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Abstract

The paper reports on an experiment on two-player double-auction bargaining with

private values. We consider a setting with discrete two-point overlapping distributions

of traders’ valuations, in which there exists a fully efficient equilibrium. We show that

if there are traders that behave naively, i.e., set bid or ask equal to their valuation, then

there is no equilibrium achieving full efficiency. In the experiment, we vary the propor-

tion of naive traders by introducing computerized players. We find that full efficiency

is not achieved in the experiment with or without naive traders, and efficiency is not

lower in the presence of naive traders. Subjects mostly set bid/ask prices strategically

but the extent of strategic behavior is not larger in the presence of naive players. We

can explain these results by a learning model of noisy strategy adjustment. We also

find that framing the double auction as a direct mechanism leads to more naive behav-

ior by experiment participants, and that allowing face-to-face pre-play communication

increases efficiency although still not to the full level.
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1 Introduction

Many goods, e.g., cars, homes, and novelty items in a bazaar are traded in bargaining

encounters involving one buyer and one seller. The buyer and seller are often asymmetrically

informed: each trader knows his/her own reservation price (value or cost) but not that of

the other trader. In such private value bargaining negotiations, a trader faces the basic

tradeoff between the probability and terms of trade: misrepresenting one’s reservation price

can improve the terms of trade but can reduce the probability of trade. Strategic traders

optimally respond to this tradeoff, which can result in an inefficient outcome, i.e., the

good is not traded even though the buyer’s value exceeds the seller’s cost (Myerson and

Satterthwaite, 1983).

Experimental evidence, however, suggests that some people behave naively, i.e., they do

not necessarily misrepresent their private information even though they might have mone-

tary incentives to do so.1 Saran (2011) incorporates the possibility of naive traders in private

value bargaining to show that a mechanism designer who tailors the bargaining mechanism

to the proportion of naive traders can improve efficiency. However, if the mechanism is

fixed, then the introduction of naive traders can increase or decrease efficiency because,

depending on the mechanism, strategic traders could react less or more strategically to the

presence of naive traders.2

In this paper, we experimentally investigate the effect of introducing naive traders on

efficiency and individual behavior in private values bargaining. We are specially interested

in testing the theoretical possibility that the presence of naive traders can reduce efficiency

in this environment. To that end, we consider the double-auction mechanism and a simple

setting with discrete (two points) overlapping but non-identical distributions of values and

costs. In the double auction, the buyer submits a bid while the seller submits an ask and

trade happens if and only if the bid weakly exceeds the ask, at the price midpoint between

the bid and the ask. Without naive traders, there exists a fully efficient equilibrium in our

1See, for example, Fischbacher and Föllmi-Heusi (2013), Abeler et al. (2016) and Gneezy et al. (2018) for

evidence of this in simple one-person reporting decisions, and Gneezy (2005), Lundquist et al. (2009) and

Serra-Garcia et al. (2011) for interactive situations. These studies suggest aversion to lying (and aversion to

being seen lying) as an explanation of naive behavior. Bounded rationality, i.e., inability to understand the

implications of revealing one’s private information could also explain naive behavior in some circumstances.

For example, although people say that they are concerned about privacy, they willingly reveal personal

information on the internet (e.g., Spiekermann et al., 2001).
2For example, Saran (2012) shows that the presence of naive traders in a double auction with pre-play

communication can improve efficiency since the strategic traders will act less strategically in the pre-play

communication stage lest they lose the chance to trade with the naive traders in the double-auction stage at

a favorable price. Without pre-play communication, Saran (2011) shows that the presence of naive traders

in a double auction can reduce efficiency when the intervals of values and costs overlap at only one point.
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setting. However, as the proportion of naive traders increases, strategic traders have an

incentive to increase their strategic behavior and the efficient equilibria disappear.3 Thus,

if the traders coordinate on the most efficient equilibrium, then the introduction of naive

traders can reduce efficiency in this setting in theory.

Our confidence in this theoretical possibility is buttressed by previous experimental

studies on the double auction which show that the outcomes are consistent with the most

efficient equilibrium. For the case of identical continuous uniform distributions of values and

costs, the linear equilibrium of the double auction suggested by Chatterjee and Samuelson

(1983) is the most efficient (even though not all trades with positive surplus are achieved in

it).4 Although there are many other equilibria of the double auction (Leininger et al., 1989;

Satterthwaite and Williams, 1989), experimental data typically conform to the theoretical

predictions of the linear equilibrium (Radner and Schotter, 1989; Valley et al., 2002; McGinn

et al., 2003; Ellingsen et al., 2009).

We run two main types of sessions in our experiment. In one set of sessions, each subject

always plays against another subject in the experiment, with one subject assigned the role

of the buyer while the other the role of the seller. In another set of sessions, with some

probability, a subject, instead of being matched with another subject, is matched with a

computer that will set ask/bid equal to cost/value. Subjects know this possibility but at

the time of making their decisions, they do not know whether they will be matched with

a computer or with another subject. In this way, the chance of playing a naive opponent

increases with the introduction of the artificial naive subjects, and we can analyze the effect

of this on the behavior of human participants.

We also compare the performance of the double-auction mechanism along another di-

mension, namely whether framing the mechanism as a bid-ask setting, or as a direct mech-

anism with the same allocation rule makes a difference.5 Theoretically this does not affect

the set of equilibria, but the direct mechanism may be more conducive to naive play if

subjects are averse to lying since it is clear what telling the truth means there.

The experiment results are mixed, with no clear effect of the change in the proportion

of naive players on efficiency, or on other variables such as the proportion of naive plays by

human participants or the extent of setting ask/bid different from cost/value. The subjects

3There exist other (including mixed-strategy) equilibria in our setting with or without naive traders but

none of them can achieve full efficiency.
4Myerson and Satterthwaite (1983) show that the linear equilibrium is in fact constrained efficient for

the case of identical continuous uniform distributions, i.e., there is no other bargaining mechanism which

would lead in equilibrium to a higher ex-ante expected gains from trade.
5In the direct mechanism, players make direct statements about their values/costs. Trade happens if the

buyer’s statement exceeds the seller’s, at the price equal to the midpoint between the stated value and cost.
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do not coordinate on the fully efficient equilibrium in the setting without artificial naive

players. The increase in the proportion of naive players does not decrease efficiency in the

experiment (efficiency in fact increases for some settings but this is solely due to the positive

effect of artificial naive traders rather than due to a change in strategic behavior by human

subjects). The direct mechanism frame has an effect to make some traders behave naively

more often, but this effect is not sufficient to change efficiency.

We also look at the patterns of subjects’ individual decisions and try to identify what

determines whether the play is naive and the extent of strategic shading or exaggeration.

We find that subjects do respond to incentives to some extent: the incidence of naive play

is lower if the payoff obtained from lying is higher, and the bids and asks adjust towards

the best response to the observed history. Most subjects thus do behave strategically, but

the extent of strategic behavior does not change significantly across different settings to

influence the aggregate measures of efficiency.

That the observed history significantly affects individual behavior suggests that, instead

of equilibrium, a learning model might be more appropriate to model behavior. We specif-

ically consider the experienced-weighted adjustment (EWA) learning model of noisy best

response (Camerer and Ho, 1999). The model is initialized with behavior based on low

levels of strategic sophistication in the level-k model (e.g., Stahl and Wilson, 1994)6, which

turns out to resemble the initial distribution of choices.7 For a reasonable set of parame-

ters, simulations of the model reproduce most dynamic features of the experiment results,

also finding that efficiency and the extent of strategic behavior do not change much with a

change in the proportion of naive players.

In addition to the main set of experimental sessions on the double auction without

communication, we also run sessions that include a face-to-face pre-play communication

stage but without artificial naive players. In line with previous experiments (Valley et al.,

2002; McGinn et al., 2003), we find that efficiency is higher with pre-play communication

than without it mainly due to two “dyadic” strategies: (a) mutual revelation of value and

cost and (b) coordination on a single price. However, in contrast to the conclusion of these

previous experiments that pre-play communication can generate efficiency gains that breach

the theoretical maximum, we do not find subjects attaining full efficiency even with pre-

play communication although it is theoretically feasible.8 The reason for this result in our

6More precisely, the initial attractions of the EWA model are either set equal to the expected payoff

against the uniform distribution of strategies of the other player (level-1) or to the expected payoffs against

noisy best response to such a uniform distribution (level-2).
7This adds to the growing evidence that the level-k model is a better predictor of initial responses in

games than equilibrium models (see Crawford et al., 2013 for a survey). Crawford (2016) and Kneeland

(2017) apply the level-k theory to private value bargaining from the point of view of mechanism design.
8The previous experiments used the setting with identical continuous uniform distributions of values and
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setting is that there is a non-negligible fraction of traders who misrepresent their cost or

value, sometimes leading to an impasse in trading even though gains from trade are positive.

To sum up, although the efficient outcome could be achieved in equilibrium in our set-

ting, such an outcome is not obtained in the experiment, even with pre-play communication.

Failure to attain full efficiency in our experiments cautions against optimistic predictions

based on the analysis of equilibrium efficiency properties. Although the previous experi-

ments on the double auction without communication (Radner and Schotter, 1989; Valley et

al., 2002; McGinn et al., 2003; Ellingsen et al., 2009) found that players’ behavior appears

to be consistent with the (constrained efficient) linear equilibrium, our findings suggest

that play is better described by low levels of strategic sophistication. These two seemingly

contradictory observations can be reconciled by noting that the linear equilibrium of the

double auction in the setting with identical uniform distributions of values is also consistent

with level-k play.9 Thus, non-equilibrium models like level-k and learning dynamics may

be more useful predictors of play in the double auction.

2 Double Auction Bargaining with Discrete Private Values

2.1 Model

There are two risk-neutral traders, a single seller (s) of an indivisible object facing a single

buyer (b). The seller’s cost c of producing the object can be either low c of high c̄ with

qs = 1
2 being the probability of c. Similarly, the buyer’s value v for the object can be either

low v or high v̄ with qb = 1
2 being the probability of v̄. The seller privately knows her cost

while the buyer privately knows her value. We assume c < v < c̄ < v̄.10

The traders use the double auction as the trading mechanism. In this mechanism, the

two traders simultaneously submit a bid (buyer) and an ask (seller). If the buyer’s bid zb

weakly exceeds the seller’s ask zs, then the object is traded at price p = 1
2(zb + zs). Then

the buyer’s payoff is v − p, while the seller’s payoff is p− c. On the other hand, if zb < zs,

then there is no trade and each trader obtains a zero payoff.

Each trader i can have one of two dispositions ti: strategic (str) or naive (n). In the

double auction, the naive buyer sets bid equal to her value while the naive seller sets ask

costs. They found that subjects were able to capture gains from trade that were greater than those in the

(constrained efficient) linear equilibrium.
9For instance, the linear equilibrium strategy arises in expectation if there are 25% of (non-noisy) level-1

players and 75% of (non-noisy) level-2 players. See Crawford (2016) for the details of level-1 and level-2

strategies in this setting.
10Chatterjee and Samuelson (1987) consider such a setting for a model of alternating offer bargaining; Feri

and Gantner (2011) run an experiment based on their model.
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equal to her cost. The strategic trader can set any bid/ask in the double auction. The

traders do not know each other’s disposition. The probability that a trader is naive is

ε ∈ [0, 1), which is independent of the trader’s value/cost.

2.2 Equilibrium and Efficiency

Let Ztss : {c, c̄} → R and Ztbb : {v, v̄} → R denote the pure strategies of, respectively, the

seller and buyer in the double auction. For the naive traders, by assumption Zns (c) = c and

Znb (v) = v. Thus we only need to analyze the strategies of strategic traders Zstrc and Zstrb .

Let qts,tb(·, ·) : {c, c̄}×{v, v̄} → [0, 1] denote the probability of trade between the traders

depending on their dispositions and values. Given the assumption that c < v < c̄ < v̄, the

efficient trade occurs if the seller and the buyer trade in all cases except when cost is c̄

and value is v. Therefore, in the fully efficient equilibrium, qts,tb(c̄, v) = 0, qts,tb(c, v) =

qts,tb(c, v̄) = qts,tb(c̄, v̄) = 1 for all ts and tb.

2.2.1 Equilibria without Naive Traders

We consider first the setting without naive traders, i.e., ε = 0. The following proposition

characterizes fully efficient equilibria in this case.

