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Dynamic Legislative Policy Making under Adverse Selection

Vincent Anesi∗

August 3, 2018

Abstract

This paper develops a dynamic model of legislative policy making with evolving,

privately observed policy preferences. Our goal is to �nd conditions under which de-

cision rules, which assign feasible policies based on the legislators' preferences, are

sustainable in the long run. We show that under some mild conditions, every decision

rule that would be implementable with monetary transfers can be approximately sus-

tained in a perfect Bayesian equilibrium of the dynamic model. In this equilibrium,

the legislators receive payo�s arbitrarily close to those they would obtain if they could

commit ex ante to truthfully apply the decision rule in every period. An application of

our result yields a dynamic issue-by-issue median voter theorem in the vein of Baron's

(1996) for a spatial framework with incomplete information.

JEL classi�cation: D71; D72; D78
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1 Introduction

Since the seminal work of Baron (1996), dynamic bargaining games with an endogenous

status quo have taken on increasing prominence in the analysis of legislative policy making.

As pointed out by Kalandrakis (2004), in many cases, �legislation remains in e�ect after its

promulgation only until or unless the legislature passes a new law. Thus it appears natural

to study dynamic bargaining games where (a) policy decisions can be reached in any period,

and (b) in the absence of agreement among the bargaining parties in any given period the

status quo policy prevails.� In that vein of research, the notion of dynamic stability has

received particular attention � e.g., Diermeier and Fong (2011, 2012), Acemoglu et al.

(2012), Richter (2014), Anesi and Seidmann (2015), Baron and Bowen (2015), Anesi and

Duggan (2017), and Baron (forthcoming). A feasible policy is dynamically stable if, when

legislators are su�ciently patient, it is an equilibrium absorbing state of the bargaining

game; i.e., there is an equilibrium in which this policy is implemented and never amended.

The literature has focused its attention so far on the characterization of the dynamically

stable policies in settings where the legislators' preferences are publicly observable.

The main objective of this paper is to contribute further to this research program by

developing a theory of dynamic stability in general legislative-bargaining environments

with evolving, privately observed policy preferences. In such environments, bargaining

outcomes in every period can be described by outcome functions or, to use the language

of collective choice theory, �decision rules� that map the realizations of the legislators'

privately observed types to policies. Our main goal is to identify su�cient conditions

for such a decision rule to be sustainable in the long run, in the sense that the policy

implemented by the legislature in (almost) every period in equilibrium coincides with the

outcome prescribed by the decision rule.

To provide a basic intuition for the approach taken in this paper to dynamic stability,

suppose a legislature has (informally) agreed on some decision rule to be used for making

compromises among its members' preferences in every period. Two main obstacles must

be overcome for this rule to be successfully sustained in the long run. First, its application

is the responsibility of the legislators themselves and, in most cases, they cannot commit
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ex ante to implement it. Second, an important feature of legislative decision making is

that legislators' preferences are not publicly observable. This private information creates

incentives for legislators to dissemble and, as a result, there is no guarantee that the ap-

plication of the decision rule will generate the intended outcome (e.g., Austen-Smith and

Banks, 2005). This is the well-known adverse selection problem. One standard mode of

attack on this problem in conventional mechanism-design settings is to use �compensatory

transfers� among agents to induce them to truthfully reveal their preferences (e.g., La�ont

and Maskin, 1982). The idea is to couple the decision rule with preference-dependent mon-

etary transfers among agents so as to obtain a social choice function that is strategy-proof,

in the sense that strategic behavior leads to the outcomes that would have been obtained

were preferences publicly observable. Such transfers, however, are typically unavailable

in legislative bargaining environments, either because utilities are nontransferable, and/or

because the resources the legislature can distribute among its members are insu�cient to

overcome incentive constraints. Our main result shows that in many cases of interest, this

is a nonissue.

More precisely, we develop a model in which each period begins with a status quo policy

inherited from the previous period. The legislators �rst receive private information deter-

mining their types, and then communicate. Types are distributed according to Markov

chains, independent across players. As is common in the literature (e.g. Austen-Smith

1990a,b), we model communication as cheap-talk messages between the legislators. Fol-

lowing the communication stage, legislators are given the opportunity to propose amend-

ments to the ongoing status quo in a random order; the �rst proposal that is voted up

is implemented in that period and becomes the next period's status quo; if all proposals

are voted down, then the status quo is implemented and remains in place until the next

period. This process continues inde�nitely. We �nd that under a weak gradient condition

on the legislators' utilities, if a decision rule is implementable with compensatory transfers,

then it is approximately sustainable in the dynamic bargaining game, in the sense that if

legislators are su�ciently patient, then there is an equilibrium in which policies arbitrarily

close to those prescribed by the rule are implemented arbitrarily often. In this equilibrium,
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legislators receive payo�s arbitrarily close to those they would get if they could commit to

truthfully implement the decision rule in every period. As an application of this result, we

prove a �dynamic issue-by-issue median voter theorem� in the vein of Baron's (1996) for a

spatial setting with incomplete information.

The gradient condition holds generically outside a set of decision rules with measure

zero if the policy space is su�ciently high dimensional. However, we also show that it can

be dispensed with in two variants of our baseline model. In the �rst variant, the legislature

can also distribute a given amount of a limited and divisible resource among its members.

In the second, the legislators can use a public randomization device in every period.

Existing models that combine legislative policy making and asymmetric information

typically focus on situations in which the legislature makes a single decision � e.g., Austen-

Smith and Riker (1987), Meirowitz (2007), Tsai and Yang (2010), and Chen and Eraslan

(2013, 2014). Our aim is to study how decision rules can be sustained through repeated

interaction despite informational asymmetries. This calls for a model in which legislators

make a sequence of decisions.

As mentioned above, there is a the large and growing body of literature which, like this

paper, studies in�nitely repeated legislative interaction in settings with an endogenous sta-

tus quo.1 But this entire literature has focused on complete-information environments. To

the best of our knowledge, this paper constitutes the �rst attempt at introducing incom-

plete information into the dynamic legislative bargaining process with endogenous status

quo. The Markovian evolution of types is however a feature that we share with Kalan-

drakis' (2009) model of repeated elections, in which the two parties' privately observed

preferences change with higher probability following defeat in elections.

The idea of using continuation payo�s as substitutes to monetary transfers to overcome

incentive constraints in dynamic environments is certainly not new. In particular, various

approaches of doing so can be found in the literature on dynamic Bayesian games � see

1See, in addition to the references mentioned above, Baron and Herron (2003), Kalandrakis (2010,

2016), Battaglini and Palfrey (2012), Bowen and Zahran (2012), Duggan and Kalandrakis (2012), Bowen

et al. (2014), Nunnari (2014), Anesi and Seidmann (2015), Baron and Bowen (2015), Piguillem and Riboni

(2015), Dziuda and Loeper (2016), Zápal (2016), and Bowen et al. (2017) to cite a few.
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Hörner et al. (2015) and the references therein for a recent account. Our approach, as

well as our goal and framework, are di�erent. Moreover, in contrast to most existing

work in this area, our main results allow for in�nite choice sets, do not require a public

randomization device, and our focus is on policy outcomes rather than payo� vectors. In

particular, our main result allows us to sustain (without a randomization device) decision

rules of interest, which may be Pareto ine�cient (such as the issue-by-issue rule).2

The next section introduces the dynamic bargaining framework. Section 3 presents our

main approximation result, followed by an application and a sketch of its proof. Finally,

Section 4 contains variants on the main result that do not require high-dimensional policy

spaces. The appendix and supplementary appendix contain proofs omitted from the body

of the paper.

2 Framework

Legislative bargaining game. Let X ⊆ Rd be a set of alternatives with nonempty

interior; and let N ≡ {1, . . . , n} be a �nite set of players, or �legislators,� who must choose

an alternative from X in each of an in�nite number of discrete periods, indexed t = 1, 2, . . ..

The timing of legislative interaction is as follows in each period t. Each legislator

i ∈ N �rst privately learns her type, θti , which is drawn from a �nite set Θi according

to an autonomous Markov chain (λi, Pi), where λi is the initial distribution and Pi is the

transition matrix. We assume that the Markov chains (λi, Pi), i ∈ N , are independent.

Let Θ ≡
∏
i∈N Θi, and let (λ, P ) be the joint type process. We further assume that (λ, P )

is irreducible. Its invariant distribution, π, can be expressed as π = π1 × · · · × πn, where

πi denotes the invariant distribution for (λi, Pi).

