
Davillas, Apostolos; Pudney, Stephen E.

Working Paper

Biomarkers as precursors of disability

ISER Working Paper Series, No. 2018-11

Provided in Cooperation with:
Institute for Social and Economic Research (ISER), University of Essex

Suggested Citation: Davillas, Apostolos; Pudney, Stephen E. (2018) : Biomarkers as precursors of
disability, ISER Working Paper Series, No. 2018-11, University of Essex, Institute for Social and
Economic Research (ISER), Colchester

This Version is available at:
https://hdl.handle.net/10419/200375

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/200375
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


8 
 
 

Apostolos Davillas  
Institute for Social and Economic Research  
University of Essex  

No. 2018-11 
July 2018 

Biomarkers as Precursors of Disability 

Stephen Pudney  
School of Health and Related Research  
University of Sheffield 

ISE
R

 W
orking Paper Series 

 
w

w
w

.iser.essex.ac.uk 



 
Non-Technical Summary  

 
 
Recent advances in the large social-science surveys involve the collection of physical measurements 
and markers derived from biological samples, in addition to the conventional self-reported health 
assessments. This information imposes higher collection costs compared to conventional self-reported 
questionnaires. Although the contribution of biomarkers in medical epidemiology has been 
established, their potential contribution to economics and social science needs more research. In this 
paper, we focused on disability, which results from biological processes but is defined in terms of its 
implications for social functioning and well-being. To our knowledge, this is the first comprehensive 
study to examine the predictive power of a wide range of biomarkers – over and above the 
contribution of the conventional self-assessed health (SAH) – for future disability risks.   
 
Applying nationally-representative, longitudinal UK data (Understanding Society), we estimated 
predictive models for disability 2-4 years ahead of the baseline, using a wide range of biomarkers in 
addition to SAH and covariates. For estimation purposes, we followed individuals who reported no 
disability at baseline. To explore the robustness of our results, we employed alternative disability 
measures, ranging from the number of functional difficulties reported to receipt of disability benefits. 
 
In subsequent analysis, we further contribute to the literature by developing and applying –for the first 
time in the relevant literature– a random-effects two-dimensional latent variable (LV) approach. This 
LV model has a number of advantages. It explicitly takes into account the longitudinal nature of our 
data on disability, and it aims to address the problem of measurement error bias by allowing for 
measurement noise in both SAH and the biomarkers. This model may help to identify any distinct 
dimension of health which influence future disability and is captured by the biomarkers but missed by 
SAH.  
 
We found a quantitatively and statistically significant predictive role for a large set of nurse-collected 
and blood-based biomarkers, over and above the strong predictive power of SAH. For example, using 
a biomarkers summary measure (allostatic load), we found that moving from the best (excellent) to 
worst (fair/poor) category of SAH increased the risk of disability 4 years later by 5-18%, depending 
on the disability measure, while a relevant 3-standard deviation increase in allostatic load increased 
disability risk by 2-7%. The results from our LV models showed that although SAH has performed 
well, it was far from perfect as a leading indicator for disability risks; it tended to under-emphasize 
grip strength, lung and liver function and stress-related steroid hormone levels, while over-
emphasizing adiposity, hypertension, and cholesterol levels. These results highlight the presence of 
distortions in SAH in the sense of dimensions of health that are given too much or too little weight by 
SAH in predicting disability.  
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1 Introduction

An important recent development in research based on large-scale social surveys is the in-

tegration of physical health measurements and markers derived from biological samples, in

addition to traditional self-reported health assessments. Biomarkers are objectively mea-

sured and evaluated as indicators of normal biological or pathogenic processes (Colburn

et al., 2001), and they have potential advantages over self-assessments as early indicators

of conditions that are below clinical diagnostic thresholds, or are pre-symptomatic and be-

low individuals’ threshold of perception (Colburn et al., 2001). Cardiovascular, metabolic,

inflammatory, neuroendocrine and other biomarkers have been shown to be predictors of mor-

tality when used alone or alongside self-reported health assessments (Idler and Benyamini,

1997; Gruenewald et al., 2006; Ridker, 2007; Jylhä, 2009). They have also been used to

reveal the socioeconomic gradient in health risks (Seeman et al., 2004; Carrieri and Jones,

2017).

