
Nosal, Ed; Wong, Yuet-Yee; Wright, Randall D.

Working Paper

Intermediation in markets for goods and markets for
assets

Working Paper, No. 2019-5

Provided in Cooperation with:
Federal Reserve Bank of Atlanta

Suggested Citation: Nosal, Ed; Wong, Yuet-Yee; Wright, Randall D. (2019) : Intermediation in markets
for goods and markets for assets, Working Paper, No. 2019-5, Federal Reserve Bank of Atlanta,
Atlanta, GA,
https://doi.org/10.29338/wp2019-05

This Version is available at:
https://hdl.handle.net/10419/200543

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://doi.org/10.29338/wp2019-05%0A
https://hdl.handle.net/10419/200543
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


 

 
 
An earlier version of this paper circulated as "Who Wants To Be A Middleman?" For input, the authors thank Karl Shell, 
Alberto Trejos, Steve Williamson, Gregor Jarosch, Giorgia Piacentino, and seminar participants at the Chicago Fed, 
Minneapolis Fed, Philadelphia Fed, Cornell, Simon Fraser, UNC, Wisconsin, the Canadian Macro Study Group, and the St. 
Louis Fed/Tsinghua Monetary Policy Conference in Beijing. The authors especially thank Yu Zhu, who helped with the 
numerical work. Wright acknowledges support from the Ray Zemon Chair in Liquid Assets at the Wisconsin School of 
Business. The views expressed here are those of the authors and not necessarily those of the Federal Reserve Bank of Atlanta 
or the Federal Reserve System. Any remaining errors are the authors’ responsibility.  
 
Please address questions regarding content to Ed Nosal, Research Department, Federal Reserve Bank of Atlanta, 
1000 Peachtree Street NE, Atlanta, GA 30309-4470, 404-498-8814, ed.nosal@atl.frb.org; Yuet-Yee Wong, Department of 
Economics, Binghamton University, P.O. Box 6000, Binghamton, NY 13902, yywongOl@gmail.com; or Randall Wright, School 
of Business, University of Wisconsin-Madison and NBER, Grainger Hall, 975 University Avenue, Madison, WI 53706, 
rwright@bus.wisc.edu. 
 
Federal Reserve Bank of Atlanta working papers, including revised versions, are available on the Atlanta Fed’s website at 
www.frbatlanta.org. Click “Publications” and then “Working Papers.” To receive e-mail notifications about new papers, use 
frbatlanta.org/forms/subscribe. 

FEDERAL RESERVE BANK of ATLANTA WORKING PAPER SERIES 

Intermediation in Markets for Goods and Markets for Assets 
 
Ed Nosal, Yuet-Yee Wong, and Randall Wright 
 
Working Paper 2019-5 
March 2019 
 
Abstract: We analyze agents' decisions to act as producers or intermediaries using equilibrium search 
theory. Extending previous analyses in various ways, we ask when intermediation emerges and study 
its efficiency. In one version of the framework, meant to resemble retail, middlemen hold goods, which 
entails (storage) costs; that model always displays uniqueness and simple transition dynamics. In 
another version, middlemen hold assets, which entails negative costs, that is, positive returns; that 
model can have multiple equilibria and complicated belief-based dynamics. These results are consistent 
with the venerable view that intermediation in financial markets is more prone to instability than in 
goods markets. 
 
JEL classification: G24, D83 
 
Key words: middlemen, intermediation, search, bargaining, multiplicity 
 
https://doi.org/10.29338/wp2019-05 
 



1 Introduction

This paper studies intermediation in markets for goods and markets for assets,

building on the search-and-bargaining framework of Rubinstein and Wolinsky

(1987), hereafter RW. The analysis extends existing versions of RW on several di-

mensions, and in particular, we endogenize market composition by letting agents

choose to act as either middlemen or producers. This leads to the following: a ver-

sion of the model designed to resemble goods markets, in a simple but reasonable

way, has a unique equilibrium under standard assumptions; a version designed to

resemble asset markets, under similar assumptions, can have multiple equilibria

that can be ranked in terms of efficiency. For this result the sets of producers

and middlemen must be endogenous — if they are exogenous uniqueness obtains

in markets for assets as well as goods.

As background, first note that the original RW environment had no cost of

production or search, equal numbers of producers and consumers, symmetric bar-

gaining, and a fixed number of middlemen. In equilibrium middlemen participate

in the market iff they have a better search technology than producers, as is ef-

ficient. In Nosal et al. (2015) we extended this to allow more general bargaining

and costs, but that was relatively straightforward because, following RW, we

maintained linear utility, only considered steady states, restricted inventories to

{0 1}, and kept the sets of producers and middlemen fixed. This paper relaxes
all of these restrictions, with the key generalization being that agents decide to

act as producers or middlemen, and that requires a rather different approach.1

1For experts in search theory we can explain why it requires a different approach, although

this can be skipped without loss of continuity. First, previous RW models take the arrival

rates α = {} as exogenous, where  is the rate at which type  meets type . Under

certain conditions that is legitimate because there exists a distribution of types, say n = {},
consistent with α, uniform random matching, and the identities implied by bilateral meetings,

 = . While it is convenient to take α as fixed, we cannot do so when n is endogenous.

Hence, we use uniform random matching,  =  , where  is a baseline arrival rate for type

. But now the relevant identities imply  =  ∀, and in particular  = , so we must

abandon RW’s idea that middlemen are useful when   . Fortunately, other factors here

take over for arrival rates, including bargaining powers and storage costs or returns.
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We then distinguish between markets for goods and markets for assets as

follows: as in retail markets, holding inventories of goods entails a storage cost;

holding inventories of assets instead entails a positive return, or a negative cost, as

is potentially the case with, e.g., houses, art, productive capital, etc. Now there

can also be costs to safely storing assets, but it is worth considering the case where

the net return is positive, because that is necessary (not sufficient) for generating

multiple steady states and endogenous dynamics. Of course, it is well known

that one can generate multiplicity and dynamics in search theory with a variety

of other devices, e.g., increasing returns in matching or production technologies

(Diamond 1982; Mortensen 1999). We eschew those devices to concentrate on

something new, complementarities in decisions by middlemen to adopt either

buy-and-hold or buy-and-sell strategies.

Our producers generate goods, or assets, like capital, and trade them to end

users. They may also trade them to middlemen, who may or may not trade them

to end users. With goods as defined here (storage has a cost) the trading decision

of a middleman meeting an end user is trivial, because buy-and-hold strategies

cannot be optimal with negative returns. With assets as defined here (storage has

a positive return) the decision is not trivial. To motivate why this is interesting,

our asset market intermediaries can be interpreted in a stylized way as financial

institutions, acquiring capital from originators and choosing when to pass it on.

Our results thus provide support for the notion that financial institutions are

less stable than other intermediaries, since we get multiplicity and belief-based

volatility in intermediated markets for assets but not goods.2

For the intuition, suppose first that middlemen pass capital inventories on to

2The venerable notion that financial intermediation engenders instability/fragility is com-

monly associated with names like Minsky, Kindleberger and Keynes; for more recent expositions

see, e.g., Akerlof and Shiller (2009) or Reinhart and Rogoff (2009). As regards banking, in par-

ticular, Rolnick and Weber (1986) say “Historically, even some of the staunchest proponents of

laissez-faire have viewed banking as inherently unstable and so requiring government interven-

tion.” One such proponent is Friedman (1960), who opposed regulation of virtually everything

except banks. Now this paper is not about unstable banking or credit arrangements (see Vives

2016 and Gu et al. 2013 on those issues); it is about instability in intermediated asset markets,

but that seems at least as relevant.
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end users. Then lots of middlemen will be searching for new capital, leading to

high producer profit and hence many producers. With more producers in the

market it is easier for middlemen to get capital, thus rationalizing their decision

to trade it away and making active intermediation an equilibrium for some pa-

rameters. Now suppose middlemen keep capital for themselves. Then they are

more likely to already have capital, leading to lower profits and fewer produc-

ers. This makes it harder for middlemen to get capital, thus rationalizing their

decision to not trade it away in another equilibrium for the same parameters.

Moreover, the equilibria can be welfare ranked — having middlemen trade with

end users is better — and, again, the multiplicity can only arise when the return

on inventories is positive and when the composition of the market is endogenous.

Section 2 describes a general benchmark environment. Then we analyze mar-

kets for goods and markets for assets separately, the former in Sections 3-4, and

the latter in Sections 5-7. Section 8 discusses robustness, including, in particular,

an extension that allows general inventories, while the baseline model restricts

inventories to {0 1}.3 Section 9 contains concluding remarks. Some other exten-
sions and technical proofs are in the Appendices.4

3Having inventories in {0 1} is special, although as in search theory going back to Diamond
(1982) it allows one to make some salient points succinctly. In addition to studies of middlemen

like RW, examples include models of monetary exchange (e.g., Kiyotaki and Wright 1993),

banking (e.g., Cavalcanti and Wallace 1999), OTC financial markets (e.g., Duffie et al. 2005),

unemployment (e.g., Pissarides 2000) and partnership formation (e.g., Burdett and Coles 1997).

