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1 Introduction

Since the seminal article by Jensen (1968) estimating the skill level of managed mutual

funds has been widely researched and debated (see Elton & Gruber 2013). In addition to

measuring the skill of a fund, others have investigated how skill is the distributed across

the industry. For instance, Kosowski et al. (2006), Barras et al. (2010), Fama & French

(2010) and Ferson & Chen (2015) take a frequentist approach and estimate the population

distribution by bootstrapping the estimated skill of the funds. Both Chen et al. (2017) and

Harvey & Liu (2018) model the population distribution with a finite mixture of normals

and estimate the mixture parameters with an EM algorithm. Barras et al. (2018) use a non-

parametric method to estimate the population distribution but do not use the information

from the population in the estimation of a fund’s skill.

Jones & Shanken (2005) estimate the population distribution from a parametric Bayesian

perspective using a hierarchical normal prior for skill. Others like Pástor & Stambaugh

(2002b) assume a distribution for the population. Baks et al. (2001), Pástor & Stambaugh

(2002a), and Avramov & Wermers (2006) also assume they know the cross-sectional dis-

tribution. Each finds their estimate of skill to be sensitive to the choice of the population

distribution.

To our knowledge, no one has estimated mutual fund skill by letting the population

distribution be entirely unknown, estimating it, and using it to infer the skill level of the

funds. We do this here by modeling the unknown population distribution with a Bayesian,

nonparametric, hierarchical prior. This nonparametric prior is an infinite mixture of normals

with unknown mixture weights, locations, scales, and mixture order. We infer these mixture

unknowns with an unsupervised learning1 approach where we partition the panel of mutual

funds into a finite number of groups (mixture clusters) where the members of a group all

have the same average stock-picking ability and variability (mixture location and scale).2

We leverage these random partitions to resolve the uncertainty in the skill level of a

member fund by pooling the information of the group’s other funds. Sharing the groups

information is especially important in resolving the uncertainty around the skill level of

newer funds with short performance histories. Partitioning the funds also eliminates the

global shrinkage issues that plague parametric hierarchical priors. Extraordinarily skilled

funds are allowed to have their own group and not have their estimate of skill shrunk towards

1See Murphy (2012) for an introduction to unsupervised learning.
2Learning about the cross-sectional distribution of skill by partitioning funds into different groups is

similar to Cohen et al. (2005) idea of judging a fund by the company it keeps. However, our approach is
unsupervised and, hence, does not use any information about a fund beyond its return history.
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the global industry average as in Jones & Shanken (2005).

Using return data from the entire actively managed, US domestic equity fund, industry,

we find the population distribution of skill to be fat-tailed, slightly skewed towards better

stock-picking ability, and having three modes. These three modes are i) a minor mode where

skill is extraordinarily high, ii) a secondary mode where funds lose money for its investors,

and iii) a primary mode at a skill level where funds cover the average fees charged investors.

As a result of our nonparametric population distribution, there is a greater chance a fund

will be extraordinarily skilled relative to a normally distributed population. We also see

that the exceptionally skilled and unskilled funds that we uncover with our nonparametric

population distribution look rather ordinary under a normal population distribution.

We organize the paper in the following manner. In Section 2 we present a mutual fund

investor’s investment decision and how he applies Bayes rule to update both his under-

standing of the population distribution of skill and the potential skill of a fund. Section

3 describes our nonparametric, hierarchical, Dirichlet process mixture, prior for the skill

level of the funds and the initial population distribution for this nonparametric prior. We

then describe in Section 4 the Bayesian nonparametric learning that comes with the Dirich-

let process, followed by the model’s Markov Chain Monte Carlo sampler in Section 5. In

Section 6 we apply our Bayesian nonparametric learning approach along with a Bayesian

parametric hierarchical model and a idiosyncratic Bayesian parametric model to a panel of

5,136 actively managed mutual funds. Section 7 summarizes our findings and provides our

conclusions.

2 Investors decision

In this section we analyze the population distribution of mutual fund performance from

the perspective of rational Bayesian investors who choose between a risk-free asset, a set of

benchmark assets, and an array of actively managed mutual funds. Our investors’ decision

differs from that in Baks et al. (2001) (BMW) where the decision to invest in a specific

fund is treated independently from the deliberations around investing in the other funds.

Instead, we follow Jones & Shanken (2005) (JS) and assume the investors choose to invest

in a current mutual fund by analyzing the return performance of past and present mutual

funds when determining skill and the population distribution.

Following Jensen (1968), the risk-free adjusted, gross returns3 for J , past, and present,

3We analyze gross returns because expenses and fees vary across funds and over time, and the management
company generally sets them. For example, in the economic model of fund behavior by Berk & Green (2004),
the model predicts the economic rents generated by a skilled fund will be captured by management through
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mutual funds, are assumed to follow the linear factor model

ri,t = αi + β′iFt + σiεi,t, i = 1, . . . , J, and t = τi, . . . , Ti, (1)

where 1 ≤ τi, and the length of each series is Ti = Ti − τi + 1 such that Ti and Ti′ do not

have to be equal. As an unbalanced panel the starting points, τi, i = 1, . . . , J , do not need

to be same.

Monthly fund returns do not exhibit the non-Gaussian behavior or time-varying vari-

ances often seen in high-frequency asset returns. So we assume the innovations are Gaussian

white noise, εi,t
iid∼ N(0, 1). We also assume each fund has a stock-picking strategy of its own

and does not mimic or borrow from the other fund’s approaches. In other words, the re-

turn innovations are assumed to be uncorrelated across funds such that Cov(εi,t, εi′,t) = 0.4

Under these assumptions the sampling distribution representation of Eq. (1) is

ri,t|αi, βi, σ2i ∼ N(ri,t|αi + β′iFt, σ
2
i ).

The vector of passive benchmark returns, Ft, are observed by our investors at the end

of each month t. Later, in the empirical application these benchmark returns will consist

of the four passive risk factors; the three-factor model of Fama & French (1993) and the

momentum portfolio factor of Carhart (1997). Under these risk factor Eq. (1) becomes

ri,t = αi + βi,R · RMRFt + βi,S · SMBt + βi,H ·HMLt + βi,M ·MOMt + σiεi,t, (2)

where RMRFt is the excess market return in the tth month, SMBt and HMLt are the size

and book-to-market factors, and MOMt is the monthly momentum return.

In both Eq. (1) and (2), the parameter αi is assumed to measure fund i’s ability to

identify under-priced stocks and is the only parameter measuring this skill. BMW show

that a Bayesian, mean-variance, investor will invest in an existing fund if and only if the

expected posterior value of αi is greater than zero and at least as large as the fund’s fees; i.e.,

the mutual fund is expected to outperform a costless portfolio comprised of the benchmark

returns, F , and cover the fund’s fees. According to BMW the Bayesian investor also chooses

to invest in a new fund if and only if the expected value of alpha over the posterior population

distribution is positive and exceeds the average fee charged by the industry. How much the

investor invests in either a new or existing fund then depends on the level of uncertainty in

the investment as measured by the standard deviation of the relevant posterior.

higher fees.
4JS relax the cross-sectional independence assumption and use a hidden factor model, which improved

the precision but did not affect the location of the skill estimates.
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In our Bayesian nonparametric approach, an investor’s initial guess about the population

distribution of skill or a particular fund’s level of expertise is represented by the hierarchical

prior π(α|θ) with the hyperparameter θ. Knowledge about the ith fund’s ability, along with

an understanding of the population, increases as we observe the risk-adjusted gross returns

of any actively managed fund. For instance, if we only see the returns for the ith fund,

we directly update our guess about the skill of the ith fund by applying Bayes rule to the

posterior

π(αi|ri, θ) ∝ π(αi|θ)f(ri|αi), (3)

where

f(ri|αi) =

Ti∏
t=τi

N
(
ri,t − β′iFt,

∣∣αi, σ2i ) , (4)

is the likelihood conditional on βi and σ2i , and ri = (ri,τi , . . . , ri,Ti)
′.5

Alternatively, if the returns are from the J − 1 other funds, we update our guess about

the population distribution with the posterior predictive distribution

π(α|r−i) =

∫
π(α|θ)dG(θ|r−i), (5)

where r−i are the return histories of all the funds besides the ith fund. The α in Eq. (5)

represents the skill level of any fund not included in r−i. Here we are referring to the ith

fund generically such that α could also represent the skill of fund not included in the panel

of J funds. In Eq. (5),

G(θ|r−i) ∝ G(θ)p(r−i|θ), (6)

is the posterior for the hyperparameter where the connection between θ and r−i is made

via p(r−i|θ) =
∫
f(r−i|α−i)π(α−i|θ) dα−i.

