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1 Introduction

This paper studies the optimal time-consistent allocation of tax distortions and the opti-
mal issuance of debt in an environment where government debt can be defaulted on. We
consider a government that has to finance an exogenous stream of stochastic government
expenditures and maximizes the utility of the representative household. The government
can use distortionary labor taxes or issue non-contingent debt. The government can default
on its debt subject to a default cost. Our setup is fully time-consistent; neither tax nor debt
promises are honored.

Our analysis builds on the notion of Markov-perfect equilibrium (MPE) of Klein et al.
(2008). Optimal policy is time-consistent in the payoff-relevant state variables, which for our
case are government debt and government expenditures. Furthermore, we model default
as in the work of Arellano (2008) and Aguiar and Gopinath (2006), that builds on the debt
repudiation setup of Eaton and Gersovitz (1981). This setup allows to observe default in
equilibrium.

In most of the sovereign default literature, government debt is assumed to be held only
by foreigners whereas domestic households are hand-to-mouth consumers. However, Rein-
hart and Rogoff (2011) find that, on average, domestic debt accounts for nearly two-thirds
of total public debt for a large group of countries. We consider a closed economy in which
domestic households hold government debt. Thus, our model takes into account that de-
fault events often involve default on debt held by domestic households. This assumption
is supported by the empirical literature. While domestic default events are more difficult
to identify than external default events, Reinhart and Rogoff (2011) document 68 cases of
overt default on domestic debt since 1800. Moreover, often even when default is only on
external debt (which we do not model), a significant portion of the external debt is held
by domestic investors (Sturzenegger and Zettelmeyer 2006). For these reasons it is of inter-
est to understand the tradeoffs governments face when considering whether to default on
domestic households.

Our purpose it to analyze optimal tax-smoothing and debt issuance in such an environ-
ment. The lack of state-contingent insurance markets hinders the ability of the government
to smooth taxes. Default can in principle make debt partially state-contingent. In particular,
the government affects both the pricing kernel of the agent and the payoff of government
debt. Default risk is reflected in equilibrium prices and alters the optimal allocation of tax
distortions over states and dates.

The government has an incentive to default when either government debt or govern-
ment expenditures are high. By defaulting the government can avoid high distortionary
taxation. However, default entails either direct costs in terms of output losses, or indirect
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costs, in terms of a limited functioning of the market of government debt after a default
event. In particular, we follow Arellano (2008) and assume that the market for government
debt pauses to function for a random number of periods after a default event.

Optimal policy is characterized in our model by a generalized Euler equation (GEE) that
balances the dynamic costs and benefits that the government is facing. The average welfare
loss that is incurred by an increase in debt issuance (since higher debt has to be accompanied
with higher future taxes) has to be balanced with the benefits of relaxing the government
budget and allowing less taxes today. Our GEE reflects the fact that interest rates increase
when debt increases, due to a higher probability of default. However, higher debt can also
lead to reduction in interest rates by increasing marginal utility. The increase in marginal
utility is coming from the fact that future consumption decreases in the event of repayment.
This second channel is particularly important in our setup because it reflects the interest rate
manipulation through the pricing kernel that is essential for our time-consistent setup. Our
government chooses a debt and tax policy for the future, that will find optimal to follow in
the following periods.

We consider also the optimal taxation, debt management and default plan when the gov-
ernment can also issue long-term debt as in Hatchondo and Martinez (2009) and Chatterjee
and Eyigungor (2012). Long-term debt has been shown to capture better the mean and
volatility of spreads in the sovereign default literature. Furthermore, the volatility in prices
due to the long duration of debt provides an additional tool for absorbing fiscal risks, which
is of particular interest for our optimal taxation exercise. We show that a richer version of
our GEE goes through. Reflecting the longer maturity of debt, the GEE encapsulates now
the present value of the two opposing price effects that stem from the option to default and
the lack of commitment to old policies.

Related literature. A short, though undoubtedly incomplete, list of references should in-
clude Aiyagari et al. (2002), the basic paper that analyzes optimal taxation in incomplete
markets. They solve for optimal policy under commitment and without default. In the
time-consistent literature, Krusell et al. (2004) and Debortoli and Nunes (2013) analyze time-
consistent taxation and debt in deterministic setups without default. Martin (2009) analyzes
the joint determination of time-consistent fiscal and monetary policy.

The closest paper to ours is Pouzo and Presno (2014), which has been the first to consider
the possibility of debt repudiation à la Arellano in the optimal taxation problem. These
authors alter the Aiyagari et al. (2002) setup only in one dimension; they allow the govern-
ment to default but they retain a notion of commitment.1 In their setup, the government

1Pouzo and Presno (2014) consider also the possibility of secondary markets in the event of default, a feature
we do not share.
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cannot commit to repay debt, but as long as the government decides to repay, it honors the
marginal utility promises of the plan devised in previous periods and commits therefore to
the tax sequence and the evolution of interest rates. In contrast, we treat debt and taxes
symmetrically and derive the fully time-consistent policy in terms of the payoff -relevant
endogenous state variable which is debt. Another paper of interest is D’Erasmo and Men-
doza (2016), who study optimal domestic sovereign default in an quantitative model with
heterogenous agents.

2 A two-period economy

To make things concrete, we will start our analysis with a two-period version of our model,
t = 0, 1, and proceed in a later section with an infinite horizon economy.

The only uncertainty in the economy is coming from exogenous government expenditure
shocks g ∈ G at t = 1 with probability π(g). There is a representative household that
consumes c, works h, pays linear taxes τ on its labor income and trades in government debt.
Government debt b is non-state contingent and trades at price q. At t = 1 the government
can default on its promise to repay subject to an output loss. If the government defaults,
it runs a balanced budget. Thus, government debt is a security that provides one unit of
consumption next period at each state g for which the government is not defaulting.

Notation. Let D denote the set of shocks g at t = 1 for which the government is defaulting.
Let A ≡ Dc denote the repayment set. We will not specify yet what these sets depend on,
since the representative household is a a price-taker. Let d(g) be an indicator variable that
takes the value 1 if the government defaults and zero otherwise, so d(g) = 1, g ∈ D and
d(g) = 0 if g ∈ A.

Resource constraints Output is produced by labor. The resource constraint at t = 0 reads

c0 + g0 = h0 (1)

At t = 1 we have

g ∈ A : c(g) + g = h(g) (2)

g ∈ D : c(g) + g = zh(g), (3)
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where z < 1. We model the cost of default as an adverse technology shock.

Household. The household is deriving utility from consumption and leisure. The total
amount of leisure is unity. Its preferences are

u(c0, 1− h0) + β ∑
g

π(g)u(c(g), 1− h(g)). (4)

We assume that initial debt is zero. The household’s budget constraint at t = 0 reads

c0 + qb = (1− τ0)w0h0 (5)

At t = 1, at the household’s budget constraints read

g ∈ A : c(g) = (1− τ(g))w(g)h(g) + b (6)

g ∈ D : c(g) = (1− τ(g))w(g)h(g). (7)

Note that labor taxes depend on the realization of the shock g.

Government. Similarly, the government budget constraint at t = 0 reads

0 = τ0w0h0 − g0 + qb

and at t = 1 we

g ∈ A : τ(g)w(g)h(g)− g = b

g ∈ D : τ(g)w(g)h(g)− g = 0.

Firms. Competitive firms maximize profits given the linear technology and the default
costs. The equilibrium wage is w0 = 1 and w(g) = 1, g ∈ A, w(g) = z < 1, g ∈ D.

Household’s problem. Given {q, τ0, τ(g), w0, w(g), D} the household is choosing {c0, h0, c(g), h(g), b}
to maximize (4) subject to (5-7). The labor supply condition at t = 0 is
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ul0
uc0

= 1− τ0,

whereas at t = 1 we have

g ∈ A :
ul(g)
uc(g)

= 1− τ(g)

g ∈ D :
ul(g)
uc(g)

= (1− τ(g))z

Note that we have already used the equilibrium wages in these conditions. Furthermore,
the Euler equation with respect to b is

q = β ∑
g

π(g)
uc(c(g), 1− h(g))

uc(c0, 1− h0)
(1− d(g))

= β ∑
g∈A

π(g)
uc(c(g), 1− h(g))

uc(c0, 1− h0)
. (8)

The Euler equation depicts the possibility of government default. If the default set is empty,
D = ∅, then (8) simplifies to the standard Euler equation with risk-free debt.

Competitive equilibrium. The definition of the competitive equilibrium given govern-
ment policy (b, τ, D) is obvious.