After learning their types, the legislators simultaneously send messages to the other

members of the legislature, with legislator i's message mt
i ∈ Θi being publicly observable.

Finally, they collectively choose a single policy xt from X as follows. There is a status

2Although to our knowledge our arguments are novel, it is worth emphasizing that they are predicated

on a statistical test Escobar and Toikka (2013) developed to approximate e�cient payo� vectors in dynamic

Bayesian games � see Subsection 3.3.
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quo policy xt−1, inherited from the previous period. An order of proposers (ρ1, . . . , ρn) is

randomly selected from the set Π of all permutations of N , with each permutation in Π

having a positive probability of being selected. Proposer ρ1 then makes the �rst proposal

y ∈ X; once the proposal is made, legislators vote sequentially (in an arbitrary order)

over whether to accept it. The proposal is accepted if at least q legislators vote to accept,

and it is rejected otherwise, where n/2 < q < n. If the proposal is accepted, then it is

implemented, payo�s (which we elaborate on below) accrue and the game transitions to

the next period, where the new status quo is xt = y; otherwise, proposer ρ2 is called upon

to make a proposal and the same process is repeated. If all legislators make unsuccessful

proposals, then the status quo xt−1 is implemented and remains the status quo in period

t+1. The game begins with some exogenously given status quo x0, and each of the proposal

rounds takes a negligible amount of time.

The payo� structure is one of private values: each player's preferences over X only de-

pend on her own type. More precisely, at the end of period t, each player i receives a payo�

ui(x
t, θti) where, for every θi ∈ Θi, ui(·, θi) is a bounded and continuously di�erentiable

utility function on X.

The above process is repeated ad in�nitum. Each player discounts her per-period

utilities with a discount factor δ ∈ [0, 1), and seeks to maximize her expected average

discounted sum of per-period utilities. Players are allowed to use mixed strategies, and the

equilibrium concept is that of a perfect Bayesian equilibrium (PBE), de�ned in the usual

fashion.

Implementable decision rules and sustainability. A decision rule is a mapping from

the type space into the space of alternatives, χ : Θ → X. In what follows, we view the

set of decision rules as X |Θ| ⊆ Rd|Θ|, and refer to any element of intX |Θ| as an interior

decision rule.

A decision rule is said to be implementable (with compensatory transfers) if there exists

a transfer function ψ = (ψ1, . . . , ψn) : Θ→ Rn such that

ui
(
χ(θi, θ−i), θi

)
+ ψi(θi, θ−i) ≥ ui

(
χ(θ′i, θ−i), θi

)
+ ψi(θ

′
i, θ−i) ,
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for all i ∈ N , θ−i ∈ Θ−i and θi, θ
′
i ∈ Θi,

3 or to use the language of social choice theory, such

that the social choice function
(
χ(·), ψ(·)

)
is strategy-proof. In other words, implementable

decision rules provide no opportunities for any legislator to manipulate the outcome prof-

itably by misrepresenting her preferences, given an appropriately chosen transfer function.

As mentioned earlier, the political economy literature on dynamic collective choice

in complete-information environments has devoted considerable attention to dynamically

stable policies, i.e., policies that can be supported as absorbing points of equilibria for

dynamic bargaining games when players are su�ciently patient. The following de�nition

introduces a weaker version of dynamic stability for settings with adverse selection.

De�nition 1. A decision rule χ is approximately sustainable if for every ε > 0, there

exists a strategy pro�le σ for the legislative bargaining game such that:

(i) there is δ̄ < 1 such that, for all δ ∈ (δ̄, 1), σ is a PBE; and

(ii) denoting by
{
x̃t(σ)

}
the policy sequence induced by σ, we have

lim supPrσ

{
1

T

T∑
t=1

1{
|x̃t(σ)−χ(θ̃t)|>ε

} > ε

}
< ε

(where the lim sup is over T ∈ N).

In other words, a decision rule χ is approximately sustainable if, when players are suf-

�ciently patient, there exist PBEs in which policies arbitrarily close to those prescribed by

χ are implemented arbitrarily often, in the sense that the empirical frequency of deviations

from that rule can be made arbitrarily small with a probability arbitrarily close to one.

An important implication of approximate sustainability is that the payo� vector induced

by the decision rule χ can be approximated arbitrarily closely in a PBE as δ → 1.

3Rochet (1987) and Bikhchandani et al. (2006) provide general characterizations of implementable

decision rules.
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3 Sustainability in High-Dimensional Policy Spaces

3.1 Main Result

In this section, we present a simple condition under which decision rules that are im-

plementable with transfers can be approximately sustained in equilibria of the legislative

bargaining game (without transfers). Consider �rst the complete-information case in which

|Θi| = 1 for all i ∈ N , so that an (implementable) decision rule is simply a policy in X. A

su�cient condition for the approximation of a given policy x is that in every open neigh-

borhood of x, there is a policy that is implemented in every period in some equilibrium. It

follows from Anesi and Duggan's (2018) analysis of a complete-information version of the

legislative bargaining game above that, given a policy space of su�ciently high dimension

and su�ciently patient legislators, this condition holds generically outside a set of poli-

cies with measure zero. Our goal is to extend their result to non-trivial decision rules in

incomplete-information environments.

To begin, we must establish some notation. For all x = (x1, . . . , xd) ∈ X, i ∈ N and

θi ∈ Θi, let ∇1ui(x, θi) denote the gradient of ui(·, θi) at x, i.e.,

∇1ui(x, θi) ≡
(
∂ui
∂x1

(x, θi), . . . ,
∂ui
∂xd

(x, θi)

)
.

We say that an interior decision rule χ satis�es condition (C) if the following holds:

(C)
{
∇1ui

(
χ(m), θi

)
: i ∈ N & θi ∈ Θi

}
is linearly independent for every m ∈ Θ.

Intuitively, when χ satis�es condition (C), we can obtain all values of the utilities(
ui(·, θi)

)
i∈N,θi∈Θi

in some open neighborhood of
(
ui(χ(m), θi)

)
i∈N,θi∈Θi

by arbitrarily

small variations of χ(m), for each m ∈ Θ � see Lemma 1 below. How restrictive

is condition (C)? In su�ciently high dimensional settings with d ≥
∑

i∈N |Θi| ≡ k,

Scho�eld's (1980) Singularity Theorem A implies that for generic pro�les of utility func-

tions
(
ui(·, θi)

)
i∈N,θi∈Θi

, condition (C) generically holds outside a closed set of decision

rules with measure zero.4 We conclude that, in su�ciently high dimensional policy spaces,

�almost all� decision rules satisfy this condition.

4Recall that we view the set of decision rules as a subset of Rd|Θ|. Scho�eld's (1980) result holds if
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Theorem 1. Let χ be an interior decision rule that satis�es condition (C). If χ is imple-

mentable with compensatory transfers, then it is approximately sustainable.

A sketch of the proof is provided in Subsection 3.3, and the complete proof can be found

in the appendix. Theorem 1 establishes that, coupled with condition (C), implementability

of a decision rule guarantees that it can be approximately sustained in equilibrium. An

immediate implication of this result is that, for every implementable decision rule χ that

satis�es (C), there is a PBE in which all legislators receive approximately the same payo�s

as if they were able to commit to truthfully implement χ in every period.

As explained above, condition (C) is mild in high-dimensional policy spaces. Choice

sets in legislative bargaining contexts are more often than not highly dimensional. Not only

do legislators bargain over bundles of policies (e.g., Câmara and Eguia 2017), but most

policy issues are themselves multidimensional in nature (e.g., Baumgartner et al. 2000).

Nevertheless, policy spaces only have a small number of dimensions in some applications

of interest. We show in Section 4 that if the legislature can either distribute some bene�t

among its members or use a public randomization device, then the above results can be

extended to a very general class of policy spaces, including �nite sets.