Despite their advantages, biomarkers impose significant additional costs of collection in

the survey context and their potential contribution to economic and social research is not

entirely clear. The wider social impacts of ill-health – on quality of life, personal and social

functioning, and social costs of disease – depend critically on the duration and severity of

disability prior to death, and there has been little research on the role of biomarkers in rela-

tion to disability. Disability is associated with loss of employment and serious consequences

for the families affected (Jones, 2016; Pudney et al., 2011) and typically implies long-lasting

impairments that may prevent independent living and generate large social costs. This is

particularly so in the UK where disability prevalence is well above the European Union

average (Jones, 2016) and has been rising rapidly (from 11.9 to 13.3 million over 2013/14-

2015/16 (DWP, 2017). There is evidence of an increasing birth-cohort trend in functional

difficulties for older individuals of low socio-economic status (Morciano et al., 2015) and

developed countries like the UK may face severe problems in supporting the projected future
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growth in the disabled population and providing public support to people with care needs

(Commission on Funding of Care and Support, 2011). A crucial question for researchers and

policymakers is whether the demand for care services will be curbed by gains in disability-

free life expectancy alongside the projected continuing gains in longevity. An answer to this

question requires a better understanding of the processes leading to disability, allowing the

development of strategies and screening programmes to address disability more efficiently.

The availability of biomarker information in population-representative data may contribute

to that better understanding.

Despite the importance of disability trends for social policy planning, relatively little is

known about the association between biomarkers and future disability. The World Health

Organization (WHO) proposed a framework that portrays progression from diseases to func-

tional disabilities (WHO, 1980), and Fried et al. (1991) hypothesized the existence of pre-

clinical disability as an intermediate stage in which health impairments have an impact on

general functioning. Few studies have explored the predictive role of biomarkers in relation

to this disability process, and most are limited by being based on small samples or unrep-

resentative data (Brex et al., 2002; Reuben et al., 1999; Baylis et al., 2013; Seeman et al.,

1994; Kallaur et al., 2017); or focused exclusively on older individuals (Reuben et al., 1999;

Seeman et al., 1994; Baylis et al., 2013); or concerned with disability outcomes from a specific

disease or condition (Brex et al., 2002; Kallaur et al., 2017).

We examined the predictive power of a wide range of biomarkers for future disability

and specifically asked whether biomarkers offer incremental value in predicting disability

outcomes beyond the contribution of the conventional self-assessed health (SAH) measure.

SAH may be associated with disability outcomes in parallel with biomarkers by reflecting

the impact on the individual of diagnosis of health conditions defined in terms of elevated

biomarkers (Idler et al., 2004; Jylhä, 2009), or through bodily sensations that are sensitive

to the biochemical processes measured by biomarkers (Jylhä, 2009). Besides confirming the

value of biomarkers as leading indicators of disability, we also investigated the success of SAH
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as an overall summary of biomedical states relevant to disability and examined whether SAH

is biased in the sense of over- or under-sensitivity to specific biological pathways.

The paper makes several new contributions to the research literature. To the best of our

knowledge, this is the first study that provides a comprehensive analysis of this kind. Us-

ing baseline data from early waves of the UK Household Longitudinal Study (UKHLS, also

known as Understanding Society), we estimate predictive models for disability two to four

years ahead, exploiting a large set of nurse-collected and blood-based biomarkers. These

biomarkers measure adiposity, grip strength, blood pressure, lung, kidney and liver func-

tions, inflammation, steroid hormone levels, blood sugar and anaemia, giving an unusually

broad picture of individuals health states. The use of several alternative disability measures

demonstrates the robustness of our results.

In addition to simple prediction models, we also develop a latent variable (LV) approach

which is new to the literature. This LV model has a number of advantages. First, unlike

simpler prediction models, it takes into account the longitudinal nature of our data on

disability, allowing for correlation between disability variables two to four years after baseline.

Second, it addresses measurement error bias by allowing for measurement noise in both SAH

(Crossley and Kennedy, 2002) and the biomarkers (Zang et al., 2015). Measurement error in

biomarkers normally causes attenuation of the estimated impact of the biological pathways

on disability, and the LV model is expected to give more accurate estimates of these impacts.