Proposition 1. Suppose ε = 0. Strategies (Zstrs , Zstrb ) are a fully efficient equilibrium if

and only if Zstrs (c) = Zstrb (v) = z1 and Zstrs (v̄) = Zstrb (c̄) = z2, where

2

3
c+

1

3
z2 ≤ z1 ≤ v and c̄ ≤ z2 ≤

2

3
v̄ +

1

3
z1.

The proof is in Appendix A. The fully efficient equilibrium is achieved by the low-cost

seller and the low-value buyer (and correspondingly the high-cost seller and the high-value

buyer) agreeing on one price z1 (and correspondingly z2) to trade between them. Then

there is also trade if the low-cost seller meets the high-value buyer and no trade when the

low-value buyer meets the high-cost seller. The inequalities in the proposition ensure that

the traders do not find it profitable to deviate from z1 and z2. Depending on the values

(c, v, c̄, v̄), the fully efficient equilibrium may or may not exist.

Irrespective of whether a fully efficient equilibrium exists or not, there are multiple

equilibria in this game, both in pure and mixed strategies. Any pure-strategy equilibrium

falls into one of the following four categories: (a) a no-trade equilibrium, e.g., when both

types of the buyer bid c and both types of sellers ask v̄; (b) an equilibrium in which the high-

value buyer trades with both types of the seller by coordinating on a price between c̄ and v̄

whereas the low-value buyer does not trade; (c) an equilibrium in which the low-cost seller

trades with both types of the buyer by coordinating on a price between c and v whereas
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the high-cost seller does not trade; (d) an equilibrium in which the low-cost seller trades

with the high-value buyer by coordinating on a price between v and c̄ whereas the high-cost

seller and the low-value buyer do not trade. Each of these four categories of pure-strategy

equilibria is nonempty for all values of (c, v, c̄, v̄).

In a fully efficient equilibrium, the probability of trade for different costs and values is

either 0 or 1. In any properly mixed equilibrium, the probability of trade will be strictly

between 0 and 1 for some costs and values. Full efficiency cannot be achieved in a mixed

equilibrium, and we thus focus only on pure equilibria of the double-auction game.

2.2.2 Equilibria with Naive Traders

Consider now the case with ε ∈ (0, 1). Define:

A(c, v) =
1

3− ε
(2(1− ε)c+ (1 + ε)v)

B(z, c, v) =
1

3− ε
(z + 2c− εv)

C(z, c, v, v̄) =
1

3− ε
(εv̄ + 2(2− ε)c− εv − (1− ε)z)

D(c, v) =
1

2− ε
(2(1− ε)v + εc)

E(c̄, v̄) =
1

2− ε
(2(1− ε)c̄+ εv̄)

F (c̄, v̄) =
1

3− ε
(2(1− ε)v̄ + (1 + ε)c̄)

G(z, c̄, v̄) =
1

3− ε
(z + 2v̄ − εc̄)

H(z, c̄, v̄, c) =
1

3− ε
(εc+ 2(2− ε)v̄ − εc̄− (1− ε)z) .

The following proposition characterizes fully efficient equilibria when ε ∈ (0, 1).

Proposition 2. Suppose ε ∈ (0, 1). Strategies (Zstrs , Zstrb ) are a fully efficient equilibrium

if and only if Zstrs (c) = Zstrb (v) = z1 and Zstrs (c̄) = Zstrb (v̄) = z2, where

max{A(c, v), B(z2, c, v), C(z2, c, v, v̄)} ≤ z1 ≤ D(c, v)

and

E(c̄, v̄) ≤ z2 ≤ min{F (c̄, v̄), G(z1, c̄, v̄), H(z1, c̄, v̄, c)}.

The proof is in Appendix A. As in the previous case without naive traders, a fully

efficient equilibrium with naive traders is achieved by the low-cost strategic seller and the

low-value strategic buyer (and correspondingly the high-cost strategic seller and the high-

value strategic buyer) agreeing on one price z1 (and correspondingly z2) to trade between
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them. But now there are more deviations to consider, since instead of agreeing to trade at

the price proposed by her strategic counterpart, a strategic trader may attempt to extract

full surplus from her naive counterpart. The inequalities ensure that the strategic traders

do not find it profitable to deviate from the strategies leading to fully efficient trade.

Since there are now more possible deviations, the conditions for the existence of fully

efficient equilibria are more stringent that without naive traders. Even though a fully

efficient equilibrium may exist without naive traders, it may cease to exist if a positive

proportion of naive traders is present.

Similar to the case without naive traders, there are other equilibria, both pure and

mixed. Since Proposition 2 is a characterization, those other equilibria do not achieve fully

efficient trade in the double auction with naive traders.

2.3 Settings in the Experiment

We use the results from Propositions 1 and 2 to choose the parameter settings in the

experiment. In the main treatment, we consider c = 10, c̄ = 70, v = 30, v̄ = 90. Without

naive traders, there is a unique fully efficient equilibrium in this setting. If naive traders

are present in any proportion, the fully efficient equilibrium disappears.

Proposition 3. Suppose that c = 10, c̄ = 70, v = 30, v̄ = 90.

i. If ε = 0, there exists a unique fully efficient equilibrium Zstrs (10) = Zstrb (30) = 30 and

Zstrs (70) = Zstrb (90) = 70.

ii. If ε ∈ (0, 1), there is no fully efficient equilibrium.

The proof is in Appendix A. It shows that without naive traders there is only one set of

values z1 and z2 that satisfy the conditions for the existence of a fully efficient equilibrium

given in Proposition 1. In this equilibrium, the low-value buyer and the high-cost seller

obtain zero surplus, since they trade at price equal to their value or cost. The equilibrium

is thus a knife-edge case in the sense that the low-value buyer and high-cost seller have only

weak incentives to agree to such trades.

This knife-edge property of the fully efficient equilibrium in this case explains why full

efficiency in not attainable in equilibrium in the presence of naive traders. Instead of

agreeing to bid her value, the strategic low-value buyer can increase her surplus by shading

her bid and trading with the naive low-cost seller without losing on trades with the strategic

seller. Similarly, the strategic high-cost seller would like to exaggerate her ask to get more

from the naive high-value buyer. The presence of naive traders thus makes these strategic

traders behave more strategically (increase shading/exaggeration). As a result, there are no
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values for z1 and z2 that ensure that trade happens between all pairs of traders for whom

there are positive gains from trade. Therefore, if the players manage to coordinate on the

fully efficient equilibrium in the absence of naive traders, then the introduction of naive

traders in the experiments should reduce efficiency.

Since there are multiple equilibria in the double auction (including those asymmetric be-

tween the seller and buyer roles), what equilibrium is played, if at all, may depend on many

factors. Also, from a behavioral point of view, players may not necessarily coordinate on

an equilibrium, act strategically or have selfish preferences. However, previous experiments

on the double auction show that players coordinate on the most efficient equilibrium (in

the setting with uniform distributions of values and costs on the same interval, see Radner

and Schotter, 1989; Valley et al., 2002; McGinn et al., 2003; Ellingsen et al., 2009). We

therefore expect to observe (close to) full efficiency in the setting without naive traders and

the concomitant comparative static effect that the artificial introduction of naive traders

reduces efficiency in the double auction.

Nevertheless, the knife-edge property of the fully efficient equilibrium in this setting

could result in outcomes contrary to our expectation. First, the players might fail to

coordinate on the fully efficient equilibrium when ε = 0 because, in this setting, some

types of traders earn zero surplus in this equilibrium. Second, (some) players might expect

(some) others to play naively, either because those others are not expected to understand

strategic incentives of the game, or they are expected to care about honesty or efficiency.

Thus, even before the artificial introduction of naive traders in the experiment, some players’

underlying beliefs might be that a positive proportion of opponents are naive.

We therefore consider another setting (c = 5, c̄ = 70, v = 30, v̄ = 95), which tackles

these two issues. The alternative setting has several fully efficient equilibria that result in

positive surplus for all types of traders. At the same time, some of these fully efficient equi-

libria remain for small proportions of naive traders – thus making it possible to obtain full

efficiency even when players’ underlying beliefs are that a positive proportion of opponents

are naive. But it is still the case that for sufficiently large presence of naive traders there is

no fully efficient equilibrium, and thus the artificial introduction of naive traders, as we do

in the experiment, may reduce efficiency even in this alternative setting.

Proposition 4. Suppose that c = 5, c̄ = 70, v = 30, v̄ = 95.

i. If ε = 0, there exist several fully efficient equilibria.

ii. If ε ∈ (0, 1), a fully efficient equilibrium exists for ε ∈ (0, ε̄], where ε̄ = (11−
√

101)/5 ≈
0.190, and does not exist for ε ∈ (ε̄, 1).

The proof is in Appendix A. Fully efficient equilibria in this case exist for all values of ε
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up to approximately 0.19. When ε exceeds 0.19, the strategic traders’ incentives to extract

surplus from the naive traders becomes overwhelming, and it is not possible to achieve

efficient trade between the strategic traders anymore.

All the above propositions are based on self-interested risk-neutral strategic traders.

However, many plausible alternative formulations of preferences preserve a fully efficient

equilibrium whenever it exists. For example, if players are risk-averse, a fully efficient

equilibrium remains, since any deviation from it either reduces a player’s ex-post payoff or

increases the variance of the expected payoff. Similarly, if players are efficiency concerned,

the fully efficient equilibrium remains. If players have a cost of lying (setting price different

from their value/cost), a fully efficient equilibrium remains if the cost is not large.11

3 Experiment Design

We consider experimental treatments differing along the following dimensions: the absence

of presence of naive traders, different parameter settings discussed above, and the framing

of interactions. Previous experimental results on double auctions indicate that (second-

best) efficiency is achievable even without communication (in the setting with a uniform

distribution of values and costs on the same interval, see Radner and Schotter, 1989; Valley

et al., 2002; McGinn et al., 2003; Ellingsen et al., 2009). We therefore focus on the double

auction without communication, although we also run some sessions with communication.

Players in the double auction make decisions knowing the distribution of possible costs

and values, and knowing their own cost (if seller) or value (if buyer). Our main treatment

difference is in the artificially induced proportion of naive traders. In treatments labelled

“S” (for “strategic”) all subjects are matched in pairs and play the double auction. In

treatments “N” (for “naive”), subjects are told that with probability 0.25 their decision

will be matched with that of a computerized opponent who sets bid equal to the buyer’s

value or ask equal to the seller’s cost. This arrangement corresponds to the case with

proportion ε = 0.25 of naive traders.12

The distributions of costs and valuations follow the two settings discussed in the previous

section. One setting involves c = 10, v = 30, c̄ = 70, v̄ = 90 (coded as “20” by the difference

11All these alternative preferences can create additional fully efficient equilibria, also for the setting with

naive traders. However, as we will see below, fully efficient equilibria are not what is observed in the

experiment.
12To be precise, subjects are still matched in pairs in this treatment. After they have chosen their bid/ask,

with probability 0.25, both subjects in a pair are rematched with computerized opponents who play naively.

Thus, each subject in the pair faces a 0.75 probability of being matched with the human opponent and 0.25

probability of being matched with a naive opponent. Hence, the strategic incentives in the “N” treatment

correspond to the case with ε = 0.25 of naive traders.
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v − c = v̄ − c̄ = 20.) Recall that in this setting there exists a fully efficient equilibrium

if the proportion ε of naive traders is 0, but not for any other value of ε < 1. Increasing

ε by 0.25 as is done in the “N” treatment may thus decrease efficiency compared to the

“S” treatment. However, as mentioned earlier, we might fail to observe the fully efficient

equilibrium in this setting for two reasons: firstly, because some types of traders earn zero

surplus (making it potentially difficult to coordinate on this equilibrium); secondly, it is

possible that (some) subjects’ underlying beliefs about opponent’s naiveté are positive. We

therefore also consider setting with c = 5, v = 30, c̄ = 70, v̄ = 95 (coded as “25” for

v − c = v̄ − c̄ = 25). In this setting, for values of ε less than 0.19, there exist fully efficient

equilibria in which all types of traders earn positive surplus. Thus, the “S” treatment in

this setting offers the opportunity to attain full efficiency with positive surplus to all types

of traders as long as the subjects’ underlying beliefs regarding their opponent’s naiveté are

not too high. But full efficiency becomes unattainable in equilibrium once the proportion of

naive traders is artificially increased by 0.25 in the “N” treatment. Our hypothesis is that

efficiency in treatment “S” is higher than in treatment “N” because (at least some) human

traders behave more strategically with a higher proportion of naive traders.