Still, we go beyond {0 1} to see if our main results hinge on it; they do not.
4Here we say more about the literature, although it can be skipped if one prefers to see the

theory first. Related papers include Bigalser (1993), Wright (1995), Li (1998), Camera (2001),

Johri and Leach (2002), Shevchenko (2004), Smith (2004), Masters (2007, 2008), Tse (2009)

and Watanabe (2010); see Wright and Wong (2014) for more on this work. In subsequent

work, Farboodi et al. (2017,2018) have technically similar models, but the applications are

quite different. See Hugonnier et al. (2019) and references therein for more on OTC market

intermediation. As a referee suggested, we mention that in those models one’s buyer/seller

status changes over time — one can buy a house, car, bond... and sell it later. We instead have

permanent buyer/seller types, as in RW, but changing that may be interesting in future work.

It was also suggested that we put up front a comparison to the monetary theory surveyed by

Lagos et al. (2017) or Nosal and Rocheteau (2017). Those models have multiplicities ostensibly

related to ours, but the mechanism is actually different. There, a seller’s decision to accept

an asset in exchange depends on what others accept; here the crucial element is strategic

interaction in middlemen’s decision to adopt buy-and-hold or buy-and-trade strategies. Also,

our effect requires endogenous market composition, which is not the case in monetary theory.
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2 Environment

There is a continuum of infinitely-lived agents of different types. Measure  of

them are end users, or consumers, labeled . The rest choose to be producers,

middlemen or nonparticipants, labeled  , or , with measure ,  or . As

discussed below, the market is active if parameters are such that type  produce,

in which case they trade with , and might trade with , when they meet. They

meet bilaterally in continuous time, with the Poisson rate at which any type 

meets type  given by  = Σ. Note that this displays constant returns

since, e.g., doubling  ∀ doubles the number of meetings and leaves  the

same. To ease notation, we normalize  +  +  +  = 1 and  = 1, with no

loss of generality, and write n = (   ).

There are two tradeable objects: , which is indivisible and storable; and

, which is divisible but not storable. Type  produces  at cost 0, which for

our applications is without loss of generality. Type  does not produce but can

acquire  from  . Type  get payoff  from acquiring , which can be interpreted

as them consuming it in markets for goods or holding/investing it in markets for

assets. Under either interpretation,  and  can hold , but only 0 or 1 unit at

a time (this is relaxed below). The costs of holding/storing  for  and  are

 and , which are positive in markets for goods and negative in markets for

assets. In the latter case we use  = −  0 to denote the flow return on asset

holdings. The other tradeable object  is used as a payment instrument when

acquiring . It can be produced by anyone at unit cost and consumed by anyone

for utility  (). As a benchmark we set  () = , which means transferable

utility; the general case is studied in the Appendix.

Type  agents always have 1 unit of , while can have 0 or 1 in inventory.

Let  be the fraction of  holding . This increases at rate (1 − ) (the

measure of  meeting without ) and decreases at rate  , where  is the

probability  trades  to  (the measure of  meeting  with  and trading).
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Hence ̇ = (1− )−  , and in steady state
5

 =


 + 
 (1)

For now we focus on steady states; dynamics are studied in Section 7.

Bargaining determines the terms of trade: agents  and  split the total surplus

with  denoting the share (bargaining power) of , and  = 1− , as follows

from various common solution concepts (e.g., Nash or Kalai bargaining). Hence

when they trade  pays  or  to  or  , while  pays  to  . The

surplus when  trades with  , e.g., is − = , since  = , given that

for both the continuation values and outside options cancel.6 To keep track of

payments, let y = (  ).

Next let  be  ’s value function, let 0 or 1 be ’s value function when he

has 0 or 1 unit of , let  and  = 0 be ’s and  ’s value functions, and let

V = ( 0 1  ). Eliminating the ’s from the  ’s using the bargaining

solution, we get standard dynamic programming equations

 = + (1− )(1 − 0)−  + ̇ (2)

0 = (1 − 0) + ̇0 (3)

1 = (+ 0 − 1)−  + ̇1 (4)

 = + (+ 0 − 1) + ̇ (5)

where in steady state ̇ = 0. In words, (2) says: the flow value  is the rate at

which  meets  times his share of the surplus; plus the rate at which he meets

 without  times his share of that surplus; minus storage cost; plus (out of

5In deriving (1), we proceed as if  and  trade whenever they meet, which is not valid

if   0 is very big; but in that case  = 0, so the conditions are still correct. (Similar

rermarks apply to the dynamic programming equations given below.) The situation is simpler

when  and  meet, since  always wants  and  can always produce another unit, so they

trade. The situation is more complicated when  and  meet, which is why we need  .
6This is because our all agents stay in the market forever, different from the original RW

specification, where  stays but  and  exit after one trade; Nosal et al. (2015) argue that

having them all stay reduces the algebra without affecting the results too much.
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steady state) a capital gain ̇. Similar stories apply to (3)-(5).

Next, for the decision of a nonconsumer to act as type  or  , we assume

that if he chooses he starts without  for payoff 0 (e.g., if he produced  as a

type  , he must sacrifice it to acquire the middleman technology). This implies

  0⇒  ≥ max {0 0} and   0⇒ 0 ≥ max { 0} (6)

and, in particular,  = 0 if    0. A steady state equilibrium is defined

as a nonnegative list hVni such that:  satisfies (1); V satisfies (2)-(5);

and n satisfies (6). Given hVni we can compute payments y, the spread
 =  − , the stock of middleman inventories , etc.

3 Goods Market Equilibrium

When   0 it is immediate that  = 1 ( with  always trades with ).

Hence there are three possible outcomes. A class 0 equilibrium is one where

 =  = 0 and  = 1−, so the market shuts down. A class 1 equilibrium is

one where  = 1− and  =  = 0, with production but no intermediation.

A class 2 equilibrium is one where   0,   0 and  = 0, with production

and intermediation. In principle we can have   0,   0 and   0, too,

but it only occurs in a measure 0 set of parameters, so it is ignored. We consider

the other possibilities in turn, with detailed proofs in the Appendix.

Consider first class 0 equilibrium, with  =  = 0. This requires  ≤ 0
and 0 ≤ 0. When  = 0,  ≤ 0 iff  ≥ ̄ ≡ , and 0 = 0 for all

parameters. So class 0 equilibrium exists iff  ≥ ̄, and obviously there are not

multiple class 0 equilibria. However, unless parameters satisfy the condition in

Lemma 1, a class 0 equilibrium violates subgame perfection and is ignored:

Lemma 1 A (subgame perfect) class 0 equilibrium exists iff  ≥ ̄ and  ≥
(), where  is defined in (9) below. When it exists it is unique.
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Consider next candidate class 1 equilibrium, with  = 1 −  and  = 0.

This requires  ≥ 0 and  ≥ 0, so that type  agents do not want to deviate

and become type  or  . It is easy to check  ≥ 0 iff  ≤ ̄, and  ≥ 0 iff

 ≥ () ≡ ̄ −
 +  + (1− ) 

(1− ) 

(̄ − ) (7)

where ̄ ≡ . Since (2)-(5) are linear, there cannot be multiple class 1

equilibria.

Lemma 2 A class 1 equilibrium exists iff  ≤ ̄ and  ≥ (), where  is

defined in (7). When it exists it is unique.

Consider finally class 2, with    0. Here it is convenient to proceed

using  and later recover n. We need  ∈ (0 ̄), where ̄ = 1− . Now routine

algebra reduces  = 0 to () = 0, where

() = 1
2 + 2+ 3 (8)

is obtained by replacing  and  with their values in terms of , and the

coefficients are

1 = (̄ − )

2 = −[2(1− ) + ](̄ − )− ( +  − )(̄ − )

3 = (1− )(̄ − ) + ( + )(̄ − )

We seek  ∈ (0 ̄) such that () = 0 and 0 ≥ 0. Now 0 ≥ 0 iff  ≤ ̄,

which implies 1  0, and hence  () is convex. As shown by the curves , 

and  in the right panel of Fig. 1, there are three ways () can have a solution

in (0 ̄): (a) one root with (0)  0  (̄); (b) one root with (0)  0  (̄);

or (c) two roots. The Appendix rules out cases (a) and (c):

Lemma 3 A class 2 equilibrium exists iff (0)  0  (̄).
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Type 2

Figure 1: Equilibrium outcomes in ( ) space

To see when the conditions in Lemma 3 hold, note that (̄)  0 iff  

() where  is defined above, while (0)  0 iff   () where

() ≡ ̄ +
 + 

(1− )
(̄ − ) (9)

Also, since there is exactly one  ∈ (0 ̄) with  () = 0, and again (2)-(5) are

linear, there cannot be multiple class 2 equilibria.