This may be of particular importance for developing policy strategies and interventions to

reduce the personal and social burden of disability. Third, our LV approach is set up to

identify any distinct dimension of health which influences future disability and is captured

by the biomarkers but missed by SAH. The pattern of factor loadings tells us what underlying

aspects of health tend to be under- or over-represented by the SAH measure and can therefore

guide the interpretation of research findings related to SAH.
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2 Data

The UKHLS is a large, nationally representative panel survey, running continuously from

the initial wave in 2009-10, with each panel member interviewed annually. Its predecessor,

the British Household Panel Survey (BHPS) was incorporated into the UKHLS from wave

2. A set of physical health measures and non-fasted blood samples were collected by nurses,

five months on average after the wave 2 interview for UKHLS respondents and similarly at

wave 3 for the BHPS sample (McFall et al., 2014). Respondents were eligible for nurse visits

if, at the relevant wave, they were aged 16 or over, lived in England, Wales or Scotland

and were not pregnant. Blood sample collections were further restricted to those who had

no clotting or bleeding disorders and no history of fits. Participants gave informed written

consent for their blood to be taken and stored for future scientific analysis. The UKHLS has

been approved by the University of Essex Ethics Committee and the nurse data collection

by the National Research Ethics Service (10/H0604/2).

We define wave 2 as the baseline for the main UKHLS panel and wave 3 as the baseline

for the BHPS sub-panel and we refer to the timing of this baseline observation as t = 0;

these baseline observations were spread through calendar years 2010-2013. We used baseline

data on personal and household characteristics and bio-medical measures as predictors of

disability observed subsequently at waves 4-6 for the UKHLS sample (t = 2, . . .4) or waves

5-6 for the BHPS sample (t = 2,3), where t denotes years since the baseline main interview.

We did not use data from t = 1 since the time gap between collection of biomarkers and

interview at t = 1 was less than 6 months for 75% of the t = 1 sample.

There were 15,632 and 5,053 UKHLS and BHPS respondents who participated in the

wave 2 or wave 3 nurse visits. For the UKHLS group, 13,404, 12,719 and 11,434 were

followed up at waves 4, 5 and 6 respectively and had non-missing information on disability;

4,513 and 4,113 of the BHPS subsample were followed up at waves 5 and 6. We further

conditioned the analysis on the absence of reported disability at baseline by excluding those
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reporting the relevant type of disability at baseline. Exclusion of these cases reduced the

potential samples by 25%, 13% and 8% depending on the disability concept used. A detailed

summary of available sample sizes is given in the Supplement Table S1.

2.1 Biomarkers

Measures of adiposity, grip strength, heart rate, blood pressure and lung function were col-

lected during visits by trained nurses. We used the waist-to-height ratio (WHR) to measure

adiposity. Grip strength was measured (in kg) using a hand dynamometer (McFall et al.,

2014) and we took the highest reading from three repeated measurements for the dominant

hand. Higher levels of grip strength are indicative of better physical functioning.

Three repeated measurements of resting heart rate (HR), systolic and diastolic blood

pressure (SBP, DBP) were taken at intervals of one minute (McFall et al., 2014). We skipped

the first reading, believed to impose upward biases, and computed HR, SBP and DBP

as the average of the second and third readings. HR, which is sometimes regarded as a

measure of fitness rather than health, was used as a continuous variable, and we also used

a binary hypertension indicator recording SBP > 140, DBP > 90 and/or current use of anti-

hypertensive medications (Johnston et al., 2009).

Lung function, assessed using spirometry equipment, was measured by the total amount

of air forcibly blown out after a full inspiration (forced vital capacity; FVC), higher val-

ues indicating better lung function (Gray et al., 2013). Forced expiratory volume in one

second (FEV1) is often used as an alternative to FVC. However, different equipment and

measurement protocols were used in Scotland than in England and Wales, and comparison

of matched samples showed FEV1 to be seriously affected by this, while FVC measures ap-

peared comparable. Consequently we retained the Scottish sample and used FVC as our

lung function measure.

We used blood-based biomarkers specific to inflammation, steroid hormone, cholesterol,
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blood sugar, kidney function, liver function and anaemia.

C-reactive protein (CRP) rises as part of the immune response to infection and is associated

with general chronic or systemic inflammation. We excluded those with a CRP over 10 mg/L,

because those values may reflect current transient infections rather than chronic processes

(Pearson et al., 2003).

Dihydroepiandrosterone suphate (DHEAS) is the most common steroid hormone in the body,

considered as one of the primary mechanisms through which psychosocial stressors may affect

individual health. Low levels of DHEAS are associated with cardiovascular (CVD) risks and

all-cause mortality (Ohlsson et al., 2010).