3 Optimal policy in the two-period economy

The government is choosing the optimal amount of taxes, debt and to default or repay. We
will analyze optimal policy in two stages using backwards induction:

• At t = 1, given issued debt b, the government is deciding to default or not and how
much to tax. The government takes into account the optimal reaction of the household
to the tax rate, so it acts as a Stackelberg leader within the period.

• At t = 0, the government is choosing {b, τ0}, taking into account the decision of the
household in the current period and the government’s optimal decisions next period.
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3.1 Default and repayment sets

Let ud and ur denote the equilibrium utility of default and repayment respectively. Define
the default set, which depends on b,

D(b) ≡ {g ∈ G|ud > ur}, (9)

and the repayment set

A(b) ≡ D(b)c = {g ∈ G|ud ≤ ur}. (10)

In the definition of the sets we assume that if the government is indifferent about repay-
ing or defaulting, then it is repaying. The default and repayment sets depend on the amount
of debt through the default and repayment allocation.

Default allocation. The default allocation at g is determined by the following equations,

c + g = zh
ul
uc

= (1− τ)z

τzh = g.

The first is the resource constraint (taking into account the default costs), the second
the labor supply and the third the balanced budget requirement. From these equations
we get the default consumption-labor allocation and the default tax rate as functions of g,
{cd(g), hd(g), τd(g)}. The equilibrium utility of default is ud = u(cd(g), 1− hd(g)). Note
that we can use the primal approach of Lucas and Stokey (1983) and eliminate the tax rate
through the labor supply condition. This leads to a system of consumption and labor only,

c + g = zh

Ω(c, h) = 0, (11)

where

Ω(c, h) ≡ uc(c, 1− h)c− ul(c, 1− h)h. (12)
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Ω stands for consumption net of after-tax labor income, in marginal utility units. Equiva-
lently, it is equal to government surplus in marginal utility units. For future reference, note
that

Ωc

uc
= 1− εcc − εch (13)

Ωh
ul

= −1− εhh − εhc (14)

where εcc ≡ −uccc/uc, εch ≡ uclh/uc, εhh ≡ −ullh/ul, εhc = uclc/ul, the own and cross
elasticities of the marginal utility of consumption and the marginal disutility of labor.

Repayment allocation. If the government repays, g ∈ A, we have

c + g = h
ul
uc

= 1− τ

τh = g + b

which determines the repayment allocation and the repayment tax rate as functions of
the debt and the shock, {cr(b, g), hr(b, g), τr(b, g)}, and the repayment utility ur ≡ u(cr(b, g), 1−
hr(b, g)). As before, the above system can be reduced to

c + g = h

Ω(c, h) = uc(c, 1− h)b, (15)

where the second constraint expresses the budget of the government in terms of con-
sumption, labor and debt.

3.2 Properties of the default decision

We will make now two claims about the structure of the default set. We will see later the
proofs.

Property 1. If b′ > b, then D(b) ⊆ D(b′). Default sets increase in debt.

Property 2. Let g′ > g. If g ∈ D(b), then g′ ∈ D(b). Default incentives increase with adverse
fiscal shocks.
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Property 1 will be easy to prove. We will see later about property 2. Assume for the
moment that the first property is true. Define the following borrowing limits:

b̄ ≡ inf{b|D(b) = G}
b ≡ sup{b|D(b) = ∅}.

b is the maximum amount of debt so that the government is repaying with certainty. b̄ is
the amount of debt above which the government is defaulting with probability 1. We have
b ≤ b̄. Furthermore, if b ∈ (b, b̄), then D(b) 6= ∅ and A(b) 6= ∅, so for intermediate values
of debt there is always a shock for which the government defaults and a shock for which the
government repays.

Lemma 1. The utility of repayment is decreasing in debt. If b′ > b then u(cr(b′, g), 1− hr(b′, g)) <
u(cr(b, g), 1− hr(b, g)).

Proof. To be written.

Corollary 1. Property 1 holds.

Proof. Let b′ > b and g ∈ D(b). Then ud(cd(g), 1 − hd(g)) > u(cr(b, g), 1 − hr(b, g)) >

u(cr(b′, g), 1− hr(b′, g)), thus g ∈ D(b′).

So property 1 is based on the fact that if debt increases, the government has to increase
taxes, which leads to a reduction in utility.

Lemma 2. The government never defaults if b = 0 for any value of the shock g, u(cr(0, g), 1−
hr(0, g)) ≥ u(cd(g), 1− hd(g))∀g⇒ D(0) = ∅.

Proof. The lemma seems obvious since the government would never default and incur the
default costs. It needs some elaboration though. To be written.

Corollary 2. b ≥ 0.

Threshold. Define now ω(g) as the amount of debt for which the government is indifferent
between repaying and defaulting at g,

u(cd(g), 1− hd(g)) = u(cr(ω(g), g), 1− hr(ω(g), g)) (16)
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Note that this equation has a solution in [b, b̄] (which is unique since the utility of repay-
ment is decreasing in b). Since the repayment utility is decreasing in debt, we have d(g) = 1
if b > ω(g) and d(g) = 0 if b ≤ ω(g). Furthermore, the monotonicity of the threshold in g
is equivalent to property 2.

Lemma 3. Let ω(g′) ≤ ω(g) for g′ > g⇔ Property 2 holds.

Proof. 1.(⇒) Let g ∈ D(b). This implies that b > ω(g) ≥ ω(g′). Therefore, g′ ∈ D(b).
2. (⇐) Rephrase property 2 as follows: if g′ ∈ A(b) then g ∈ A(b) for g′ > g (if I repay

for the bad shock, I repay for the good shock). Assume now that ω(g′) > ω(g). Since

u(cd(g′), 1− hd(g′)) = u(cr(ω(g′), g′), 1− hr(ω(g′), g′)),

we have g′ ∈ A(ω(g′)). This implies that g ∈ A(ω(g′)) by property 2 . Thus,

u(cd(g), 1− hd(g)) = u(cr(ω(g), g), 1− hr(ω(g), g)) ≤ u(cr(ω(g′), g), 1− hr(ω(g′), g))⇒ ω(g) ≥ ω(g′),

which is a contradiction.

Thus, property 2 is equivalent to a non-increasing debt threshold in government expen-
ditures. Its validity is not clear. We will show later that it holds if utility is linear in con-
sumption. Furthermore, it holds numerically. To understand where this property depends
on, note that if we could show that the difference in utility ∆u ≡ ud − ur is increasing in g,
i.e. if

u(cd(g′), 1− hd(g′))− u(cr(b, g′), 1− hr(b, g′)) > u(cd(g), 1− hd(g))− u(cr(b, g), 1− hr(b, g)), g′ > g,

then property 2 follows immediately.2 It is easy to show that default and repayment utility
fall if g increases. ∆u increasing in g is stronger: it means that the loss in default utility due
to larger g is smaller in absolute value than the loss in repayment utility.

3.3 Problem at t = 0

At t = 0 the government is choosing (c0, h0, b) to maximize

2An increasing ∆u is the exact condition for a decreasing threshold. Use the implicit function theorem in
the threshold equation to see that.
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u(c0, 1− h0) + β

 ∑
g∈D(b)

π(g)u(cd(g), 1− hd(g)) + ∑
g∈A(b)

π(g)u(cr(b, g), 1− hr(b, g))


subject to

Ω(c0, h0) + β
[

∑
g∈A(b)

π(g)uc(cr(b, g), 1− hr(b, g))
]
b = 0

c0 + g0 = h0

Assume now that the shock follows a continuous distribution with density f (g) and
support [g, ḡ]. Furthermore, assume that 2 is true and that the threshold is strictly decreasing
in g. Then we can rewrite the default decision in terms of ω−1(b), which is the level of g for
which the government is indifferent between repayment and default for a particular level of
b. Apparently, we have

u(cd(ω−1(b)), 1− hd(ω−1(b))) = u(cr(b, ω−1(b)), 1− hr(b, ω−1(b))) (17)

The repayment and default sets become respectively A(b) = [g, ω−1(b)] and D(b) =

(ω−1(b), ḡ] for b ∈ [b, b̄]. In the analysis later we will also assume that ω−1 is differentiable,
i.e. that the implicit function theorem applies to (17). The purpose of these assumptions is
to derive an optimality condition for the optimal debt issuance of the government. We will
not make them in any numerical treatment of the problem.