We also vary the framing of the interaction. In the double-auction framing (coded

“BA”), the seller names an ask price and the buyer names a bid price. In addition to this

standard framing, we consider the direct mechanism framing (coded “DM”). In this framing,

subjects are asked to report their cost or value. The payoffs are calculated according to the

double-auction rule: trade occurs if the reported value is above the reported cost, at the

price in the middle between the reported value and cost. The difference between BA and

DM frames is only in the wording of the instructions (a sample of which is given in Appendix

B). Framing the interaction as a direct mechanism makes it clearer what revealing one’s

cost or value is. Our expectation is that experiment participants in frame DM play naively

more often than in frame BA. If other participants realize this, it can have a knock-on effect

on their behavior, making them act more strategically in frame DM than in frame BA, and

thus efficiency may be higher in frame BA than in frame DM.

Each experimental session without communication follows one of the settings. For ex-

ample, a session coded as “BA-S-20” means a session using the double-auction frame, no

artificial naive players, and parameters c = 10, v = 30, c̄ = 70, v̄ = 90. In each session,

16-18 subjects are divided into two matching groups of 8-10 players. Within each matching

group, in each period half of the subjects have one role (e.g. Seller) and the other half the

other role. Table 1 gives the number of sessions, matching groups, and subjects for each

treatment. In total, there are 16 sessions with 272 subjects.

A session lasts 40 periods. In each period, a subject in one role is randomly matched

11



Code Sessions Matching Subjects Code Sessions Matching Subjects

groups groups

BA-S-20 3 6 52 DM-S-20 2 4 34

BA-N-20 3 6 52 DM-N-20 2 4 32

BA-S-25 2 4 34 DM-S-25 1 2 18

BA-N-25 2 4 32 DM-N-25 1 2 18

Table 1: Experimental sessions without communication

with a subject in the other role. During a session, each subject keeps the same role for 10

periods, then switches to the other role.13 After the matching, each subject’s value or cost

is drawn randomly and independently. The subjects then make their decisions14 and their

payoffs are calculated.15 At the end of each period, subjects are told what the outcome

in their match is (but neither the opponent’s cost or value nor whether the opponent is a

computer). Payoffs are measured in points.

Experimental sessions were conducted in the Centre for Decision Research and Exper-

imental Economics (CeDEx) laboratory at the University of Nottingham. The experiment

was programmed in z-Tree (Fischbacher, 2007) and subjects were recruited from the CeDEx

database of experimental participants using the ORSEE software (Greiner, 2015). They

were students of various disciplines across the university. Together with reading the in-

structions, answering control questions, and filling in the post-experiment questionnaire,

each 40-period session lasted 90-120 minutes. Subjects were paid their accumulated earn-

ings, converted from points to pounds at the rate £0.20 for 10 points in setting “20” and

£0.15 for 10 points in setting “25” (to equalize payoffs, since the available surplus is larger

in setting “25”). The average payment per subject was £14.12 ($22.25 at the time of the

experiment), including a £5 show-up fee.

The previous experiments on double auction that also considered pre-play face-to-face

communication (e.g. Valley et al., 2002 and McGinn et al., 2003) found that it increases

efficiency beyond the second-best. We therefore also run two sessions of treatment “BA-S-

20” with face-to-face communication. There are 16 subjects in each session, 8 sellers and 8

buyers in separate rooms. After their costs and values are determined, subjects are taken

13Thus a subject could be e.g. Seller in periods 1-10, Buyer in periods 11-20, Seller again in periods 21-30

and Buyer again in periods 31-40.
14Before making a decision, subjects could use a “Payoff Calculator” to calculate their own expected

payoffs for different possible asks/bids set by themselves and their opponents.
15In the N treatment, it is first determined whether the subjects in a pair are rematched against a

computerized opponent and then payoffs are calculated.
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to another room to have a 3-minute face-to-face conversation. Then they return to their

rooms and make decisions about bid/ask price. Subjects are matched in a round-robin

format during 8 periods and never meet again a subject with whom they already met face-

to-face. Subjects were paid £1 for 10 points in these treatments. These sessions lasted

150 minutes and subjects earned on average £19.25 ($30.13; the payoff is higher partially

because the random draws favoured low costs and high values). We expect these sessions

to achieve at least as high (close to full) efficiency as the sessions without communication.

4 Experiment Results

4.1 Efficiency

Before we present our results, we define how we measure efficiency in our treatments. The

realized efficiency is the proportion of total available surplus that is captured by the traders

in our game. In treatment S, the realized efficiency is the ratio of the total realized gains

from trade to the total available gains from trade. However, the realized efficiency in

treatment N is muddled by the outcome of the matching lottery (whether the subjects are

matched with computerized opponents or not) and hence is not directly comparable to the

realized efficiency in treatment S which only depends on the realization of costs and values

and bids and asks. To make efficiency measures comparable, we construct two measures for

treatment N using only the realized values and costs and the subjects’ bids and asks.

The first measure of efficiency in treatment N corresponds to the proportion of total

available surplus that is expected to be captured by the traders after the strategic traders

have chosen their bids and asks but before the disposition types of the buyer and seller are

known. We thus calculate the expected gains from trade in each matching pair given the

realized cost and value and the subjects’ bid and ask.16 Then the expected efficiency in

treatment N is the ratio of the total expected gains from trade to the total available gains.

The second measure of efficiency in treatment N corresponds to the proportion of total

available surplus that would have been captured by the traders if hypothetically all subjects

were matched between themselves rather than with (possibly) a computerized opponent.

Thus, the human efficiency in treatment N is the ratio of the total gains from trade that

would have realized had the subjects in each pair matched to each other, to the total

available gains from trade.

If applied to treatment S, both the expected efficiency measure and the human efficiency

16For example, if the buyer’s value is 90 and the seller’s cost is 10, and the subject in the buyer’s role

bids 50 while the subject in the seller’s role asks 75, then the expected gains from trade are (0.75)2(0) +

2(0.75)(0.25)(80) + (0.25)2(80) = 35.
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Figure 1: Efficiency comparison in treatments S and N

measure coincide, and they are also equal to the realized efficiency measure. The theoretical

analysis of the situations played out in the experiment shows that if the strategic traders

coordinate on a fully efficient equilibrium in the absence of naive traders, then efficiency

(both expected and human) can be higher without naive traders (treatment S, ε = 0) than

with a sizable proportion of naive traders (treatment N, ε = 0.25). Also, if there are more

naive plays in frame DM than in frame BA, then it is possible that efficiency is higher in

the BA frame than in the DM frame.

Figure 1 presents the comparison of efficiency in treatments S and N. It shows the time

series of the three efficiency measures – realized efficiency in treatment S labeled “S-Real”

(blue, lighter line), expected efficiency in treatment N labeled “N-Exp” (red, darker line),

and human efficiency in treatment N labeled “N-Human” (dotted line) – averaged over

blocks of five periods. The efficiency measures are combined across the BA and DM frames,

since none of the non-parametric Mann-Wilcoxon-Whitney rank-sum tests on the level of

matching groups comparing median efficiency shows significant difference across frames.17

As can be seen in the figure, all measures of efficiency are clearly lower than full efficiency

and do not change much over time. The expected efficiency in treatment N appears higher

than the realized efficiency in treatment S, especially in setting “20”. Non-parametric tests

(focusing on periods 21-40, allowing subjects to learn the game) find a significant difference

between these measures of efficiency in the S and N treatments in setting “20” (p-value of

the two-sided test 0.023; 10 observations for each treatment) but not in setting “25” (p-value

0.337; 6 observations for each treatment). There appears to be little difference between the

treatments when comparing the realized efficiency in treatment S with the human efficiency

in treatment N. Indeed, non-parametric tests do not find significant differences for either of

17The tests results are presented in Section C.1.1 of Appendix C.
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Setting “20” Setting “25”

Gains S N (N-Human) S N (N-Human)

v̄ − c 0.853 0.922 (0.861) 0.947 0.947 (0.906)

v̄ − c̄ 0.551 0.676 (0.528) 0.622 0.650 (0.493)

v − c 0.436 0.613 (0.438) 0.479 0.646 (0.479)

0 (c̄ > v) 0.015 0.018 (0.023) 0.008 0.043 (0.050)

Table 2: Probabilities of trade for different available gains

the comparisons (p-values are 0.650 for parameter setting “20” and 0.749 for “25”).

Result 1. Efficiency

• Full efficiency is not realized even when it is possible in equilibrium.

• Expected efficiency is higher in treatment N than realized efficiency in treatment S,

significantly so in setting “20”.

• Human efficiency in treatment N is not significantly different from realized efficiency

in treatment S.

• There are no significant differences in efficiency between BA and DM frames.

Thus our hypotheses related to efficiency are not confirmed. Indeed, the results go in

the opposite direction: the expected efficiency in treatment N is higher than the realized

efficiency in treatment S. Since the human efficiency in treatment N is not different from the

realized efficiency in treatment S, the greater value of the expected efficiency in treatment

N compared to the realized efficiency in treatment S is mostly due to additional trades with

and between computerized naive traders rather than between human subjects.

The efficiency measures presented in Figure 1 combine situations with a high available

surplus (v̄ − c) and a smaller surplus (v − c and v̄ − c̄) as well as situations with zero

surplus (c̄ and v). Table 2 shows the probabilities of trade for these different situations

averaged across all rounds (combined across BA and DM frames). In the S treatment, we

measure the realized probability of trade given the subjects’ bids and asks (labeled “S”).

In the N treatment, we again distinguish between the expected probability of trade given

the subjects’ bids and asks and the realized costs and values (labeled “N”) and the human

probability of trade if all subjects were always matched between themselves rather than

(occasionally) with a computerized opponent (labeled “N-Human”).

From Table 2, the expected probability of trade is higher in treatment N than the

realized probability of trade in treatment S for all gains from trade (even for the negative
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ones v − c̄, although such trades happen only in less than 3% of all cases of negative

surplus).18 However, the human probability of trade in treatment N is very similar to the

realized probability of trade in treatment S for all gains of trade.19 The introduction of

naive traders thus raises the expected probability of trade in all situations with positive

surplus but does not change the probability of trade in matches between human subjects.

An obvious reason for the failure to get a higher efficiency in the S treatment compared

to the N treatment is that subjects are not playing a fully efficient equilibrium. The absence

of a significant difference between efficiency in the S treatment and efficiency in matches

of human subjects in the N treatment, and between the probabilities of trade in treatment

S and in matches of human subjects in treatment N, points also to the possibility that

subjects do not behave more strategically in treatment N compared with treatment S. This

explanation is discussed in more detail in the next section.

In the communication treatment (which uses parameter setting “20”), the realized ef-

ficiency is 0.884, higher than in the treatments without communication but still falling

somewhat short of full efficiency.20 The realized probability of trade for the large surplus

v̄ − c is 0.939, for surplus v̄ − c̄ it is 0.788 and for v − c it is 0.621 (and 0 for negative sur-

plus). Even though trade almost always happens in the case of large surplus, subjects do

not always manage to trade in the cases of lower surplus, leaving some surplus unrealized.

4.2 Individual Behavior

We divide the analysis of the individual choices into two parts. First we look how often the

choices coincide with cost (for sellers) and value (for buyers), to estimate the proportion of

naive play in the experiment. In the second part we look at strategic choices (i.e., ones that

are different from cost or value) to determine the extent of shading or exaggeration.

4.2.1 Incidence of Naive Behavior

We term as “naive” behavior that corresponds to setting bid equal to value as a buyer and

ask equal to cost as a seller (in the DM frame, this corresponds to reporting the actual

value or cost). Naive behavior is weakly dominated from purely selfish preferences point

of view: reducing the bid (or raising the ask) by the smallest available unit (0.01 in the

experiment) does not lose any trades with a positive surplus for the player while leading

18It is also the case that the probability of trade with v̄− c̄ is larger than with v− c. The explanation for

this is discussed in the next subsection.
19These observations are confirmed by regressions reported in Section C.1.2 of Appendix C. The regressions

also find that the probabilities of trade are not affected by frame (BA or DM) and setting (“20” or “25”).
20A summary of the data for the communication sessions is provided in Section C.3 of Appendix C.
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Figure 2: Incidence of naive behavior

to a better price. However, in the S treatment, such behavior by the low-value buyer and

high-cost seller (“non-extreme” values) is consistent with a fully efficient equilibrium, and

thus not necessarily irrational. But in the N treatment, such behavior is not consistent with

any equilibrium since the low-value buyer (high-cost seller) can obtain a positive expected

payoff by bidding equal to c (asking equal to v̄). We can therefore expect that the incidence

of naive behavior is higher in treatment S than in treatment N, at least for traders with

non-extreme values. We can also expect the DM frame to increase the incidence of naive

behavior due to, e.g., aversion to lying.