3.2 Application: Dynamic (Issue-by-issue) Median Voter Theorem

Before turning to the proof of Theorem 1, we consider an example that illustrates how it

can be applied. A common approach for studying majority voting outcomes in multidi-

mensional settings is to use the issue-by-issue rule (e.g., Austen-Smith and Banks 2005),

which selects the median of the legislators' ideal points in each dimension, or �issue,� of

the policy space. Can it be sustained as a long-run equilibrium outcome of the dynamic

legislative bargaining game? Baron (1996) and Zápal (2016) establish �dynamic median

voter theorems� for the one-dimensional case under complete information, providing con-

ditions under which the median-ranked ideal policy (or Condorcet winner) is an absorbing

we give the space of twice continuously di�erentiable utility pro�les the Whitney topology. We obtain

the claim by setting w = d and z = k in Scho�eld's theorem (and from the fact that the product of

measure-zero sets is null).
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point of stationary equilibria. In this subsection, we apply our weaker notion of dynamic

stability to the issue-by-issue rule in an incomplete-information version of the standard

multidimensional spatial model with Euclidean preferences. (The one-dimensional case

will be studied in Section 4.)

Let the policy space be X = [−B,B]d, where B > 0 is arbitrarily large and d ≥ k; let

q = (n + 1)/2; and, for each i ∈ N , let Θi ⊂ R. For convenience here, assume there is an

odd number of legislators and that policy preferences are of the form:

ui(x, θi) = −
d∑
`=1

αi,`
[
x` − x̂i,`(θi)

]2
,

for all i and x = (x1, . . . , xd), where x̂i,`(·) is an increasing, continuously di�erentiable

real function, and αi,` is a positive number for each `. Thus, the issue-by-issue rule χ∗ is

de�ned simply by

χ∗(θ) ≡
(
med

{
x̂1,1(θ1), . . . x̂n,1(θn)

}
, . . . ,med

{
x̂1,d(θ1), . . . x̂n,d(θn)

})
,

for all θ = (θ1, . . . , θn) ∈ Θ; so that, for each pro�le of types, it selects the corresponding

issue-by-issue core (Kramer, 1972). We have

∇1ui
(
χ∗(m), θi

)
= −2


αi,1
[
χ∗1(m)− x̂i,1(θi)

]
...

αi,d
[
χ∗d(m)− x̂i,d(θi)

]
 ,

so that condition (C) is simply the weak condition that, for every m ∈ Θ, the set{(
αi,`[χ

∗
` (m)− x̂i,`(θi)]

)
`=1,...,d

: i ∈ N & θi ∈ Θi

}
be linearly independent.

It is well known that the issue-by-issue rule may be manipulable (and Pareto ine�cient).

Nevertheless, it is implementable with compensatory transfers. To see this, consider the

transfer function ψ∗ de�ned by

ψ∗i (m) ≡
d∑
`=1

αi,`

[[
χ∗` (m)− x̂i,`(mi)

]2
+ 2

∫ 1+max Θi

mi

[
x̂i,`(z)− χ∗` (z,m−i)

]
x̂′i,`(z)dz

]
,

for all i ∈ N and m = (m1, . . . ,mn) ∈ Θ. When confronted with the social choice function

(χ∗, ψ∗), the type-θi individual i chooses a message mi to maximize ui
(
χ∗(mi,m−i), θi

)
+
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ψ∗i (mi,m−i). The left- and right-derivatives if this function with respect to mi ∈ R are

d∑
`=1

2αi,`
[
x̂i,`(θi)− x̂i,`(mi)

] ∂χ∗`
∂mi

(mi,m−i)−

and
d∑
`=1

2αi,`
[
x̂i,`(θi)− x̂i,`(mi)

] ∂χ∗`
∂mi

(mi,m−i)+ ,

respectively, where
∂χ∗`
∂mi

(mi,m−i)+ = − ∂χ∗`
∂mi

(mi,m−i)− ∈
{

0, x̂′i,`(mi)
}
. It is follows that

truthfully reporting her type (i.e., choosing mi = θi) is always optimal for individual i.

Coupled with Theorem 1, this observation yields the following result.

Corollary 1. In the spatial model described above, if
{(
αi,`[χ

∗
` (m)− x̂i,`(θi)]

)
`=1,...,d

: i ∈

N and θi ∈ Θi

}
is linearly independent for each m ∈ Θ, then the issue-by-issue rule χ∗ is

approximately sustainable.

In other words, under generic conditions, there exists an equilibrium of the dynamic

bargaining game in which, despite incomplete information, the legislature implements a

policy close to the issue-by-issue median policy arbitrarily frequently.

3.3 Sketch of the Proof of Theorem 1

A complete proof of Theorem 1 can be found in the appendix; here we only provide a

detailed overview. An important advantage of unbounded compensatory transfers (were

they available) is that they would allow the legislature to freely increase or decrease the

utility of any of its members without a�ecting the others' utilities. Such freedom to adjust

stage-game utilities is unavailable in the legislative bargaining game. We must therefore

�nd an alternative approach to ensure that the desired payo� vectors (or approximations of

those) will be induced by the legislators' messages. A main ingredient of the proof is the use

of �simulated� compensatory transfers obtained by perturbing stage utilities across periods.

Lemma 1. Let χ be an interior decision rule at which (C) is satis�ed. Then there is γ > 0

such that, for all φ ∈ [−2γ, 2γ]n, there exists a decision rule χφ that satis�es:

ui(χ
φ(m), θi) = ui(χ(m), θi) + φi ,
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for all i ∈ N , m ∈ Θ and θi ∈ Θi.

Lemma 1 shows that any decision rule χ satisfying (C) can be perturbed to another

decision rule χφ so as to vary the legislators' utilities independently: an application of the

local submersion theorem (e.g., Guillemin and Pollack, 1974) gives a vector of independent,

small transfers (φ1, . . . , φn). The purpose of the lemma is twofold: (i) simulated transfers

φi in [−γ, γ] will permit to exploit the implementability of χ and deal with legislator i's �on-

schedule deviations� in stages where she has to report her type; and (ii) simulated transfers

in [−2γ,−γ) ∪ (γ, 2γ] will be used to preclude �o�-schedule deviations� by legislator i in

policy-making stages.

Given a pro�le of reports (mt
1, . . . ,m

t
n) in period t and a transfer function ψ = (ψ1, . . . ,

ψn), it is thus possible to simulate the transfer ψi(m
t
1, . . . ,m

t
n) for each (patient) legislator

i by giving her φi = ψi(m
t
1, . . . ,m

t
n)/T ∈ [−γ, γ] in each of a su�ciently large number of

periods T . There is an obvious di�culty with this approach: it is not one but in�nitely

many transfers that must be simulated for each player i (i.e., one for each period), and

there is no guarantee that (1/T )
∑T

t=1 ψi(m
t
1, . . . ,m

t
n) converges to a value in [−γ, γ]. Our

�rst step in addressing this di�culty is to change ψi to another transfer function ψ̄i, de�ned

by ψ̄i(θ) ≡ ψi(θ)−Eπ
[
ψi(θ̃)

]
for all i ∈ N and all θ ∈ Θ � observe that ψ̄ = (ψ̄1, . . . , ψ̄n)

also implements χ. Next we divide time into successive T -period blocks, T ∈ N. Given a

sequence of report pro�les (m(b−1)T+1, . . . ,mbT ) in the bth block, legislators are prescribed

to implement a policy according to decision rule χφ
b
in each period of the (b+ 1)th block,

where

φbi ≡


1
T

∑bT
t=(b−1)T+1 ψ̄i(m

t) if
∣∣∣ 1
T

∑bT
t=(b−1)T+1 ψ̄i(m

t)
∣∣∣ ≤ γ ,

−γ otherwise,

for every i ∈ N . It follows from a law of large numbers for Markov processes (e.g., Stokey

and Lucas, 1989) that the probability of the event
{∣∣ 1

T

∑bT
t=(b−1)T+1 ψ̄i(θ̃

t)
∣∣ ≤ γ

}
can be

made arbitrarily close to one by picking a su�ciently large T (irrespective of θ(b−1)T ).

Therefore, if arbitrarily patient legislators truthfully reported their types in each of the T

periods of the bth block, then they would receive simulated transfers arbitrarily close to

those prescribed by ψ̄ with a probability arbitrarily close to one in the (b+ 1)th block �
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as illustrated in Figure 1 for the �rst block.

1 2 · · · T T + 1 T + 2 · · · 2T 2T + 1 · · ·
∞

Block 1 Block 2 · · ·

φ1i = 1
T

∑T
t=1 ψ̄i(m

t)

ψ̄i(m
1)

ψ̄i(m
2)

Figure 1: Simulating compensatory transfers.