Given the structure of the default sets the optimization problem becomes: choose (c0, h0, b)
to maximize

u(c0, 1− h0) + β

[∫ ω−1(b)

g
u(cr(b, g), 1− hr(b, g)) f (g)dg +

∫ ḡ

ω−1(b)
u(cd(g), 1− hd(g)) f (g)dg

]

subject to

Ω(c0, h0) + β
[ ∫ ω−1(b)

g
uc(cr(b, g), 1− hr(b, g)) f (g)dg

]
b = 0 (18)

c0 + g0 = h0 (19)
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The government is taking into account how increasing debt affects the equilibrium price
q. Higher debt affects the equilibrium price by both increasing the default region (reducing
therefore the price) and by increasing the agent’s marginal utility since repayment consump-
tion falls (which increases the equilibrium price). The marginal utility effect is not present
in Arellano (2008) due to risk-neutral foreign lenders.

Analysis. Assign the multiplier Φ on the implementability constraint (18) and λ on the
resource constraint (19). First-order necessary conditions for (c0, h0) are

c0 : uc0 + ΦΩc0 = λ0

h0 : −ul0 + ΦΩh0 = −λ0

which delivers the familiar wedge expression

ul0 −ΦΩh0

uc0 + ΦΩc0
= 1.

This expression can be rewritten in terms of the tax rate τ0 by using (13) and (14) as

τ0 =
Φ(εcc + εch + εhh + εhc)

1 + Φ(1 + εhh + εhc)
. (20)

Optimal debt issuance. Turn now to the optimal choice of b. Use Leibnitz’s rule to get the
following first-order condition:

dω−1

db
f (ω−1(b))

[
u
(
cr(b, ω−1(b)), 1− hr(b, ω−1(b))

)
−u
(
cd(ω−1(b)), 1− hd(ω−1(b))

)]
+
∫ ω−1(b)

g

[
ur

c
∂cr

∂b
− ur

l
∂hr

∂b
]

f (g)dg

+Φ
{∫ ω−1(b)

g
ur

c f (g)dg + b
[
uc(cr(b, ω−1(b)), 1− hr(b, ω−1(b))) f (ω−1(b))

dω−1

db

+
∫ ω−1(b)

g

(
ur

cc
∂cr

∂b
− ur

cl
∂hr

∂b
)

f (g)dg
]}

= 0

This expression can be simplified as follows. The terms in the first and second line corre-
spond to the change in expected utility triggered by an increase in debt. An increase in debt
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has two effects on expected utility. At first it reduces the repayment region, by decreasing
the threshold value, dω−1/db < 0. Second, it decreases expected utility because an increase
in debt decreases the utility of repayment. The term in the first line corresponds to utility
differential due to the reduction in the repayment region. This utility differential is equal to
zero at the threshold value of spending ω−1(b), where the government is indifferent between
repayment and defaulting.

GEE in the two-period economy. Thus, the optimality condition reduces to

−
∫ ω−1(b)

g

[
ur

c
∂cr

∂b
− ur

l
∂hr

∂b
]

f (g)dg︸ ︷︷ ︸
I

= Φ
{∫ ω−1(b)

g
ur

c f (g)dg︸ ︷︷ ︸
I I(+)

+b
[
uc(cr(b, ω−1(b)), 1− hr(b, ω−1(b))) f (ω−1(b))

dω−1

db︸ ︷︷ ︸
I I I(−)

+
∫ ω−1(b)

g

(
ur

cc
∂cr

∂b
− ur

cl
∂hr

∂b
)

f (g)dg︸ ︷︷ ︸
IV(+)

]}
(21)

The LHS denotes the expected marginal utility loss due to an increase in debt. There
is a utility cost because repayment utility falls with an increased amounted of debt due to
the increase in taxes next period, ∂ur/∂b = ur

c
∂cr

∂b − ur
l

∂hr

∂b = (ur
c − ur

l )∂cr/∂b < 0, since
∂cr/∂b = ∂hr/∂b < 0 and ur

c > ur
l (we need to tax in order to repay). This is term I. The

RHS denotes the welfare benefit of increasing debt, which comes form relaxing the budget
constraint of the government and allowing less taxes today (Φ > 0). The right-hand side
is essentially the welfare benefit of the marginal revenue of debt issuance. The government
would never find it optimal to issue a level of debt that would deliver a negative marginal
revenue, so the right-hand side is positive. This essentially will imply a stricter borrowing
limit than b̄. The right-hand side has three terms:

• Term II is proportional to the price q. By issuing debt by one unit, the government gets
revenue proportional to q.

• The third and fourth term essentially correspond loosely to q′(b). The government
takes into account that increasing debt will affect the price of debt through two chan-
nels:

1. Term III: by increasing debt the government reduces the repayment region, which
decreases the prices. Term III is negative (dω−1/db < 0).

2. Term IV: By increasing debt, the repayment consumption and labor become lower.
As a result, marginal utility increases (and recall that ucl ≥ 0), so the price in-
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creases. Term IV is positive. The higher the curvature in c, the more important we
expect this term to be quantitatively.

Note that (21) is a generalized Euler equation (GEE) with default.

3.4 Quasi-linear example

Consider now an example with quasi-linear utility

u = c− 1
2

h2. (22)

This utility allows a simpler characterization of the default set. In particular we prove
property 2 for this utility function and prove also differentiability of ω−1. Furthermore, the
absence of the marginal utility channel implies equilibrium prices are determined only by
the probability of repayment. In other words, the planner is manipulating the equilibrium
price of government debt only through the size of the repayment region and not through
repayment consumption. This element eliminates time-inconsistency issues in the infinite
horizon problem so it is of limited interest for us. Nevertheless, it provides an easier inter-
pretation of (21) by eliminating term IV.

Proposition 1. (“Default in the quasi-linear case”) Assume the period utility function (22). Define
λ ≡ z2 < 1 and assume that the shocks are not too large, g < 1/4λ and that the debt position is not
too large, b + g < 1/4. Then,

1. The default allocation is hd = z(1− τd) and cd = zhd − g. The default tax rate and respective
utility are is

τd(g) =
1−

√
1− 4g/λ

2

ud(g) =
1
2

λ(1− τ2
d )− g.

2. The repayment allocation is hr = 1− τr, cr = hr − g. The repayment tax rate and respective
utility are

τr(b, g) =
1−

√
1− 4(b + g)

2

ur(b, g) =
1
2
(1− τ2

r )− g
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Note that for b > g(1/λ− 1) > 0 we have τr > τd.

3. Default and repayment decision:

d(g) = 1 if τ2
r > λτ2

d + 1− λ

d(g) = 0 if τ2
r ≤ λτ2

d + 1− λ

4. The threshold ω(g) or ω−1(b) is defined implicitly τ2
r (b, g) = λτ2

d (g) + 1− λ. The threshold
is monotonically decreasing,

dω−1(b)
db

= −τr(1− 2τd)

τr − τd
< 0

Note also that the slope of the threshold is larger than unity in absolute value, dω−1(b)
db < −1.

Note that the indifference condition that determines the threshold requires that the square
repayment tax is a weighted average of the square default tax and unity (λ < 1). Therefore,
for the government to be indifferent between repayment and default the repayment tax rate
has to be greater than the default tax rate (τr > τd). Thus, even if the repayment tax is larger
than the default tax, which superficially would lead to the false conclusion that the gov-
ernment has to default, the government may still want to repay. The reason behind that is
coming from the fact that default entails output costs that reduce utility. Thus, for a given
government expenditure shock, debt and the associated repayment tax has to be sufficiently
high to lead to default. Therefore, a necessary (and not sufficient) condition for indifference
(or defaulting) is that b > g(1/λ− 1). The formula also shows that if λ = z2 = 1, so if there
are zero default costs, the government will never issue any debt. The government defaults if
τr > τd ⇒ b > 0 and repays if b ≤ 0.

Equilibrium price and debt issuance. In the quasi-linear case we can write the equilib-
rium price as a function of b,

q(b) = βProb(repayment) = βF(ω−1(b)), b ∈ [b, b̄]

q′(b) = β f (ω−1(b))
dω−1

db
< 0.

15



Note that q(b) = 0 for b > b̄ and q(b) = β for b < b. Let R(b) ≡ q(b)b denote the rev-
enues from debt issuance. Expressing consumption and labor in terms of the tax ate, the
implementability constraint simplifies to

τ0(1− τ0)− g0 + q(b)b = 0, (23)

which furnishes an initial tax rate as function of debt revenue τ0(b, g0) =
1−
√

1−4(g0−R(b))
2 ,

as long as the initial expenditures adjusted for any revenue from debt issuance are not too
large, g0− R(b) < 1/4. The larger the revenue from debt issuance, the smaller the initial tax
rate, which shows the tradeoffs that the government is facing.