Figure 2 plots the incidence of naive behavior over time (in blocks of 5 periods), disag-

gregated by frames BA and DM (but aggregated across other treatment differences)21. The

left panel is for the extreme values and the right panel is for the non-extreme values.

For the extreme values, there is almost no change in the proportion of honest play,

and there is no difference between the BA and DM frames. The overall frequency of naive

behavior with extreme values stays around 7% throughout the experiment. If this proportion

is taken as an indicator of naturally occuring naive play, it allows the existence of a fully

efficient equilibrium in setting “25”.

For the non-extreme values, the figure shows that the proportion of naive play is higher

in frame DM than in frame BA. Non-parametric tests find that the difference is significant

for periods 21-40 (p-value of the two-sided Mann-Wilcoxon-Whitney test is 0.016), partially

confirming our hypothesis. The proportion of naive play also appears to increase in the DM

frame over time.

The aggregate proportions presented in the figure may hide other possible differences.

21Non-parametric tests comparing the proportions, reported in Section C.2.1 of Appendix C, do not find

significant differences across those treatment differences.
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Determinants of naive behavior in Periods 21-40

Dependent variable: NaiveP lay

Variable Extreme Non-extreme

NPresent 0.023∗∗ (0.012) 0.032 (0.032)

DM −0.001 (0.012) 0.095∗∗∗ (0.030)

V al25 0.009 (0.012) 0.028 (0.030)

Seller −0.036∗∗∗ (0.010) 0.063∗∗∗ (0.017)

Period < 0.001 (0.001) 0.004∗∗∗ (0.001)

NaiveP layt−1 0.134∗∗∗ (0.024) 0.278∗∗∗ (0.034)

PayBRHist 0.001 (0.002) −0.012 (0.014)

PayBRLast < 0.001 (< 0.001) −0.007∗∗∗ (0.002)

(Constant) −2.343∗∗∗ (0.401) −2.221∗∗∗ (0.260)

Observations 2708 2732

Clusters 272 272
Average marginal effects of variables presented. Standard errors clustered by subjects in

parentheses. ∗∗∗ - significant at 1% level; ∗∗ - significant at 5% level.

Table 3: Determinants of naive behavior

We try to get a further insight into the determinants of naive (and strategic, in the next

subsection) behavior by looking at individual decisions. To this end, we regress subjects’

choices on variables describing the treatment and additional variables attempting to capture

a subject’s experienced history in the game.

Specifically, we consider the dummy variable NaiveP layit, equal to 1 if the play of

subject i at period t is naive. Among the explanatory variables, NPresenti, DMi, V al25i

are the dummy variables describing the treatment, frame, and setting, and Sellerit is the

dummy variable equal to 1 if the subject is a seller in period t.

The history variables are constructed as follows. One is the lagged naive play dummy,

NaiveP layit−1. For each subject i, variables PayBRHistit and PayBRLastit measure the

payoff difference between playing the best response (in the given role) and playing naively.

Variable PayBRHistit measures it for the whole history of play up to period t, while

variable PayBRLastit measures it against the last match of subject i. The variables intend

to capture incentives to deviate from naive play, both for a long and a short memory.

We run random-effects probit regressions, separately for the subsamples of observations

with the extreme and with the non-extreme values. The results, for periods 21-40, are

presented in Table 3.
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The regressions confirm the significantly higher probability to observe naive plays in

frame DM than in frame BA as well as the upward trend in this proportion for traders

with non-extreme values. They also show that the presence of naive traders leads to a

significantly higher probability of naive play for the extreme-value traders but not for the

non-extreme value traders.22 We also find that with the extreme values, sellers play naively

significantly less often than buyers (the raw proportions are 4% versus 10%). With the

non-extreme values the result is reversed: buyers play naively significantly less often than

sellers (25% versus 34%).23

The incentives to deviate from naive play, as measured by the history variables, do not

seem to be important for extreme value traders although one of them, PayBRLast, plays a

role in the decisions of non-extreme value traders. Thus, a higher achievable payoff from best

response to the last observation decreases the probability of naive play for the non-extreme

value traders. The largest effect, though, is from the previous decisions to play naively, and

determines such later decisions for both extreme and non-extreme value traders, suggesting

that naivety may be a consistent behavioral trait. However, we cannot clearly demarcate

subjects into strategic and naive types. While 24% of subjects were always strategic, none

of the subjects always played naively.

One way to explain both the greater frequency of naive play among the non-extreme

value traders and the different impact of an increase in the payoff from best responding on

non-extreme-value versus extreme-value traders is that subjects have (non-monetary) costs

of lying. To see this in the simplest possible way, consider an alternative model in which

all players are strategic but the buyer pays a cost of x if she lies.24 Suppose the low-cost

seller asks z1 with c ≤ z1 < v while the high-cost seller asks z2 with c̄ ≤ z2 < v̄. Then the

low-value buyer gains 1
4(v − z1)− x by lying (setting bid equal z1) whereas the high-value

buyer gains 1
4(z2−z1)−x by such a lie. As the latter is greater than the former, we can thus

have a situation where the low-value buyer is acting naively whereas the high-value buyer

is lying – which is consistent with a greater proportion of naive play by the traders with

non-extreme values in the experiment. A decrease in z1, which increases the payoff from

lying for both types of buyers, may cause the low-value buyer to switch to lying – which is

consistent with the reduction in naive behavior by the traders with non-extreme values in

response to an increase in the payoff from best responding.

That the non-extreme value traders have a lower expected gain from lying than the

22The absolute proportions of extreme-value traders playing naively is small though: 5% in treatment S

and 8% in treatment N.
23Radner and Schotter (1989) also find a difference in buyer and seller behavior in their experiment on

symmetric double auction.
24For example, Ellingsen and Johannesson (2004) consider a model with such a fixed cost of lying.
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extreme-value traders could similarly explain more naive play by the former but not by

the latter types of traders in the DM frame if framing the actions as a report about one’s

cost/value increases the cost of lying. Having said that, for cost of lying to explain the

differences in the observed naive behavior across traders’ roles would require us to assume

that the extreme-value sellers have a lower cost of lying than the extreme-value buyers

while the non-extreme-value sellers have a higher cost of lying than the non-extreme-value

buyers. It is a priori not clear why that should be the case since the experimental setting

is symmetric across traders’ roles.

Summarizing these observations, we have:

Result 2. Naive behavior

• Subjects are more likely to play naively if they played naively in the past.

• With extreme values, (a) naive play is observed in 7% of decisions and there is little

difference in the frequency of naive play across treatments or frames; (b) buyers are

more likely to play naively than sellers.

• With non-extreme values, (a) there is more naive play in frame DM than in frame

BA but there is no difference between treatments S and N; (b) sellers are more likely

to play naively than buyers.

Our expectation to see more naive plays in treatment S than in treatment N is not

confirmed. On the other hand, the expectation that the DM frame is more conducive to

naive play than the BA frame, is partially confirmed (for the non-extreme but not for the

extreme-value traders). More surprising is the difference across traders’ roles since by design

all subjects played an equal number of times in each of the roles and were equally likely to

receive extreme or non-extreme valuations. That the high-value buyers and the high-cost

sellers play naively more often than the low-value buyers and the low-cost sellers provides

an explanation of the difference in probabilities of trade in cases v̄ − c̄ and v − c that was

noted in the previous subsection.

In the communication session, naive behavior in the double-auction stage is much less

common: 3% with the extreme values and 9% with the non-extreme values. However,

transcripts of subjects’ conversations show that true values and costs are often revealed

during the communication stage. Almost all traders with non-extreme values reveal them

truthfully (94%). Of the traders with extreme values, 56% do so.25 After exchanging

value/cost statements (which happens in 91% of conversations, out of which 59% involve

25Of the remaining extreme-value traders, 36% lied about their value/cost misstating it as non-extreme,

and 8% did not state it unambigously. This can be seen in Section C.3 of Appendix C.
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mutual truthful revelation), subjects often agree on one price (in 89% of cases with the

stated value and cost allowing positive gains from trade), usually in the middle of their stated

values/costs (96% of cases). These one-price agreements are usually mutually followed (86%

of cases). Therefore, “naivety” has a different meaning in the communication treatment: it

is whether to reveal true cost or value in the communication stage rather than set ask or

bid equal to cost or value in the price-setting stage.

4.2.2 Extent of strategic behavior

The previous section looked at the incidence of naive behavior, which also explains the

incidence of strategic behavior, i.e., how often subjects bid or ask anything other than their

value or cost. In this section, we analyze the extent of strategic behavior, which measures

how far bids and asks are from values or costs, i.e. we study the extent of shading (if buyer)

or exaggeration (if seller) in the experiment.

Compared with a fully efficient equilibrium in treatment S, the presence of naive traders

in treatment N makes strategic traders with non-extreme values increase shading of bids

or exaggeration of costs, since they can get a higher expected payoff by exploiting naive

traders. Our hypothesis is thus to observe a higher extent of strategic behavior by the

traders with non-extreme values in treatment N than in treatment S (and possibly in frame

DM, where more naive traders can be present, than in frame BA).

The effect of introduction of naive traders on the equilibrium behavior of strategic traders

with extreme values is less clear cut. For example, in the unique fully efficient equilibrium

of the S-20 treatment the high-value buyer and the high-cost seller coordinate on the price

of 70 while the low-value buyer and the low-cost seller coordinate on the price of 30. In the

N-20 treatment, where ε = 0.25, there exists an equilibrium in which the high-value buyer

and the low-cost seller coordinate on the price of 28, the low-value buyer bids 10 and the

high-cost seller asks 90. Compared to the fully efficient equilibrium in the S-20 treatment,

the low-cost seller now acts less strategically by reducing her ask whereas all other types

of traders act more strategically by increasing the amount of shading or exaggeration.26

Due to this ambiguous effect, we do not state a formal hypothesis comparing the extent of

strategic behavior by the traders with extreme values.

Figure 3 shows the time series of the average amount of shading and exaggeration

(conditional on asks not equal cost and bids not equal value). The data are separated for

26There is also an equilibrium in which the high-value buyer and the low-cost seller coordinate on the

price of 72, the low-value buyer bids 10 and the high-cost seller asks 90. Here, compared to the fully efficient

equilibrium in the S-20 treatment, the high-value buyer acts less strategically by increasing her bid whereas

all other types of traders act more strategically.
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Figure 3: Extent of strategic behavior

the “20” and “25” settings, and disaggregated between S (labeled ‘S-’) and N (labeled ‘N-’)

treatments (while aggregated across BA and DM frames)27. The solid lines are for the

extreme-value traders while the dotted lines are for non-extreme-value traders.

Unsurprisingly, traders with the extreme values shade or exaggerate much more than

traders with the non-extreme values. From the figure, there appears to be little difference in

the average extent of strategic behavior between treatments S and N, which is also confirmed

by non-parametric tests (p-values of the comparisons are 0.762 for the extreme values and

0.880 for the non-extreme values in setting “20” and 0.873 for the extreme values and 0.423

for the non-extreme values in setting “25”). The extent of strategic behavior also stays

roughly at the same level across periods. Thus our expectation of more strategic behavior

in treatment N than in treatment S (or in frame DM than in frame BA) is not confirmed.

To get a further insight into determinants of strategic behavior from individual data,

we regress the variable measuring the extent of strategic behavior on variables describing

the treatment setting and a subject’s history. Strategic behavior (variable StratBeh) is

measured as Ask − Cost for sellers and V alue − Bid for buyers. The history variables

are now summarized in the distance of best response (to the whole history of observations,

variable DistBRHist, and to the last observation, variable DistBRLast) from the cost or

value, since these variables measure the “optimal” strategic behavior in view of (long or

short memory of) the player’s history. The results of the random-effects linear regressions,

again for separate subsamples of players with the extreme and the non-extreme values are

presented in the first two columns of Table 4.