The posterior predictive distribution in Eq. 5 has updated our initial guess for the

population distribution, the prior, π(α), to the posterior population distribution, π(α|r−i).
This “updated prior” gets augmented with the additional information observed in the ith

fund’s likelihood. Now our assessment of the ith fund’s level of skill is found in the fund’s

posterior

π(αi|ri, r−i) ∝ π(αi|r−i)f(ri|αi). (7)

5Note we have suppressed βi and σ2
i from conditioning argument of the likelihood to simplify the notation.
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Given the cross-sectional information in Eq. (7) of past and present mutual fund perfor-

mance, the posterior for fund i’s alpha is at least as well informed as π(αi|ri) and better if

ri is short or non-existent.6

Thus far we are only learning about the alphas and θ conditional on the particular prior

distribution π(α, θ) = π(α|θ)G(θ) where the distributions π(α) and G(θ) are assumed to

be known. In the following section, we let our beliefs about the cross-sectional distribution

of skill be completely flexible, in other words, nonparametric, by letting G be unknown.

We then learn about the population distribution of skill by using the information from the

panel of returns to update G, the alphas, and θ. We now show how one learns about the

unknown cross-sectional distribution of skill as one learns about G.

3 Initial beliefs about the population

We assume the prior beliefs for the distribution of alpha is independent from the risk-factors

and return variance by letting π(αi, βi, σ
2
i ) = π(αi)π(βi, σ

2
i ).

7 We follow Muller & Rosner

(1997) and let the prior for the alphas be the nonparametric, Dirichlet Process mixture,

prior (DPM)

αi|µα,i, σ2α,i ∼ N(µα,i, σ
2
α,i), (8)

µα,i, σ
2
α,i|G ∼ G, (9)

G|G0 ∼ DP (B,G0), (10)

where the unknown hyperprior distribution, G, is modeled in terms of Ferguson’s (1973)

Dirichlet process, DP (B,G0).
8

The DPM has been used extensively in econometrics to model unknown distributions

(see Chib & Hamilton 2002, Hirano 2002, Jensen 2004, Jensen & Maheu 2010, Bassetti

et al. 2014). A primary reason for this is the DP’s almost sure discrete representation of

the unknown hyperprior distribution

G
as
=

∞∑
k=1

ωk1{µ∗α,k,σ
2∗
α,k}

, (11)

6We could also use the cross-section of return histories to update the priors for βi and σi. However, since
our focus is on mutual fund performance we let the priors for βi and σi be ex ante uninformative priors; i.e.,
we assume the betas and sigmas are idiosyncratic over the cross-section of funds. Investigating how to learn
about the betas and sigmas would be a worthy research project.

7One could assume investors have a joint prior for (αi, βi, σ
2
i ). However, learning this distribution would

require assigning a fund to a cluster based on all the unknown parameters and not just alpha. Grouping
funds by ability would no longer be our objective, so, we assume a separate prior for the alphas, betas and
sigmas.

8See Kleinman & Ibrahim (1998), Burr & Doss (2005), Ohlssen et al. (2007), Dunson (2010) and Chapter
23 of Gelman et al. (2013) and references therein for the mathematical details of the Dirichlet process.
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with (µ∗α,k, σ
2∗
α,k)

iid∼ G0, ωk = wk
∏
k′<k(1− wk′), where wk ∼ Beta(1, B), and 1{µ∗α,k,σ

2∗
α,k}

is

a point mass at (µ∗α,k, σ
2∗
α,k). This discreteness leads to the partitioning of the alphas into

groups.

Another important reason for using the DP is its ease of use. As a conjugate distribution,

the DP lends itself to the simple, and efficient, sampling algorithm of West et al. (1994).9

Draws from this sampler are made with distributions that are known, and the draws quickly

converge to realizations from the posterior distribution of the nonparametric hierarchical

prior.

The arguments to the DP distribution are the base distribution, G0, and the concentra-

tion parameter, B. The expectation of the DP is E[G] = G0, so, the base distribution, G0,

represents our prior knowledge about G, and indirectly, the population distribution. The

concentration parameter, B, is a positive scalar. Since Var[G] ≡ [G0(1 − G0)]/(1 + B), B

can be thought of as the inverse variance of G. The larger B is the more confident we are

about G0 being the hyperprior G. In the limit, G→ G0, and ωk → 0, as B →∞.10 In our

empirical application B is unknown and estimated.

One needs to be thoughtful about choosing G0 since it plays an important role in how

open-minded we are about mutual fund skill. For example, if we were certain about the

average skill and the variance of the population we might choose a base distribution of G0 ≡
1{m0,s20}(µα, σ

2
α), where m0 and s20 are set to prespecified values. Given the degenerative

nature of this base distribution our initial guess for the cross-sectional distribution of the

alphas is

π̂1{m0,s
2
0}

(α) ≡ EG

[∫
N(α|µα, σ2α)dG(µα, σ

2
α)

]
, (12)

=

∫
N(α|µα, σ2α)dG0(µα, σ

2
α), (13)

=

∫
N(α|µα, σ2α)1{m0,s20}(µα, σ

2
α)d(µα, σ

2
α), (14)

= N(α|m0, s
2
0). (15)

For those whose prior is π̂1{m0,s
2
0}

(α), they believe they know the population to be nor-

mally distributed with a mean and variance equal to m0 and s20, respectively. BMW, Pástor

& Stambaugh (2002a), and Pástor & Stambaugh (2002b) either implicitly or explicitly as-

sume such strong prior beliefs about the population. For instance, any empirical study of

9If we were concerned about the computing time involved in re-estimating the nonparametric, posterior,
population distribution as new return data becomes available we could compute in real time the posterior
population distribution using the particle learning, sequential sampler of Carvalho et al. (2010).

10B plays an important role in the creation of clusters as the number of funds grows. We will explain this
when we present the clustering properties of the DP prior.
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mutual fund skill where ordinary least square estimates of the alphas are used implicitly

sets m0 = 0 and 1/s20 = 0. As a result the prior predictive distribution π̂1{0,∞}(α) ∝ C says

there is no information to be found in the cross-section. Instead, each fund’s level of skill

is idiosyncratic to the fund.

If we are sure about G0 being the unknown hyperprior, G, then, B → ∞, and we

would only need to learn about µα and σ2α. Suppose we were confident the Normal, Inverse-

Gamma, base distribution was the hyperprior, then

G→ NIG(m0, σ
2
α/κ0, ν0/2, s

2
0, ν0/2), as B →∞,

where m0 and σ2α/κ0 are the mean and variance to the conditional Normal distribution

for µα, and ν0/2 and s20ν0/2 are respectively the scale and shape of the Inverse-Gamma

distribution for σ2α.

According to Bernardo & Smith (2000, Appendix A2), such prior beliefs about the

hyperprior are those where the prior predictive distribution is the Student-t distribution

πNIG(α) =

∫
N(α|µα, σ2α)NIG

(
µα, σ

2
α

∣∣m0, σ
2
α/κ0, ν0/2, s

2
0ν0/2

)
d(µα, σ

2
α), (16)

= tν0

(
α

∣∣∣∣m0,

(
κ0 + 1

κ0

)
ν0s

2
0

)
, (17)

with ν0 degrees of freedom, a mean of m0, and scale
√

[(κ0 + 1)/κ0]ν0s20.

Because we are so sure of G0 being G when B → ∞, πNIG(α) is also the posterior

predictive distribution. Hence, we are so confident in our initial guess for the population

distribution there is nothing in the cross-section of fund return data that can convince us

otherwise.

In this paper, we choose to learn everything about the population distribution from the

cross-section of fund returns. To do this, our prior knowledge of the hyperprior is

G0 ≡ NIG(m0, σ
2
α/κ0, ν0/2, s

2
0, ν0/2), (18)

with m0 = 0, κ0 = 0.1, ν0 = 0.01 and s20 = 0.01. The Student-t, prior predictive

π̂NIG(α) =

∫
N(α|µα, σ2α)E[dG(µα, σ

2
α)],

= tν0

(
α

∣∣∣∣m0,

(
κ0 + 1

κ0

)
ν0s

2
0

)
, (19)

is then proper, but diffuse.

Given these arguments for Eq. (19), we initially think the average fund does not have

the skill to beat a passive portfolio (m0 = 0). Furthermore, because we set ν0 equal to 0.01,
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we initially believe that there is so much variability in mutual fund skill that the population

variance does not exist. We now explain how we learn about G, and hence, learn about the

population distribution π(α).

4 Bayesian nonparametric learning

The next step is learning about the hyperprior distribution, G. Suppose, hypothetically,

that we see a realization of the hyperparameters, (µα,1, σ
2
α,1) ∼ G, where µα,1 is the average

skill level of a fund and σ2α,1 is the variance in the fund’s skill level. Being a realization from

G, we use µα,1, and σ2α,1, to update our understanding of G with the posterior DP

G|µα,1, σ2α,1 ∼ DP (1 +B,G1), (20)

where the updated base distribution is

G1 ≡
B

1 +B
G0 +

1

1 +B
1{µα,1,σ2

α,1}, (21)

(see Blackwell & MacQueen (1973) who prove that this conjugacy property holds for the

DP).