The optimality equation with respect to debt (21) for the quasi-linear case simplifies to3

β
∫ ω−1(b)

g
τr

∂τr

∂b
f (g)dg = Φ[q + bq′(b)] = Φq(1− ε),

where

ε ≡ −q′(b)b
q

= −b
f (ω−1(b))
F(ω−1(b))

dω−1

db
> 0,

the elasticity of the equilibrium price with respect to b. The right-hand side depicts the social
value of the marginal revenue from debt-issuance, ΦR′(b). The marginal revenue from debt
issuance has to be positive, otherwise issuing more debt will have only a welfare effect
loss, since it is associated with higher taxes, as the left-hand side of the optimality equation
shows. Therefore, we need ε(b) < 1 in order to have a positive marginal revenue from
debt issuance. Note that this implies a stricter upper bound for borrowing, above which the
government never borrows.

In particular, let b∗ the level of debt for which the revenue from debt issuance is maximal.
If the solution is in (b, b̄), this corresponds to ε(b∗) = 1. We expect that for b < b∗ we have
R′(b) > 0. A sufficient condition for this (and for which we have a unique maximum) is that
the price elasticity of debt is strictly increasing in b, ε′(b) > 0. This obviously depends on
the assumptions on the cumulative distribution function of the shocks and the slope of the
threshold dω−1/db. If it is true, we can restrict attention to the quadrant where τ0 < 1/2
and b < b∗. Furthermore, b∗ has to be as follows.

Lemma 4. The revenue-maximal level of debt satisfies b∗ ∈ [b, b̄). If limb→b+ R′(b) > 0, then

3We multiply with β in order to express the condition in terms of the price q.
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b∗ ∈ (b, b̄).

Proof. We cannot have b∗ ≥ b̄ since revenue is zero for this interval. Furthermore, we cannot
have b∗ < b since marginal revenue for this interval is positive. Therefore b∗ ∈ [b, b̄). There
is the possibility though that the maximum revenue is at the lower boundary point, b. The
right derivative of the revenue schedule is

lim
b→b+

R′(b) = β + β f (ḡ)
dω−1(b)

db
b > 0,

according to the claim. Unless f (ḡ) = 0, there is a downward jump in marginal revenue.
If the marginal revenue though still remains positive, then we cannot have an optimum at
b. Thus, b∗ ∈ (b, b̄).

An interior b∗, which corresponds to ε(b∗) = 1, implies that there is the possibility of
an equilibrium with default (the planner may still optimally choose amounts of debt below
b). We would never have an equilibrium with default if b∗ = b. This could happen if the
reduction in prices was such so that the marginal revenue at b+ is negative. This would
make b a local maximum and if revenue falls for larger debt, a global maximum. So there
is the possibility for an equilibrium without default only if the price schedule is extremely
steep.

Remark 1. Even if b∗ > b, optimal debt issuance does not necessarily entail default. The planner
may run a deficit at the initial period to be financed by debt that matures at t = 1, but he may
find it optimal to issue b ≤ b. In that case there is no default in equilibrium. The optimality
condition captures these tradeoffs. The larger the default costs (low z), the more probable this scenario.
Furthermore, this possibility depends also on the initial level of government expenditures g0. If they
are too small, then the planner may run a small deficit that does not require an optimal debt that falls
in the default region. At the extreme, when g0 = 0, the planner runs a surplus at the initial period
and uses the proceeds to lend to the private sector, b < 0.

3.5 Numerical illustrations for the quasi-linear case

Calibration of shocks: g = 0, ḡ = 0.2. To get an idea of their size, note that the first-best
output it unity, so government expenditures vary from 0 till 20% of first-best output. We use
2, 000 gridpoints and a uniform distribution. Furthermore, we set β = 0.95, z = 0.99.
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Figure 1: The figure plots ω−1(b). For each level of debt the government is defaulting if g > ω−1(b).
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Figure 2: The figure plots ω−1(b) for varying default costs.
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Default and repayment regions. Figure 1 depicts the default/repayment region for the
base-line calibration. Note the monotonically decreasing threshold ω−1. To understand the
impact of default costs z, on the deault/repayment regions, figure 2 plots the corresponding
sets for varying default costs. The case of no default costs z = 1 corresponds to a vertical
line at b = 0, i.e. the government defaults with certainty if there is positive debt and repays
with certainty if b ≤ 0. Besides this extreme case (for which ω−1 is not well-defined), note
that an increase of default costs shifts the threshold curve to the right (thus for a given level
of government expenditures, the government can sustain a larger debt without defaulting).
Furthermore, the threshold becomes flatter.

Equilibrium price and revenues. Figure 3 plots the equilibrium price q and the corre-
sponding revenues R(b). For b ≤ b the price is β, whereas for b > b̄ we have q = 0. Note
that the level of debt for which revenues are maximal, b∗ is larger than b.

Optimal debt issuance. As noted in remark 1, the optimal debt that the government issues
is not necessarily large enough so that it entails default. For the particular calibration I use
g0 = ḡ, and it turns out that b > b, as figure 4 shows. The probability of default is 20.85%.
Figure 5 depicts how the optimal debt issuance depends on the initial shock. For each level
of g0 we calculate the optimal debt. As noted earlier, at the extreme where the initial shock is
zero, the government is lending to the private sector, b < 0. There is a positive relationship
between the initial shock and optimal b. Note that there is a region of initial shocks for which
the optimal debt issuance is always at b.

4 Infinite horizon economy

Consider now an infinite horizon model, where the government can default on issued debt.
The uncertainty is coming from government expenditures shocks gt that take values in G,
with probability of the partial history gt equal to πt(gt). We assume that there is no uncer-
tainty at the initial period, so π0(g0) ≡ 1.

We use dt = 1 to denote default and dt = 0 when there is repayment. The resource
constraint in the economy when the government does not default is

ct + gt = ht. (24)

If the government defaults there are default costs that are captured as a technology shock.

19



0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Price of debt,  minb = 0.016159,  maxb = 0.12117 b* = 0.047865

b

q

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

0

0.005

0.01

0.015

0.02

0.025
Revenue from debt issuance R(b)

b

Figure 3: The left graph plots the price of debt, q(b). The right graph plots the revenues from debt issuance.
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Figure 5: The graph depicts the optimal debt issuance as function of the initial shock g0. The green dashed
line depicts b. Any level of optimal debt that is smaller or equal than b entails repayment with certainty. We
set the initial shock g0 = κḡ with κ ∈ {0, 0.5, 0.6, 0.8, 0.9, 0.95, 0.98, 0.99, 1, 1.1}.

The resource constraint in the event of default is

ct + gt = zht,

where z < 1. We will explore also more elaborate default costs as in Arellano (2008).

Household. The household’s preferences are

E0

∞

∑
t=0

βtu(ct, 1− ht).

The household trades with the government a discount bond that gives one unit of con-
sumption next period at any state of the world where the government is not defaulting and
zero in the event of default. The price of the bond is qt. The household pays a linear tax
τt on labor income wtht. The household’s budget constraint when the government is not
defaulting reads
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ct + qtbt+1 ≤ (1− τt)wtht + bt.

Note that the bond position bt+1 is function of information at time t. Furthermore, the
household may have some initial debt b0.

Default entails direct and indirect costs. The direct ones are in terms of output losses due
to the negative technology shock. The indirect costs are coming from the exclusion from
the market for government debt. When the government defaults at time t, bt is wiped out
and the household is also excluded from the market for new government debt at the same
period. This can be thought of as a collapse of the market. At every period after default, the
household can enter the market with probability α or stay excluded with probability 1− α.
When α = 1, the implicit cost of default is small, since the exclusion lasts only one period,
whereas when α = 0, the cost is large, since the government has to run a balanced bud-
get forever. In the open economy literature as in Arellano (2008), α is calibrated in order to
match the average duration of exclusion from international markets. The international mar-
ket justification is obviously not relevant for the closed economy, thus our market “collapse”
interpretation.

Therefore, the household’s budget constraint in the event of default, or for any period
where there is exclusion from the market is

ct = (1− τt)wtht.

The household is also subject to some borrowing limits that we assume that are large
enough so that they do not bind.

Wages. Note that in equilibrium the wage rate is wt = 1 if dt = 0 and wt = z if dt = 1 or
if there is exclusion after a default event. Note that the assumption that the direct output
costs are relevant also for any period that the household is excluded from the market for
government debt compounds the implicit default cost.