Lemma 4 A class 2 equilibrium exists iff   () and   (). When it

exists it is unique.

The results are shown in the left panel of Fig. 1, drawn with  (0)  0, al-

though  (0)  0 is also possible. They accord well with intuition — e.g., inter-

mediation requires  not too high, naturally, but also requires  neither too

high nor too low, since  does not produce when  is very high and produces

but does not need  when  is very low. The equilibrating force is this: When

 increases,  is less likely to meet  , and when he does it is more likely 

already has . Hence raising  lowers , which is why we get uniqueness.

Intermediation can be essential in the sense used by monetary theorists: an

institution like money is said to be essential if the set of outcomes that can
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be supported as equilibria expands when money is introduced. For money or

intermediation the concept is nontrivial, since both are inessential in standard

general equilibrium theory. Here, in the region where class 2 equilibrium exists

with   ̄, production depends on middlemen: if we were to eliminate , say

by taxation, the market shuts down. There is more to say about efficiency in

Section 4, but for now we summarize the above results as follows:

Proposition 1 With   0 equilibrium exists and is generically unique, as

shown in Fig. 1. For some parameters intermediation is essential.

Additional insights come from changing parameters in class 2 equilibrium. To

that end the following is useful:

Lemma 5 An increase in  shifts  () down; an increase in  shifts  ()

down if   ̄ and up if   ̄.

Based on this it is immediate that




 0,




 0 and




 0

This accords well with intuition: if  is higher, we get fewer producers, and so

middlemen hold  with lower probability. Less intuitive is this:

  ̄ ⇒



 0,




 0 and




 0

  ̄ ⇒



 0,




 0 and




 0

The case   ̄ is surprising: how can we get more middlemen when  is

higher? This is answered in Section 4.7

7Among other comparative statics, we showed that increases in  work like decreases in

, as both make intermediation more profitable, with  operating in the search process and

 in the bargaining process. We also worked out the effects of demand on the intensive margin

(changes in ) and extensive margin (changes in ), calculated the effects of parameters on y

and , etc. but omit the results in the interest of space.
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Figure 2: Comparing equilibrium and efficient outcomes

4 Goods Market Efficiency

Consider the planner problem with objective function

 = max


(− ) + (− ) st  +  = 1−  (10)

where the first (second) term is the gain from direct (indirect) trade.8 The

Appendix shows:

Proposition 2 The efficient outcome exists and is generically unique. It has

 =  = 0 iff  ≥  and  ≥ (); 

  0 =  iff  ≤  and

 ≥ (); and 

 


  0 iff   () 

(); where

() ≡
(− )

1− 
and () ≡

−2+ 

1− 
 (11)

Fig. 2 shows  and , as well as the analogs from the equilibrium analysis 

and , for two examples. Notice the region where   0 lies strictly below the 45

line, so for intermediation to be optimal we need   . In contrast,   

8Note that (10) can be obtained by summing payoffs over agents in steady state, but max-

imizing it is equivalent to solving the dynamic planner problem and then letting  → 0 (see

Nosal et al. 2015 for a discussion in a related model).
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may or may not entail   0 in equilibrium, since the decision to become a

middlemen depends on the ability to extract rents, captured by bargaining power.

Perhaps more importantly, from these examples we know that equilibrium can

have too many or too few middleman: equilibrium can have   0 when the

planner wants  = 0 or vice versa; and even when the equilibrium and optimum

both have middlemen, we do not get  =  in general.

Unsurprisinly, the outcome depends on the ’s. First we need  = 1 and

 = 1 to avoid holdup problems associated with the costs  and , which

are sunk when  and  meet . For  there is also a holdup problem when

 meets  , but now other forces arise. One is this: when agents act as type 

they neglect making it harder for other  ’s to meet  ’s and easier for  ’s to

meet  ’s, as usual in search theory. Another, more novel, force is this: higher 

implies higher , making it harder for  to trade when they meet  . Balancing

these forces leads to a version of efficiency results going back to Mortensen (1982)

and Hosios (1990) applicable to our three-sided market.

Proposition 3 Let 
0, 


1 and 


2 be the sets of ’s where the efficient outcome

is class 0, class 1 and class 2, resp. Equilibrium is efficient iff  =  = 1

and: (i) ( ) ∈ 
0 ⇒  = 1; (ii) ( ) ∈ 

1 ⇒  = 0; and (iii)

( ) ∈ 
2 ⇒

 =
(1− )(1−  − )

(1− )(1−  − ) + [1− (− )(− )]
∈ (0 1)

Next consider how the optimum varies with . Similar to equilibrium, we

have the natural results   0,   0 and   0, plus the

surprising results

  ⇒ 


 0,




 0 and




 0

  ⇒ 


 0,




 0 and




 0
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How can higher  lead to more middlemen? To answer that we use this:

Lemma 6 For all parameters, (
)  0.

This says that an increase in  always reduces the stock of inventories held

by middlemen, 
, but there are two ways to make that happen. One is to

reduce , which in steady state means higher 
; the other is to reduce , which

means higher . When    it is optimal to use the extensive margin and

reduce ; when    it is optimal to use the intensive margin and reduce 
,

which means higher . This explains the planner’s choices; the idea is similar

for equilibrium.

5 Asset Market Equilibrium

Suppose now that storing  is profitable. As a colorful example, suppose  is

a painter,  is a collector and  is an art dealer, and that  = −  0

because paintings generate payoffs simply from gazing at them, or from charging

admission to  ’s gallery. Will  trade  to ? Of course the answer depends

on fundamentals — i.e., who values it more — but also on the ease or difficulty with

which inventory can be replaced and that depends on equilibrium considerations.

Indeed, one might say that liquidity is a key factor: the market can be said to be

more liquid when it is easier to get , which is the case when  is bigger, which

is the case when  is bigger, because that makes  higher.

This is relevant for any asset with positive net returns, not only art. As a

financial application, suppose  produces or otherwise obtains capital suitable

for investment by either  or  . Then a type  agent with capital may not

want to pass it on to , again depending on fundamentals like , but also on

the strategies of others. This interpretation allows us to investigate the view

(recall fn. 2) that financial institutions may be more unstable/fragile that other

intermediaries, such as those in retail goods markets.

12



As another application,  can be a interpreted as housing that provides utility

as shelter, in which case must decide whether to keep it as a residence or flip it

to . With this interpretation we can investigate the idea that real estate markets

are susceptible to “hot and cold spells” depending on the speculations of flippers.

Of course, the model is quite abstract, but we think it still provides insights into

these kinds of applications. Moreover, our position is not that the only relevant

distinction between goods or assets is   0 or   0; our position is that it

is a distinction that is interesting because of the way it affects results.9

While  = 1 is immediate for   0, it is not for   0, and so there are

more candidate equilibria. We call  = 0 and  = 1 a class 1 equilibrium,

with  indicating  trades  to  (in fact there are no type  agents on

the equilibrium path, but off this path type  with  would trade it to ).

Similarly,  = 0 and  = 0 is a class 1
 equilibrium, with  indicating keeps

. Also,  = 0 and  ∈ (0 1) is a class 1 equilibrium, with  indicating 

randomizes, but we ignore it because it can only be an equilibrium for nongeneric

parameters. We also ignore  = 1− , which is uninteresting, because there is

no production, and unnecessary for our purposes. Thus, in addition to 1 and 1 ,

the other relevant candidates all have  ∈ (0 1− ) and either:  = 1, which

is a class 2 equilibrium;  = 0, which is a class 2 equilibrium; or  ∈ (0 1),
which is a class 2 equilibrium. See Table 1.

\ 0 [0 1] 1

0 1 × 1

(0 1− ) 2 2 2

1−  × × ×
Table 1: Candidate equilibria with  = −  0.

9It is clear that what matters is   0, not   0, but for symmetry here we assume

both. Also, an editor suggested we mention that in reality there are primary and secondary

asset markets: the former have buyers trading with originators, captured by  in the model,

while the latter have them trading with others who previously bought the asset, captured by

 . While some assets trade exclusively or mainly in secondary markets, we let  potentially

get  from either  or  , the way one can get, e.g., T-Bills directly from the government or

indirectly through a security dealer. Gong (2019) analyzes in greater depth a related model

that determines endogenously whether  can buy from only  , from only  , or from both.
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Lemma 7 states some results formally, but they are perhaps better understood

from Fig. 3, which in one panel has the negative quadrant of ( ), space and in

the other the positive quadrant of ( ) space, which we find easier to interpret.

While there are various issues that can be discussed using the results — e.g., as

in the model with   0, one can ask about the parameters that are more likely

to make intermediation an equilibrium outcome — but we highlight the following:

Suppose  is not too high, which is necessary for   0. Then for  very high

we get  = 0 and for  very low we get  = 1, naturally, but for  neither

too high nor too low there coexist a 2 equilibrium with  = 0, a 2 equilibrium

with  = 1, and a 2 equilibrium with  ∈ (0 1).