As with naive behavior, one of the main determinants of the extent of strategic behavior

27Non-parametric tests reported in Section C.2.2 of Appendix C do not find significant differences in

strategic behavior between frames.
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Determinants of the extent of strategic behavior in Periods 21-40

Dependent variable: StratBeh Dependent variable: ∆StratBeh

Variable Extreme Non-extreme Extreme Non-extreme

NPresent −0.117 (0.790) −0.358 (0.838) −1.242∗∗ (0.567) −2.156∗∗∗ (0.428)

DM 0.538 (0.812) −0.534 (0.900) 0.176 (0.584) −0.758∗ (0.407)

V al25 0.687 (0.841) 0.183 (0.886) −0.458 (0.603) −0.853∗∗ (0.398)

Seller 0.583 (0.581) −0.238 (0.347) −0.112 (0.457) −0.546∗∗ (0.251)

Period 0.013 (0.050) −0.062∗ (0.032) 0.017 (0.041) −0.051∗∗ (0.022)

StratBeht−1 0.658∗∗∗ (0.027) 0.188∗∗∗ (0.051)

DistBRHist 0.037∗∗ (0.016) 0.116∗∗∗ (0.044) 0.123∗∗∗ (0.016) 0.256∗∗∗ (0.035)

DistBRLast 0.002 (0.013) 0.025 (0.022) 0.066∗∗∗ (0.011) 0.185∗∗∗ (0.025)

Constant 7.480∗∗∗ (1.877) 5.911∗∗∗ (1.259) −1.751 (1.380) 1.556∗∗ (0.711)

Observations 2517 1931 2708 2731

Subjects 271 256 272 272

Standard errors clustered by subjects in parentheses. ∗∗∗ - significant at 1% level; ∗∗ - significant at

5% level; ∗ - significant at 10% level

Table 4: Determinants of the extent of strategic behavior

of a player is how strategic the player was in the past: the more strategic the player was

before, the greater the extent of current strategic behavior by the player (here, StratBeht−1

refers to the previous time the player was in a given role with the given cost/value). An

increase in the distance between the best response to the entire history of play and the

players’ value/cost increases the extent of strategic behavior too, although only by a small

proportion of the increase in the distance (and the immediate history does not have a

significant effect). Variables describing treatment, frame and setting have no significant

effect, confirming non-parametric tests.

The regressions for the level of strategic behavior do not clearly indicate how players

change their choices because this change depends on the interplay of the coefficients on

StratBeht−1 and DistBRHist. We thus also analyze what determines these changes. For

this, we use variable ∆StratBeh = StratBehit − StratBehit−1. The history variables

are modified in a similar way (i.e., to DistBRHistit − StratBehit−1 and DistBRLastit −
StratBehit−1), thus measuring how much strategic behavior should be changed if the subject

is best responding to the observed history of asks or bids (or to the last observation). Both

these variables try to capture incentives to increase or decrease shading or exaggeration.

The results of the regressions for changes in strategic behavior are presented in the last
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two columns of Table 4 (the regressions are simple linear regressions; all observations are

included, also the naive ones since they represent zero strategic behavior which can change

from one period to the next). The regressions show again that the history is important

for changes in the extent of strategic behavior. Shading or exaggeration is larger if the

best response to the observed history is further away from the current choice, also for

the immediate history (last experienced observation). It also goes on average in the right

direction: the mean value of ∆StratBeh is positive for positive values of DistBRHist and

DistBRLast and negative for negative value of these history variables. Thus players react

to incentives from the observed history (albeit only partially).

The regressions also find that the treatment variables have some effect on the magnitude

of average changes in the extent of strategic behavior, especially for traders with the non-

extreme values. The average levels of strategic behavior are similar in all treatments though,

and stay constant over time. Summarizing,

Result 3. Extent of strategic behavior

• The extent of strategic behavior in the past positively effects the extent of strategic

behavior in future.

• There are no significant differences in the extent of strategic behavior across treatments

and frames.

• Strategic behavior changes towards best responses to previous observations (both dis-

tant in the past and immediate) but only partially.

Thus, subjects do not appear to behave more strategically in treatments with more naive

players (treatment N as compared with treatment S; recall also that there were significantly

more naive plays in the DM frame than in the BA frame). However, the choices do react to

the previous experience in the manner one can expect, towards best responses to observa-

tions. We use these results in the next section to motivate a dynamic model with noisy best

response that can account for (some of) the properties of the data from the experiment.

In the communication sessions (recall that they use parameter setting “20”), the extent

of strategic behavior in the double-auction stage appears larger than in the sessions without

communication: with the extreme values, the average strategic behavior is 30.5 and with

the non-extreme values it is 11.7. This is, however, misleading, since traders often reveal

their value/cost and agree on bid/ask in the middle between the revealed value and cost, as

shown before. Indeed, the average strategic behavior of extreme-value traders is 37.7 if the

other trader also has an extreme value,28 but only 18.7 if the other trader has a non-extreme

28In such pairs, buyers’s strategic behavior (average 47.7) is larger than sellers’ (27.4). Buyers also lie

about the value more in such pairs than sellers do, as can be seen in Section C.3 of Appendix C.
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value.29 Note that in the pairs in which an extreme-value trader meets a non-extreme value

trader, the strategic behavior of the former is larger and not always compatible with that

of the latter: since values and costs are sometimes misstated, the claims of non-extreme

values are not always believed, leading to the efficiency losses discussed earlier.

5 A Dynamic Adjustment Model of Choices

A few points learned from the previous section about the behavior of the participants in the

sessions without communication are that the average behavior is similar across settings and

hardly changes over time, even though some reasonable adjustments in view of experience

are made. In this section we present a dynamic adjustment model that replicates these

features of the experimental data.

As the starting point of the model, we observe that in the first round the extreme-value

traders exaggerate their cost or shade their value by 27.77 on average; the non-extreme-

value traders do so by 4.35.30 It turns out that if traders make choices based on low levels

of strategic sophistication like in level-k model (Stahl and Wilson, 1994), the average play

roughly fits these numbers.

More precisely, we consider the uniform strategy of one trader, discretized on integer

values between 0 and 100 (the range used in the experiment). Suppose that the choices

of the other trader follow a logistic distribution based on the expected payoffs against this

uniform strategy, i.e.,

Prob(j) =
eλEu(j)∑100
j=0 e

λEu(i)
, (1)

where j ∈ {0, . . . , 100} and Eu(i) is the expected payoff of strategy i against the uniform

strategy of the other trader. Parameter λ measures the noise in choosing the strategy with

the highest payoff: as λ→∞, the best response is chosen with probability approaching 1,

while for λ = 0 all strategies are chosen with the same probability. For intermediate values

of λ, strategies with higher payoffs have a higher probability to be chosen than strategies

with lower payoffs.31

29For the non-extreme value traders, average strategic behavior is 9.9 if the other trader has an extreme

value and 15.4 if the other trader has a non-extreme value. This difference is not as telling though since if

value 30 and cost 70 are stated, any (individually rational) bids and asks are possible.
30The numbers are also similar if all rounds are considered: 25.97 for the extreme-value traders and 4.35

for the non-extreme-value traders. These numbers are slightly lower that those that can be seen in Figure

3, where observations with ask equal to cost and bid equal to value are excluded.
31This logistic choice is used in the level-k model of choices (Stahl and Wilson, 1994), in the logit quantal

response equilibrium (QRE; McKelvey and Palfrey, 1995), and in the experienced-weighted attraction model

(EWA; Camerer and Ho, 1999).
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The previous paragraph described the choice of a subject with level-1 strategic sophis-

tication. Analyses of strategic sophistication in games, as summarized in Crawford et al.

(2013), often find that many subjects can be described as level-1, level-2 (best response

to level-1 behavior) and a type called D1 (Costa-Gomes et al., 2001), which eliminates

dominated strategies for both players before responding to the uniform distribution of the

opponent’s play. We therefore also allow such heterogeneity of strategic sophistication.32

Players can also be heterogeneous in their responsiveness to the expected payoffs, rep-

resented by the parameter λ. For the range of payoffs in our game, estimates of λ often

lie between 0.1 and 0.5.33 Thus, in simulations we draw individual λ’s from a uniform

distribution on interval [0.1, 0.5].34

To model the dynamics, we use the experience-weighted attraction (EWA) learning

model (Camerer and Ho, 1999). In the EWA model, players form attractions for each

strategy and then probabilistically select a strategy according to the logistic equation (1)

based on these attractions in place of expected payoff. Attractions are updated based

on experience, with those strategies that either performed or would have performed best

receiving more reinforcement. The EWA model thus builds in the reinforcement of best

response to historical observations, a property of the adjustment of strategies that was

identified in the previous section as being partially present in the data.

More precisely, each strategy i in the EWA model has an attraction Ait at the end of

period t. These attractions are updated according to

Ait =
ϕNt−1Ait−1 + (δ + (1− δ)Iit)πit

Nt
, (2)

where πit is the payoff that strategy i obtained (or would have obtained) against the oppo-

nent’s strategy in round t, Iit = 1 if strategy i was used by the player at time t (and Iit = 0

if it was not used), and ϕ, δ are parameters. The experience count Nt is updated according

to Nt = ρNt−1 + 1, where ρ is a parameter. The initial attractions Ai0 and the initial

experience count N0 are also parameters of the model. Again, to reflect heterogeneity, the

32In the double auction, bidding strictly above value or asking strictly below cost is dominated by setting

bid equal to value or ask equal to cost.
33See e.g. Stahl and Wilson (1994), McKelvey and Palfrey (1995), Camerer and Ho (1999). More recently,

Ivanov (2011) and Nunnari and Zapal (2016) estimated λ’s in this range (including for individual subjects).

In our setting, the range of payoffs is 100 (from −70 to 30 for the non-extreme values, and from −10 (or −5)

to 90 (or 95) for the extreme vaues). Choice probabilities in equation (1) are invariant to shifts in payoffs

but not to changes in their scale, thus λ’s need to be adjusted to reflect the range of payoffs.
34For the mean value λ = 0.3, the average extent of strategic behavior of extreme-value traders in our game

is 24-36 and of non-extreme-value traders is 6-13 (depending on whether all or only undominated strategies

are used, on the setting and on the presence of naive traders). These values are higher than the ones actually

observed in the experiment. We will therefore modify (some) players’ utility function, as explained below.
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parameters can be different for different players.

We do not estimate the parameters of the EWA model but use the values found reason-

able in Camerer and Ho (1999) and calibrated to our setting. The previous section found

that the best response to the full history of plays has a larger impact on choice than the

immediate past. In the EWA model, the higher values of the experience discount parame-

ters ϕ and ρ lead to longer memory being important. We thus take these parameters from

the uniform distrubution on [0.8, 1] (with the condition that ρ ≤ φ), which is consistent

with estimates from Camerer and Ho (1999). The hypothetical payoff discount parameter

δ reflects the trade-off between finding a best response and reinforcing the previous play.

From the previous section, both appear to be important; we take δ uniformly distributed

on [0, 1]. The initial experience count is set to N0 = 1/(1 − ρ), so that the magnitude of

experience count stays roughly constant. Finally, the initial attractions Ai0 are set equal to

reflect either level-1 behavior (equal to the expected payoff against the uniform distribution

on the other trader’s strategies) or level-2 (expected payoffs against the distribution that

a level-1 player would play with the given λ), with equal probability. Within each level

of strategic sophistication, with probability 0.65 a simulated subject eliminates dominated

strategies for both players and adjusts expected payoffs accordingly.35

The model describes the attractions of strategies for a player who has to make one choice.