Government. The budget constraint of the government in the event of repayment is

Bt = τtwtht − gt + qtBt+1.

Bt > 0 means that the government borrows and Bt < 0 that the government lends.
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If there is default or for any period after a default event for which there is exclusion, the
government runs a balanced budget,

τtwtht = gt.

Equilibrium. A competitive equilibrium with taxes and default is a price-tuple {qt, wt},
a government policy {τt, dt, Bt}, and a household’s allocation and bond holdings {ct, ht, bt}
such that 1) Given prices and government policies, the household maximizes his utility sub-
ject to the budget constraint. 2) Given wages, firms maximize profits. 3) Prices and gov-
ernment policies are such so that markets clear: the resource constraint and the government
budget constraint hold. Furthermore, the bond market clears, bt = Bt.

Remark 2. We have used different notation for government debt and then imposed the equilibrium
condition bt = Bt. This is really redundant. Furthermore, given bt = Bt and the rest of equilibrium
conditions, the government budget constraint is redundant.

Optimality conditions. The labor supply condition is

ult
uct

= (1− τt)wt.

The Euler equation for government bonds is

qt = βEt
uc,t+1

uct
(1− dt+1).

The household is aware of the default decision of the government but is not able to affect
it. The equation shows that the equilibrium price of debt is zero, if the government defaults
with certainty. If the government repays with certainty, then it reduces to the standard Euler
equation without default.

5 Markov-perfect policy

The policymaker decides how much to tax, how much debt to issue and if he will repay
or not. His objective is to maximize the utility of the representative household. The con-
straints are the optimality conditions, the budget, and resource constraints coming from the
competitive equilibrium. We are using the primal approach of Lucas and Stokey (1983) to
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eliminate tax rates and equilibrium prices. We are assuming a Markov-perfect timing pro-
tocol as in Klein et al. (2008), so the solution to the policy problem will be time-consistent in
the payoff-relevant state variables.4

Our Markov-perfect equilibrium (MPE) has two state variables, government debt B and
the exogenous shock g, which we also assumes that is Markov. Let Vr(B, g) denote the value
function if the government decides to repay and Vd(g) the value function if the government
defaults. The value function of the government is

V(B, g) = max{Vr(B, g), Vd(g)}.

Value of default. When the government default the consumption and labor allocation is
(cd(g), hd(g)) for each value of the shock g is determined by the resource constraint, the
labor supply condition and the balanced budget requirement. Thus, it has to satisfy

Ω(c, h) = 0

c + g = zh,

as in the two-period model. Given (cd, hd) we can immediately deduce the default tax
rate, τd(g) = 1− ud

l /(zud
c ). The value of default is

Vd(g) = u(cd(g), 1− hd(g)) + β ∑
g′

π(g′|g)
[
αV(0, g′) + (1− α)Vd(g′)

]
Note that if α = 0, i.e. if the market for government debt seized to exist forever after a

default event, and if G is finite, we could calculate immediately the value of “autarky” as

Vd = (I − βΠ)−1ud.

Boldface variables denote vector columns, I the identity matrix and Π the transition matrix
of the shocks.

Default decision. Define the default set as
4See Bassetto (2005) for a careful analysis of the timing protocols underlying policy design.
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D(B) ≡ {g ∈ G|Vd(g) > Vr(B, g)}

and the repayment set as the complement of D(B),

A(B) ≡ D(B)c = {g ∈ G|Vd(g) ≤ Vr(B, g)}.

Given an amount of debt B at the beginning of the period, the default set denotes the set
of values of g for which the government decides to default, so d(B, g) = 1 if g ∈ D(B). The
repayment set corresponds to d(B, g) = 0 if g ∈ A(B). Given the default and repayment set
we have

V(B, g) = Vr(B, g), g ∈ A(B) or V(B, g) = Vd(g), g ∈ D(B).

Value of repayment. In a Markov-perfect equilibrium the planner takes into account at
the current period that he will follow an optimal policy from next period onward, given
the value of debt next period. To capture this requirement, let C(B, g) and H(B, g) de-
note the consumption and labor policy functions in the event of repayment. They satisfy
C(B, g) + g = H(B, g). The “current” planner takes into account that by choosing debt B′,
he affects the consumption-labor choice of the “future” planner though C andH. The value
of repayment is

Vr(B, g) = max
c,h,B′

u(c, 1− h) + β ∑
g′

π(g′|g)V(B′, g′)

subject to

uc(c, 1− h)B ≤ Ω(c, h) + βB′ ∑
g′∈A(B′)

π(g′|g)uc(C(B′, g′), 1−H(B′, g′))

c + g = h

c ≥ 0, h ∈ [0, 1]

We have used the Euler equation and the labor supply condition in order to rewrite the
budget constraint of the household in terms of allocations. Taking into account the opti-
mal policy functions of next period has a bite only in the case of curvature in the utility
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function. If the utility was linear in consumption, so if there was no room for manipulation
of interest rates, C and H would not be relevant and the commitment solution would be
time-consistent.

Note that given the definition of the default sets we can rewrite the problem as

Vr(B, g) = max
c,h,B′

u(c, 1− h) + β
[

∑
g′∈A(B′)

π(g′|g)Vr(B′, g′) + ∑
g′∈D(B′)

π(g′|g)Vd(g′)
]

subject to

uc(c, 1− h)B ≤ Ω(c, h) + βB′ ∑
g′∈A(B′)

π(g′|g)uc(C(B′, g′), 1−H(B′, g′))

c + g = h

c ≥ 0, h ∈ [0, 1]

MPE requirement. Let c(B, g), h(B, g) and B′(B, g) be the policy functions of the above
problem. The Markov-perfect requirement is that c(B, g) = C(B, g) and h(b, g) = H(B, g).5

Note that there may be multiple solutions for the policy functions. We are going to focus on
the MPE that is the limit of a finite horizon problem. So we are going to solve for T periods
and increase T till there is no difference in the policy and value functions.

6 Analysis

We can get two lemmata.

Lemma 5. The value of repayment is decreasing in B.

Proof. This is obvious since for B1 < B2 the constraint correspondence increases, and there-
fore the repayment value is larger at B1, Vr(B1, g) ≥ Vr(B2, g).

Since the repayment value decreases in debt we have property 1 of the two-period model,
B1 > B2 ⇒ D(B2) ⊆ D(B1).

We can define as in the two period model the upper and lower debt limit,

B̄ ≡ inf{B|D(B) = G}
B ≡ sup{B|D(B) = ∅}.

5A more precise MPE requirement would be that C(B, g) andH(B, g) are maximizers of the stated problem
in order to account for the existence of multiple solutions. This is for example what Klein et al. (2008) do.
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Lemma 6. V(0, g) = Vr(0, g), ∀g. If the government has no debt, it does not default. Thus D(0) =
∅ and B ≥ 0.

Proof. To be written.

As in the two period model, let ω(g) denote the amount of debt given the value of spend-
ing g such that the government is indifferent between defaulting and repaying,

Vd(g) = Vr(ω(g), g).

The government defaults if B > ω(g) and repays if B ≤ ω(g). We only need Claim I for
that.

Assume now that property 2 of the two-period model is true, i.e. that if g ∈ D(B) then
g′ ∈ D(B) for g′ > g, which as we saw is equivalent to a monotonically decreasing thresh-
old. If it is strictly decreasing we can define ω−1(B) as the value of government spending
that makes the government indifferent between repaying or defaulting given B, so the gov-
ernment defaults if g > ω−1(B) and repays if g ≤ ω−1(B) and we obviously have

Vd(ω−1(B)) = Vr(B, ω−1(B)).

Assume again a continuous distribution of shocks in [g, ḡ] with conditional density f (g′|g).
We can write the the value function of repayment as

Vr(B, g) = max
c,h,B′

u(c, 1− h) + β
[∫ ω−1(B′)

g
Vr(B′, g′) f (g′|g)dg′ +

∫ ḡ

ω−1(B′)
Vd(g′) f (g′|g)dg′

]
subject to

u(c, 1− h)B ≤ Ω(c, h) + βB′
∫ ω−1(B′)

g
uc(C(B′, g′), 1−H(B′, g′)) f (g′|g)dg′

c + g = h

6.1 Optimal tax rate

We will assume now differentiability and take first-order conditions. This is only to develop
intuition for the tradeoffs that the government is facing. We will not make any differentiabil-
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ity assumption in our numerical treatment of the problem. Note that non-differentiabilities
arise from two sources: a) the default decision b) the MPE requirement.