However, there are two major di�culties here. First, there is no guarantee that φbi

converges to zero if legislator i misreports her types in block b. Second, while being in

the middle of the bth block and observing the reports in previous periods, legislator i may

realize that φbi will be equal to −γ with a very high probability, irrespective of her behavior

in the remaining periods of the block. This may create incentives for her to misreport her

types. The key to resolving these di�culties is provided by a statistical test, due to Escobar

and Toikka (2013).

In each block, the messages sent by the legislators are submitted to an Escobar-Toikka

test (see Section A.2 of the supplementary appendix for a formal de�nition) and in each

period of the block, the decision rule χφ
b
is only applied to the messages that are �credible,�

i.e., those that pass the test. If a legislator's message fails the test in a given period, then

her future messages are then ignored and replaced by random reports generated from the

Markov chain until the end of the block. Escobar and Toikka (2013) show that their test

can be designed in such a way that (i) a player who truthfully reports her type in every

period of the block is highly likely to pass it, and (ii) the empirical distribution of the

sequence of message pro�les generated by the test converges to the invariant distribution

π as T →∞, irrespective of the legislators' actual messages. This allows us to prove that

if T and δ are su�ciently large, then: (i) every legislator i can obtain a payo� arbitrarily

13



close to Eπ
[
ui
(
χ(θ̃), θ̃i

)]
by truthfully reporting her type in every period, irrespective of the

other legislators' messages; and (ii) her equilibrium payo�s have an upper bound arbitrarily

close to Eπ
[
ui
(
χ(θ̃), θ̃i

)]
. It follows that her equilibrium payo� must also be arbitrarily

close to Eπ
[
ui
(
χ(θ̃), θ̃i

)]
. (Note that this result holds even if the decision rule is ine�cient,

as in the example above.)

To complete the proof of the theorem, it remains to establish that in such an equilib-

rium, the empirical frequency of deviations from the prescribed decision rules can be made

arbitrarily small by taking su�ciently large T and δ. We show in the appendix that an

implementable decision rule that satis�es condition (C) can be perturbed to an arbitrarily

close decision rule that also satis�es (C) and with the property that each player i's cost

of misreporting her type is bounded away from zero. It follows that if she did misreport

her type too often in the PBE constructed above, then her payo� would be bounded away

from Eπ
[
ui
(
χ(θ̃), θ̃i

)]
, yielding a contradiction. This completes the proof of the theorem.

4 Discussion: General Policy Spaces

We saw in Section 3 that, in our baseline model, any implementable decision rule that

satis�es the gradient condition (C) is approximately sustainable. Although this condition

typically holds if the policy space X is a su�ciently high-dimensional subset of some

Euclidean space, there are cases of interest in which such a restriction does not hold. We

conclude this paper by presenting two variants of the model to which the arguments in the

previous subsection can be adapted without imposing any restriction on the dimensionality

of X. It may be a �nite set, a set of functions, or any other set.

Variant 1: Redistributive dimension. One simple way in which the approximation

result can be obtained without imposing restrictions on X is by assuming that the legisla-

ture can distribute a given amount of a limited and divisible resource among its members,

in addition to choosing a policy from X. Such an assumption is common in the political-

economy literature where, in addition to policy (or �ideological�) issues, choice sets may

also include a distributive dimension � e.g, Austen-Smith and Banks (1988), Diermeier
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and Merlo (2000), Jackson and Moselle (2002), and Che and Eraslan (2013, 2014). Suppose

we modify our baseline model as follows. The legislature can now allocate shares of a �xed

total r > 0 of a divisible resource among its members, so that the policy space is now of

the form X̂ ≡ Z ×X, where Z ≡
{

(z1, . . . , zn) ∈ [0, r]n :
∑n

i=1 zi ≤ r
}
and X can be any

set. Note that r can be arbitrarily small, possibly smaller than the compensatory transfers

needed to implement the decision rule one may seek to approximate in equilibrium. As-

sume further that each player i's utility function is of the form ûi(x̂, θi) ≡ gi(zi) +ui(x, θi)

for all x̂ = (z, x) ∈ X̂, where gi : [0, r] → R is continuous and strictly increasing. In this

case, the statement of Lemma 1 trivially holds for any interior decision rule and the rest

of the argument in Subsection 3.3 is completely analogous.

Variant 2: Public randomization. Another approach is to allow the legislature to use

a public randomization device. More precisely, suppose that in every period t, legislators

�rst report their types; then a publicly observable realization of a random variable is

drawn from the uniform distribution on [0, 1]; and then a policy is chosen from X as in the

baseline model. Henceforth, we assume that X is any separable policy space and impose

the following mild condition on the legislators' utilities:

(C∗) There exists a �nite subset Y = {y1, . . . , yL} of X such that

{(
ui(y1, θi)− ui(yL, θi), . . . , ui(yL−1, θi)− ui(yL, θi)

)
: i ∈ N, θi ∈ Θi

}
is linearly independent.

This requires that policy preferences be in some sense heterogeneous across players and

types of players over a �nite subset of alternatives.

Our next task is to develop the counterpart for legislative bargaining games with public

randomization of the method for simulating compensatory transfers in games without

randomization devices introduced in Subsection 3.3. For every ν ∈ ∆(X), let vi(ν, θi) ≡

Eν
[
ui(x̃, θi)

]
denote the corresponding expected utility of the type-θi player i. We de�ne

a stochastic decision rule as a mapping χ : Θ → ∆(X), where ∆(X) is equipped with

the Prokhorov metric; and we say that χ is implementable with transfers if there exists a
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transfer function ψ = (ψ1, . . . , ψn) : Θ→ Rn such that

vi
(
χ(θi, θ−i), θi

)
+ ψi(θi, θ−i) ≥ vi

(
χ(θ′i, θ−i), θi

)
+ ψi(θ

′
i, θ−i) ,

for all i ∈ N , θ−i ∈ Θ−i and θi, θ
′
i ∈ Θi.

The following lemma is the analogue of Lemma 1 for the model without randomization.

Lemma 2. Let χ̂ be a stochastic decision rule that is implementable with transfers. For

all ε > 0, there is a stochastic decision rule χ within ε of χ̂ such that

(i) χ is also implementable with transfers; and

(ii) there is γ > 0 such that, for all φ ∈ [−2γ, 2γ]n, there exists χφ ∈ ∆(X)Θ such that

vi
(
χφ(m), θi

)
= vi

(
χ(m), θi

)
+ φi ,

for all i ∈ N , θi ∈ Θi and m ∈ Θ.

With Lemma 2 in hand, it is straightforward to show that all of the arguments presented

in Subsection 3.3 can be applied here to approximately sustain any stochastic decision rule

that is implementable with transfers. We thus have the following analogue to Theorem 1.

Theorem 1'. If a stochastic decision rule χ is implementable with compensatory transfers

then it is approximately sustainable in the dynamic bargaining game with public random-

ization.

As in the previous variant, this result does not impose any restriction on the dimen-

sion of the policy space. Returning to the example of the issue-by-issue rule discussed

in Subsection 3.2, we can use Theorem 1' to obtain a version of Corollary 1 for the one-

dimensional case where d = 1. Except in pathological cases (e.g., two types and/or players

having exactly the same preferences), one can easily verify that (C∗) holds in this setting

by taking a su�ciently large set Y : since there is a continuum of feasible policies (here,

X is an interval), one can pick an arbitrarily large number L of policies to obtain linear

independence. Moreover, as the issue-by-issue rule is a degenerate stochastic decision rule,

Theorem 1' can be applied to obtain a dynamic median voter theorem under incomplete
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information: the issue-by-issue rule, which here is the decision rule that selects the Con-

dorcet winner at every type pro�le, is approximately sustainable in the dynamic bargaining

game with public randomization.

Appendix

A Proof of Theorem 1

A.1 Proof of Lemma 1

Let χ be an interior decision rule. As the players' type sets are �nite, we can write each Θi

as {θi,1, . . . , θi,ki}, ki ∈ N, for each i. Let k ≡
∑n

i=1 ki, and de�ne the mapping f : X → Rk

by

f(x) ≡



u1(x, θ1,1)
...

u1(x, θ1,k1)
...

un(x, θn,1)
...

un(x, θn,kn)


,

for all x ∈ X. The derivative of f at arbitrary x ∈ X is the k × d matrix

Df(x) =



Du1(x, θ1,1)
...