In Eq. (20) the concentration parameter has increased to 1 + B, so we are a bit more

confident in the updated base distribution, G1, representingG. This new guess forG consists

of a mixture of our original guess, G0, and the information contained in the empirical

distribution, 1{µα,1,σ2
α,1}. Given G1, our guess for the population distribution is now the

posterior predictive distribution

π̂NIG(α|µα,1, σ2α,1) =

∫
N(α|µα, σ2α) dG1(µα, σ

2
α),

=
B

1 +B
tν0

(
α

∣∣∣∣m0,

(
κ0 + 1

κ0

)
ν0s

2
0

)
+

1

1 +B
N
(
α|µα,1, σ2α,1

)
, (22)

where the mixture weight, 1/(1 +B), is the probability we assign to a mutual fund, we do

not have information on, belonging to the group whose average level of skill is µα,1, and

whose variability in skill is σ2α,1.

It also follows from Eq. (22) that we assign a B/(1+B) chance to the same fund we know

nothing about belonging to a new group whose average and variance in skill is different from

µα,1 and σ2α,1. Assigning funds to a new group gives us the flexibility to continue to increase

the number of mixture clusters as the number of mutual funds in our panel grows; i.e., the

DP has an infinite number of mixture clusters available for new funds to be assigned to.

9



We continue to apply this unsupervised probabilistic approach to categorizing funds as

we hypothetically observe realizations from G for the J mutual funds. After “seeing” µα,i,

and σ2α,i, i = 1, . . . , J , our posterior DP for G is

G|µα,1, σ2α,1, . . . , µα,J , σ2α,J ∼ DP (J +B,GJ), (23)

where

GJ ≡
B

J +B
G0 +

K∑
k=1

nk
J +B

1{µ∗α,k,σ
2∗
α,k}

, (24)

is our guess for G.

In Eq. (24), the updated base distribution, GJ , shows how our Bayesian nonparametric

method of learning has uncovered K ≤ J groups each with its own unique mean and

variance, µ∗α,k, and σ2∗α,k, for k = 1, . . . ,K. These K groups each contain nk, k = 1, . . . ,K,

funds such that
∑

k nk = J .

The concentration parameter in Eq. (23) has increased to J+B, so our confidence in the

guess for G has grown as has our confidence in the estimate for the population distribution

π̂NIG(α|µα,1, σ2α,1, . . . , µα,J , σ2α,J) =
B

J +B
tν0

(
α

∣∣∣∣m0,

(
κ0 + 1

κ0

)
ν0s

2
0

)
+

K∑
k=1

nk
J +B

N(α|µ∗α,k, σ2∗α,k). (25)

When we know nothing about a fund, according to Eq. (25), the probability of assigning

the fund to one of the K groups depends on the group’s size, nk. In our mind, larger

groups have a greater chance of having a new fund assigned to it. However, the number of

groups also depends on how confident we are in our initial guess G0; i.e., the concentration

parameter B. The larger B is the more groups we will partition the cross-section of mutual

funds in to.

We are thus learning about the population distribution of mutual fund skill by assuming

very little about the cross-sectional distribution of skill, but then learning about it by flexibly

forming a mixture of normals where the number of clusters are identified by partitioning

the funds into groups having the same average skill and variability. Our nonparametric

approach allows the number of groups to grow with the size of the cross-section and will

allow a wider spectrum of skill especially extraordinarily skilled and unskilled funds.

5 Inference

To resolve the uncertainty around the alphas, the number of mixture clusters, the clusters’

averages and variances, the concentration parameter, and the population distribution of
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mutual fund skill, we combine fund-level return data with our initial beliefs to form a

posterior for these unknowns. The joint posterior distribution for these unknowns, however,

is very complex and does not have a known analytical distribution. Analysis of the complex

joint posteriors requires judiciously breaking it up into its conditional posteriors and using a

Markov Chain Monte Carlo sampler to make joint posterior draws by sequentially sampling

from the conditional posteriors.

The conditionals we sample from are structured by the hierarchical form of our non-

parametric model. Let s = (s1, . . . , sJ) be a J length vector containing all the funds group

assignments si where si = k when (µα,i, σ
2
α,i) = (µ∗α,k, σ

2∗
α,k). The sequence of conditional

posterior distribution can then be sampled by:

1. Drawing βi and σ2i conditional on ri, and αi, for i = 1, . . . , J ,

2. Drawing αi conditional on ri, βi, σ
2
i and (µ∗α,si , σ

2∗
α,si), for i = 1, . . . , J ,

3. Drawing s, K, (µ∗α,k, σ
2∗
α,k), k = 1, . . . ,K, conditional on α1, . . . , αJ ,

4. Drawing B conditional on K.

In Step 1, our prior knowledge for the factor loading vector, βi, and the return variance,

σ2i , is represented by the Jeffreys prior

π(βi, σ
2
i ) ∝ 1/σ2i . (26)

Under this prior, the conditional posterior for βi in Step 1 depends only on the return-

based information, ri. The conditional p(βi|ri, αi, σ2i ) is a normally distributed conditional

posterior with mean and covariance equal to the least squares regression estimator of the

dependent variable rit−αi projected onto the explanatory variables Fit, t = τi, . . . , Ti. The

marginal conditional posterior distribution p(σ2i |ri, αi, βi) is a Inverse-Gamma distribution

with scale, Ti − 4, and shape equal to the sum of squared error from the above linear least

squares regression divided by the scale, Ti − 4.

In Step 2, the prior for αi is the cross-sectional distribution of the sith group,

αi|µ∗α,si , σ
2∗
α,si ∼ N(µ∗α,si , σ

∗2
α,si).

Combining this cross-sectional information with the likelihood from the ith fund’s return

history, ri, the conditional posterior in Step 2 is

αi|ri, βi, σ2i , µ∗α,si , σ
2∗
α,si ∼ N(ai, bi), (27)

11



where the posterior mean is

ai =

(
µ∗α,si
σ2∗α,si

+

Ti∑
t=τi

r∗i,t

)/(
1

σ2∗α,si
+ Ti

)
, (28)

with

r∗i,t ≡ (ri,t − β′iFi,t)/σi, (29)

being the risk adjusted return, and the posterior variance is

bi = (1/σ2∗α,si + Ti)−1. (30)

We can think of the sampling in Step 3 as an answer to the question proposed by JS and

adapted to our case – when would investors discard the information found in the average

skill and variability of the K sub-populations, µ∗α,k, and σ∗α,k, k = 1, . . . ,K? Answering this

question for each fund amounts to drawing the assignment vector s by sequentially drawing

each fund’s si according to the probabilities

P (si = k) =
n
(−i)
k

B + J − 1
fN (αi|µ∗α,k, σ∗2α,k), k = 1, . . . ,K(−i), (31)

P
(
si = K(−i) + 1

)
=

B

B + J − 1
ft

(
αi

∣∣∣∣m0,

(
κ0 + 1

κ0

)
ν0s

2
0

)
, (32)

where, after the ith fund has been excluded from the sample, n
(−i)
k is the number of funds

belonging to the kth group, and K(−i) is the total number of clusters. K(−i) will equal

K − 1 if the ith funds is the only member of its group. Otherwise, K(−i) equals K.

Eq. (32) is the probability we discard the information contain in the performance of the

other funds and only rely on the fund’s performance history to determine the funds alpha.

The odds of this occurring are a function of the concentration parameter, B, and the value

of the prior predictive distribution evaluated at the draw of αi.

After we assign every fund to a group, and in the process determine the total num-

ber of mixture clusters, K, we pool together the alphas from those funds belonging to

the same group and form our posterior beliefs about the average skill level and vari-

ability of the cluster by drawing µ∗α,k and σ2∗α,k. Given the DP base distribution, G0 ≡
NIG(m0, σ

2
α/κ0, ν0/2, s

2
0ν0/2), from Section 3, draws of σ2∗α,k, are from

σ2∗α,k|{αi}i:si=k ∼ NIG

(
ν0 + nk

2
,

1

2

ν0s20 +
∑
i:si=k

(αi − αk)2 +
nkκ0
κ0 + nk

(m0 − αk)2
 , (33)
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where αk = n−1k
∑

i:si=k
αi. Draws of µ∗α,k are then made from

µ∗α,k|{αi}i:si=k, σ
2∗
α,k ∼ N

(
κ0m0 + nkαk
κ0 + nk

,
σ2∗k

κ0 + nk

)
. (34)

Lastly, in Step 4 we draw the concentration parameter B from π(B|K) using the sampler

described in Appendix A.5 of Escobar & West (1995).