Assign multiplier Φ and λ on the implementability and resource constraint respectively.
The first-order conditions with respect to consumption and labor are

c : uc + Φ[Ωc − uccB] = λ

h : −ul + Φ[Ωh + uclB] = −λ

Eliminating λ we get

ul −Φ[Ωh + uclB]
uc + Φ[Ωc − uccB]

= 1 (25)

Given the resource constraint and (25) we can write c, h as functions of (Φ, B, g). Debt
has two effects: a direct one through B and an indirect one though Φ since at the optimum
Φ = Φ(B, g). Furthermore, we can derive the optimal tax rate as6

τ =
Φ(εcc(1− B/c) + εch + εhh + εhc(1− B/c))

1 + Φ(1 + εhh + εhc(1− B/c))
. (26)

This expressions shows the dependence of the tax rate on the marginal cost of taxation,
captured by Φ, on debt and the particular elasticities of the period utility function. For the
constant Frisch elasticity case (39) it takes the form

τ =
Φ(ρ(1− B/c) + φh)

1 + Φ(1 + φh)
. (27)

6.2 Generalized Euler equation

Consider now the optimality condition with respect to B′.

6Bear in mind also the two non-negativity conditions from the positivity of λ,

1 + Φ[1− εcc(1− B/c)− εch] > 0
1 + Φ(1 + εhh + εhc(1− B/c)) > 0

28



− ∂

∂B′

∫ ḡ

g
V(B′, g′) f (g′|g)dg′ = Φ

{∫ ω−1(B′)

g
uc(C(B′, g′), 1−H(B′, g′)) f (g′|g)dg′

+B′
[
uc(C(B′, ω−1(B′)), 1−H(B′, ω−1(B′))) f (ω−1(B′)|g)dω−1

dB′

+
∫ ω−1(B′)

g
[u′cc

∂C
∂B′
− u′cl

∂H
∂B′

] f (g′|g)dg′
]}

Note that ∂C/∂B′ = ∂H/∂B′ and that

∂

∂B′

∫ ḡ

g
V(B′, g′) f (g′|g)dg′ = f (ω−1(B′)|g)dω−1

dB′
[Vr(B′, ω−1(B′))−Vd(ω−1(B′))]

+
∫ ω−1(B′)

g

∂Vr(B′, g′)
∂B′

f (g′|g)dg′

=
∫ ω−1(B′)

g

∂Vr(B′, g′)
∂B′

f (g′|g)dg′.

Thus, we have

Proposition 2. (“GEE”) The generalized Euler equation in an environment with incomplete markets
and default takes the form

−
∫ ω−1(B′)

g

∂Vr(B′, g′)
∂B′

f (g′|g)dg′ = Φ
{∫ ω−1(B′)

g
uc(C(B′, g′), 1−H(B′, g′)) f (g′|g)dg′

+B′
[
uc(C(B′, ω−1(B′)), 1−H(B′, ω−1(B′))) f (ω−1(B′)|g)dω−1

dB′

+
∫ ω−1(B′)

g
[u′cc − u′cl]

∂C
∂B′

f (g′|g)dg′
]}

(28)

Each term of the GEE has exactly the same interpretation as in the two-period model. The
GEE equates the marginal cost of increasing debt, with the marginal benefit coming from
the relaxation of the government budget constraint at the current period. The relaxation of
the government budget constraint is coming from increasing debt revenue and being able
therefore to decrease the current tax rate. The marginal revenue expression reflects the way
the default region increases with increased debt, a fact which decreases equilibrium prices,
and the way equilibrium prices increase due to the increase of marginal utility, in the case of
∂C
∂B′ < 0.

The envelope condition under the differentiability assumption takes the form
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∂Vr

∂B
= −Φuc, (29)

which allows the rewriting of the GEE (28) in terms of the multipliers on the imple-
mentability constraint. Recall that these multipliers capture essentially the welfare cost of
the lack of lump-sum taxes, and therefore they capture tax-distortions. For that reason, we
will call Φ the excess burden of taxation. The GEE becomes

∫ ω−1(B′)

g
u′cΦ(B′, g′) f (g′|g)dg′ = Φ

{∫ ω−1(B′)

g
uc(C(B′, g′), 1−H(B′, g′)) f (g′|g)dg′

+B′
[
uc(C(B′, ω−1(B′)), 1−H(B′, ω−1(B′))) f (ω−1(B′)|g)dω−1

dB′

+
∫ ω−1(B′)

g
[u′cc − u′cl]

∂C
∂B′

f (g′|g)dg′
]}

. (30)

This form of the GEE is potentially helpful in order to contrast our analysis with Aiyagari
et al. (2002), Pouzo and Presno (2014) and Debortoli and Nunes (2013). In order to see that,
turn into sequence notation and note that since dt+1 = 1 if gt+1 ∈ (ω−1(Bt+1), ḡ], we can
write the GEE as

Et(1− dt+1)uc,t+1Φt+1 = Φt

{
Et(1− dt+1)uc,t+1 + Bt+1 ·

[
uc,t+1 f (ω−1(Bt+1)|gt)

dω−1

dB′

+Et(1− dt+1)(ucc,t+1 − ucl,t+1)
∂C
∂B′
]}

Define the positive random variable mt+1 ≡
(1−dt+1)uc,t+1

Et(1−dt+1)uc,t+1
, which by construction inte-

grates to unity, Etmt+1 = 1. This random variable determines the default-and-risk-adjusted
measure, with conditional density f m(gt+1|gt) ≡ mt+1 · f (gt+1|gt). By dividing the GEE over
expected marginal utility over the repayment region, we can rewrite the GEE as

Etmt+1Φt+1 = Φt

{
1 + Bt+1 ·

[
f m(ω−1(Bt+1)|gt)

dω−1

dB′
+ Etmt+1

ucc,t+1 − ucl,t+1

uc,t+1

∂C
∂B′
]}

(31)

This form of the GEE makes clearer the connection to the tax-smoothing literature. At first,
note that the left-hand side denotes the average tax distortions with respect to the default-
and-risk-adjusted measure. The right-hand side, as previously, denotes the change in the
revenue from debt issuance due to a larger position (the first term that is unity in (31))
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and to the pricing effects that a larger position entails, due to the lack of repayment en-
forcement and the lack of commitment to tax policies designed in the past. Consider for
example the setup of Aiyagari et al. (2002). Since there is no default and no commitment,
and incomplete markets, the respective tax-smoothing condition is Etxt+1Φt+1 = Φt, where
xt+1 ≡ uc,t+1/Etuc,t+1, the risk-adjusted change of measure. Thus, the planner tries to keep
on average (with respect to the risk-adjusted measure) tax distortions constant. In contrast,
here the planner does not try to make average distortions constant due to the lack of com-
mitment to the two dimensions of policy, debt repayment and tax rates. If the reduction in
interest rates due to the marginal utility channel is larger than the increase in interest rates
due to default risk, then it is optimal for the planner to tax less today, issue more debt and
postpone on average distortions for the future. This translates to a positive drift in the ex-
cess burden according to the default-and-risk-adjusted measure, Etmt+1Φt+1 ≥ Φt, when
Bt+1 > 0. The opposite will happen if the default force is stronger, i.e. if default premia
increase so much that they dominate the decrease in interest rates due to high marginal util-
ity. Then the planner on average wants to decrease the excess burden over time, so he taxes
more today and less on average in the future. This negative drift in the excess burden should
also materialize as a negative drift in debt.7

7 Long-term debt

Consider now the possibility of long-term debt with exponentially decaying coupons as in
Hatchondo and Martinez (2009) and Chatterjee and Eyigungor (2012).8 Coupons decay at
the rate δ, so the coupon payments are (1− δ)i, i ≥ 0. Assume that the government chooses
every period to default or not on all current and future debt obligations and that the same
costs (direct and indirect in form of the exclusion from debt markets) apply as in the case
with short-term debt (δ = 1). Under this assumption the definition of the default value
function remains the same as previously.

To calculate the value of repayment, we need to modify the policy problem. Let Bt denote
the debt obligation of the government at the beginning of the period, which consists of the
coupon payments that correspond to debt issued in all previous periods. This takes the form
of

7Debortoli and Nunes (2013) and Krusell et al. (2004) analyze interest rate manipulation in deterministic
setups through the marginal utility channel, so they do not consider uncertainty and default. Their respective
GEE is the deterministic version of (31). In Pouzo and Presno (2014), the manipulation of prices through the
marginal utility channel is not present due to the commitment to previously designed tax policies, so their
respective GEE exhibits only the default term.