Lemma 7 Define

b ≡ −[ + (1− )] (12)b() ≡ −( − )
 + (1− )

(1− )

(13)

() ≡ −−  +  (14)

Also define b() to be the lower root of the quadratic given in the proof in the
Appendix. Then class 1 equilibrium exists iff  ≥ max{b ()}; class 1
exists iff b() ≤  ≤ b; class 2 exists iff  ≤ min{() b()}; class 2
exists iff b()    (); and class 2

 exists iff b() ≤  ≤ ().

We conclude that   0 implies the liquidity of the market, and in particular

whether  is passed on to  or “hoarded” by , can be a self-fulfilling prophecy,

i.e., not pinned down by fundamentals. This constitutes part (i) of Proposition

4. Part (ii) says that if n is fixed we get back uniqueness even with   0,

confirming that multiplicity requires both   0 and endogenous .

Proposition 4 (i) With   0 equilibrium exists. As shown in Fig. 3, ∀ 

̃ where ̃  0, and  neither too high nor too low class 2, 2 and 2

equilibria coexist. (ii) If  and  are fixed equilibrium is unique:  = − 

( + )⇒  = 0 and   ( + ) ⇒  = 1.
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‐

Figure 3: Outcomes in ( ) and in ( ) space

6 Asset Market Efficiency

One can emulate the method in Section 4 for the planner, but now we have to

choose  as well as , so the details are relegated to a Supplemental Appendix,

and here we report just a few findings.10 First, depending on parameters  can

be too big or too small, as in the model with   0. However, different from

that model, with   0 it is not possible to find ’s such that equilibrium is

efficient even if we select the best equilibrium when there is multiplicity. To see

this, note that the Supplemental Appendix shows the borders between regions

are the same for the equilibrium and planner iff  =  =  = 1; but with

those ’s the values of  in the 2
 region are different.

10The method involves checking each (  ) pair in Table 1 to determine the parameters

for which it solves the planner problem. To be a solution (  ) must satisfy these conditions:

a corner solution  = 0 ( = 1) requires  decreasing in  at  = 0 (increasing in  at

 = 1); a corner solution for  requires something similar; and interior solutions for  ∈ (0 1)
or  ∈ (0 1− ) must satisfy standard FOC’s and SOC’s. After exhausting the candidates

in Table 1, we can partition parameter space into regions as follows: for big  the efficient

outcome is 1 or 1 as  is small or big; for small  it is 2
 or 2 as  is small or big.

The result is simple enough, and qualitatively the four outcomes are similar to the four classes

of equilibria analyzed above, but the regions where they obtain are different. What is slightly

harder is this: in some regions there is more than one (  ) satisfying the FOC’s, so we have

to check the SOC’s, and also compare  across local maximizers to find the global maximizer.

See the Supplemental Appendix.
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While in equilibrium  can be too big or too small, there is no analogous

result for  . It is easy to show  can be too small — i.e., we can have  = 0

in equilibrium when the planner wants  = 1 — but we did not find an example

where  = 1 in equilibrium when the planner wants  = 0 (although we did not

prove it is impossible). We understand the situation in terms of coordination.

When  = 0,  is willing to sell  to  in principle, but not in practice, because

inventories take too long to replace. If every were to change to  = 1, however,

 and hence  would rise, and then would would trade  to  since it would

take less time to replace.

Moreover, when equilibria with  = 0 and  = 1 coexist, the latter is better.

Although the result does not depend on this, it is easiest to see when  =  =

1, since then welfare is unambiguously measured by  = 0 in any equilibrium

with   0.11 In this case, note that the two equilibria imply

( = 0) = (1− ) (− )

( = 1) = (1− ) [−  + (1− )(1 − 0)]

Hence, ( = 1)  ( = 0), consistent with interpreting  = 0 as a coordi-

nation problem. We summarize as follows:

Proposition 5 Similar to goods markets, in asset markets the efficient outcome

exists and is generically unique, and equilibrium can have  too big or too small.

Different from goods markets, we cannot set the ’s so that equilibrium is efficient.

Also, when equilibria with  = 0 and  = 1 coexist the latter is better.

7 Asset Market Dynamics

It is convenient here to work in (1∆) space, where 1 =  is the measure of

inventories held by  , which is predetermined at any point in time , while ∆ =

11Coexistence requires   0, which requires  = 0, and when  =  = 1 all the

surplus goes to nonconsumers. When   1 or   1 consumers get some surplus, too, but

the result goes through if we define welfare by  , which aggregates  and .

16



1 − 0 represents (beliefs about) the value of inventories. Then the equilibrium

conditions can be collapsed to a two-dimensional dynamical system in (1∆).

For   0, the Appendix shows the unique steady state is a saddle point: for

any initial condition 1 = ̄1 there is a unique ∆̄ such that starting at
¡
̄1 ∆̄

¢
the system transits to steady state; and for any other ∆̄ the system follows an

explosive path. In other words, when   0 equilibrium, not only steady state,

is unique.

For   0, the dynamics are more complicated.
12 To begin, as in the steady

state analysis, let us assume type  can at any  become type , but must start

with 0 inventory. Next, since type  agents really make no decisions, we can

ignore them and focus on

 = + 0∆−  + ̇ (15)

0 = (1−  − 1 − 0)∆+ ̇0 (16)

1 = (−∆)−  + ̇1 (17)

The interesting case concerns   0, where  = 0. This holds iff 0 =

0 (1∆), where we can solve explicitly for

0 (1∆) =
 − 

∆
+ (1−  − 1)

Next, subtracting (16)-(17), we get

∆̇ = ∆−  (−∆) +  + (1−  − 1 − 0)∆ (18)

Now  =  (∆) is 1, [0 1] or 0 as ∆−  is positive, 0 or negative, which we can

insert along with 0 (1∆) into (18) to arrive at

∆̇ = ∆−  (∆)  (−∆) +  + [1−  − 1 − 0 (1∆)] ∆ (19)

12While some previous search models also display interesting dynamics — e.g., Diamond and

Fudenberg (1989), Boldrin et al. (1993) or Mortensen (1999) — they hinge crucially on increasing

returns in the matching or production technology; that is not the case here.
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Figure 4: The phase plane with   0

Thus we get a differential equation for ∆. The equation for 1 is

̇1 = 0 (1∆) [1−  − 1 − 0 (1∆)]− 1 (∆)  (20)

Then, as is standard, given an initial ̄1 equilibrium defined as a bounded and

nonnegative path (1∆) satisfying (19)-(20) (boundedness comes from the transver-

sality condition; see, e.g., Rocheteau and Wright 2013).

We know that for some parameters there are 3 steady states, as shown in

Fig. 4. Notice in this phase plane the ̇1 = 0 curve has a flat spot and the ∆̇ = 0

curve has a kink at ∆ = , which is where  switches from 0 to 1. The lower

steady state,
¡
1 ∆


¢
, has ∆   and  = 1; the higher one,

¡
1 ∆


¢
, has

∆   and  = 0; and the middle one
¡
1 ∆

¢
has ∆ =  and  ∈ (0 1).

One can check that
¡
1 ∆


¢
and

¡
1 ∆


¢
are saddle points, but the dynamics

around
¡
1 ∆

¢
can be complicated.

To see this, consider an example with  = 1,  = 005,  = 03,  = 05,

 =  = 1,  = 036 and  = 0. As shown in the upper left panel of

Fig. 5, the three steady states are approximately 1 = 005, 1 = 007 and

1 = 025. The upper right panel zooms in to show local dynamics around¡
1 ∆

¢
. Whether this converges to steady state, or to a small cycle around it,
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Figure 5: Dynamics in an example with   0

is hard to say from the numerical output, and checking local stability directly is

hindered by the ̇1 = 0 curve being nondifferentiable at ∆ = . But we can learn

a lot numerically. Figure 6 shows the time path of 1 in the example perturbed

by reducing  to 01, starting with 1 close to 1 . Clearly, these equilibrium

fluctuations do not settle down, and they not small.

More generally, starting with any ̄1 in the neighborhood of 

1 , there is a

continuum of equilibria indexed the choice of ∆̄ over some range, because all

paths starting at
¡
̄1 ∆̄

¢
are bounded and nonnegative. After a shock to the

system — e.g., an unexpected drop in  for whatever reason — there are many

equilibria that cycle around
¡
1 ∆

¢
as in Fig. 5 or 6. Hence, small changes

in fundamentals can generate very volatile reactions. Also notice that while the

fluctuations in ∆ or  are not that big relative to their long-run averages, the

fluctuations in 1 and 0 are around 10% and 20%, so while this is not a serious
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Figure 6: Persistent fluctuations in equilibrium

calibration, it is interesting that fluctuations in inventories are much bigger than

output, a stylized fact about business cycles.