Later in the empirical application, we initialize our sampler by setting all the funds’

alphas equal to zero. The concentration parameter, B, is initialized with a random draw

from its prior, π(B) ≡ Gamma(2.0, 30.0). This draw of B, along with the Normal, Inverse-

Gamma, base distribution, G0, in Eq. (18), are used to initialize s, K, and {µ∗α,k, σ2∗α,k}k=1,...,K ,

by making J random draws from DP (B,G0). Given these initial values we can then begin

to iterate over the sampler by drawing the βis and σ2i s in Step 1.

After a burn-in of the sampler where the draws from the conditional posteriors are

thrown away to allow the sampler to converge to the posterior distribution, subsequent

draws are kept and treated as random realizations from the joint posterior distribution.

This randomness in the sampled alphas represents our beliefs about the skill level for each

of the funds. We choose to iterate the sampler 40,000 times, keeping the last 30,000 draws

of the unknowns to infer all the posteriors.

5.1 Nesting of approaches

We point out that the conditional posterior distribution draw of αi in Eq. (27) does not

depend on the performance history of other funds. In other words, the guess for each fund’s

alpha is independent of the other funds. However, the skill of the other funds does influence

our guess for αi through the average level of skill, µ∗α,si , and the variance, σ∗α,si , of the sith

group.

This cluster information is especially important for a fund with short performance win-

dow, in other words, when Ti is small, or for a fund with a noisy performance record where

σ2i is large. Traditional measures of alpha for funds with limited histories are noisy and

uncertain (see Kothari & Warner 2001). But from Eq. (28) we see that the average skill of

the sith group, µ∗α,si , the length of the funds return history, Ti, and the noise in the fund’s

returns, σ2i , affect the average conditional draw of αi. Hence, our nonparametric estimator

of fund’s alpha will depend more on the average performance of a fund’s group, and less

on the fund’s own performance history, when the fund has a noisy or short performance

history.11

11This feature of our Bayesian nonparametric approach would be very helpful measuring the skill level of
self-reporting hedge funds where there is no regulation requiring them to report their performance.

13



The conditional mean of alpha in Eq. (28) also shows how our Bayesian nonparametric

approach uses the cross-sectional information differently from JS. In JS there is but one

cluster (K = 1); all the funds belong to the same group whose average is the industry-

wide average, µ∗α and whose variability, σ2∗α , is the industry-wide variance in skill. While

insightful in their use of cross-sectional information, we will see in Section 6 that by not

allowing for multiple clusters the parametric approach of JS generally under-predict the

alphas of skilled funds and over-predict the alphas of unskilled funds. Over and under-

prediction of skill occurs because the JS guess for αi shrinks towards the average ability of

the entire population.12

In terms of our Bayesian nonparametric approach, this shrinkage towards the population

average by JS is equivalent to the econometrician thinking there is only one group among

the mutual funds. One group will be found if the concentration parameter of the DP prior

is B = 0. When B = 0, the ω1 = 1 in Eq. (11)’s finite representation of G. Hence, the base

distribution, G1, in the updated DP of Eq. (20) consists of only one cluster, (µ∗α, σ
2∗
α ) =

(µα,1, σ
2
α,1), where (µα,1, σ

2
α,1) ∼ G0. Each (µα,i, σ

2
α,i), i = 2, . . . , J , is a realization from

the degenerative base distribution 1{µα,1,σ2
α,1}, so that the posterior base distribution for

G|µα,1, σ2α,1, . . . , µα,J , σ2α,J is

GJ =
J

J +B
1{µ∗α,σ2∗

α }.

Step 1 & 2 of our sampler remain the same, but Step 3 now only involves drawing σ2∗α and

µ∗α from Eq. (33) and (34), respectively.13

At the other extreme is when B →∞. According to the updated base distribution GJ

in Eq. (24), when B → ∞, every fund’s hyperparameter (µα,i, σ
2
α,i), i = 1, . . . , J , is seen

as a new independent draw from the initial base distribution, G0. Since each realization of

the hyperparameter is idiosyncratic we would not partition funds into groups, nor would we

learn across the population about the hyperparameters since we would ignore what we learn

about the skill of a fund when looking at other funds. In this case, Step 2 of our sampler

consists of J independent draws of the alphas where the priors are the idiosyncratic prior

distributions, N(µα,i, σ
2
α,i), i = 1, . . . , J .

Eq. (27)–(30) also shows how our guess of an extraordinary fund’s alpha is no different

from the opinion of someone else who chooses to treat such highly skilled funds idiosyn-

cratically. With our Bayesian nonparametric learning approach, highly skilled funds have

12It is well known that the normal hierarchical prior can lead to poor estimates of the population distri-
bution and the unknown parameter (see Verbeke & Lesaffre 1996).

13This is equivalent to the sampler found in JS.
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few peers, and, hence, belong to small groups. In the extreme, a fund that is so highly

skilled will have no peers so that nsi = 1 and σ∗α,si will be infinite. In such situations our

Bayesian nonparametric approach does not borrow information from the cross-section when

guessing the fund’s alpha. Instead, our approach treats this extraordinary fund separately

from the other funds and according to Eq. (28) draws the fund’s conditional posterior alpha

from a normal distribution whose first and second moments are those of a ordinary least

square estimator of alpha. We will see in the empirical investigation of Section 6.5 that

there is only a slight difference between our nonparametric estimate of an extraordinary

fund’s alpha and the fund’s ordinary least square estimate of alpha.

5.2 Posterior cross-sectional distribution

In Eq. (25) our best guess for the cross-sectional distribution of the alphas depends on having

hypothetically observed the means and variances of the clusters. After observing the return

histories from a cross-section of funds we can account for the uncertainty in these unknown

mixture means and variances by Rao-Blackwellizing the conditional posterior predictive

distribution over the posterior draws of the unknown parameters

π̂DPM (α|r1, . . . , rJ) ≈ M−1
M∑
l=1

[
B(l)

J +B(l)
tν0

(
α

∣∣∣∣m0,

(
κ0 + 1

κ0

)
ν0s

2
0

)

+

K(l)∑
k=1

n
(l)
k

J +B(l)
N
(
α
∣∣∣µ∗(l)α,k , σ

2∗(l)
α,k

) , (35)

where (µ
∗(l)
α,k , σ

∗2(l)
α,k ), k = 1, . . . ,K(l), is the lth draw from the conditional posterior dis-

tribution in Step 3 of our sampling algorithm, and n
(l)
k , k = 1, . . . ,K(l), come from the

information contained in the lth draw of s(l). Lastly, B(l) is the lth draw from Step 4 of the

sampler. This posterior cross-sectional distribution calculation takes into consideration all

the uncertainty about the unknowns, including the unknown hyperprior distribution, G, by

averaging over the posteriors of all the unknowns.

6 Empirical investigation

Our empirical application consists of applying the proposed Bayesian nonparametric learn-

ing approach to the alphas of the actively managed mutual funds in the data set of Jones

& Shanken (2005).14 This data set is comprised of the monthly, gross returns of mutual

14We would like to thank Chris Jones for graciously providing us with their data.

15



funds from January 1961 to June 2001. It is a panel with a total of 396,820 monthly ob-

servations from 5,136 domestic equity funds.15 Like Baks et al. (2001), Jones & Shanken

(2005) and Cohen et al. (2005), we are interested in before cost performance unaffected by

the dynamics of the funds’ fee schedules so fees and expenses have been added back into

the net returns reported in CRSP Mutual Funds data files. Each fund has at least a years

worth of return data and the funds have on average 77.3 monthly returns. We include all

actively managed, domestic, equity funds in our panel, even the 1,292 funds that were no

longer open for business at the end of the sample to avoid any survivorship bias.

6.1 Posterior number of clusters

For our Bayesian nonparametric approach where the population distribution of the alphas

are modeled with the nonparametric, hierarchical prior of Eq. (8)–(10), we find the posterior

median K to be four, with a minimum posterior draw of three, and a maximum of six

clusters. The 95% highest posterior probability density (HPD) interval for K is three to

five clusters. Hence, the 5,136 funds are randomly partitioned over a small number of the

infinite possible mixture clusters.

The posterior mean for the concentration parameter is 0.1245 with a 95% HPD interval

of (0.004, 0.261). Being this close close to zero the posterior for B supports our earlier

claims of mutual fund skill not being idiosyncratic to a fund, nor is it normally distributed

over the population. Instead, the population distribution of skill is represented by a mixture

over a small number of normal distributions.

It is important then to have flexible posterior beliefs about the cross-sectional distribu-

tion of mutual fund performance in order to learn about the skill level of a particular fund.

Bayesian nonparametric learning gives us the flexibility to increase the number of clusters

as the number of the funds grow, to create partitions where the extraordinarily skilled are

grouped together, and ordinary funds are in a separate group.