In our setting, each player can be in four situations: low- or high-cost seller, and low- and

high-value buyer. Each player thus has four sets of attractions. Only the attractions for

the current role (buyer or seller) are updated in a given period based on equation (2). The

model is also for a finite strategy space; we use the integer discretization from 0 to 100 as

the strategy space for the simulations.36

To reflect some features of the observed data, we consider some modifications of the

basic EWA model. Since 80% of choices in the experiment are in multiples of 5, we take the

probability 0.8 that a choice determined by equation (1) is rounded to the nearest mutliple

of 5. In the experiment, 76% of subjects played “naively” at least once, even though such

behavior is weakly dominated. We thus take that with probability 0.75 a simulated subject

has a linear (affine) cost of lying (in utility terms), with the fixed cost distributed uniformly

on [0, 4] (applies if ask is not equal to cost or bid not equal to value), and the marginal cost

distributed uniformly on [0, 0.2] for each unit of deviation from the cost (or the value).37

35At the first level of sophistication, this is similar to type D1 in Costa-Gomes et al. (2001). At the second

level, this is similar to level-2 player who eliminates dominated strategies and best responds to D1. Although

strategies with ask below cost or bid above value are played only 4% of the time in the experiment, 35% of

subjects play them at least once. This is why we set this probability to 65%.
36In the experiment, choices could be entered as numbers with two digits after the decimal point. However,

almost all choices were integers (97%); indeed, 80% of choices were in multiples of 5.
37These parameters are calibrated to get the proportion of naive play close to the one observed in the

27



0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1-5 6-10 11-15 16-20 21-25 26-30 31-35 36-40

Efficiency in setting "20"

S-Exp N-Exp S-Sim N-Sim

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1-5 6-10 11-15 16-20 21-25 26-30 31-35 36-40

Efficiency in setting "25"

S-Exp N-Exp S-Sim N-Sim

Figure 4: Efficiency in simulated sessions

In the post-experiment questionnaire, several subjects mentioned that they played “safe”;

interpreting this as risk aversion, we use constant relative risk aversion (CRRA) utility

function xr to evaluate payoff, with r uniformly distributed on [0.4, 1].38

Each simulation run models a matching group of 8 subjects, randomly matched for 40

rounds and each using the EWA learning as described above. For each simulated subject,

parameters are drawn from the distributions specified above. The average results of 50

simulation runs for treatments S and N are presented in Figures 4 and 5, differentiated

across settings “20” and “25”.39 Thick lines are the averages from the simulations while

the experimental data are reproduced as thinner lines.

The average data from the simulations appear to fit the average data from the experi-

ment quite well, both in terms of efficiency measures and in terms of the extent of strategic

behavior. The realized efficiency in treatment S is noticeably lower than the expected effi-

ciency in treatment N.40 The extent of strategic behavior is only marginally higher for the

extreme-value traders in the N treatment than in the S treatment, while for the non-extreme

value traders there is little difference between the S and N treatments. It is also the case

data. The form of direct lying cost combines those discussed, e.g., in Ellingsen and Johannesson (2004),

Kartik (2009) and Gneezy et al. (2018).
38More precisely, to avoid negative x and to preserve the range of utilities, the utility function is

100−0
100r−0r

(x+ 70)r for the non-extreme-value traders and 160−60
100r−60r

(x+ 70)r + 60·160r−60r·160
160r−60r

for the extreme-

value traders. Ivanov (2011) uses a similar transformation. The average value of the risk-aversion parameter

(0.7) corresponds to the one from (unincentivized) elicitation of risk attitudes in our communication sessions.
39In simulations of the N treatment, initial attractions based on the expected payoffs take into account

that with probability 0.25 the opponent plays naively. Also, in each match simulated subjects play naive

opponents with probability 0.25, as in the experiment. Attractions are still updated as described above.
40The human matches efficiency in treatment N (not shown to make the figure less cluttered) is only

slightly lower than the realized efficiency in treatment S.
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Figure 5: Strategic behavior in simulated sessions

that the proportions of naive play in the simulations are not too different from those in the

experiment, and this proportion increases over time for non-extreme value traders.41

There are still some differences between the simulated and experimental data: the prob-

abilities of trade in cases v̄− c̄ and v−c are lower in simulations than in the experiment, and

the probability of trade in case v̄ − c is higher. The simulations have a build-in symmetry

across roles and do not distinguish between the BA and DM frames.42 The fit is thus not

perfect but the simulations demonstrate that a learning model can explain the behavior

in the experiments to a large extent. In particular, simulations show that with noisy best

response, even with learning, convergence to the efficient equilibrium is difficult, and that

the presence of naive traders does not necessarily lead to more aggressive behavior and less

efficiency, confirming what we observe in our experiments.

6 Conclusion

In this paper, we analyzed a bargaining situation with incomplete information in which a

natural double-auction mechanism has an efficient equilibrium. However, with non-strategic

naive traders, this efficient equilibrium disappears; thus, the presence of naive traders may

decrease efficiency.

We ran an experiment to see whether the presence of naive traders would reduce ef-

41Depending on the setting (“20” or “25”) and treatment (“S” or “N”), the proportions in simulations are

3-6% for extreme-value traders (compared with 5-9% in the experiment). For non-extreme-value traders,

in simulations the proportions are 15-19% in the first five periods (20-27% in the experiment) but rise to

25-32% in the last five periods (compared with 26-39% in the experiment).
42A possible way to get the observed difference in the proportion of naive behavior between frames is to

have a higher cost of lying for the DM frame or a larger probability that a player has a positive cost of lying.

29



ficiency but did not find this effect. The main reason for this is that the subjects did

not play according to the efficient equilibrium in the treatment without naive traders. We

then presented a learning model, with initial choices described by low levels of strategic

sophistication and subsequent adjustment based on past experience, that replicates average

measures of efficiency and behavior from the experimental data.

Taken at face value, our finding appears to contradict the previous literature (Radner

and Schotter, 1989; Valley et al., 2002; McGinn et al., 2003; Ellingsen et al., 2009) which

found that the constrained-efficient linear equilibrium of the double auction describes the

data well even though the asymmetric information setting in those experiments (uniform

distributions of value and cost) is more complex than our setting of two-point value/cost

distributions. This apparent inconsistency can however be resolved by noting that the

linear equilibrium of the double auction in the setting with identical uniform distributions

of valuations can also arise from low levels of strategic sophistication (see footnote 9). Thus,

play in the double auction may be better described by non-equilibrium models like level-k

and learning dynamics in both settings.

The previous literature also showed that allowing pre-play communication generates

efficiency gains that are greater than the theoretical maximum (e.g., Valley et al., 2002

and McGinn et al., 2003). However, we did not find a similar result in our setting: while

allowing for pre-play communication did lead to an increase in efficiency, subjects did not

come very close to the theoretical maximum of full efficiency. Our results thus suggest that

caution is required in applying equilibrium concept to predict efficiency of private value

bargaining outcomes.

The conclusions reached in this paper, in contrast to the previous literature, call for

further experimental studies on private value bargaining. We need to understand better the

nature of strategic behavior (whether it corresponds to equilibrium or to non-equilibrium

models), as well as the possibility (or impossibility) of achieving full efficiency in practice,

also (and perhaps especially) when it is theoretically feasible in equilibrium.

A Proofs

Proposition 1. Suppose ε = 0. Strategies (Zstrs , Zstrb ) are a fully efficient equilibrium if

and only if Zstrs (c) = Zstrb (v) = z1 and Zstrs (v̄) = Zstrb (c̄) = z2, where

2

3
c+

1

3
z2 ≤ z1 ≤ v and c̄ ≤ z2 ≤

2

3
v̄ +

1

3
z1. (3)

Proof. In an equilibrium in which a (strategic) seller with value c trades with a positive
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probability, the ask cannot be strictly below the cost because the seller can get a higher

payoff by setting the ask equal to the cost. Thus c ≤ Zstrs (c). Similarly, Zstrb (v) ≤ v.

In a fully efficient equilibrium, Zstrs (c) ≤ Zstrb (v) and Zstrs (c̄) ≤ Zstrb (v̄). Combining with

the inequalities from the previous paragraph,

c ≤ Zstrs (c) ≤ Zstrb (v) ≤ v < c̄ ≤ Zstrs (c̄) ≤ Zstrb (v̄) ≤ v̄.

If Zstrs (c) < Zstrb (v), then Zstrc (c) can be increased to Zstrb (b) increasing seller’s expected

payoff. Thus Zstrs (c) = Zstrb (v) = z1 ≤ v and similarly Zstrs (c̄) = Zstrb (v̄) = z2 ≥ c̄.
In equilibrium the seller with cost c cannot gain by increasing the ask to z2. Thus

1
2

(
1
2z1 + 1

2z2
)

+ 1
2z1 − c ≥

1
2(z2 − c), or 2

3c + 1
3z2 ≤ z1. A similar reasoning for the buyer

with value v̄ gives z2 ≤ 2
3 v̄ + 1

3z1.

Proposition 2. Suppose ε ∈ (0, 1). Strategies (Zstrs , Zstrb ) are a fully efficient equilibrium

if and only if Zstrs (c) = Zstrb (v) = z1 and Zstrs (c̄) = Zstrb (v̄) = z2, where

max{A(c, v), B(z2, c, v), C(z2, c, v, v̄)} ≤ z1 ≤ D(c, v) (4)

and

E(c̄, v̄) ≤ z2 ≤ min{F (c̄, v̄), G(z1, c̄, v̄), H(z1, c̄, v̄, c)}. (5)

Proof. From the arguments in the proof of Proposition 1, in a fully efficient equilibrium,

the inequalities c ≤ z1 ≤ v < c̄ ≤ z2 ≤ v̄ hold. But now with a positive ε, we must have

c < z1 < v and c̄ < z2 < v̄: if e.g. c = z1, then the low-cost seller does not gain anything

when she trades at the price of z1, and hence would be better off asking at least v.

The seller with cost c gets in equilibrium the expected payoff

(1− ε)
(

1

2
(z1 − c) +

1

2

(
z1 + z2

2
− c
))

+ ε

(
1

2

(
z1 + v

2
− c
)

+
1

2

(
z1 + v̄

2
− c
))

(6)

from setting ask equal z1. From asking v the seller would get

(1− ε)
(

1

2
· 0 +

1

2

(
v + z2

2
− c
))

+ ε

(
1

2

(
v + v

2
− c
)

+
1

2

(
v + v̄

2
− c
))

. (7)

The difference between payoffs (6) and (7) is non-negative if and only if z1 ≥ A(c, v). The

seller would get the expected payoff

(1− ε)
(

1

2
· 0 +

1

2
(z2 − c)

)
+ ε

(
1

2
· 0 +

1

2

(
z2 + v̄

2
− c
))

(8)
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from setting ask equal z2. The difference between payoffs (6) and (8) is non-negative if and

only if z1 ≥ B(z2, c, v). Finally, from asking v̄ the seller would get

(1− ε)
(

1

2
· 0 +

1

2
· 0
)

+ ε

(
1

2
· 0 +

1

2
(v̄ − c)

)
. (9)

The difference between payoffs (6) and (9) is non-negative if and only if z1 ≥ C(z2, c, v, v̄).

All other deviations give a lower payoffs than one of the deviations considered above thus

z1 can be part of equilibrium if and only if z1 ≥ max{A(c, v), B(z2, c, v), C(z2, c, v, v̄)}.
The buyer with value v gets in equilibrium the expected payoff

(1− ε)
(

1

2
(v − z1) +

1

2
· 0
)

+ ε

(
1

2

(
v − z1 + c

2

)
+

1

2
· 0
)

(10)

from bidding z1. Bidding c̄ and z2 cannot be profitable deviations. Bidding c would get the

buyer the expected payoff

(1− ε)
(

1

2
· 0 +

1

2
· 0
)

+ ε

(
1

2
(v − c) +

1

2
· 0
)

. (11)

The difference in payoffs (10) and (11) is non-negative if and only if z1 ≤ D(c, v).

The second line of inequalities in the proposition follows analogously from considerations

of deviations from z2.

Proposition 3. Suppose that c = 10, c̄ = 70, v = 30, v̄ = 90.

i. If ε = 0, there exists a unique fully efficient equilibrium Zstrs (10) = Zstrb (30) = 30 and

Zstrs (70) = Zstrb (90) = 70.

ii. If ε ∈ (0, 1), there is no fully efficient equilibrium.

Proof. From Proposition 1, without naive traders, the conditions for the existence of the

fully efficient equilibrium are 2
3 · 10 + 1

3z2 ≤ z1 ≤ 30 and 70 ≤ z2 ≤ 2
3 · 90 + 1

3z1. The first

condition can be satisfied only if z2 ≤ 70. Then from the second condition z2 = 70 and,

back from the first condition, z1 = 30. Thus Zstrs (10) = Zstrb (30) = 30 and Zstrs (70) =

Zstrb (90) = 70 is the unique efficient equilibrium in this setting.