Also, in Fig. 4, the left panel shows the stable manifolds of the two saddle

points trapped inside the unstable manifolds. This means the stable manifolds

must wrap around the middle steady state, either emanating from it or from

a cycle around it. In either case, starting with any ̄1 in the neighborhood of

1 , there is a continuum of equilibria indexed by ∆̄, and after a shock there

are many different equilibrium paths that fluctuate around
¡
1 ∆

¢
, as well

as paths starting on one of the stable manifolds and asymtoptically approaching

either
¡
1 ∆


¢
or
¡
1 ∆


¢
. The right panel is similar, except that for any ̄1

in a large range, depending on initial beliefs, the system can transit to
¡
1 ∆


¢

or
¡
1 ∆


¢
, or oscillate on its way to

¡
1 ∆

¢
or a cycle around it.13

13One can also construct stochastic (sunspot) equilibria using standard methods. Consider a

random variable  that affects nothing fundamental but could affect behavior if agents believe

it will. According to a Poisson process  switches from 1 to 2 at rate 1 and switches back

at rate 2, and at each switch the economy jumps from one (bounded) trajectory in Fig. 4 to

another. Now given rational expectations about the jumps, Fig. 4 would actually change, but

it is qualitatively similar if the ’s are not too big. In particular, when the phase plane looks

like the right panel, one equilibrium has the economy jumping between paths approximately

given by the stable manifolds of the steady states with  = 1 and  = 0, with  ’s behavior

and the direction of the inventory path switching whenever ∆ crosses . For more discussion

see, e.g., Kaplan and Menzio (2016) who study different but related kinds of models.
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Thus our intermediated asset market not only has multiple steady states, but

dynamic indeterminacy and excess volatility (fluctuations in endogenous variables

when fundamentals are constant). It is also subject to fragility, where a small

change in fundamentals can lead to a structural change in equilibrium. Similar

results appear in other models, but the economics is different, arising here from

complementarities in trading strategies and endogenous market composition.

8 Robustness

The results are robust on several dimensions. First, in the Appendix we extend

the uniqueness result for   0 to the case where we give multiplicity a fighting

chance by going beyond linear utility and steady state. This is relevant because

some search models display multiplicity if one considers nonlinear utility or dy-

namics, but not if one imposes linearity and looks only at steady state (e.g.,

Wright and Wong 2014; Trejos and Wright 2016); that is not the case here.

One commentator conjectured that treating types  and  asymmetrically

might be driving some results. We think our setup is natural, but it is true that:

(i)  gets payoff  from  while gets payoff  from ; and (ii) after acquiring

it  can get another , while  is restricted to {0 1}. So, consider instead: (i)
 gets  from ; and (ii)  also is restricted to  ∈ {0 1}. This makes them
symmetric, but without further modification, eventually all end users can end

up with  and production shuts down. So, suppose that, when  acquires , he

leaves the market to be replaced by a new  (we could also let  depreciate as

discussed below).

To ease notation, set  =  = 1 and write

 =  + (1− )(1 − 0) + 

0 = (1 − 0)

1 = ( + 0 − 1) + 
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Now  = 1 if  + 0 − 1  0, which reduces to

  ∗ ≡ 

 + 



Hence, and  trade when ’s valuation is above ∗, not surprisingly, but there

are two points worth mention: first,   0 implies ∗  , so it is not the

case that trades  to  iff   ; second, 
∗ depends on the endogenous ,

not merely parameters.

Other commentators conjectured that we do not need type  , as similar

multiplicities can occur with only  and . That is more delicate. One approach

is to eliminate  and let agents choose to be either  or  , with  +  = 1.

Letting  now denote the probability  and  trade, we have

 =  (1− )

 = (1− )+ 

It is easy to check that as long as  6= 0 the unique equilibrium has  = 1. For

 = 0, multiplicity emerges, because then  =  and  = , so we can

have  ∈ (0 1) as long as  = , and there are many combinations of ( )

satisfying this condition. But that is not interesting, because it only works at

 = 0, and it is payoff irrelevant. So we do need  in this version.

A better conjecture by one referee is that a similar multiplicity may emerge

without  when we give  a trade off between saving  and consuming it. This

is plausible, since  consuming  is similar to  trading it away.  pursue it,

suppose there are two types,  that can save or consume , and  that can

produce it or be a nonparticipant. In the Supplemental Appendix we confirm

this works: if  is more likely to consume , there will be more  searching for

, which encourages participation by  and makes  more likely to consume.

Multiplicity can emerge. This changed our views, given we previously thought

middlemen were necessary for this kind of multiplicity; they are not. Yet it does
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not change a main conclusion: in models with middlemen, it is still true that

multiplicity and complicated dynamics emerge only if   0 and only if market

composition is endogenous.

Another extension is to let  hold inventories  ∈ {0 1 }, where 1   

∞.14 Let n = (0 1 ), where  is the measure of  with  units of . As

Fig. 7 shows,  moves up the distribution by one unit at rate  =  , since he

trades whenever he meets  (we maintain that  can only produce one unit per

meeting). Also, moves down one unit at rate  =  + , where   ∈ {0 1}
indicates whether or not  with  units trades with  (we maintain that  only

wants one unit per meeting), and each unit depreciates at Poisson rate . If  is

the value function for  with , then   = 1 if   ∆ =  − −1.

Figure 7: Inventory flows

Now steady state solves

0 = 1( +  1)



 + ( +  ) = −1 + +1 ( +  +1)



 ( +  ) = −1

14One can consider  =∞, too, but we think  ∞ makes sense. The reason is that if there

were an increasing marginal cost or decreasing marginal benefit of inventories, and  could

choose , he would choose   ∞ (see Shevchenko 2004). Also, for this extension we assume

 types never meet each other. With  ∈ {0 1} this does not matter, since there are no gains
from trade between  ’s, but here it would matter and might be worth studying (see Afonso

and Lagos 2015 for something along these lines applied to banks in the Fed Funds market).
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The first equation implies 1 = 0( +  1). Then the second reduces to

1 = 2 ( +  2), or

2 =
1

( +  2)
=

0
2


( +  1) ( +  2)


Continuing in this way ∀ ∈ {1 2} we get

 =
0




Q
=1

( +  )

 (21)

Note the last equation holds automatically when the others hold, so we replace

it with
P

=0

 = 1−  − , or,

0 =
1−  − 

1 +
P

=1


Q

=1

(+)

 (22)

This is the closed-form for n given any τ and .
15

Let  () =  be  ’s return from holding  units, with   0, where  ()

is linear only to focus on nonlinearities coming from endogenous behavior. Then

0 = ∆1



 =  +  (−∆) + ∆+1 − ∆ (23)



 =  +  (−∆)− ∆−1

Thus with   0 gets a flow , gets a share  of the surplus when he trades

with , suffers from depreciation at rate , and increases  when he meets  as

15The process for  is reminiscent of the one for currency holdings in monetary models with

 ∈ {0 1 2 }, like Green and Zhou (1998), Camera and Corbae (1999) or Berentsen (2002).
However, those papers need to justify agents’ decisions to trade 1 unit of money at a time, while

here trading 1 unit of  is guaranteed by technology and preferences.
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long as   . Similarly, we have

 =  + +

−1X
=0

∆+1 (24)

Note that equilibrium is generically unique when  is exogenous, because

while τ affects n it does not affect (23). Also, as in the baseline model, multiplicity

obviously requires   0. It is not hard to solve the model numerically and look

for multiplicity with  endogenous and   0. First note that  is nonlinear

in , and to see why this matters, consider a special case that we call reservation

equilibria, defined as follows: for some ∗ ∈ {1 2 },   = 1 iff  ≥ ∗. One

might think all equilibria have this property, which would be true if  were

linear, but  is not linear. Fig. 8, drawn for  = 5, shows ∆ =  − −1,

and note that when ∆ is increasing (decreasing)  is convex (concave); hence

 starts convex and becomes concave as  increases.
16 In the left panel, with

 = 005, τ = (1 0 1 1 1) is an equilibrium, and in fact the unique equilibrium

for these parameters, but it is not a reservation equilibria ( trades when  = 1

but not when  = 2). In the right panel, with  = 007, τ = (0 0 1 1 1) is a

reservation equilibrium. Also shown are histograms for n and the value of .

Figure 8: Equilibria at  = 005 and  = 007

16Parameters for this example, and for those below, unless indicated otherwise, are  = 1,

 = 001,  = 009,  = 025,  = 08,  =  = 1,  = 0 and  = 005.
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It is not hard to get multiplicity. The left panel of Figure 9 shows the result

of checking all 2 candidate equilibria for  = 100 for each point on a grid in

( ) space.
17 The blue region has one equilibrium, the green has two, and

yellow three. In this case they all happen to be reservation equilibria, implying

multiplicity even within the special class, but one can also find reservation and

other equilibria coexisting. The right panel checks for only reservation equilibrium

when  = 50. For every ∗ ∈ {1 2 50} on the horizontal axis, the values of 
that support a reservation equilibrium with that ∗ are shown by bars. For low 

there is a reservation equilibrium with ∗ = 0, so  trades with  whenever he

can. For high  there is a reservation equilibrium with 
∗ close to , so rarely

trades with . Note that the overlap of the bars again demonstrates multiplicity.