Du1(x, θ1,k1)
...

Dun(x, θn,1)
...

Dun(x, θn,kn)


,

17



where we view each Dui(x, θi,k`) as a 1× d matrix � i.e., the transpose of ∇1ui(x, θi,k`).

It follows from condition (C) that Df
(
χ(m)

)
has full row rank, for all m ∈ Θ. By the

local submersion theorem (e.g., Guillemin and Pollack, 1974), this implies that, for each

m ∈ Θ, we can choose an arbitrarily small open set Um containing χ(m) such that the image

V m ≡ f(Um) is an open set containing f
(
χ(m)

)
. Therefore, there exists a su�ciently small

γm > 0 such that the k-dimensional closed rectangle
∏k
`=1

[
f`
(
χ(m)

)
−γm, f`

(
χ(m)

)
+γm

]
is contained in V m. For all φ = (φ1, . . . , φn) ∈ [−γ, γ]n, where γ ≡ min{γm : m ∈ Θ},

there must consequently be a a decision rule χφ ∈
∏
m∈Θ U

m such that

f
(
χφ(m)

)
≡



u1

(
χφ(m), θ1,1

)
...

u1

(
χφ(m), θ1,k1

)
...

un
(
χφ(m), θn,1

)
...

un
(
χφ(m), θn,kn

)


=



u1

(
χ(m), θ1,1

)
+ φ1

...

u1

(
χ(m), θ1,k1

)
+ φ1

...

un
(
χ(m), θn,1

)
+ φn

...

un
(
χ(m), θn,kn

)
+ φn


,

for all m ∈ Θ, as desired.

A.2 Proof of the Main Theorem

From imlementability to strict implementability. We begin with a useful property

of implementable decision rules that satisfy condition (C). Let χ be implementable with

transfer function ψ. We say that decision rule χ is strictly implementable with transfer

function ψ if the incentive constraints in the de�nition of implementability hold with strict

inequalities; i.e., given the transfer function ψ, all legislators are strictly better o� truthfully

reporting their types.

Lemma A1. Let χ be an interior decision rule that satis�es condition (C). If χ is imple-

mentable with the transfer function ψ then, for every ε > 0, there is decision rule within ε

of χ that is strictly implementable with ψ.

We prove Lemma A1 in the supplementary appendix. In what follows, we focus on the
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case where χ is strictly implementable, keeping in mind that we might actually be referring

to an arbitrarily close approximation of the (possibly only) implementable χ.

Auxiliary games. To establish Theorem 1, it is useful to consider �rst a class of �nite-

horizon auxiliary games, in which the exogenous decision rule χ is used to select a policy

on behalf of the legislature after every history of message pro�les (m1, . . . ,mt) ∈ Θt. We

will �rst show that in any PBE of any such auxiliary game, each legislator i's expected

payo� is within ε of Eπ
[
ui
(
χ(θ̃), θ̃i

)]
, and we will then use this result to show that the

same is true for the dynamic legislative bargaining game.

The auxiliary game Γ has T ∈ N periods. During the play of this game, the messages

sent by the legislators are submitted to an Escobar-Toikka test (see the supplementary

appendix for a formal de�nition) and in each period, the decision rule χ only takes into

consideration the messages that are �credible,� i.e., those that pass the test. If a legislator's

message fails the test in a given period, then the rule will ignore her future messages and

replace them by messages generated from the Markov chain (λi, Pi). More precisely, Γ

is constructed as follows. At the start of the auxiliary game Γ, each player i holds some

beliefs about her opponents types in the �rst period. Then, in each period t = 1, . . . , T :

(i) All legislators simultaneously send messages (mt
1, . . . ,m

t
n) ∈ Θ.

(ii) Each legislator i's message mt
i is submitted to the Escobar-Toikka test and a pro�le

of messages (µt1, . . . , µ
t
n) is generated: if all of i's previous reports passed the test, then

µti = mt
i; otherwise, µ

t
i is obtained from the theoretical distribution of i's types.

(iii) Alternative χ(µt1, . . . , µ
t
n) is selected.

Given a strategy pro�le ς for Γ, the (normalized) payo� to player i is

UTi (ς) ≡ 1− δ
1− δT

Eς

[
T∑
t=1

δt−1ui
(
χ(µ̃t1, . . . , µ̃

t
n), θ̃ti

)
+
δT (1− δT )

1− δ
φ̃i

]
,

where φ = (φ1, . . . , φn) ∈ Rn is an exogenously given vector of transfers de�ned by:

φi ≡


1
T

∑T
t=1 ψ̄i(µ

t) if
∣∣∣ 1
T

∑T
t=1 ψ̄i(µ

t)
∣∣∣ ≤ γ ,

−γ otherwise,
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with ψ̄(·) de�ned as in Subsection 3.3. Thus, the exogenous data of the auxiliary game �

which will vary when we turn to the dynamic version of the game � is the horizon T , the

discount factor δ ∈ [0, 1), the initial beliefs about the �rst-period types, the decision rule

χ, and the vector of transfers φ.

The next lemma establishes that, for su�ciently large T and δ, the payo� to player i in

any Nash equilibrium of any auxiliary game de�ned above approximates Eπ
[
ui
(
χ(θ̃), θ̃i

)]
.

A proof can be found in the supplementary appendix.

Lemma A2. Let ε > 0, and let χ be a decision rule that is implementable with compen-

satory transfers. There exists T̂ ∈ N such that the following holds for all T ≥ T̂ : there

exists δ̄(T ) < 1 such that, for all δ ∈
(
δ̄(T ), 1

)
, each agent i's payo� in any PBE of any

auxiliary game is within ε of Eπ
[
ui
(
χ(θ̃), θ̃i

)]
.

The dynamic auxiliary game. Our next step is to characterize the equilibrium payo�s

of a dynamic version of the auxiliary game above. The dynamic auxiliary game divides

time into blocks of T periods, T ∈ N, each corresponding to an auxiliary game. More

precisely, each block b = 1, 2, . . . begins with beliefs and a pro�le of simulated transfers

φb−1 = (φb−1
1 , . . . , φb−1

n ) inherited from the previous block � we set φ0 ≡ (0, . . . , 0). Then,

in each period t = (b− 1)T + 1, . . . , bT :

(i) All legislators simultaneously send messages (mt
1, . . . ,m

t
n) ∈ Θ.

(ii) Each legislator i's message mt
i is submitted to the Escobar-Toikka test and a pro�le

of messages (µt1, . . . , µ
t
n) is generated: if all of i's previous reports (in the current block)

passed the test, then µti = mt
i; otherwise, µ

t
i is obtained from the theoretical distribution

of i's types.

(iii) Alternative χφ
b−1

(µt1, . . . , µ
t
n), as de�ned in Lemma 1, is selected.

Then, block b+ 1 begins with simulated transfers φb = (φb1, . . . , φ
b
n), de�ned by

φbi ≡


1
T

∑bT
t=(b−1)T+1 ψ̄i(µ

t) if
∣∣∣ 1
T

∑bT
t=(b−1)T+1 ψ̄i(µ

t)
∣∣∣ ≤ γ ,

−γ otherwise,

and the same process as above is repeated. Payo�s are de�ned as in the original legislative

bargaining game.
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Let ςb be a strategy pro�le for the auxiliary game corresponding to the bth block. Ob-

serve that by concatenating the ςb's, we obtain a strategy pro�le for the dynamic auxiliary

game, which yields a payo� of (1 − δT )
∑∞

b=1 δ
(b−1)TUTi (ςb) to each player i. By Lemma

A2, each legislator i's PBE payo� in the dynamic auxiliary game can be made arbitrarily

close to Eπ
[
ui
(
χ(θ̃), θ̃i

)]
by picking su�ciently large T and δ. Moreover, as each period of

the dynamic auxiliary game has a �nite action set, it follows from Fudenberg and Levine's

(1983) existence result that a PBE exists.

As χ is strictly implementable, each player i's cost of misreporting her type is bounded

away from zero. This allows us to establish the following lemma, whose proof can be found

in the supplementary appendix.

Lemma A3. Let ε > 0, and let χ be a decision rule that is strictly implementable with

compensatory transfers. There exists T ∈ N such that the following holds for all T ≥ T :

there is δ̄(T ) < 1 such that, for all δ ∈
(
δ̄(T ), 1

)
, the dynamic auxiliary game has a PBE

σ such that

lim supPrσ

{
1

T

T∑
t=1

1{
|x̃t(σ)−χ(θ̃t)|>ε

} > ε

}
< ε .