Consider now ε ∈ (0, 1). For the given parameter values, B(z2, c, v) = 1
3−ε(z2+20−30ε),

D(c, v) = 1
2−ε(60 − 50ε) and E(c̄, v̄) = 1

2−ε(140 − 50ε). Inequality (4) in Proposition

2 implies that B(z2, 10, 30) ≤ D(10, 30), or that (2 − ε)z2 ≤ 140 − 130ε + 20ε2. From

inequality (5), E(70, 90) ≤ z2, or 140 − 50ε ≤ (2 − ε)z2. The two inequalities imply that

140− 50ε ≤ 140− 130ε + 20ε2. This last inequality is equivalent to 20ε(4− ε) ≤ 0, which

does not hold for any ε ∈ (0, 1). Therefore there are no values of z1 and z2 that satisfy

inequalities in Proposition 2.
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Proposition 4. Suppose that c = 5, c̄ = 70, v = 30, v̄ = 95.

i. If ε = 0, there exist several fully efficient equilibria.

ii. If ε ∈ (0, 1), a fully efficient equilibrium exists for ε ∈ (0, ε̄], where ε̄ = (11−
√

101)/5 ≈
0.190, and does not exist for ε ∈ (ε̄, 1).

Proof. For ε = 0, the conditions for the fully efficient equilibrium from Proposition 1 are
2
3 ·5+ 1

3z2 ≤ z1 ≤ 30 and 70 ≤ z2 ≤ 2
3 ·95+ 1

3z1. There are many values of z1, z2 that satisfy

the two conditions, for example z1 = 30, z2 = 70 or z1 = 28, z2 = 72.

Consider now ε ∈ (0, 1). Inequality (4) in Proposition 2 means that

z1 ≤ D(c, v) =
1

2− ε
(60− 55ε). (12)

Since G(z1, c̄, v̄) = (z1 + 190 − 70ε)/(3 − ε), inequality (5), combined with (12) implies

(3 − ε)(2 − ε)z2 ≤ 440 − 385ε + 70ε2. Since E(c̄, v̄) = (140 − 45ε)/(2 − ε), inequality (5)

also implies 140− 45ε ≤ (2− ε)z2. Thus (3− ε)(140− 45ε) ≤ 440− 385ε+ 70ε2, which is

equivalent to 0 ≤ 4 − 22ε + 5ε2. This holds if ε ≤ ε̄ = (11 −
√

101)/5 ≈ 0.190 and does

not hold for ε > ε̄. Therefore for ε > ε̄ there is no z1, z2 that satisfy the inequailities of

Proposition 2.

Take

z1 = D(5, 30) =
1

2− ε
(60− 55ε) and z2 = E(70, 95) =

1

2− ε
(140− 45ε). (13)

By construction, z1 ≤ D(5, 30). It holds that A(5, 30) ≤ z1 if (2−ε)(40+20ε) ≤ (3−ε)(60−
55ε). This holds if ε ≤

√
129/6−9/6 ≈ 0.393. For the given z2, B(z2, 5, 30) = (160−115ε+

30ε2)/((2 − ε)(3 − ε)). Then B(z2, 5, 30) ≤ z1 if 32 − 23ε + 6ε2 ≤ (3 − ε)(12 − 11ε), or

ε ≤ (11−
√

101)/5 = ε̄. Finally, C(z2, 5, 30, 95) = (−100+275ε−100ε2)/((2−ε)(3−ε)) ≤ z1
if−20+55ε−20ε2 ≤ (3−ε)(12−11ε). This holds if ε ≤ 50/31−2

√
191/31 ≈ 0.721. Therefore

for z1 and z2 in (13), inequalities in (4) of Proposition 2 are satisfied if ε ≤ ε̄. Analogous

reasoning shows that inequalities in (5) are also satisfied. Thus z1 and z2 in (13) constitute

a fully efficient equilibrium for any ε ≤ ε̄.

B Sample Instructions (Treatment DM-N-20)

Experiment Instructions

Please read these instructions carefully. Please do not talk to other participants and remain

quiet throughout the experiment. If you have a question, please raise your hand.
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You are about to participate in a decision-making experiment. Your earnings at the end of

the experiment will depend on the decisions you and other participants make. If you make

careful decisions, you can earn money in addition to the £5.00 participation fee. At the

end of the experiment you will be asked to fill a questionnaire and will be paid in private

your earnings in the experiment, added to the £5.00 participation fee.

Description of the Experiment

The experiment will last 40 rounds. In each round you will make one decision as described

below. The computer screen will give all the necessary information for your decision. After

all participants have made their decisions in a round, you will get a payoff in Points and

a new round will begin. Your earnings will be the sum of Points you get in all rounds,

converted to pounds at the rate of £0.20 for every 10 Points.

Description of a round in the experiment

Matching and Roles

In each round all participants are randomly matched in pairs. Your match in any given

round is independent of what happened in the previous rounds.

In each matched pair, one participant has the role of the Seller of a fictitious good and

the other participant the role of the Buyer of the good. Some of you will be the Seller in

the first 10 rounds, the Buyer in the next 10 rounds, the Seller again in the next 10 and

the Buyer again in the last 10 rounds. Others will be the Buyer in the first 10 rounds, the

Seller in the next 10, the Buyer in the next 10 and the Seller in the last 10 rounds. In each

round the computer screen will show your role.

Costs and Values

The Seller has a Cost of producing the good. The Cost is determined each round

randomly and can be either 10 or 70, each with equal 50% chance. Before making the

decision, the Seller will be told what his or her Cost is in a given round. The Buyer will

not be told the Seller’s Cost.

The Buyer has a Value for the good. The Value is determined each round randomly

and can be either 30 or 90, each with equal 50% chance. Before making the decision, the

Buyer will be told what his or her Value is in a given round. The Seller will not be told the

Buyer’s Value.

Decisions

The Seller and the Buyer make one decision each, simultaneously and independently,

not seeing the other’s decision. The Seller makes a report about his or her Cost by choosing
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a Reported Cost. The Buyer makes a report about his or her Value by choosing a

Reported Value. The Reported Cost and the Reported Value can be any number

between 0 and 100 with at most two digits after the decimal point. They do not have to be

equal to the actual Cost or Value.

After the decisions are made, it is determined for each pair whether the participants

are matched with the computer instead of with each other. With a 25% chance each of

the participants in the pair is matched with the computer and with 75% chance the

participants stay matched with each other.

When the Seller is matched with the computer, the computer’s decision is to choose

Reported Value = Buyer’s Value. When the Buyer is matched with the computer,

the computer’s decision is to choose Reported Cost = Seller’s Cost.

Payoffs and Feedback

After determining whether you are matched with the computer or with the other partic-

ipant, your payoff is calculated as follows. If the Reported Cost is strictly above the

Reported Value, the good is not traded. If the Reported Cost is equal or below

the Reported Value, the good is traded at the Trading Price in the middle between

the Reported Cost and the Reported Value:

Trading Price =
Reported Cost + Reported Value

2
.

If the good is not traded, both the Seller and the Buyer get payoff 0.

If the good is traded at some Trading Price, the payoffs are (in Points)

Your payoff as Seller = Trading Price − Seller’s Actual Cost,

Your payoff as Buyer = Buyer’s Actual Value − Trading Price.

At the end of each round, you will be told what the Reported Cost and the Reported

Value in your match were (you will not be told whether you were matched with the computer

or with the other participant). You will also be told whether there was trade and at what

Trading Price, and what your payoff was in this round.

Examples

Suppose that the Buyer has Value 90 and chooses Reported Value 55. Suppose further

that the matched Seller has Cost 10 and chooses Reported Cost 70.

With a 25% chance each of the participants in the pair is matched with the computer.

For the Buyer, the decision of the computer is to choose Reported Cost = Cost = 10. Then

there is trade at Trading Price (10 + 55)/2 = 32.5. The Buyer’s payoff is 90− 32.5 = 57.5.
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For the Seller, the decision of the computer is to choose Reported Value = Value = 90. The

Trading Price for the Seller is (70 + 90)/2 = 80. The Seller’s payoff is 80− 10 = 70.

With a 75% chance the participants stay matched between themselves. Since the Re-

ported Cost 70 is above the Reported Value 55, there is no trade. The Buyer’s and the

Seller’s payoffs are 0.

Suppose now that the Buyer’s Value is 30 while the decision about the Reported Value

is still 55. If Reported Cost = 10, either because of matching with the computer or because

the Seller chose Reported Cost = 10, there will be trade at Trading Price 32.5. The Buyer’s

payoff will be 30− 32.5 = −2.5. The Buyer suffers a loss because the Reported Value 55 is

above Buyer’s Value 30. Similarly, the Seller can suffer a loss if the Reported Cost is below

the Seller’s Cost.

If you have any questions about the experiment, please raise your hand now.

Please pay attention now to the computer screens. You will be asked questions on your

understanding of the instructions. You will also practise with decision and feedback screens.

After everyone has answered the questions and finished the practice, the experiment will

begin.

C Data and Tests

Non-parametric tests compare aggregate variables, such as efficiency, incidence of naive

behavior, etc., across treatments on the matching group level. The tests below look at the

data in Periods 21-40, where behavior is more informed than in earlier periods.

C.1 Efficiency and the Probability of Trade

C.1.1 Efficiency Comparison

Realized and expected efficiency

The table below presents the realized (treatment S) and expected (treatment N) efficiency

measures, in each of the matching groups in all treatments, and the average efficiency

measures for each treatment.
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Periods 21-40 Setting “20” Setting “25”

BA-S BA-N DM-S DM-N BA-S BA-N DM-S DM-N

MG1 0.738 0.837 0.656 0.839 0.852 0.881 0.857 0.722

MG2 0.769 0.851 0.691 0.761 0.671 0.835 0.782 0.906

MG3 0.643 0.692 0.804 0.829 0.722 0.827

MG4 0.852 0.894 0.632 0.935 0.853 0.856

MG5 0.656 0.844

MG6 0.887 0.880

Average 0.750 0.829 0.704 0.845 0.784 0.851 0.828 0.803

Efficiency in each matching group in each treatment

The p-values of the two-sided Wilcoxon-Whitney-Mann rank-sum tests of the efficiency

measure being equal across treatments are reported in the following table.

Efficiency level tests p-values

Tests of H0 : µrow = µcolumn

Setting “20” Setting “25”

BA-N DM-S DM-N BA-N DM-S DM-N

BA-S 0.262 0.336 0.286 0.248 0.355 0.643

BA-N - 0.019∗∗ 0.670 - 0.643 1.000

DM-S - - 0.043∗∗ - - 1.000
∗∗ - significant at 5% level

Efficiency comparison across treatments

There is no significant differences in the comparisons of pairs of treatments that differ

only in frame (that is, comparisons between “BA-S” and “DM-S” and between “BA-N” and

“DM-N”). Combining the observations across frames, the tests’ results are

Efficiency level tests p-values

Tests of H0 : µrow = µcolumn

Setting “20” Setting “25”

N N

S 0.023∗∗ 0.337
∗∗ - significant at 5% level

Efficiency comparison combining BA and DM frames

Human matching efficiency

In treatment N, we also look at the efficiency that would be achieved if matching was only

between human subjects. The table below presents this efficiency measure (for treatment
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S the numbers are the same as in the table in the previous subsection).

Periods 21-40 Setting “20” Setting “25”

BA-S BA-N DM-S DM-N BA-S BA-N DM-S DM-N

MG1 0.738 0.747 0.656 0.752 0.852 0.814 0.857 0.593

MG2 0.769 0.764 0.691 0.633 0.671 0.743 0.782 0.857

MG3 0.643 0.510 0.804 0.730 0.722 0.747

MG4 0.852 0.846 0.632 0.898 0.853 0.782

MG5 0.656 0.761

MG6 0.887 0.816

Average 0.750 0.735 0.704 0.758 0.784 0.773 0.828 0.710

Efficiency in human matches in each matching group in each treatment

The p-values of the Wilcoxon-Whitney-Mann rank-sum test of the efficiency across treat-

ment being equal are reported in the following table.

Human matches efficiency level tests p-values

Tests of H0 : µrow = µcolumn

Setting “20” Setting “25”

BA-N DM-S DM-N BA-N DM-S DM-N

BA-S 0.873 0.336 0.831 1.000 0.355 1.000

BA-N - 0.286 0.670 - 0.355 1.000

DM-S - - 0.387 - - 1.000

Human matches efficiency comparison across treatments

There are no significant differences in any comparison. Aggregating across the BA and

DM frames, the tests are

Human matching efficiency tests p-values

Tests of H0 : µrow = µcolumn

Setting “20” Setting “25”

N N

S 0.650 0.749

Human matching efficiency comparison combining BA and DM frames

No siginificant differences are detected either.