Also, note that for intermediate ∗ no value of  supports reservation equilibria,

and so reservation equilibria are not pervasive.

Figure 9: All equilibria with  = 100 and reservation equilibria with  = 50

The intuition is similar to  = 1. First, one can show higher   lowers 

and increases  for  6= . Also, setting   =  ∀ and increasing  twists the

inventory distribution — i.e., there is an  such that  decreases for    and

increases for  ≤  . So when  is more inclined to trade with , in the sense

that   = 1 for more values of , a random middleman is more likely to have lower

17The parameter values are the same as above except  = 011 in the left panel and  = 010

in the right panel, mainly to make the pictures look nicer.
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inventory. This increases profit for  , and to re-establish  = 0 we need to

raise , which encourages  to trade with  more often. This strategic effect

makes multiplicity possible even when  is big, and shows that insights from our

tractable benchmark model go through for   1.

9 Conclusion

This project continued the development of search-based theories of intermedia-

tion, with emphasis on endogenizing the measures of middlemen and produc-

ers,  and . The analysis delivered clean results on existence, efficiency

and dynamics, with some predictions that were surprising, like the possibility

of   0. A result we find interesting is this: absent devices like increas-

ing returns, in models where  and  are endogenous, equilibrium is unique

and simple if holding inventories involves storage costs, as in goods markets; but

multiplicity and complicated dynamics emerge if holding inventories involves pos-

itive returns, as in asset markets, if we endogenize the composition of the market.

There are many extensions and applications one can imagine for future work, but

we think the existing findings already taught us a lot about search theory and

about intermediation.
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Appendix A: Payment Frictions and Dynamics

To begin let us suppose  00 ()  0. This is interesting because now we can have

 ()  , implying the cost to the payer exceeds the value to the payee, which

discourages intermediation because it requires two payments,  to  and  to

 , rather than one,  to  . Thus we can interpret the model in terms of pay-

ment frictions. Given that, we can show uniqueness in goods markets also holds

with nonlinear utility. For tractability, let us use Kalai’s (1977) “proportional”

bargaining solution, which has several advantages in related models (Aruoba et

al. 2007).

To reduce notation, set  =  = 1, which is fairly innocuous since type 

really plays a very minro role anyway, and convenient because it implies  = 0

and  =  = . Also, let  ≡ () and write the dynamic programming

equations as

 =  + 0()−  + ̇ (25)

0 = (1−  − 1 − 0)
1− 


() + ̇0 (26)

1 = ( −∆)−  + ̇1 (27)

The definition of equilibrium is similar, but the analysis is harder. To begin, let

us first analyze steady state, then take up dynamics. Here are generalizations of

some basic results for  () = :

Lemma 8 A (subgame perfect) class 0 equilibrium exists iff  ≥  and  ≥
(), where

() ≡  + (0)(1− ) (28)

and 0 is given by the bargaining solution for  at  = 0.

Lemma 9 A class 1 equilibrium exists iff  ≤  and  ≤  (), where

 () ≡  − (̄)(1− )
(1− )


 (29)

and ̄ is the bargaining solution for  at  = ̄.

Lemma 10 A class 2 equilibrium exists iff ̃ (0 0)  0  ̃ (̄ ̄), where ̃ is

defined in the proof.
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Figure 10: Equilibrium in ( ) space

The main complication comes from the fact that, with a general  (), we

cannot eliminate  from the above conditions. Hence, we work with two curves

in ( ) space, one representing bargaining and one representing the choice to

be type  or  . Setting 0 =  implies a quadratic that solves for

 =
[2 (1− ) + ] () + 

¡
 − 

¢−p̃

2 ()
(30)

where ̃ is the discriminant. This defines a function  = (), with  for

“occupational choice.” One can check  ' −( − ), where  ' 

means  and  have the same sign. As shown in Fig. 10, this traces a curve in

( ) space that slopes up or down, depending on the sign of  − , but in

any case lim→∞() = ̂ ∈ (0 ̄).
Next, use (??)-(??) to solve for 1 − 0 and eliminate it from the bargaining

solution to get  = (), where  is for “bargaining.” The result is

 = −1 () =
 ( − )−Υ

 ( − )−Υ+  (1− ) ()
 (31)

whereΥ ≡ ( + ) [ + (1− ) ()]. This traces a downward-sloping

curve. Now we have

Lemma 11  =  () and  =  () intersect in (0∞)×(0 ̄) iff  () 

  (). They never intersect more than once in (0∞)× (0 ̄). In ( )
space,  is increasing and concave,  is decreasing and concave, and  () =
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() = .

Proposition 6 With   0 and  00  0 equilibrium exists and is generically

unique.

Based on this is it not hard to show the results look a lot like Fig. 1 except now

the boundaries of the different regions are nonlinear. In any case, the point it

that uniqueness with   0 extends holds to nonlinear  ().

Now consider going dynamics in class 2 equilibrium, still allowing  00  0 and

setting  =  = 1, so again  =  = ,  = 0 and  = (). Also, here it

is more convenient to work with the ’s, rather than , so let the state variable

be 1, the measure of  with , while 0 =  − 1. Then

̇1 = 0(1−  − 1 − 0)− 1 (32)

The other state is ∆ = 1 − 0 capturing agents beliefs about the value of

acquiring . The bargaining solution is

() = [()−  +∆] (33)

While this system appears comples, it can be reduced to something manage-

able as follows: First, notice  = 0 ∀ implies ̇ = ̇0 ∀. Then the dynamic
programming equations imply that for  ∈ (0 1− ) we have

 + 0()−  − (1−  − 0 − 1)
1− 


() = 0 (34)

They also imply

∆ = ( −∆)−  + ∆̇− (1−  − 0 − 1)
1− 


() = 0

Using (34) and simplifying this, we get

∆̇ = ( + )∆+  −  + 0() (35)

Thus (32) and (35) deliver a two-dimensional dynamical system in (1∆), with

0 and  implicit functions of the state.
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Figure 11: The phase plane with   0

As is standard, given an initial condition ̄1, an equilibrium is a nonnegative

and bounded path for (1∆) solving (32) and (35) (boundedness comes from a

transversality considerations discussed in, e.g., Rocheteau and Wright 2013). For

  0 there is a unique steady state where the curves solving ̇1 = 0 and ∆̇ = 0.

These have slopes

∆

1
|̇1=0 =

[(0 + ) + (1−  − 1 − 20)(1− )] [(1− )
0 + ]

(1−  − 1 − 20) 0 [(1− )(1−  − 1)− 0]

∆

1
|∆̇1=0

=
(1− ) [(1− )

0 + ]

( + ) [(1− ) 0 + ] +  0(1− )(1−  − 1)


One can check the slope of ∆̇ = 0 is strictly positive, and while the slope of ̇1 = 0

can be positive or negative, when it is positive it is steeper than the ∆̇ = 0 curve.

Also, ̇11  0 and ∆̇1  0. Hence the phase portrait looks like Fig. 11,

and whether ̇1 = 0 slopes up or down, the steady state is a saddle point: ∀̄1
there is a unique ∆̄ such that starting at

¡
̄1 ∆̄

¢
the system (1∆) transits to

steady state, and otherwise the system follows an explosive path. In other words,

given any initial 1 equilibrium and not only steady state is unique.
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Appendix B: Proofs of Nonobvious Results

Lemma 1: Class 0 and class 2 equilibria coexist in the region where  ≥
̄ and   (), but we claim the former is not subgame perfect. Notice

  ̄ in this region, and consider a class 0 candidate equilibrium. Suppose a

nonparticipant deviates and produces. When he meets another nonparticipant,

which happens with positive probability, that agent has a strict incentive to

accept his good and act like type  because   ̄ (i.e., it is not credible to

think he would reject it). This constitutes a profitable deviation. ¥

Lemma 3: There are three ways for a convex () = 0 to have solutions in

(0 ̄): (a) one root with (0)  0  (̄); (b) one root with (0)  0  (̄);

(c) two-roots, which requires (c1) (̄)  0, (c2) (0)  0, (c3) 0(̄)  0, (c4)

0(0)  0, and (c5) (∗)  0, where 0(∗) = 0. Notice that

(0) = (1− )(̄ − ) + ( + )(̄ − )

(̄) = [ +  + (1− )](̄ − )− (1− )(̄ − )

In case (a), it is easy to see(0)  0 iff   ̄+(1−)(̄−)(+),

and (̄)  0 iff   ̄ − (1− )(̄ − )[ +  + (1− )]. As

these conditions are contradictory, case (a) cannot occur.

Turning to case (c), (c1) ⇒   ̄ while (c2) ⇒ 3  0 ⇒   (),

which is redundant given (c1) and that equilibrium requires that  ≤ ̄. Also,

(c3) and (c4) ⇒

  () ≡ ̄ +
 +  − 


(̄ − )

  () ≡ ̄ +
 +  − 

2(1− ) + 
(̄ − )

Finally, (c5) is equivalent to   0, where  is the discriminant of ().