The PBE of the dynamic bargaining game. We now return to the original legislative

bargaining game, in which policies are collectively chosen by the legislators. It follows from

Lemma A3 that, to complete the proof of Theorem 1, it su�ces to ensure that legislators

will spontaneously implement the policies prescribed by the exogenous rule χφ
b
in each

block b of the dynamic auxiliary game. The incentives to do so are created by punishing

the deviating players with negative transfers; Lemma 1 ensures that it is possible to do so.

More precisely, consider a strategy pro�le σ that prescribes the following behavior in

each period t:

• After learning their types, all legislators send the same messages as in the equilibrium

of the dynamic auxiliary game described above.

• Given the history of message pro�les, let χφ
b−1

(µt1, . . . , µ
t
n) be the policy that would

have been chosen by the exogenous decision rule in the dynamic auxiliary game. In each

proposal stage, if there has been no (o�-schedule) deviation from σ in the previous periods,
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then the selected proposer o�ers χφ
b−1

(µt1, . . . , µ
t
n); if there has been a deviation and legis-

lator i was the last deviator, then the proposer o�ers χφ
′
(µt1, . . . , µ

t
n), where φ′i ≡ φ

b−1
i −γ,

and φ′j ≡ φ
b−1
j for all j 6= i.

• In every voting stage, the legislator accepts the proposal if and only if the proposer

acted as prescribed by σ.

It follows from the analysis of the dynamic auxiliary game that on-schedule deviations

from σ must be unpro�table. Moreover, o�-schedule deviations are punished by decreasing

the stage-game payo�s of any deviating legislator by γ in all future periods. Although

γ is small, the cost of the deviation becomes arbitrarily large (relative to its bene�t) as

δ → 1. This punishment is implemented by the other legislators as they would otherwise

be punished themselves in the same way.
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Supplementary Appendix:

Proofs Omitted from Text

A Proofs of Lemmata A1-A3

A.1 Proof of Lemma A1

Let χ be an interior decision rule that satis�es condition (C); and suppose it is imple-

mentable with compensatory transfers ψ = (ψ1, . . . , ψn). Fix ε > 0, and let η ≡ ε/
√
|Θ|.

By the same logic as in the proof of Lemma 1, for each θ ∈ Θ, we can choose an arbitrarily

small open set Uθ containing χ(θ) and itself contained in the η-neighborhood of χ(θ), such

that the image Vθ = f(Uθ) is an open set containing f
(
χ(θ)

)
. Let γ ≡ minθ∈Θ diamVθ > 0.

By de�nition of γ, for all θ̂ = (θ̂1, . . . , θ̂n) ∈ Θ, there exists a policy xθ̂ in the η-

neighborhood of χ(θ̂) such that

ui(xθ̂, θi) =

 ui
(
χ(θ̂), θi

)
+ γ/2 if θi = θ̂i ,

ui
(
χ(θ̂), θi

)
if θi 6= θ̂i ,

for all i ∈ N and all θi ∈ Θi. (Indeed, f(xθ̂) ∈ Vθ̂.) For each θ̂ ∈ Θ, we de�ne the

decision rule χ′ : Θ→ X by χ′(θ̂) ≡ xθ̂, for all θ̂ ∈ Θ. By construction, χ′ is within ε of χ.

Moreover, under the social choice function (χ′, ψ), each player i receives the same utility

as in (χ, ψ), plus an extra γ/2 > 0 if and only if she reports her type truthfully. As (χ, ψ)

is strategy proof, this implies that χ′ is strictly implementable with transfer function ψ.

A.2 Proof of Lemma A2

The construction of the auxiliary game uses a statistical test developed by Escobar and

Toikka (2013). Given a sequence of messages (µ1, . . . , µt) ∈ Θt, t ∈ {1, . . . , T}, let

τ t(θ, θ′) ≡
∣∣∣{2 ≤ s ≤ t : (µs−1, µs) = (θ, θ′)

}∣∣∣, τ ti (θ, θ′−i) ≡∑θ′i∈Θi
τ t(θ, θ′), and

P ti (θ
′
i | θ, θ′−i) ≡

τ t(θ, θ′)

τ ti (θ, θ
′
−i)

,
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for all (θ, θ′) ∈ Θ2 and i ∈ N (where we set 0/0 = 0). An Esbobar-Toikka test is a sequence

{bk} ∈ R∞+ that converges to zero. Legislator i passes the test at (µ1, . . . , µt) if, for all

(θ, θ′−i) ∈ Θ×Θ−i,

sup
θ′i

∣∣Pi(θ′i | θi)− P ti (θ′i | θ, θ′−i)∣∣ < bτ ti (θ,θ′−i)
.

In words, she passes the test if, for all (θ, θ′−i), the distribution of the µsi 's over the periods

s where (µs−1, µs) = (θ, θ′) is within bτ ti (θ,θ′−i)
of her true conditional distribution Pi(· | θi)

(in the sup-norm).

Now let ξ : Θ→ Θ be such that ξ(θ) is distributed on Θ according to the true conditional

distribution P (· | θ), for all θ ∈ Θ. Given a sequence of reports (m1, . . . ,mT ) made by

the legislators in the auxiliary game, the decision rule will generate its own sequence

(µ1, . . . , µT ) as follows:

µti =

 mt
i if i passes {bk} at (µ1, . . . , µs) for all 1 ≤ s < t ,

ξi(µ
t−1) otherwise,

for all t ∈ {1, . . . , T and all i ∈ N .

Legislator i's truthful strategy, which prescribes her to truthfully report her type at

every history of the auxiliary game, is denoted by ς∗i . Escobar and Toikka (2013) establish

the following result.

Lemma A4. Let ε > 0. There exists a test {bk} that satis�es the following conditions:

(i) For every T ∈ N, we have

Prς∗i ,ς−i
{
i passes {bk} at (µ̃1, . . . , µ̃t) for all t ∈ {1, . . . , T}

}
≥ 1− ε ,

for all i, ς−i and λ.

(ii) There exists T < ∞ such that the following holds for all T > T : for all ς and all

λ, the empirical distribution of (µ̃1, . . . , µ̃T ), denoted π̃T , satis�es

Prς
{
‖π̃T − π‖ < ε

}
≥ 1− ε .

We are now in a position to prove Lemma A2. Let ε > 0; let χ be a decision rule that is

implementable with transfers; and let ϕ : Θ→ Rn be a transfer function that implements
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χ. Observe that ψ : Θ→ Rn, de�ned by ψ ≡ ϕ− Eπ
[
ϕi(θ̃)

]
, also implements χ; that is,

ui
(
χ(θi, θ−i), θi

)
+ ψi(θi, θ−i) ≥ ui

(
χ(θ′i, θ−i), θi

)
+ ψi(θ

′
i, θ−i) , (A1)

for all i ∈ N , θ−i ∈ Θ−i and θi, θ
′
i ∈ Θi.

Now consider any auxiliary game Γ. The expected payo� to legislator i from a given

strategy pro�le ς is

UTi (ς) ≡ 1− δ
1− δT

{
Eς

[
T∑
t=1

δt−1ui
(
χ(µ̃t), θ̃ti

)]
. . .

. . .+ δT
T∑
s=1

δs−1

(
Prς{µ̃ ∈ Λ}Eς

[∑T
t=1 ψi(µ̃

t)

T
| µ̃ ∈ Λ

]
− Prς{µ̃ ∈ Λc}γ

)}
,

where Λ ≡
{
µ = (µ1, . . . , µT ) :

∣∣∣∑T
t=1 ψi(µ

t)
T

∣∣∣ ≤ γ}. Observe that
Prς{µ̃ ∈ Λ} = Prς

{∣∣∣∣∣
∑T

t=1 ψi(µ̃
t)

T

∣∣∣∣∣ ≤ γ
}

= Prς

{∣∣Eπ̃T [ψi(µ̃t)] ∣∣ ≤ γ}
= Prς

{∣∣∣Eπ̃T [ψi(µ̃t)]− Eπ
[
ψi(µ̃

t)
] ∣∣∣ ≤ γ} .