6.2 Cross-sectional distribution

In Figure 1 the red line is the density for the posterior cross-sectional distribution of alpha

where we learn how skill is distributed over mutual funds by computing the π̂DPM (α|r1, . . . , rJ)

in Eq. (35). The blue density is the posterior cross-sectional distribution where skill is be-

lieved to be normally distributed whose unknown mean and variance are modeled with the

uninformative Jeffreys prior, π(µα, σ
2
α) ∝ 1/σ2α. The uncertainty around the mean and

15Funds were eliminated that made substantial investments in other asset classes.
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variance is integrated out of the normal population distribution with approximation

π̂JS(α|r1, . . . , rJ) ≈M−1
M∑
l=1

N(α|µ(l)α , σ2(l)α ),

where (µ(l), σ2(l)) ∼ π(µα, σ
2
α|r1, . . . , rJ), for l = 1, . . . ,M .16

Very different conclusions about the cross-sectional performance of mutual funds are

drawn from the two predictive densities in Figure 1. Our Bayesian, nonparametric, esti-

mator of the population distribution finds three modes. In contrast, the JS population

distribution by definition has only one mode. The primary mode for the nonparametric

population distribution is 1.8%, and the JS mode is 1.5%. Such alphas just offset the fees

charged by an average mutual fund.17 An investor who applied the JS approach, thus, be-

lieve that, on average, a fund for which they have no information about will just break even.

Whereas with our Bayesian nonparametric approach we find that there is a seventy-three

percent chance the unknown fund will have an alpha between 0.4% and 4.0%.

The secondary mode for the nonparametric population distribution in Figure 1 is located

at −0.65%. This negative mode suggests there is are actively managed funds whose average

stock-picking ability is detrimental to what an investor could earn on a passively managed

fund.18 Given the information in this second mode we find that there is a 22% chance that

a fund, for which we have no information about, would produce an alpha between −5% to

0.4% a year.

The third mode of the nonparametric population distribution is a diffuse, low probability,

mode located at an alpha of 6%. Although this mode is hard to see in Figure 1, it, along

with the population’s fat right-hand tail, is easier to detect in the log-scale density plot of

Figure 2. There is a 3% chance a brand new fund, or a fund we do not know, will have the

skill to produce an alpha of four to ten percent. On the other hand, such funds have less

than a half a percent chance of its alpha being between −4% and −10%. Hence, it is more

likely we will find a highly skilled fund than an unskilled fund.

16OLS alphas in Section 6.5 are idiosyncratic to the fund and, hence, their population distribution is
uniform over the real line..

17Chen & Pennacchi (2009) report the average mutual fund’s expense fee is 1.14 percent, whereas Berk
& Green (2004) choose a slightly higher management fee of 1.5 percent to account for costs not included
in the fee when parameterizing their mutual fund model. We perform our analysis with the larger fee of
1.5 percent to compensate for missing trading costs. Wermers (2011) from ICI estimates actively managed
mandates expenses and transactions costs of mutual funds and hedge funds amount to at least two percent
a year.

18Theoretically, rational investors would pull their money from under-performing funds, causing these
unskilled funds to go out of business. Negative alphas leave open the door that some investors act irrationally
(see Gruber (1996)), or that investors tolerate short term poor performance.
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Figure 1: Posterior population distribution of alpha for the JS type investors,
π̂JS(α|r1, . . . , rJ), who believe the underlying population distribution is normal but with
unknown mean and variance (blue line), and the posterior population distribution for our
investors, π̂DPM (α|r1, . . . , rJ), who do not assume a particular distribution for alpha but
have placed a DPM prior on the unknown distribution of alpha (red line).

18



-10 -5 0 5 10 15

0.005

0.010

0.050

0.100

0.500

1

Figure 2: Log transformation of the posterior population distribution of alpha for the
Bayesian nonparametric investors, ln π̂DPM (α|r1, . . . , rJ).
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In Table 1, we list the percentiles, standard deviation, skewness, and kurtosis of the

parametric, and nonparametric, posterior cross-sectional distributions. Both distributions’

medians are again close to the average fee of 1.5% a year. At first glance, these medians

support the theoretical findings of Berk & Green (2004) where, in the long run, successful

funds break-even with an alpha that matches their fees. However, we have uncovered

multiple modes. One possible explanation for these multiple modes is that funds whose

alpha is close to the mode at 6% are newer funds with fewer assets under management and

have not yet experienced the diminishing returns to scale assumed in the model of Berk &

Green (2004). As these young skilled funds attract assets, grow, and mature, we expect

that their alphas move towards the population median; i.e., towards the break-even alpha.

Percentiles
0.01 0.05 0.1 0.5 0.9 0.95 0.99 SD Skew Kurtosis

DPM −2.90 −1.40 −0.83 1.43 2.46 3.19 11.48 2.36 4.31 101.49
JS −2.19 −1.15 −0.60 1.34 3.28 3.83 4.87 1.51 −0.0002 3.02

Table 1: Posterior cross-sectional percentiles, standard deviation (SD), skewness, and kur-
tosis for when the underlying distribution of skill is believed to be normally distributed (JS)
and the nonparametric, hierarchical, prior (DPM).

According to the percentiles in Table 1, the probability of a new, or unknown fund, being

extraordinarily skilled is higher than previously thought since the nonparametric population

distribution’s 99th-percentile is 11.48%, and the 99th-percentile for the parametric distri-

bution is only 4.87%. Our flexible, nonparametric, population distribution is also more

fat-tailed, with a kurtosis of 101.49, and more skewed towards finding skill in the industry

with a skewness of 4.31, than the parametric population distribution. Our nonparametric

population distribution also has a slightly more negative 1%-percentile of −2.90% compared

to −2.19% for the parametric distribution. So, compared to the parametric population dis-

tribution, our nonparametric approach finds that there is a greater chance a fund will be

extraordinarily skilled or extraordinarily unskilled.

6.3 Robustness to the base distribution

To test the robustness of our nonparametric approach to the choice of G0, or, in other

words, to the prior predictive, π̂NIG(α), we estimate the population distribution using a

larger scale parameter, ν0, for the Normal, Inverse-Gamma base distribution. Since ν0 is

the degrees of freedom of the prior predictive, increasing ν0 leads to a less uninformed prior

predictive distribution. For ν0 ≤ 0.6 the posterior cross-sectional distributions of alpha are
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no different from the nonparametric population distribution plotted in Figure 1. However,

when ν0 ≥ 0.7 the posterior population distributions are no longer multi-modal, instead,

they are uni-modal with a mode near 1.4%. Hence, the nonparametric distribution has

fewer clusters as the degrees of freedom of its prior predictive distribution increases.

When ν0 = 0.7 the skewness of the nonparametric population distribution increased to

5.02 from the original 4.31. So when the secondary mode at the large value of alpha is not

identified, we find skill to be more probable. We also find the population distribution is

more fat-tailed than before with a kurtosis of 110. Hence, under the Bayesian nonparametric

estimator of the population distribution, there is a greater chance a fund, for which we have

no information about, being highly skilled, regardless of the value of ν0.

We can use the inter-quartile range of the prior predictive distribution to help explain

how the choice of ν0 affects the number of modes of the population. The inter-quartile

range for π̂NIG(α) goes from a very diffuse, 10126, when ν0 = 0.01, to a relatively tight 0.18

when ν0 = 0.6. The tighter range of the prior predictive limits us from learning about the

different groups of fund skill. Instead, a wider spectrum of stock picking ability gets blurred

together into larger groups.

An alternative class to the Normal, Inverse-Gamma, base distribution is the flexible,

but non-conjugate, Normal-SM, base distribution

G0(µα, σα) ≡ N
(
µα|0, s2µ

)
SM

(
σα

∣∣∣1/2, 2, A/√3
)
, (36)

where SM
(
σα
∣∣1/2, 2, A/√3

)
is the base distribution for the standard deviations of the

mixture.

The SM distribution is defined in Singh & Maddala (1976) and has the density function

fSM

(
σα

∣∣∣1/2, 2, A/√3
)

=
3Aσα

(A2 + 3σ2α)3/2
. (37)

The SM distribution is appealing since it allows for more weight than the Inverse-Gamma

distribution does for σαs close to zero. The independence between µα and σα in Eq. (36)

also proves advantageous since it allows the mixture location to move separately from the

mixture scales. We set s2µ = 2 and A = 25 and, because the SM is not conjugate, apply

Algorithm 8 of Neal (2000) to make the draws in Step 3 of our sampler.

Under the Normal-SM, base distribution we again find the population distribution of

skill to be multi-modal with modes located near those of the nonparametric density in Figure

1.19 The posterior draws of K range from four to fourteen clusters with a median of six

19The posterior results using the Normal-SM distribution are available upon request.
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clusters. Hence, the number of mixture clusters is marginally larger under the normal-SM

base distribution than the Normal, Inverse-Gamma.

The posterior mean of the concentration parameter, B, is also slightly larger under

the Normal-SM base at 0.59 compared the Normal, Inverse-Gamma’s 0.125. Both of these

posterior estimates of B, along with K, support our earlier conclusion that the popula-

tion distribution of skill is neither normally distributed, nor is skill idiosyncratic to a fund.