We now show  +  −   0 is necessary for (c3) and (c4). Suppose

that  +  −   0. This implies 0()  0 and 0()  0, and both

of the lines  = () and  = () go through (̄ ̄). Since equilibrium

requires  ≤ ̄ and  ≤ ̄, condition (c3) is violated, i.e., as illustrated in

the left panel of Fig. 12, the intersection of conditions (c3) and (c4) is the empty

set when  ≤ ̄. Suppose now that  +  −   0. It is easy to show
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) )

))

Figure 12: The functions () and ()

(c3) and (c4) are satisfied. The parameter set consistent with the conditions c(1),

c(3) and c(4) is given by S1 ≡ {( )|0   ≤ ̄ ()    
¡

¢},

shown in the right panel of Fig. 12

Similarly, let S2 be the set consistent with (c5). To characterize S2, the
discriminant of (), , can itself be written as a quadratic in  given ,

̂(|) = ̂1
2
 + ̂2 +̂3, where

̂1 = 
2 + 4(1− )

̂2 = −2̄[2 + 4(1− )]

−2(̄ − )[( +  − )(1− 2)− 2]

̂3 = ̄2[
2 + 4(1− )] + (̄ − )

2( +  − )

+2̄(̄ − )[( +  − )(1− 2)− 2]

Since ̂1  0, ̂ is strictly convex. Also, it is straightforward to show that

̂(̄|)  0 ∀ ∈ [0 ̄). Thus, since ̂ is strictly convex and ̂(̄|)  0,
S2 6= ∅⇒ ̂(0|)  0⇒ ̂3  0, as shown in the left panel of Fig. 13.

It can be shown that ̂(|̄)  0 ∀ ∈ [0 ̄) and ̂(̄|̄) = 0. Since ̂
is continuous, ̂(|)  0 for some   ̄ if ̄− is small. The admissible
set of  for which ̂(|)  0 is pinned down by the lower root of ̂(|) = 0
being positive, −() = (−̂2 −

√
Λ)2̂1  0, where Λ = ̂22 − 4̂1̂3  0. One
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Figure 13: The functions ̂(|) and ()

can show −()  0⇒ ̂2  0⇒   

with



≡ ̄ + ̄[ + 4(1− )][( +  − )(1− 2)− 2]

Given , the set of  such that ̂(|)  0 is [0 −()). Therefore, S2 =
{( )|    ̄ 0    −()}. Suppose for a given  there exists

−()  0 such that ̂(
−
()) = 0. Express the lower root as

−() = () ≡ ̄+(̄−)
[( +  − )(1− 2)− 2]−

√
Λ

2 + 4(1− )



One can show 0()  0. The right panel of Fig. 13 depicts  = (),  =

() and  = (). Since ̂ ≡   0 ⇒    (), a necessary condition

for case (c) is 0()  0(), as in the right panel of Fig. 13.

Hence, (c) requires S1 ∩ S2 6= ∅ and 0()  0(). The inequality implies

( − )[ + 4(1− )]  [( − )(1− 2)− 2]

− {[( − )(1− 2)− 2]
2

− ( − )[ + 4(1− )]}12

ignoring terms with  that strengthen the inequality. This implies

−1 + ( − )  4 + 4(1− )( + )

But the LHS is negative and the RHS positive — a contradiction. ¥
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Lemma 5: We derive

 ()


= + [2(1− )− (1− )− 2]

One can check this vanishes when  = ̄. Moreover,





()



¯̄̄̄
=̃

=  + 2(1− )− 2  0

Hence,   0 if   ̄ and   0 if   ̄. ¥

Proposition 2: There are two cases: First, if    then   0 cannot be

efficient. In this case    implies 

 = 0 and    implies 


 = 1− .

Second, if    then   0 may or may not be efficient. Eliminating 

and  in (10), we reduce the problem to

max
∈[0̄]

½
− 



1− 
 − 

1−  − 

1− 


¾


The derivative of this is proportional to

 () = (1− )2(− ) + ( − )

This implies the solution is  = 0 when  ≥ (), and  = ̄ when  ≥
(), with  and  defined in (11). If    () 

() the solution is the

unique  ∈ (0 ̄) solving () = 0. ¥

Lemma 6: As () = ()× we need to sign ().
Notice  = − (1− ), which implies

()


' (1− )2 −  '  − 

where  '  means  and  have the same sign. When   ,   0

and ()  0, so ()  0; when   ,   0 and

()  0, so again ()  0. ¥

Proposition 3: First, it is obvious that the efficient and equilibrium outcomes

correspond in general only if  =  = 1, because that needed for ̄ = ̄ =
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. With  =  = 1, we have

() =
−2+ [1−  (1− )]

(1− ) (1− )

() =
[ +  (1− )]− 

(1− ) 


If  = 1 then () = 0(); so for ( ) ∈ 
0 ,  =  . If 


 = 0

then () = 0(); so for ( ) ∈ 
1 , again  =  . If 


 ∈ (0 1) then

 ≤ () implies  ≤ () and  ≤ () implies  ≤ (). Set

 =  = 1 and  =  to get . It is easy to check 

 ∈ (0 1). ¥

Lemma 10: We need   ,  = 0, and  is the bargaining solution.

Now  = 0 iff 0 = ̃ ( ) = ̃1
2 + ̃2+ ̃3 = 0 where

̃1 =  ()

̃2 = − [2 (1− ) + ] ()− 
¡
 − 

¢
̃3 = 

¡
 − 

¢
+  (1− ) () 

There are again three cases for ̃( ) = 0: (a) one root with ̃(0 0) 

0  ̃(̄ ̄); (b) one root with ̃(0 0)  0  ̃(̄ ̄); and (c) two roots,

requiring (c1) ̃(0 0)  0, (c2) ̃(̄ ̄)  0, (c3) ̃( | = ̄)  0, (c4)

̃( | = 0)  0, and (c5) ̃(∗ )  0, where ̃(∗ ) = 0.

As in Lemma 3, case (a) is impossible. Also notice

̃(0 0) = [ −  + (0)(1− )]

̃(̄ ̄) = [( − )− (̄)(1− )(1− )]

In case (c), (c1) implies   () and (c2) implies    (). From (c3)

and (c4), we have

̃( )


= 2()− ( − ) − ()[ + 2(1− )]

We need this positive at  = ̄, which means    ≡  − (̄), and

at  = 0, which means    + (0)[ + 2(1 − )]. Given (c2),

(c1) and (c4) are not binding. Also, (c2) and (c3) imply  is between  and  ,
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which holds iff   (1− 2)  (1− ). Assume this is true and consider (c5).

To get ∗, solve  = 0 to get

̃(∗ ) ' −( − )[( − ) + 2()(1− 2)]
−()

2[1 + 4(1− )(1− )]

We need ̃(∗ )  0. With a small abuse of notation, let ̃(∗ ) ≡
̃()  0 where

̃() = −2 + 2[()(1− 2) + ] − 2
2

−2()(1− 2)− ()
2[1 + 4(1− )(1− )]

For (c5) we seek the set of  such that ̃()  0. There are three possibili-

ties: (c5.1) one root with ̃()  0  ̃( ); (c5.2) one root with ̃()  0 

̃( ); (c5.3) two roots, which requires ̃()  0  ̃( ), ̃0()  0  ̃0( ),

and ̃(∗)  0, where ̃
0(∗) = 0. Given  =  and  −  = (̄),

̃() = −(̄)2 
2



[1 + 2(1− 2)]− (̄)2[1 + 4(1− )(1− )]  0

Given  =  () and  −  = (̄)(1− )(1− ),

̃( ) ' −(̄)2{(1− )(1−)[1 +− (1+ 3) + 4
2
] +}  0

for (1 − 2)(1 − )    0. This rules out (c5.1) and (c5.2). To check

(c5.3), consider

̃0() = −2 + 2[()(1− 2) + ]

Now ̃0()  0 at  = , and ̃0()  0 at  =  (). As ̃
0( )  0

violates (c5.3), there is no ∗ between  and  such that ̃(∗)  0. ¥

Lemma 11: We need  and  to cross in (0∞) × (0 ̄), plus   . For

 ∈ (0 ̄), we check ̃(0 0)  0  ̃(̄ ̄), where 0 = (0) and ̄ =  (̄).