8See also Woodford (2001) for the analysis of non-Ricardian fiscal regimes with this type of long-term debt.
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Bt = bt + (1− δ)bt−1 + (1− δ)2bt−2 + ... = bt + (1− δ)Bt−1,

where bt are the holdings of the security at end of period t− 1, bt−1 the previous period (so
it provides a coupon of(1− δ), etc. Thus, the household’s budget constraint in the event of
repayment reads

ct + qt(Bt+1 − (1− δ)Bt) = (1− τt)wtht + Bt

The Euler equation with defaultable long-term debt becomes

qt = βEt
uc,t+1

uct
(1− dt+1)

[
1 + (1− δ)qt+1

]
, (32)

which becomes

Qt = βEt(1− dt+1)
[
uc,t+1 + (1− δ)Qt+1

]
(33)

if we define Qt as the price of long-term debt in marginal utility units, Qt ≡ uct · qt.

7.1 Value of repayment

The policy-maker that cannot commit takes into account that the future policy-maker will
follow an optimal policy. Let C(B′, g′),H(B′, g′) andK(B′, g′) denote the consumption, labor
and debt policy function next period. The value of repayment is defined as

Vr(B, g) = max
c,h,B′

u(c, 1− h) + βEg′|gV(B′, g′)

subject to

[uc(c, 1− h) + (1− δ)Q(B′, g)]B ≤ Ω(c, h) + Q(B′, g)B′

c + g = h

c ≥ 0, h ∈ [0, 1]

where the price of long-term debt satisfies the following recursion,
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Q(B′, g) = βEg′|g(1− d(B′, g′))
[
uc(C(B′, g′), 1−H(B′, g′)) + (1− δ)Q

(
K(B′, g′), g′

)]
Note that the fact that debt is not short-lived, requires the specification of next period’s

debt policy function, in order to determine the price of the long-term asset. The Markov-
perfect requirement is obviously c(B, g) = C(B, g), h(B, g) = H(B, g) and B′(B, g) = K(B, g).

7.2 Analysis

The optimality conditions with respect to c, h are the same as in the case with short-term
debt, leading to the same formula for the optimal wedge and tax rate, (25) and (26). Consider
the optimal debt issuance, that is governed by the following equation:

−β
∂

∂B′
Eg′|gV(B′, g′) = Φ · [Q(B′, g) +

∂Q
∂B′

(
B′ − (1− δ)B

)
] (34)

As previously, the left-hand side denotes the cost of issuing more debt, whereas the right-
hand side the welfare benefit of the marginal revenue from debt issuance. Note that a change
in price affects also the price of the remaining coupons that are to be paid in the future, due
to the long-term nature of debt. The respective envelope condition with long-term debt is

∂Vr(B, g)
∂B

= −Φ[uc + (1− δ)Q]. (35)

To get a simpler expression, assume as previously that default sets have a “nice” struc-
ture, A(B′) = [g, ω−1(B′)] and that the conditional density of shocks is f (g′|g). The deriva-
tive of price with respect to debt is

∂Q
∂B′

= β
[{

uc
(
C(B′, ω−1(B′)), 1−H(B′, ω−1(B′))

)
+ (1− δ)Q(K(B′, ω−1(B′)), ω−1(B′))

}
f (ω−1(B′)|g)dω−1

dB′︸ ︷︷ ︸
decrease in prices due to increased default prob. (-)

+
∫ ω−1(B′)

g

(
u′cc − u′cl

) ∂C
∂B′

f (g′|g)dg′︸ ︷︷ ︸
increase in price due to increase in MU (+)

+ (1− δ)
∫ ω−1(B′)

g

∂Q′

∂B′′
∂K
∂B′

f (g′|g)dg′︸ ︷︷ ︸
future price change

]
(36)

The derivative of the price with respect to debt exhibits again the two forces that we
previously identified: the decrease in prices due to an increased default probability (the
first term in the right-hand side of (36) ) and the increase in prices due to increased marginal
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utility (the second term in the right-hand side). Debt though is long-lived so there are capital
gains and losses and the derivative of the current price is determined also by the (properly
discounted) derivative of the future price Q′ with respect to debt, taking into account how
the current debt issuance will affect future debt issuance, ∂K/∂B′.

As in the case with short-term debt, we will write the GEE in terms of the multipliers on
the implementability constraint, or else in terms of the excess burden, in order to understand
the implied tax and debt decisions over states and dates.

Proposition 3. (“GEE with long-term debt”)

1. Define the default-and-long-term-debt-adjusted change of measure as

nt+1 ≡
(1− dt+1)

[
uc,t+1 + (1− δ)Qt+1

]
Et(1− dt+1)

[
uc,t+1 + (1− δ)Qt+1

] ≥ 0 with Etnt+1 = 1.

Define also the price semi-elasticity with respect to debt as ηt ≡ ∂Qt
∂Bt+1

1
Qt

. Then the GEE takes
the form

Etnt+1Φt+1 = Φt ·
[
1 + (Bt+1 − (1− δ)Bt)ηt

]
(37)

2. The semi-elasticity ηt follows the recursion

ηt =
[

f n(ω−1(Bt+1)|gt)
dω−1

t+1
dBt+1

+ Etnt+1
ucc,t+1 − ucl,t+1

uc,t+1 + (1− δ)Qt+1

∂Ct+1

∂Bt+1

]
+(1− δ)Etnt+1

Qt+1

uc,t+1 + (1− δ)Qt+1

∂Kt+1

∂Bt+1
ηt+1 (38)

where f n(gt+1|gt) ≡ nt+1 · f (gt+1|gt), the default-and-long-term-debt-adjusted conditional
density. Thus, ηt captures the present value of the two opposing price effects,

ηt = En
t

∞

∑
i=1

(1− δ)i−1

(
i−1

∏
j=1

Qt+j

uc,t+j + (1− δ)Qt+j
·

∂Kt+j

∂Bt+j

)
·
[

f n(ω−1(Bt+i)|gt+i−1)
dω−1

t+i
dBt+i

+
ucc,t+i − ucl,t+i

uc,t+i + (1− δ)Qt+i

∂Ct+i

∂Bt+i

]
,

where En
t denotes expectation according to the default-and-long-term-debt-adjusted measure.
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Thus, with long-term debt the entire stream of the future opposing pricing effects af-
fect the elasticity of prices with respect to debt and therefore the revenue schedule of the
government– thus its decisions to postpone or not taxes for the future. Obviously, for δ = 1
the above formulas reduce to the case with short-term debt and the GEE becomes the same
as (31).

8 Numerical results

For our basic numerical exercise we are using a utility function with constant Frisch elastic-
ity,

U =
c1−ρ − 1

1− ρ
− ah

h1+φh

1 + φh
. (39)

At this stage we are are abstaining from simulations and merely use some standard val-
ues for the parameters in order to illustrate the main forces of the model, as captured by the
policy functions for consumption, debt issuance and default. Our future goal is to have a
calibration that considers particular characteristics of a country.

We set (β, φh, ρ) = (0.9, 1, 2). The labor disutility parameter is set to ah = 19.2901, so that
the household works 40% of its time at the first-best. For the government expenditure shocks
we assume that they are i.i.d. and that they follow a uniform distribution, g ∼ U[g, ḡ], where
g = 0 and ḡ = 0.08. The maximum amount of g corresponds to 20% of first-best output.
In the future we are also going to use a persistent specification of shocks and perform the
computation for the case of long-term debt.

The probability of re-entry is set to unity, α = 1. We allow asymmetric default costs,
i.e. it is less costly to default when government expenditures are high. We use a linear
specification, z(g) = z(g) + λz(g− g), where (z(g), λz) = (0.98, 0.2375).

There are several issues with the numerical computation of the problem. These issues
have to do with non-convexities which lead to discontinuous policy functions and touch
upon the Markov-perfect nature of policy.

8.1 Deterministic setup: non-convexities and discontinuities

If we shut off uncertainty and the option to default, the setup reduces to a deterministic
Lucas and Stokey (1983) economy where the policymaker has no commitment. The GEE
(31) reduces to
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Figure 6: Consumption and debt policy function in the Krusell et al. (2004) economy. The crosses ‘+’ corre-
spond to steady states. At the right of each of these points, there is a jump upwards in the debt and consump-
tion policy function.

Φt+1 = Φt · [1 +
ucc,t+1 − ucl,t+1

uc,t+1

∂C
∂Bt+1

· Bt+1].