It follows from Lemma A4(ii) (and continuity of the expectation functional) that, for any

ε > 0, there is a su�ciently large Tε ∈ N such that, for all T > Tε and all strategy pro�les

ς, Prς{µ̃ ∈ Λ} > 1− ε. Hence, there is a su�ciently large T 1 ∈ N such that, for all T ≥ T 1,

UTi (ς) ≤ 1− δ
1− δT

{
Eς

[
T∑
t=1

δt−1ui
(
χ(µ̃t), θ̃ti

)]
+ δT

T∑
s=1

δs−1Eς

[∑T
t=1 ψi(µ̃

t)

T

]}
+
ε

4

=
1− δ

1− δT

{
Eς

[
T∑
t=1

δt−1

(
ui
(
χ(µ̃t), θ̃ti

)
+
δT−t+1(1− δT )

(1− δ)T
ψi(µ̃

t)

)]}
+
ε

4
,

for all i ∈ N all all strategy pro�les ς. Let u ≡ inf
{
ui(x, θi) : i ∈ N, θi ∈ Θi, x ∈ A

}
> −∞

and u ≡ sup
{
ui(x, θi) : i ∈ N, θi ∈ Θi, x ∈ A

}
< ∞. It is readily checked that, for all

T ∈ N, there is δ̄0(T ) such that, for all δ > δ̄0(T ),

sup

{∣∣∣∣∣ 1

T

T∑
t=1

vt − 1− δ
1− δT

T∑
t=1

δt−1vt

∣∣∣∣∣ : (v1, . . . , vT ) ∈ [u, u]T

}
<
ε

4
;

so that

UTi (ς) < Eς

[
1

T

T∑
t=1

(
ui
(
χ(µ̃t), θ̃ti

)
+
δT−t+1(1− δT )

(1− δ)T
ψi(µ̃

t)

)]
+
ε

2
,
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for all i and all ς. Coupled with (A1) � and the observation that limδ→1(1−δT )/(1−δ) =

T , for all T ∈ N � this inequality implies that, for all T ≥ T1, there is δ̄1(T ) ≥ δ̄0(T ) such

that, whenever δ > δ̄1(T ),

UTi (ς) < Eς

[
1

T

T∑
t=1

(
ui
(
χ(θ̃ti , µ̃

t
−i), θ

t
i

)
+ ψi(θ̃

t
i , µ̃

t
−i)

)]
+

3ε

4

= Eς∗i ,ς−i

[
Eπ̃T

[
ui
(
χ(θ̃i, µ̃−i), θ̃i

)
+ ψi(θ̃i, µ̃−i)

]]
+

3ε

4
,

for all i and all ς. From Lemma A4, this in turn implies that there exists T 2 <∞ such that

the following holds for all T > T 2: there is δ̄2(T ) ≥ δ̄1(T ) such that, whenever δ > δ̄2(T ),

UTi (ς) < Eπ
[
ui
(
χ(θ̃i, θ̃−i), θ̃i

)
+ ψi(θ̃i, θ̃−i)

]
+ ε = Eπ

[
ui
(
χ(θ̃i, θ̃−i), θ̃i

)]
+ ε ,

for all i and all ς. Hence, each legislator i's equilibrium payo� must be bounded above by

Eπ
[
ui
(
χ(θ̃i, θ̃−i), θ̃i

)]
.

To complete the proof of the lemma, it remains to establish that if T and δ are

su�ciently large, then each legislator i's equilibrium payo� in Γ is strictly larger than

Eπ
[
ui
(
χ(θ̃i, θ̃−i), θ̃i

)]
− ε. By the same logic as above, there exists T 3 ∈ N such that the

following holds for all T > T 3: there is δ̄3(T ) such that, whenever δ > δ̄3(T ),

UTi (ς) > Eς

[
1

T

T∑
t=1

(
ui
(
χ(µ̃t), θ̃ti

)
+ ψi(µ̃

t)

)]
− 3ε

4
,

for all i and all ς. In particular, if legislator i plays her truthful strategy ς∗i , then she can

secure a payo� of

UTi (ς∗i , ς−i) > Eς∗i ,ς−i

[
1

T

T∑
t=1

(
ui
(
χ(µ̃t), θ̃ti

)
+ ψi(µ̃

t)

)]
− 3ε

4

= Eς∗i ,ς−i

[
1

T

T∑
t=1

(
ui
(
χ(θ̃ti , µ̃

t
−i), θ̃

t
i

)
+ ψi(θ̃

t
i , µ̃

t
−i)

)]
− 3ε

4
,

for all ς−i. Applying again Lemma A4, we obtain that there exists T 4 ∈ N such that the

following holds for all T > T 4: there is δ̄4(T ) such that, whenever δ > δ̄4(T ),

UTi (ς∗i , ς−i) > Eπ
[
ui
(
χ(θ̃i, θ̃−i), θ̃i

)
+ ψi(θ̃i, θ̃−i)

]
− ε = Eπ

[
ui
(
χ(θ̃i, θ̃−i), θ̃i

)]
− ε .

It follows that i's payo� in any equilibrium must exceed Eπ
[
ui
(
χ(θ̃), θ̃i

)]
− ε.

We obtain the lemma by setting T̂ ≡ max{T 2, T 4} and δ̄(T ) ≡ max
{
δ̄2(T ), δ̄4(T )

}
.
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A.3 Proof of Lemma A3

Fix a given legislator i ∈ N . As χ is strictly implementable with transfers (ψ̄1, . . . , ψ̄n),

γ ≡ max
θi,θ′i∈Θiθ−i∈Θ−i

ui
(
χ(θi, θ−i), θi

)
+ ψ̄i(θi, θ−i)−

[
ui
(
χ(θ′i, θ−i), θi

)
+ ψ̄i(θ

′
i, θ−i)

]
> 0

Let σT be the PBE constructed using blocks of length T , and let ςbT be the strategy pro�le

induced by σT in the bth block, b ∈ N. Recall from the proof of Lemma A2 that for all

T ∈ N, there exists δ̄0(T ) such that, for all δ ∈
(
δ̄0(T ), 1

)
,

UTi (ςbT ) < EςbT

[
1

T

T∑
t=1

(
ui
(
χ(µ̃t), θ̃ti

)
+
δT−t+1(1− δT )

(1− δ)T
ψ̄i(µ̃

t)

)]
+
γε2

8n
,

for all b ∈ N. Moreover, as ψ̄i(·) is bounded, there is δ̄1(T ) ≥ δ̄0(T ) such that, for all

δ ∈
(
δ̄1(T ), 1

)
,

UTi (ςbT ) < EςbT

[
1

T

T∑
t=1

(
ui
(
χ(µ̃t), θ̃ti

)
+ ψ̄i(µ̃

t)

)]
+
γε2

4n
. (A2)

Moreover, from Lemma A4(ii), there exists a su�ciently large T 1 ≥ T 0 such that, for all

T > T 1,

EςbT

[
1

T

T∑
t=1

(
ui
(
χ(θ̃ti , µ̃

t
−i), θ̃

t
i

)
+ ψ̄i(θ̃

t
i , µ̃

t
−i)

)]
≤ Eπ

[
ui
(
χ(θ̃i, θ̃−i), θ̃i

)
+ ψ̄i(θ̃i, θ̃−i)

]
+
γε2

8n
.

In addition, from Lemma A2, there exists a su�ciently large T 2 ≥ T 1 such that the

following holds for all T > T 2: there is δ̄2(T ) < 1 such that, for all δ ∈
(
δ̄2(T ), 1

)
,

UTi (ςbT ) > Eπ
[
ui
(
χ(θ̃i, θ̃−i), θ̃i

)]
− γε2

8n
, (A3)

for all b ∈ N.