38



C.1.2 Regressions of the Probability of Trade

The tables below report the results of the regressions of the expected probability of trade

(ExpTrade) and of the probability of trade if all subjects were matched between themselves

(HumTrade), for different gains of trade. The expected trade variable ExpTrade can

take values strictly between 0 and 1 thus for it a simple regression is used. The variable

HumTrade is a binary variable; a probit regression is used and marginal effects reported.

Explanatory variables are dummy variables denoting treatment (NPresent; 1 if treatment

is N and 0 if S), frame (DM ; 1 if frame is DM, 0 if BA), or parameter setting (V al25; 1

if setting “25”, 0 if “20”), as well as Period variable. The regressions are run for positive

surplus situations and for Periods 21-40.

Determinants of expected trade probability in Periods 21-40

Dependent variable: ExpTrade

Variable v̄ − c v̄ − c̄ v − c
NPresent 0.060∗∗ (0.027) 0.082∗∗ (0.039) 0.133∗∗ (0.050)

DM 0.001 (0.028) −0.044 (0.045) −0.002 (0.051)

V al25 0.053∗∗ (0.025) −0.004 (0.041) 0.062 (0.050)

Period 0.001 (0.002) 0.002 (0.004) 0.003 (0.004)

Constant 0.817∗∗∗ (0.067) 0.563∗∗∗ (0.127) 0.395∗∗∗ (0.127)

Observations 677 646 708

Clusters 32 32 32

Standard errors clustered by matching group in parentheses. ∗∗∗ - significant at 1% level; ∗∗ -

significant at 5% level.

The expected probability of trade is higher in the N treatment than in the S treatment,

while the other variables have (almost) no significant effect.

For the probit regression of the probability of trade in human matches the average

marginal effects are
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Determinants of trade probability in human matches in Periods 21-40

Dependent variable: HumTrade

Variable v̄ − c v̄ − c̄ v − c
NPresent 0.010 (0.035) −0.066 (0.043) −0.035 (0.058)

DM −0.002 (0.035) −0.038 (0.050) 0.002 (0.061)

V al25 0.063∗ (0.036) −0.010 (0.045) 0.073 (0.059)

Period 0.003 (0.002) 0.001 (0.005) 0.005 (0.004)

(Constant) 0.568 (0.395) 0.181 (0.370) −0.435 (0.349)

Observations 677 646 708

Clusters 32 32 32

Standard errors clustered by matching group in parentheses. ∗ - significant at 10% level.

There are (essentially) no significant effects of the variables on the probability of trade

in human matches.

C.2 Individual Behavior

C.2.1 Incidence of “naive” behavior

Extreme values

The next table presents the incidence of “naive” behavior (the proportion of times the ask

is set equal to the cost or the bid is set equal to the value) of the players with the extreme

values (c = 10 or c = 5 for the seller and v̄ = 90 or v̄ = 95 for the buyer) in Periods 21-40.

Periods 21-40 Setting “20” Setting “25”

BA-S BA-N DM-S DM-N BA-S BA-N DM-S DM-N

MG1 0.010 0.176 0.000 0.000 0.136 0.095 0.019 0.115

MG2 0.060 0.081 0.176 0.067 0.117 0.024 0.083 0.150

MG3 0.011 0.040 0.029 0.156 0.013 0.099

MG4 0.064 0.250 0.081 0.038 0.012 0.011

MG5 0.062 0.063

MG6 0.013 0.012

Average 0.036 0.107 0.067 0.063 0.072 0.055 0.045 0.130

Naive behavior of players with extreme values in each treatment

The p-values of the Wilcoxon-Whitney-Mann rank-sum tests of these proportions being

equal are reported in the following table.
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Extreme values naive behavior proportions tests p-values

Tests of H0 : µrow = µcolumn

BA-N-20 DM-S-20 DM-N-20 BA-S-25 BA-N-25 DM-S-25 DM-N-25

BA-S-20 0.109 0.522 0.522 0.394 0.286 0.317 0.046∗∗

BA-N-20 - 0.454 0.394 0.522 0.522 0.739 0.505

DM-S-20 - - 0.885 1.000 1.000 1.000 0.355

DM-N-20 - - - 1.000 1.000 1.000 0.355

BA-S-25 - - - - 0.564 1.000 0.355

BA-N-25 - - - - - 0.643 0.064∗

DM-S-25 - - - - - - 0.121
∗∗ - significant at 5% level; ∗ - significant at 10% level

Comparison of naive behavior with extreme values across treatments

There are no systematic differences across either setting (“20” or “25”) or treatment

(“S” or “N”). Aggregating across these dimensions, the comparison between frames (“BA”

or “DM”) gives

Naive behavior

Tests of H0 : µrow = µcolumn

DM

BA 0.599

Naive behavior with extreme values comparison between frames

Non-extreme values

The following table shows the incidence of “naive” behavior of the players with the non-

extreme values (c̄ = 70 for the seller and v = 30 for the buyer) in Periods 21-40.

Periods 21-40 Setting “20” Setting “25”

BA-S BA-N DM-S DM-N BA-S BA-N DM-S DM-N

MG1 0.485 0.327 0.247 0.630 0.371 0.263 0.396 0.375

MG2 0.065 0.384 0.256 0.306 0.422 0.182 0.443 0.400

MG3 0.083 0.198 0.546 0.446 0.050 0.169

MG4 0.122 0.333 0.349 0.099 0.253 0.274

MG5 0.380 0.210

MG6 0.120 0.127

Average 0.214 0.263 0.357 0.363 0.281 0.219 0.418 0.386

Naive behavior of players with non-extreme values in each treatment
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The p-values of the Wilcoxon-Whitney-Mann rank-sum tests of these proportions being

equal are reported in the following table.

Non-extreme values naive behavior proportions tests p-values

Tests of H0 : µrow = µcolumn

BA-N-20 DM-S-20 DM-N-20 BA-S-25 BA-N-25 DM-S-25 DM-N-25

BA-S-20 0.262 0.201 0.286 0.831 0.394 0.182 0.317

BA-N-20 - 0.286 0.522 0.670 0.394 0.046∗∗ 0.096∗

DM-S-20 - - 0.773 0.773 0.248 0.355 0.355

DM-N-20 - - - 0.387 0.248 1.000 1.000

BA-S-25 - - - - 0.564 0.165 0.355

BA-N-25 - - - - - 0.064∗ 0.064∗

DM-S-25 - - - - - - 0.439
∗∗ - significant at 5% level; ∗ - significant at 10% level

Comparison of naive behavior with non-extreme values across treatments

The main difference is between BA and DM treatments, although not all disaggregated

tests pick up this difference. The test on the aggregate level finds the following result:

Naive behavior

DM

BA 0.016∗∗

∗∗ - significant at 5% level

Comparison of naive behavior with non-extreme values between frames

C.2.2 Extent of strategic behavior

Extreme values

The next table looks at the extent of strategic behavior of the players with the extreme

values (c = 10 or c = 5 for the seller and v̄ = 90 or v̄ = 95 for the buyer) in Periods 21-40.

Only asks different from cost and bids different from value are considered.
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Periods 21-40 Setting “20” Setting “25”

BA-S BA-N DM-S DM-N BA-S BA-N DM-S DM-N

MG1 26.93 28.13 27.66 30.71 25.21 21.86 27.53 45.48

MG2 32.27 21.81 31.87 33.47 36.09 30.18 23.48 21.25

MG3 31.76 37.37 25.39 26.75 33.41 25.50

MG4 22.32 28.98 29.08 17.67 23.04 29.71

MG5 28.13 23.04

MG6 16.42 21.17

Average 26.53 27.21 28.07 27.17 28.98 27.01 25.94 35.18

Strategic behavior of players with extreme values in each treatment

The p-values of the Wilcoxon-Whitney-Mann rank-sum tests comparing the extent of

strategic behavior of players with extreme values across treatments are

Extreme values strategic behavior level tests p-values

Tests of H0 : µrow = µcolumn

Setting “20” Setting “25”

BA-N DM-S DM-N BA-N DM-S DM-N

BA-S 0.873 0.670 0.831 0.564 0.643 1.000

BA-N - 0.394 0.831 - 0.643 1.000

DM-S - - 1.000 - - 1.000
∗ - significant at 10% level

Comparison of the extent of strategic behavior with extreme values across treatments

There are no significant differences in the comparisons. Neither there are siginificant

differences on the aggregate level:

Extreme values strategic behavior

Tests of H0 : µrow = µcolumn

Setting “20” Setting “25”

N DM N DM

S 0.762 S 0.873

BA 0.537 BA 0.734

Aggregate comparison of strategic behavior of extreme value traders

Non-extreme values

The following table presents the extent of strategic behavior of the players with the non-

extreme values (c̄ = 70 for the seller and v = 30 for the buyer) in Periods 21-40, again only

for asks different from cost and bids different from value.
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Periods 21-40 Setting “20” Setting “25”

BA-S BA-N DM-S DM-N BA-S BA-N DM-S DM-N

MG1 6.707 3.977 -0.475 5.556 9.565 7.950 5.414 10.083

MG2 8.069 5.474 8.844 8.644 6.531 7.084 5.607 4.542

MG3 7.124 5.595 2.829 8.435 6.329 6.014

MG4 9.875 10.729 7.348 5.041 7.039 8.000

MG5 3.510 3.423

MG6 3.808 6.058

Average 6.706 5.664 4.769 6.907 7.353 7.157 5.502 7.620

Strategic behavior of players with non-extreme values in each treatment

The p-values of the Wilcoxon-Whitney-Mann rank-sum tests of the extent of strategic

behavior of players with non-extreme values across treatments being equal are

Non-extreme values strategic behavior level tests p-values

Tests of H0 : µrow = µcolumn

Setting “20” Setting “25”

BA-N DM-S DM-N BA-N DM-S DM-N

BA-S 0.522 0.522 0.670 0.773 0.064∗ 1.000

BA-N - 0.670 0.522 - 0.064∗ 1.000

DM-S - - 0.564 - - 1.000
∗ - significant at 10% level

Comparison of the extent of strategic behavior with non-extreme values across treatments

Although there are marginal significant differences of one treatment in setting “25”, the

tests on the aggregate level do not find the differences significant:

Non-extreme values strategic behavior

Tests of H0 : µrow = µcolumn

Setting “20” Setting “25”

N DM N DM

S 0.880 S 0.423

BA 1.000 BA 0.174

Aggregate comparison of strategic behavior of non-extreme value traders

Thus no significant systematic differences are detected across treatments and frames,

either for extreme or for non-extreme value traders.
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C.3 Sessions with Pre-Play Communication

There were 128 instances of play in the two sessions with pre-play communication. The fol-

lowing table reports the summary of the bid and ask behavior and outcomes, disaggregated

by actual cost and value traders had:

Actual Number of Average Average One-price Trade

Value-Cost instances Bid Ask (Bid=Ask) (Efficiency)

90-10 49 42.35 36.89 35 46 (0.939)

90-70 33 72.12 79.39 26 26 (0.788)

30-10 29 20.86 27.83 14 18 (0.621)

30-70 17 17.06 83.35 0 0

Total 128 75 0.884

For 2 instances, the audio transcripts of conversations are lost. For the remaining 126

instances, the relevant content of conversations (exchange of value/cost information and

agreement) is summarized in the table below (in one instance the recording is partial since

it was cut before the conversation ended).

For each actual value/cost realization, the table reports how often each combination

of value/cost was stated (the three last columns list instances where at least one trader

did not explicitly state value or cost: e.g., “30-No” means that buyer stated 30 but seller

did not state the cost; “None” means that neither trader stated value or cost). The table

also reports, below each number, the number of times an agreement was reached (with the

number of times the agreement was on one price in parenthesis) and the number of times

trade happened.

Actual No. Stated Value-Cost

Value-Cost 90-10 90-70 30-10 30-70 30-No No-70 None

90-10 48 10 7 19 7 2 1 2

9(8),9 7(7),7 19(19),19 5(1),5 2(2),2 1(1),1 1(1),2

90-70 32 0 23 0 7 0 0 2

22(22),19 4(2),4 2(2),2

30-10 29 0 0 19 6 1 0 3

17(14),14 4(1),1 0(0),0 0(0),3

30-70 17 0 1 0 16 0 0 0

1(0),0 4(2),0

The bold numbers in the table correspond to mutual truthful revelation, which is com-

mon in cases in which at least one trader has non-extreme value, but not when both traders
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have extreme values. Agreements are achieved in many cases but they do not always lead

to trade: e.g. only 14 out of 17 agreements in the case of value 30 and cost 10 truthfully

revealed led to trade.
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