Krusell et al. (2004) have shown that the non-convexities associated with the Markov-
perfect assumption in this economy introduce serious discontinuities in the policy functions
for consumption and debt.9 The GEE is then valid only locally. Figure 6 displays the sever-
ity of these discontinuities. The debt policies are continuous from the left. At each jump,
if current debt increases marginally, the current planner has an incentive to issue a large
amount of debt for next period, reducing a lot the interest rate (since the consumption of the
future policymaker will jump downwards and therefore marginal utility will jump upwards)
and allowing therefore to tax less currently– which is why also current consumption jumps
upwards as well.

9Debortoli and Nunes (2013) allow government spending to provide utility, an assumption which retrieves
continuity of the policy functions by altering the reaction functions of the future policymaker. See also Occhino
(2012). This assumption is not necessarily useful when we are interested in analyzing the incentives to default,
because with endogenous government spending there is typically a negative drift in taxes and debt. As a
result, we conjecture that the government would never accumulate an amount of debt that it would default
upon with some positive probability.
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Figure 7: The left panel depicts average marginal utility (“price”), in a world with Markov-perfect policy
under uncertainty and without default. The right panel plots the respective revenue from debt issuance.

8.2 Stochastic setup

When we turn into a stochastic setup, there is a possibility for elimination of the jumps in the
policy functions, due to the smoothing effect of uncertainty. To see that in a heuristic way,
drop for simplicity the option to default and consider the average marginal utility over the
entire support of government expenditures, Etuc(C(Bt+1, gt+1)). This object captures equi-
librium prices and is the source of discontinuity in the implementability constraint, through
the actions of the future policymaker C. Assume for the sake of the argument that each
policy functions of consumption for next period (index by g′), is discontinuous in B′. As
long as the points where the policy functions have jumps are countable and not the same
across shocks g′, average marginal utility will smooth out the jumps, leading to a continu-
ous price function of debt. At a more fundamental level, uncertainty partially “convexifies”
the constraint set.10

8.2.1 No option to default

To see the smoothing effect of uncertainty numerically consider first the Markov-perfect
policy without the option to default. The GEE (whenever valid) takes the form

10A formal introduction of lotteries in debt would perform the same role. We are abstaining from this cur-
rently.
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Figure 8: Policy functions for consumption, taxes and debt in a world with Markov-perfect policy under
uncertainty and without default. The policy functions are drawn for three different level of government ex-
penditures.

Etxt+1Φt+1 = Φt ·
[
1 + Etxt+1

ucc,t+1 − ucl,t+1

uc,t+1

∂C
∂Bt+1

· Bt+1
]
, xt+1 ≡

uc,t+1

Etuc,t+1

In that case, we have only the average interest-rate effects emerging from the Markov-
perfect policy assumption through C. More debt for tomorrow is reducing the interest rate
by increasing next period’s average marginal utility, giving an incentive to the planner to
increase average distortions tomorrow relative to today, i.e. giving an incentive to back-load
tax distortions.

The left panel in figure 7 depicts the effect of Markov-perfect policy on equilibrium
prices. An increase in debt for next period, reduces consumption and increases average
marginal utility, reducing the interest rate. Note that uncertainty has smoothed out the
jumps in policy functions, leading to a continuous and increasing pricing schedule. The
right panel depicts the respective revenue from debt issuance, which, since there is not de-
fault risk, is always increasing. Figure 8 depicts the respective policy functions for consump-
tion, taxes and debt.
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Figure 9: Default and repayment sets in the infinite horizon economy. The vertical line is plotted at the
maximizer of the debt Laffer curve.

8.2.2 Default option

We turn now to the full-blown model with the option to default. Figure 9 plots the default
and repayment sets. Both of our claims are valid, i.e. the default set is increasing in debt and
the country defaults more in “bad” times (high government expenditure shocks). Figure 10
plots the price schedule and the debt Laffer curve in an economy with Markov-perfect policy
and default. In contrast to the findings of figure 7, the price schedule starts to decrease when
we enter the region where there is positive probability of default, i.e. the negative price effect
of an increased default probability is larger than the positive price effect through the reaction
function of the future policymaker, C. Furthermore, the amount of debt that corresponds to
the maximum of the debt Laffer curve is larger than the maximum amount of debt for which
the government repays with certainty. As a result, there is a region for which there is risky
debt in equilibrium.11 Lastly, figure 11 plots the respective policy functions for consumption,
taxes and debt in the event of repayment and default.

11See Arellano (2008) for a discussion of the importance of the maximum of the debt Laffer curve in an open
economy without distortionary taxation.
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Figure 10: Price schedule and debt Laffer curve in the economy with default. Note that the price is increasing
initially in debt (as in the economy without default) and then it starts decreasing when we enter the region
where there is positive probability of default.
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Figure 11: Policy functions for consumption, taxes and debt in the full-blown model with default. The policy
functions are drawn for three different level of government expenditures.
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9 Concluding remarks

In this paper we analyze optimal distortionary taxation in a setup where policymakers can
commit to neither repaying debt nor to the taxation and debt scheme devised in the past. We
want to understand how this double absence of commitment alters the basic tax-smoothing
and debt issuance prescriptions. We are motivated by the fact that domestic sovereign de-
fault is an empirically relevant phenomenon, as Reinhart and Rogoff (2011) showed. Ulti-
mately, we want to use our optimal policy exercise in order to evaluate various fiscal rules
that have been proposed.
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A Proof of proposition 3

Proof. Note that the derivative of the value function takes the form

∂

∂B′
Eg′|gV(B′, g′) =

∫ ω−1(B′)

g

∂Vr(B′, g′)
∂B′

f (g′|g)dg′ = Et(1− dt+1)
∂Vr

t+1
∂Bt+1

.

Update the envelope condition (35) one period and rewrite (34) in sequential form as

βEt(1− dt+1)[uc,t+1 + (1− δ)Qt+1]Φt+1 = Φt

[
Qt + (Bt+1 − (1− δ)Bt)

∂Qt

∂Bt+1

]
Divide over Qt and remember that Qt satisfies the recursion (33). Use that fact in order to

express the expectation in term of nt+1 to finally get (37). To get the recursion for ηt, divide
(36) over Qt and write it in sequential form as

ηt = β
[(uc,t+1(Bt+1, ω−1(Bt+1)) + (1− δ)Qt+1(K(Bt+1, ω−1(Bt+1)), ω−1(Bt+1))

)
Qt

f (ω−1(Bt+1)|gt)
dω−1

dBt+1

+Et
(1− dt+1)

Qt
[ucc,t+1 − ucl,t+1]

∂C
∂Bt+1

+ (1− δ)Et
(1− dt+1)

Qt
Qt+1

∂Kt+1

∂Bt+1
ηt+1

]
Use again (33) and the definition of nt+1 to finally get (38).
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Krusell, Per, Fernando M. Martin, and José-Vı́ctor Rı́os-Rull. 2004. Time-consistent debt.
Mimeo, Institute for International Economic Studies.

Lucas, Robert Jr. and Nancy L. Stokey. 1983. Optimal fiscal and monetary policy in an econ-
omy without capital. Journal of Monetary Economics 12 (1):55–93.

Martin, Fernando M. 2009. A Positive Theory of Government Debt. Review of Economic
Dynamics 12 (4):608–631.

Occhino, Filippo. 2012. Government debt dynamics under discretion. The B.E. Journal of
Macroeconomics 12 (1).

43



Pouzo, Demian and Ignacio Presno. 2014. Optimal taxation with endogenous default under
incomplete markets. Mimeo, UC Berkeley.

Reinhart, Carmen M. and Kenneith S. Rogoff. 2011. The Forgotten History of Domestic Debt.
The Economic Journal 121 (552):319–350.

Sturzenegger, F. and J. Zettelmeyer. 2006. Debt Defaults and Lessons from a Decade of Crises.
The MIT press.

Woodford, Michael. 2001. Fiscal Requirements for Price Stability. Journal of Money, Credit and
Banking 33:669–728.

44


	Introduction
	A two-period economy
	Optimal policy in the two-period economy
	Default and repayment sets
	Properties of the default decision
	Problem at t=0 
	Quasi-linear example
	Numerical illustrations for the quasi-linear case

	Infinite horizon economy
	Markov-perfect policy
	Analysis
	Optimal tax rate
	Generalized Euler equation

	Long-term debt
	Value of repayment
	Analysis

	Numerical results
	Deterministic setup: non-convexities and discontinuities
	Stochastic setup
	No option to default
	Default option


	Concluding remarks
	Proof of proposition 3



