres/VP .25 for each incorrect answer (4 total)
Identifying date .25 for each incorrect answer (4 total)

Ever had one of following conditions:
High Blood Pressure Yes=1, No=0
Diabetes Yes=1, No=0
Cancer Yes=1, No=0
Lung disease Yes=1, No=0
Heart disease Yes=1, No=0
Stroke Yes=1, No=0
Psychological problems Yes=1, No=0
Arthritis Yes=1, No=0

BMI ≥ 30 Yes=1, No=0
Has ever smoked Yes=1, No=0

*For the 1994 HRS cohort, 40 questions were asked (instead of 20) for word recall. In this
year, each missed question receives weight 0.05.
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Table 25: Health Variables used to construct frailty index for MEPS respondents

Variable Value
Need help with ADLs Yes=1, No=0
Need help with IADLs Yes=1, No=0
Use assistive technology Yes=1, No=0
Limitation impacts work/housework/school Yes=1, No=0
Any difficultly with the following:

Walking three blocks Yes=1, No=0
Standing for 20 minutes Yes=1, No=0
Bending/Stooping Yes=1, No=0
Lifting 10 pounds Yes=1, No=0
Walking up 10 steps Yes=1, No=0
Using fingers to grasp Yes=1, No=0
Reaching over head Yes=1, No=0

Ever been diagnosed with:
High Blood Pressure Yes=1, No=0
Diabetes Yes=1, No=0
Cancer Yes=1, No=0
Emphysema Yes=1, No=0
Angina Yes=1, No=0
Coronary Heart Disease Yes=1, No=0
Other Heart Disease Yes=1, No=0
Heart Attack Yes=1, No=0
Stroke Yes=1, No=0
Asthma Yes=1, No=0
Arthritis Yes=1, No=0
High Cholesterol Yes=1, No=0
Other serious, chronic condition Yes=1, No=0

BMI ≥ 30 Yes=1, No=0
Cognitive Limitations Yes=1, No=0
K6 Depression Score 0–25, rescaled to 0–1
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