Now ̃(0 0)  0 iff   (). At  = , bargaining implies 0 = 0

and   () becomes   . As we lower , 0 rises, and we need

   (). In
¡
 

¢
space  () traces a downward sloping and concave
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curve (see below), and ̃(0 0)  0 to the left of  =  (). Then ̃(̄ ̄)  0

iff    (). At  = , bargaining implies ̄ = 0, and    () becomes

  . As we lower , ̄ rises, and we need    (). In
¡
 

¢
space,

 () traces a upward sloping and concave curve (see below). Hence ∃ ∈ (0 ̄)
solving ̃ ( ) = 0 iff  ()     (). To check   0, note from

Fig.?? that   ̄ ≥ 0. To check  = 0 ≥ 0, by construction 0 ≥ 0 if  ≥ 0.
To show  and  cannot cross more than once, write

 =
− ( + ) (1− ) ()

−  (1− ) ()
≡ ∗

with  =  ( − ) − ( + )   0, from the bargaining solu-

tion. Note   0 ⇒   ( + ) (1− ) (), and   ̄ ⇒  

(1 + ) (1− ) (). Then

()



= −
0

¡
 − 

¢

p
̃

(1− )

−1()



= −  (1− )

[−  (1− ) ]2
[ 0 +  ( + ) ]

If    equilibrium is obviously unique. If   , we claim  

−1 when they cross. To verify this, insert  = ∗ to get

()



= −
0

¡
 − 

¢p
̃

 (1− )

−  (1− )


where ̃ is the discriminant of ̃. Using (30) to replace
p
̃ and  = ∗, we get

()



= −
0

¡
 − 

¢
 (1− )

[−  (1− ) ]Ω


where Ω ≡ [2 (1− ) + ] + 
¡
 − 

¢− 2 [−(+)(1−) ]
−(1−) .

Now  =  ( − )− ( + ) 
∗ and  = (∗) solves

 [− ( + ) (1− ) ]2 + [−  (1− ) ]2[ −  + (1− ) ]

= [− ( + ) (1− ) ][−  (1− ) ]{[2 (1− ) + ] + 
¡
 − 

¢}

41



Routine algebra implies () − −1() is proportional to


¡
 − 

¢
[−  (1− ) ][ 0 (1− ) + ( + ) ]

+[ 0 +  ( + ) ]{[−  (1− ) ] + 2[(1 + ) (1− ) −]}

Since (1 + ) (1− )     (1− ) , this is positive, establishing the result.

Finally, for the properties of  and , derive

0 () =
−(1− )

0 (0)
( + ) [ + (1− ) 0 (0)]

 0

00() ' −2(1− )
00 (0) 00 ()

( + ) [ + (1− ) 0 (0)]
2
 0

Thus  (·) is decreasing and concave in ¡ ¢ space or ¡ ¢ space . Simi-
larly,  0()  0 and 

00()  0 Thus  (·) is increasing and convex in
¡
 

¢
space, or increasing and concave in

¡
 

¢
space. ¥

Lemma 7: For preliminaries, first solve equations (??)-(??) for

 =
( +  + )( − ) + (1− )( − )

 +  + 

(36)

0 =
( − )

 +  + 

(37)

1 =
( + )( − )

 +  + 

 (38)

and notice steady state implies

 =


1− 
and  =

(1− )(1− )− 

1− 
 (39)

We now consider each candidate equilibrium.

Equilibrium 1: In a candidate equilibrium with  = 0 and  = 0, (36)-

(38) reduce to

 =  −  (40)

0 = (1− )(1 − 0) (41)

1 = − (42)
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The best response condition for  = 0 is  
1 ≤ 1, where 


1 is the value to

setting  = 1 then reverting to the candidate equilibrium with 0 given by (41):

( + )

1 =  −  −

(1− )

[ + (1− )]





Simplifying,  = 0 is a best response iff  ≤ b where b is defined in (12).

Similarly, for  = 0,  ≥ 0 iff  ≥ b() where b ¡¢ is defined in (13).
Hence, class 1 equilibrium exists iff b() ≤  ≤ b.
Equilibrium 1 : Consider next  = 1 and  = 0. The best response

condition for  = 1 is  ≥ b. For  = 0,  ≥ 0 iff  ≥ (), where 
¡

¢

is defined in (7). Hence, class 1 equilibrium exists iff  ≥ max{b ()}.
Equilibrium 2: Consider  = 0 and  ∈ (0 1 − ), where the dynamic

programming equations are the same as (40)-(42). The best response condition

for  = 0 is  
1 ≤ 1, where 


1 is the the value to setting  = 1 and reverting

to the candidate strategy with 0 = . Algebra implies

 
1 =

( − ) + ( − )

( + )


It is easy to check  
1 ≤ 1 iff  ≤ () where () is defined in (14). The

condition for  ∈ (0 1− ),  = 0, now implies

 =
( − )

( +  − )


Now   1−  is the binding condition for  ∈ (0 1− ), and that holds iff

 ≤ b(). So class 2 equilibrium exists iff  ≤ min{() b()}.
Equilibrium 2: Consider next  ∈ (0 1) and  ∈ (0 1−). Now  ∈ (0 1)

iff 1 = − iff  = −[ + (1−  − )]. Solve this for

 =
 + [ + (1− )]





One can check  ∈ (0 1− ) implies

 =
( + )( + +  − )

[ + + ( − ) + (1− )]
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We now obtain the set of parameters such that  ∈ (0 1) and  ∈ (0 1−). To
see when   0, denote the denominator of  by . There are two possibilities,

  0 and   0. The former can be shown to be inconsistent with   0, so

we are left with   0, which holds iff

  Ψ
¡

¢ ≡ −− ( − )− (1− )

Given this,   0 if   (). So   0 iff Ψ
¡

¢
   ().

Also, using   0, algebra implies   1 iff 1()  0 where 1() =

1
2
 + 1 + 1  0, with 1 = 1,

1 =  −  + 2− 

1 = ( −  + )− [+ ( − ) + (1− )]

We cannot sign  or , but can show 1(
∗
)  0, where 

∗
 solves 

0
1(

∗
) = 0.

Hence, there are three possibilities for 1()  0, all of which reduce to  b() where b() is the lower root of 1() = 0:

1. if ∗  0 then 1(0)  0 and so 1()  0 iff   b();
2. if ∗  0 and 1(0)  0 then 1()  0 also implies   b();
3. if ∗  0 and 1(0)  0 then 1()  0 implies 

+
    b(),

where + is the upper root of 1() = 0, but   0 implies +   is not

binding. All these possibilities imply, given the other conditions, that   1 iff

1()  0 iff   b().
We claim that when this holds, the earlier condition  ≥ Ψ

¡

¢
is not

binding. To see this, notice b() intersects Ψ at (e− − (1 − )) and

( + (1 − ) −), and b() is increasing and concave. Thus b() 
Ψ
¡

¢
, so the binding constraint is  ≥ b(). In sum, class 2 equilibrium

exists iff b() ≤  ≤ ().

Equilibrium 2 : Consider  = 1 and  ∈ (0 1−). We first solve  = 0

for  and check  ∈ (0 ), since that is equivalent to  ∈ (0 1 − ), where

 = 1− . By (36)-(37),  = 0 iff

( +  + )( − ) + [(1− )− ]( − ) = 0
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Using (39) to eliminate  and , then simplifying, we get 2() = 2
2+2+

2 = 0 where

2 = ( − )

2 = −( +  − )( − )− [ + 2(1− )]( − )

2 = ( + )( − ) + (1− )( − )

We need to check when the solution 2() = 0 is in (0 ). Now 2() can have

one or two roots. Since 2(0)  0 and   0, the one root case corresponds to

the lower-root of 2(), say −. To analyze −, first, notice −  0 requires

   + ( + )( − )[(1 − )], which is non-binding. Second,

−  1 −  requires   (), which holds iff 2()  0. This last result

implies a two-root result is impossible because we have 2(0)  0 and 2()  0.

Hence only one root of 2() = 0 can occur.

Finally, we check the best response condition for  = 1, which reduces to

 ≥ −( + ), or

 ≤  + 

 + − 


Substituting  using − and solving for  yields 1() = 1
2
+1+1 ≤ 0,

as in class 2 equilibrium. So the set of  consistent with 1() ≤ 0 is

 ≥ b(). Hence, class 2 equilibrium exists iff b() ≤  ≤ (). ¥

Proposition 4: Part (i) of the result follows directly from Lemma 7. For part

(ii), for fixed  and  we have

 = +  (1− ) (1 − 0)− 

1 = (+ 0 − 1)− 

0 =  (1 − 0) 

Consider a candidate equilibrium with  = 0. Then  = 1 and the above equa-

tions imply

0 =
−
 ( + )

and 1 =
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A deviation by  to  = 1 implies  
1 = 

¡
+ 0 −  

1

¢ − . After

inserting 0 we get

 
1 =

 ( + ) (− )− 2
 ( + ) ( + )



The deviation is not profitable, and hence  = 0 is an equilibrium, iff  
1 ≤ 1.

This reduces to − ≥ ( + ).

Now consider a candidate equilibrium with  = 1. Then we solve in the usual

way for

1 =
( + ) (− )

 ( +  + )


A deviation to  = 0 implies  
1 = −. This is not profitable, and hence

 = 1 is an equilibrium, iff  
1 ≤ 1. This reduces to − ≤ ( + ).

Equilibrium is generically unique. ¥
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