Instead, the population distribution of skill requires the flexibility that our Bayesian non-

parametric approach provides.

6.4 Evolution of the population

Beginning in 1993 the number of new mutual funds entering the actively managed fund

industry accelerated. Following 1993 more than three-hundred mutual funds opened each

year. Entry peaked in 1998 with 659 funds opening up for business. This history of funds

opening for business allows us to analyze how the population of skill evolved over this time

period and also investigate if these new funds were more skilled than the old ones.

Starting in 1981 we move forward in one-year increments up to the year 2000 and

estimate the cross-sectional distribution of alpha using the return histories of all the funds

to have ever existed up to the specified year.20 We find that there are four episodes or eras

for the population distribution of skill; i) 1981 to 1897, ii) 1988 to 1993, iii) 1994 to 1996,

and iv) 1997 to 2000. In Figure 3 we plot the population distributions from each of these

eras in the figure’s four panels.

In the first panel of Figure 3, we plot the seven posterior cross-sectional distributions

from the growing number of fund histories beginning in 1981 and ending in 1987. Each

distribution is symmetrical around the average fee of 1.5%. This symmetry indicates funds

are skilled enough on average to cover their costs and equally likely to cover or not cover

their fees.

As the entry into the mutual fund industry accelerated during the 1988 to 1993 period,

the population distribution in the second panel of Figure 3 tightens around the mean. Dur-

ing this era, the probability of a fund selecting stocks that will result in an abnormally

negative alpha declines relative to the earlier episode as the left-hand tails for these distri-

butions are now thinner. Probability of finding highly skilled funds are also on the increase

as the right-hand tail of the population pushes out past six percent to eight percent. Hence,

the entry of new funds during this era and the performance of existing funds improved the

overall performance of the population.

20New mutual funds were included when they had 4-months worth of returns.
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Figure 3: Posterior cross-sectional distributions of alpha starting with the return histories
of funds up to 1981 and then incrementing forward one year at a time from 1982 to 2000.
More formally, plots of π̂DPM (α|Rt), t = 1981, . . . , 2000, where Rt are the return histories
of all the mutual funds ever in business during the 1961 to year t time period. A new fund
is only included if it has a history of least four months. Each panel contains the population
distributions from that era; i) 1981–1987, ii) 1988–1993, iii) 1994–1996, iv) 1997–2000.
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Year Jt Kt Median Skew p0.05 p0.95 P (α > 0)

1981 328 1 1.220 0.068 −1.139 3.700 0.812
1982 348 1 1.314 0.262 −0.957 4.069 0.853
1983 382 1 1.296 0.042 −1.121 3.774 0.816
1984 432 1 1.318 0.065 −1.122 3.888 0.820
1985 487 1 1.395 0.011 −1.173 3.982 0.816
1986 577 2 1.234 0.379 −1.342 4.987 0.838
1987 665 1 1.595 0.078 −1.288 4.654 0.828
1988 778 2 1.305 1.041 −1.795 7.516 0.892
1989 854 2 1.329 1.016 −1.368 7.703 0.900
1990 902 2 1.279 0.571 −0.951 6.203 0.921
1991 983 2 1.185 1.124 −0.782 6.015 0.920
1992 1073 3 1.036 −0.521 −1.096 5.662 0.914
1993 1258 3 0.963 −0.477 −0.846 5.970 0.918
1994 1599 2 1.303 0.861 −1.151 5.373 0.922
1995 1939 2 1.210 0.544 −1.711 5.194 0.902
1996 2275 2 1.270 0.608 −1.183 4.890 0.918
1997 2704 2 1.314 −0.064 −1.540 4.150 0.900
1998 3364 3 1.164 −4.182 −2.695 3.065 0.803
1999 3977 4 1.160 −1.448 −2.188 2.119 0.778
2000 4539 3 1.444 4.584 −0.766 4.719 0.927

Table 2: Yearly evolution of the median, skewness, and probability of beating the passive
four-factor portfolio, P (α > 0), where Jt is the number of mutual fund, both alive and
dead, at year t, Kt is the posterior median number of clusters, and p0.05, and p0.95, are the
5th and 95th percentiles of the cross-sectional mutual fund performance distribution.
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During the 1994 to 1996 era, the population distributions continue to tighten around

the mean. However, after 1997 the population begins to change. In the bottom panel of

Figure 3, the population distributions start to skew to the left. Ultimately a second mode

appears at a negative alpha. This last era corresponds to the fastest growing period of the

mutual fund industry and, according to the population distributions, poorer stock-picking

ability.

In Table 2 we list the characteristics and features of the cross-sectional distributions

from Figure 3. Each line contains the total number of funds, both in, and out of business,

since 1961 up to that year, Jt, the posterior median of the number of clusters, Kt, the

median and skewness, and the 5th-percentile, p0.05, and the 95th-percentile, p0.95, of the

cross-sectional distribution, and the probability of an unknown mutual fund generating a

positive alpha, P (α > 0). Beginning in the 90s any arbitrary fund is exceptionally skilled,

as defined by having an alpha in the top 5% of the distribution if it generated an alpha of

two to six percent. This value of alpha is smaller than a highly skilled fund from the 80s.

For example, over the 90s the 95th-percentile declined from approximately 6% to 2% per

annum. In contrast these percentiles were never less than 3.7% in the 80s and reached a

high of 7.7% in 1989.

During the 90s the alpha of an unskilled fund, as defined by the 5th-percentile, also

declined but in a more noisy fashion than did the alpha for a skilled fund. Poor performance

in the mutual fund industry went from −0.95% in 1990 to a low of −2.7% in 1998. Except

for 1998 and 1999, the probability of an unknown mutual fund being capable of generating

positive alphas stayed right around 90%. Thus, overall mutual fund performance went down

during the 90s relative to the 80s.

In Figure 4 we plot the population distributions of alpha from 1995 to 2001 using only

the return histories of those funds that opened for business during the 1993 to 2001 period.21

Funds that were new to the industry were more likely to generate a positive alpha as seen

in the positive primary mode. However, over this same period the probability of a new fund

generating a negative alpha is also increasing as the negative mode moves further to the

left. Thus, we conclude that during the latter half of the 90s when the number of new funds

entering into mutual fund industry was accelerating, a new fund was likely to be skilled and

capable of covering its fees, but with each year there was an increasing chance the new fund

would be unable to earn a high enough return to justify its fees.

21A new fund was only included if it had twelve months of return performance.
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Figure 4: Posterior cross-sectional distribution of alpha from 1995 to 2001 using only the
performance histories of the funds that entered the business after 1992 and had a years
worth of performance data.
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6.5 Comparison of the individual alphas

In Figure 5 we plot each of the 5,136 mutual fund’s 95% HPD interval for its alpha along

with the posterior median (represented as dots when visible). At the top of the figure are

the posterior results for the funds with the shortest histories, and at the bottom are the

results for the ones with the longest.

We calculate the 95% HPD intervals using three different approaches. Panel (a) of Figure

5 plots the HPD intervals where ability is believed to be idiosyncratic to the mutual fund

and the prior for alpha is N(0, s20), with 1/s20 = 0.22 Panel (b) plots the HPD intervals using

the approach of JS. The population is assumed to be normally distributed but the mean and

variance are unknown and modeled with the uninformative Jeffreys prior, π(µα, σ
2
α) ∝ 1/σ2α.

Panel (c) of Figure 5 plots the 95% HPD interval of each fund’s alpha using our Bayesian

nonparametric approach. Our initial guess for the cross-sectional distribution of alpha is

again the diffuse Student-t distribution found in Eq. (19) whose mean is zero, scale 0.0011,

and with 0.1 degrees of freedom.

22Because this is the Jeffreys prior the intervals in Figure 5 Panel (a) are equivalent to the 95% confidence
intervals of the ordinary least squares estimate of alpha.
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Comparing the funds’ posterior HPD intervals plotted in the three panels of Figure 5,

it is clear that what one assumes about the nature of the population distribution affects a

particular mutual fund’s estimated alpha. The posteriors in Panels (b) and (c) draw on the

performance of other funds to make an informed guess about the stock-picking ability of

a particular fund. By borrowing information from other funds, the HPD intervals in these

two panels are tighter than those in Panel (a). As a result, the posteriors in Panel (b) and

(c) use information from the population to be more precise about a fund’s future ability to

produce excess returns than the idiosyncratic approach used in Panel (a).

Because the posteriors in Panel (a) view skill idiosyncratically the length of a fund’s

performance window influences the posteriors. Short-lived funds found at the top of Figure

5(a) have larger and noisier HPD intervals than do the long-lived funds located at the

bottom. Although there are also funds with long performance histories that have wide

HPD intervals due noisy and erratic performance histories.