Now take an arbitrary T > max{T 1, T 2}, and let δ > max
{
δ̄1(T ), δ̄2(T )}; so that both

(A2) and (A3) hold. For every integer K ≥ T/ε, let BK ≡ max{B ∈ N : BT ≤ K}; so

that BKT ≥ K − T + 1. From (A3), legislator i's average payo� over the �rst BK blocks,

UBKi (σT ), satis�es

UBKi (σT ) ≡ 1

BK

BK∑
b=1

UTi (ςbT ) > Eπ
[
ui
(
χ(θ̃i, θ̃−i), θ̃i

)]
− γε2

8n
. (A4)
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Moreover, from (A2), we also have

UBKi (σT ) <
1

BK

BK∑
b=1

{
EςbT

[
1

T

T∑
t=1

(
ui
(
χ(θ̃ti , µ̃

t
−i), θ̃

t
i

)
+ ψ̄i(θ̃

t
i , µ̃

t
−i)

)]
+
γε2

4n

+ EςbT

[
1

T

∑
t : χ(µ̃t) 6=χ(θ̃t)

(
ui
(
χ(µ̃t), θ̃ti

)
+ ψ̄i(µ̃

t)− ui
(
χ(θ̃ti , µ̃

t
−i), θ̃

t
i

)
− ψ̄i(θ̃ti , µ̃t−i)

)]}

≤ 1

BK

BK∑
b=1

{
EςbT

[
1

T

T∑
t=1

(
ui
(
χ(θ̃ti , µ̃

t
−i), θ̃

t
i

)
+ ψ̄i(θ̃

t
i , µ̃

t
−i)

)]}
+
γε2

4n

− γ(εK − T + 1)

BKT
Pr{EiK} ,

where EiK ≡
{

1
K

∑K
t=1 1{µ̃ti 6=θ̃ti}

> ε/n
}
. Indeed, if event EiK occurs, then the minimum

number of periods t in which legislator i misreports her type is dεKe − (T − 1). We thus

have

UBKi (σT ) < Eπ
[
ui
(
χ(θ̃i, θ̃−i), θ̃i

)
+ ψ̄i(θ̃i, θ̃−i)

]
+

3γε2

8n
− γ(εK − T + 1)

K − T + 1
Pr{EiK} . (A5)

Coupled (A4) and (A5) imply that, for all K > T/ε, we have

Pr{EiK} <
γε2

2n

K − T + 1

γ(εK − T + 1)
=
ε2

2n

1− T−1
K

ε− T−1
K

≡ φK ,

where limT→∞ φK = ε/(2n) < ε/n. Hence, letting E
i
K denote the complement of EiK , we

have

1− Pr

{
1

K

K∑
t=1

1{χ(m̃t)6=χ(θ̃t)} > ε

}
≥ Pr

{
n⋂
i=1

E
i
K

}

≥
n∑
i=1

Pr{EiK} − n+ 1 ≥ n(1− φK)− n+ 1 ,

where the second inequality follows from the Bonferroni inequality. Taking the limit supe-

rior on both sides, we obtain the desired inequality.

B Proof of Lemma 2

Let χ̂ be a stochastic decision rule that is implementable with transfers; and �x ε > 0.
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Part (i). Let {ηm} be a null sequence, and let {χm} be a sequence of stochastic decision

rules, de�ned by:

χm(θ) ≡ (1− ηm)χ̂(θ) + ηmλY , for all θ ∈ Θ ,

where λY is the uniform distribution on Y : λY
(
{x}
)

= 1/L, for all x ∈ Y . By assumption,

there exists a transfer function ψ = (ψ1, . . . , ψn) : Θ→ Rn such that

vi
(
χ̂(θi, θ−i), θi

)
+ ψi(θi, θ−i) ≥ vi

(
χ̂(θ′i, θ−i), θi

)
+ ψi(θ

′
i, θ−i) ,

for all i ∈ N , θ−i ∈ Θ−i and θi, θ
′
i ∈ Θi. As the vi's are a�ne on ∆(X), it follows from the

above inequality that

vi
(
(1− ηm)χ̂(θi, θ−i) + ηmλY , θi

)
+ (1− ηm)ψi(θi, θ−i)

= (1− ηm)
[
vi
(
χ̂(θi, θ−i), θi

)
+ ψi(θi, θ−i)

]
+ ηmvi(λY , θi)

≥ (1− ηm)
[
vi
(
χ̂(θ′i, θ−i), θi

)
+ ψi(θ

′
i, θ−i)

]
+ ηmvi(λY , θi)

= vi
(
(1− ηm)χ̂(θ′i, θ−i) + ηmλY , θi

)
+ (1− ηm)ψi(θ

′
i, θ−i) ,

for all m ∈ N, i ∈ N , θ−i ∈ Θ−i and θi, θ
′
i ∈ Θi. Thus, the stochastic decision rule χm is

implementable with transfers (1− ηm)ψi. Moreover, as
{
χm(θ)

}
converges weakly to χ̂(θ)

for all θ ∈ Θ, there is a su�ciently large M ∈ N such that χM is within ε of χ̂. We obtain

the �rst part of the lemma by setting χ ≡ χM .

Part (ii). De�ne hi,θi : B ≡
{

(β1, . . . , βL−1) ∈ [0, 1]L−1 :
∑L−1

`=1 β` ≤ 1
}
→ R by

hi,θi(β1, . . . , βL−1) ≡
(

1−
L−1∑
`=1

βj

)
ui(yL, θi) +

L−1∑
`=1

β`ui(y`, θi) ;

and let H : B → R
∑
i |Θi| be de�ned by

H(β1, . . . , βL−1) ≡
(
hi,θi(β1, . . . , βL−1)

)
i∈N,θi∈Θi

.
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The derivative of H at arbitrary (β1, . . . , βL−1) is the
(∑n

i=1 |Θi|
)
× (L− 1) matrix

DH(β1, . . . , βL−1) =



Dh1,θ1,1(β1, . . . , βL−1)
...

Dh1,θ1,|Θ1|
(β1, . . . , βL−1)
...

Dhn,θn,1(β1, . . . , βL−1)
...

Dhn,θn,|Θn|(β1, . . . , βL−1)



=



u1(y1, θ1,1)− u1(yL, θ1,1) · · · u1(yL−1, θ1,1)− u1(yL, θ1,1)
...

...
...

u1(y1, θ1,|Θ1|)− u1(yL, θ1,|Θ1|) · · · u1(yL−1, θ1,|Θ1|)− u1(yL, θ1,|Θ1|)
...

un(y1, θn,1)− un(yL, θn,1) · · · un(yL−1, θn,1)− un(yL, θn,1)
...

un(y1, θ1,|Θn|)− un(yL, θ1,|Θn|) · · · un(yL−1, θ1,|Θn|)− un(yL, θ1,|Θn|)


.

It follows from condition (C∗) that this matrix has full row rank. By the local submersion

theorem (e.g., Guillemin and Pollack, 1974), this implies that we can choose an arbitrarily

small open set U ⊂ B containing (1/L, . . . , 1/L) such that the image V ≡ f(U) is an

open set containing H(1/L, . . . , 1/L). Therefore, there exists a su�ciently small γ > 0

such that the
(∑n

i=1 |Θi|
)
-dimensional closed rectangle

∏∑n
i=1 |Θi|

`=1

[
H`(1/L, . . . , 1/L) −

2γ/ηM , H`(1/L, . . . , L/k)+2γ/ηM
]
is contained in V . For all φ = (φ1, . . . , φn) ∈ [−2γ, 2γ]n,
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there must consequently be a βφ ∈ U such that

H(βφ) =



h1,θ1,1(1/L, . . . , 1/L) + φ1

ηM

...

h1,θ1,|Θ1|
(1/L, . . . , 1/L) + φ1

ηM

...

hn,θn,1(1/L, . . . , 1/L) + φn
ηM

...

hn,θn,|Θn|(1/L, . . . , 1/L) + φn
ηM


.

Now let λφY ∈ ∆(X) be de�ned by

λφY
(
{y`}

)
≡ βφ` , for all ` = 1, . . . , L− 1 , and λφY

(
{yL}

)
≡ 1−

L−1∑
`=1

βφ` ;

and let the stochastic decision rule χφ be de�ned by χφ(θ) ≡ (1 − ηM )χ(θ) + ηMλφY , for

all θ ∈ Θ. We thus have

vi
(
χφ(m), θi

)
= vi

(
(1− ηM )χ(m) + ηMλφY , θi

)
= (1− ηM )vi

(
χ(m), θi

)
+ ηMvi

(
λφY , θi

)
= (1− ηM )vi

(
χ(m), θi

)
+ ηMhi,θi(β

φ)

= (1− ηM )vi
(
χ(m), θi

)
+ ηM

[
hi,θi(1/L, . . . , 1/L) +

φi
ηM

]
= (1− ηM )vi

(
χ(m), θi

)
+ ηMvi

(
λY , θi

)
+ φi

= vi
(
(1− ηM )χ(m) + ηMλY , θi

)
+ φi = vi

(
χ(m), θi

)
+ φi ,

as desired.
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