At the other end of the spectrum are the tight and homogeneous HPD intervals in

Panel (b) of Figure 5. Believing a fund’s performance comes from a normal, cross-sectional,

distribution with an unknown population mean and variance shrinks a fund’s estimated

alpha towards the average alpha of the industry. Exceptionally skilled funds get pooled

together with average funds, and funds with short or noisy performance histories take on

the skill characteristics of the population. Hence, the homogeneity of the HPD intervals in

Panel (b).

By treating all the alphas as draws from a normal population distribution, unskilled

funds, like the one near the top of Figure 5 (a) where the median alpha is close to −50%,

look better in Panel (b) than maybe they should. Furthermore, a highly skilled fund like

those in Panel (a) with posterior medians greater than 50% do not look so extraordinary in

Panel (b). Our Bayesian nonparametric learning approach automatically determines if such

funds should be pooled together or treated separately. In contrast to Panel (b), where K is

set equal to one, a priori, the intervals calculated with our nonparametric approach in Panel

(c) randomly group together similarly skilled funds and integrate away the uncertainty of

K. Conditional on the random group, information is borrowed from the other funds in the

group and used to infer each of the funds alphas.

The benefits from letting K be unknown is found in the alpha for the Schroder Ultra

Fund. In Figure 5 (c), Schroder Ultra has the highest posterior median alpha of all the funds

at 50% per annum. The next closest fund is the Turner Funds Micro Cap Growth fund at

33%. Our nonparametric sampler in Section 5 randomly groups Schroder Ultra with other

funds. Given the likely small size of this random, but highly skilled, group, the variance
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of the group, σ2∗α,k, is likely large. According to Eq. (28), this large variance causes Step 2

of the sampler to make posterior draws of the Schroder fund’s alpha that on average are

weighted more towards the sample average of the risk-factor adjusted returns of the fund,

T −1i

∑Ti
t=τi

r∗i,t, and weighted less toward the average of the group, µ∗α,k. In the extreme

case where a fund has no peers our Bayesian nonparametric approach essentially treats the

fund idiosyncratically as in Panel (a). As a result, the Schroder Ultra fund’s HPD intervals

and medians in Panels (a) and (c) are very similar. This similarity stands in stark contrast

to Panel (b) where, because of the shrinkage towards the population average, the posterior

alpha does not even put Schroder Ultra among the top ten performing funds.

6.6 Shrinkage

To determine how much a specific mutual fund’s alpha is affected by one’s beliefs about the

cross-sectional distribution of mutual fund performance in Figure 6 we graph two scatter-

plots. In each scatter-plot we plot on the y-axis the posterior mean alpha for each of the

5,136 funds using our Bayesian nonparametric method. Panel (a) plots these nonparamet-

ric posterior mean alphas against the posterior mean alpha where skill is believed to be

idiosyncratic. In Panel (b) we graph on the x-axis the posterior mean of the alphas where

skill is believed to be normally distributed. The forty-five degree line in both plots shows

where the assumption about the cross-sectional distribution does not affect the estimate of

a fund’s alpha relative to our nonparametric approach.

In Panel (a) of Figure 6 every mutual fund’s expected level of skill has moved, to

varying degrees, away from the posterior beliefs of someone who believes the skill of funds

is idiosyncratic and towards zero; i.e., the points have moved vertically away from forty-five

degree line towards zero. Hence, those who believe there is an unknown cross-sectional

distribution of skill underlying each funds performance level, and learns about it, discovers

that funds identified by those who view skill idiosyncratically as being skilled (unskilled)

are less (more) capable of selecting stocks that beat the market.

There are a handful of points in Figure 6(a) where skill is so unique to the fund that

treating them idiosyncratically is only slightly different from our nonparametric estimates.

These funds are those whose posterior mean alpha are closest to the forty-five degree line

in Panel (a) and include both skilled and unskilled funds. In general, there are fewer ex-

traordinary funds when we do not treat skill idiosyncratically, but instead treat each fund’s

performance as a draw from an unknown population distribution. By flexibly learning

how skill is distributed over the mutual fund industry we identify actual fund-specific per-

formance skills while guarding against the noisy performance measures the idiosyncratic
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Figure 6: Scatter plots of the 5,136 fund’s posterior mean alphas where in both Panel (a) and
Panel (b) the y-axis are the posterior mean under our nonparametric hierarchical prior. The
x-axis of Panel (a) are the posterior mean alphas when funds are treated idiosyncratically
and the alphas’ priors is the Jefferys prior. In Panel (b) the x-axis are the posterior mean
alphas under a normal prior whose mean and variance are unknown and modeled with the
Jefferys prior, π(µα, σ

2
α) ∝ 1/σ2α. To provide a point of reference a 45-degree line has been

added to both panels to represent those posterior means where the two relative approaches
have the same guess for alpha.
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approach finds for short lived funds.

Figure 6(a) also helps us answer the question posed by Kosowski et al. (2006) and Fama

& French (2010) as to whether skilled funds are genuinely talented or just lucky. We find

luck playing little to no role in the success of the funds whose posterior mean for alpha

is greater than 4% on both the vertical and horizontal axis. Because the posterior cross-

sectional distribution of skill is so informative about the typical fund’s ability, posterior

knowledge about the skill level of an exceptional fund is distinctly different from the pos-

terior population distribution. In Figure 6(a), these exceptionally skilled funds were not

lucky but were truly skilled since many of their posterior means are greater than 4% on both

the vertical (nonparametric hierarchical prior) and horizontal (idiosyncratic priors) axis. A

lucky fund is one of the many “skilled” funds whose posterior mean on the horizontal axis

is larger than 5%, for instance, the extreme fund whose posterior mean is nearly 80%, but

then shrinks close to zero under the nonparametric hierarchical prior. Later in Table 3 we

list the names of these highly skilled funds.

In contrast to Panel (a), many of the points in Panel (b) of Figure 6 lie on the forty-five

degree line. These alphas belong to funds having the same average ability and variance as

that of the normal cross-sectional distribution. Modeling the performance of this particular

group of funds as draws from a normally distributed cross-sectional would not interfere with

the expected value of the posterior alphas. However, identifying this group of funds from

the cross-section of funds, a priori, would be impossible but is something our nonparametric

approach does naturally as it learns about the population distribution.

From the off-diagonal points in Panel (b) of Figure 6 we discover some funds’ alpha

are drawn from groups whose means and variances are different from the global average

level of skill and its variance. If the population is assumed to be normally distributed

many abnormally skilled and unskilled funds would go undetected. For example, when we

learn the population distribution we find that the posterior alpha for Potomac OTC/Short

fund under performs the market by an average of 27% a year instead of having an alpha

greater than zero (Potomac is the worse performing fund in our panel of mutual funds whose

posterior mean alpha in both panels of Figure 6 is the point located at the very bottom).

In stark contrast, those who believe skill is normally distributed over the population believe

the Potomac OTC/Short fund can produce on average an excess market return of less than

1% per year (located on the x-axis of Panel (b)).

The Potomac fund is not unique in this respect. Many other extraordinary skilled and

unskilled funds look quite ordinary to those who believe skill is normally distributed across

funds. Clearly the assumption of a normal population distribution for mutual fund skill
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adversely affects the estimate of these funds alphas.23

6.7 Posterior distribution of each funds’ alpha

To evaluate and compare the skill level of the funds in our panel we plot in Figure 7 the

posterior distribution of alpha for all 5,136 mutual funds. The posteriors for the 3,844

mutual funds that were still open for business at the end of our sample are plotted in blue

lines. The posterior distributions for the 1,292 funds that were no longer in business at the

end of the sample are plotted in red. Transparency has been added to the densities in the

figure so that darker shades of red, blue, or purple (combinations of red and blue) show

where the posterior distributions are concentrated.

As we showed in Eq. (7), a fund’s posterior is proportional to

π(αi|r1, . . . , rJ) ∝ π(αi|r−i)f(r∗i |αi), i = 1, . . . , J,

where r∗i is the risk and factor adjusted return history of the ith fund.24 In other words,

when the return histories of the other J − 1 funds, r−i, have been observed, but before the

ith funds returns, ri, are seen, our understanding of the ith fund’s skill level is best described

by the “updated prior” distribution, π(α|r−i); i.e., the posterior population distribution or

posterior predictive distribution.

By Bayes rule how different a fund’s posterior, π(αi|r1, . . . , rJ), is from the posterior

predictive distribution, π(αi|r−i), is how exceptional the fund is from a fund we have no

information about. The more uniquely shaped a fund’s posterior the more its likelihood,

f(r∗i |αi), plays in our understanding of its ability. Because our panel consists of 5,136 funds

the skewness, kurtosis, and multi-modality of the nonparametric posterior population dis-

tribution in Figure 1 is unaffected when we drop any one fund from the panel. Given this ro-

bustness of the posterior population distribution we define a fund as being exceptional when

its posterior for alpha does not have the same multi-modal shape as π̂DPM (α|r1, . . . , rJ).

To identify these exceptional funds we plot in orange the posterior population distribution

in Figure 7.

Many of the posterior distributions in Figure 7, be the fund dead or alive, resemble

the multi-modal, cross-sectional distribution of alpha. The large number of funds whose

posterior is similar to the population shows how important the posterior population distri-

bution is in determining the skill level of a fund, and, hence, how vital it is to correctly

23The performance measure of JS and Cohen et al. (2005) both suffer from this type of shrinkage toward
the average of the overall population.

24We could integrate out the betas and the return variance in which case a fund’s likelihood function,
f(ri|αi), is a Student-t distribution but we would require a different sampler for the DP unknowns.
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Figure 7: Posterior cross-sectional distribution of alpha in orange and every funds posterior
distribution of alpha, π(αi|r1, . . . , r5136), i = 1, . . . , 5136, where the funds that were still in
business at the end of the sample are plotted in blue, whereas those funds that were not in
business are in red. Darker shades of red or blue indicate a higher concentration of funds
having similar shaped posteriors.
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model the population. It also shows how little information there is about skill in most

mutual funds return history.25 For the typical fund whose performance is average and has

a likelihood which is relatively flat, the posterior cross-sectional distribution resolves most

of the uncertainty in alpha.

We draw three conclusions about the skill level of the funds from Figure 7. First,

regardless of a fund being in or out of business, its posterior in general has two modes. The

secondary modes are close to −1%, indicating that the funds have the potential to generate

losses. The primary modes are close to 2%. Thus, many of the 5,136 funds are likely to

cover their fees but there is a non-trivial chance the fund will fail to earn a return that

covers its costs.

The second finding from the posteriors of Figure 7 is the credible evidence of there being

a few exceptional funds. These funds can be exception either because they are unskilled

or because they skilled. There are twenty-one exceptionally skilled where there is a 95%

probability of its alpha being greater than 1.5%, and fifty exceptionally unskilled that have

the same probability of being less than 1.5%. Finding so few exceptional funds runs counter

to earlier empirical findings where there is a larger presence of skilled and/or unskilled funds

(see Kosowski et al. (2006), Fama & French (2010), and Barras et al. (2010), and Ferson &

Chen (2015)). However, as we have already pointed out these earlier findings suffer from

noisy alpha estimates. Hence, we conclude that most mutual funds are not extraordinarily

talented or unskilled. Instead, most funds have a greater chance of being just talented

enough to select stocks that on average result in a return that justifies its costs, expenses,

and fees.

Our third finding concerns those funds that are exceptionally unskilled but for some

reason were still in business. A number of predictive densities in Figure 7 have fat tails

over negative values of alpha and were not out of business. In Figure 8(a) we plot in blue

the alive fund’s posterior and in red the dead fund’s posterior distributions for the fifty

exceptionally unskilled funds. Twenty-nine of these poor performing funds were still in

business at the end of our sample. This includes the worse performing fund from our panel

– the Potomac OTC/Short fund, whose expected alpha is −26% and has a 3% chance of

losing between 20% to 40% percent a year.

Except for the two closed funds, Bowser Growth Fund, whose expected alpha is −24%,

and Ameritor Industry Fund, whose expected alpha is −7%, the other forty-seven unskilled

funds engage in trades that are expected to result in gross losses of between zero to five

25Not being able to accurately estimate a funds alpha with only its return history has been a well known
problem with ordinary least square estimates of the alpha. The mutual fund skill literature is full of results
where the R2s is small.
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Figure 8: The posterior distribution of alpha where Panel (a) plots the posteriors of the
fifty unskilled fund’s who have at least a 95% chance its alpha will be less than 1.5 percent,
and Panel (b) are the posteriors for the twenty-one skilled funds who have at least a 95%
chance its alpha will be greater than 1.5 percent (the vertical line in both plots is at the
average fund’s fee of 1.5 percent). Posteriors for the funds that are in business at the end
of the sample are plotted in blue, whereas those that have closed are in red. In Panel (a)
there are a total of twenty-one dead unskilled funds. In Panel (b) there is only one dead
skilled fund (T. Rowe Price Capital Appreciation Fund).

percent a year. Nine of these funds had been in business since the early 1960s and were

still in business in 2001. Thus, we conclude that poor performance by a fund does not

necessarily lead investors to divest their money and cause such funds to go out of business.

Perhaps there are restrictions in place where investors are prohibited from withdrawing

their investment or redemptions are limited.

In Figure 8(b) we plot the posterior distribution of the twenty-one exceptionally skilled

funds. Notice how different these funds’ posteriors are from the nonparametric posterior

population distribution of Figure 1. These funds have densities where the weight assigned

to the alphas between 5% to 10% are noticeably greater than the population distribution.

A few of these exceptionally skilled funds have a primary mode located at an alpha larger

than the primary mode of the population. Half of these funds have a primary mode near

1.5%. Only one of the funds was no longer in business.

In Table 3 we list from shortest to longest return histories the twenty-one skilled funds

posterior mean of alpha and the number of years the fund had been in business. Four of
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Fund Years of Operation Alpha

Turner Funds: Micro Cap Growth 1998-2001 33.07
Schroeder Ultra Fund 1997-2001 49.77
Artisan Mid Cap Fund 1997-2001 16.77
Needham Growth Fund 1996-2001 17.40
Olstein Financial Alert Fund/C 1996-2001 13.84
Fremont Mutual Fds:US Micro Cap Fund 1994-2001 13.23
PIMCO Funds:Stocks Plus Fund/Instl 1993-2001 2.46
Fidelity Dividend Growth 1993-2001 4.87
Managers Funds:US Stock Market Plus 1992-2001 2.44
Fidelity Low Priced Stock 1990-2001 5.93
Victory Funds:Diversified Stock Fund/A 1989-2001 2.88
T Rowe Price Capital Appreciation Fund 1986-1999 3.75
JP Morgan Growth & Income Fund/A 1987-2001 6.30
Gabelli Growth Fund 1987-2001 5.29
Weitz Series Fund:Value Portfolio 1986-2001 4.50
IDEX Janus Growth Fund/A 1986-2001 4.87
Gabelli Asset Fund 1986-2001 4.99
Oppenheimer Growth/A 1973-2001 3.82
AXP Growth Fund/A 1972-2001 4.71
Janus Fund 1970-2001 3.90
Vanguard Morgan Growth/Inv 1968-2001 4.40

Table 3: Individual mutual funds’ posterior mean of alpha, from the newest to oldest, and
who have at least a 95% chance of returning a market excess return greater than the average
mutual fund fee of 1.5%.

the funds possess the extraordinary ability to pick stocks such that they are expected to

produce an alpha that is greater than 15% per year. The top performers are newer funds

with less than seven years of experience. There are also a few highly skilled funds, like the

Janus Fund, that have been in business since the 1970s. Hence, not all skilled funds suffer

from the decreasing returns to scale hypothesized by Berk & Green (2004).

7 Conclusion

With our Bayesian nonparametric learning approach, we find the posterior population dis-

tribution for the actively manage mutual fund industry to be fat-tailed, multi-modal, and

skewed towards higher levels of skill. The population’s primary mode is 1.8% per year,

followed by a secondary mode at −0.65%, and lastly, a minor mode of 6%. As a result of

the location for the minor mode and the skewness of the population distribution towards
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higher skilled funds, a fund for which we have no information about has a greater chance of

being skilled than previously thought. Under a parametric, normal, hierarchical, prior for

alpha, the probability of finding an extraordinarily skilled fund is pushed back towards the

primary mode; i.e., back toward a typical fund’s alpha.

In comparison to when we treated skill idiosyncratically, our nonparametric approach

finds fewer skilled and unskilled funds. Out of 5,136 funds, we find 22 (50) funds have a

95% chance of its alpha (not) exceeding the average fee charged by a fund of 1.5%. Each

of these exceptional funds has a unique posterior distribution relative to the population

distribution where their likelihood function drives a wedge between its posterior for alpha

and the posterior population distribution.

We found these highly skilled funds to be truly skilled and not just lucky. The poste-

rior mean alphas were similar under both our nonparametric prior and the idiosyncratic

priors, whereas, many of the funds that had larger posterior means under the idiosyncratic

prior lacked the empirical performance to drive a wedge between their posterior and the

nonparametric population distribution.

Learning the cross-sectional distribution of mutual fund skill with our Bayesian non-

parametric approach can be applied to other related questions. For instance, any finance

or economic problem where one is inferring a parameter and estimating the cross-sectional

distribution of the parametric can be analyzed nonparametrically. For example, one can

estimate how the multiple risk-factors’ coefficients of an asset pricing model are distributed

across different assets. We are currently investigating this and other similar types of research

ideas with our Bayesian nonparametric learning approach.
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