High-density lipoprotein cholesterol (HDL) is known as “good” cholesterol, low levels being

associated with increased CVD risks (Wannamethee et al., 2000).

Glycated haemoglobin (HbA1c) measures blood sugar, and is regarded as a validated diag-

nostic test for diabetes (WHO, 2011).

The estimated glomerular filtration rate (EGFR), calculated from the serum creatinine con-

centration, measures kidney function; higher EGFR levels indicate better kidney function

(Levey et al., 2009).

We used albumin, the main protein made by the liver, as a liver function test; low albumin

levels suggest impaired liver function (Howard and Sparks, 2016).

Haemoglobin (Hgb), is an iron-containing protein responsible for carrying oxygen throughout

the body, and was used to proxy anaemia status; lower levels of Hgb are suggestive of anaemia

(Balarajan et al., 2012).

In addition to specific markers, we also used two composite summary measures. One was

an index of multi-system risk that measures the wear and tear on the body, approximating

the allostatic load (Seeman et al., 2008). Our index combined the selected biomarkers for

inflammation, blood pressure, HR, HbA1c, HDL cholesterol, albumin, DHEAS and the WHR

6



(Seeman et al., 2008; Howard and Sparks, 2016). HDL, Albumin and DHEAS were converted

to negative values to reflect ill health, and then each biomarker was transformed into z-scores

and summed to calculate the overall index. The second index was a cumulative risk score for

CVD, created by adding the relevant z-scores for WHR, blood pressure, HbA1c and CRP

(Walsemann et al., 2016). A summary of all biomarkers by reported future disability state

is given in the Supplement Table S3.

2.2 Self-assessed health

SAH is considered a summary measure capturing the way that numerous aspects of health,

both subjective and objective, are combined within the perceptual framework of the individ-

ual respondent (Jylhä, 2009). The SAH question asked respondents to rate their health on a

five-point scale from “excellent” to “poor”. It was collected in the self-completion instrument

at baseline, approximately five months prior to biomarker collection. We group the lowest

two SAH categories because of their small sample size, giving a four-point scale ranging from

1 = “excellent” to 4 = “fair” or “poor”.

2.3 Disability measures

Our measures of disability were collected at UKHLS waves 4-6, so disability outcomes were

observed for prediction horizons of t = 2 . . .4 years for the main UKHLS sample or t = 2,3

years for BHPS respondents. Respondents were asked about any long-standing physical or

mental impairment that they might have and then the consequent functional difficulties, from

a list of twelve provided (see Supplement Table S1 for the full list). We used the report of

any functional difficulty as a dichotomous variable and the number of functional difficulties

(coded as an ordinal variable: 0,1,2 or 3+) as an indicator of severity. Specific difficulty with

mobility is also examined as a separate dichotomous indicator because of its relatively high

prevalence and significance for functioning and independence in later life (Guralnik et al.,
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1993).

Our fourth disability measure came from the income module of the UKHLS questionnaire,

constructed as a binary indicator of whether the respondent received income from private

disability insurance or any of the UK disability benefit programmes. For all programmes,

receipt requires a decision to apply for the benefit, the ability to craft a good-quality appli-

cation and a positive assessment of need by the programme administrators. Consequently,

while the benefit receipt indicator involves a rigorous external assessment of severity, that

assessment is confounded to some degree by the incentive and capacity to apply for the

benefit, which has a strong socioeconomic gradient (Hancock et al., 2016).

2.4 Covariates

The explanatory covariates that we used in our models have been found to be associated

with disability (Hernández-Quevedo et al., 2008; Morciano et al., 2015), and also directly

with biomarkers (Carrieri and Jones, 2017). The covariates were collected at baseline and

are described and summarised in the Supplement Table S4. Gender and polynomials in age

were used to capture demographic influences. Three indicators of socio-economic status were

included: educational attainment, home ownership and household income. We excluded dis-

ability benefits from income to avoid spurious correlation arising from the fact that disability

creates eligibility for those benefits (see Morciano et al. (2015)). We also controlled for mar-

ital status, household composition, national and urban dummies. To assess the impact on

future disability of lung function over and above smoking status, we estimated models with

and without the inclusion of smoking variables.
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3 Methods

For each of the binary disability indicators, we applied a probit prediction model, with

estimation carried out for the set of individuals who had no observed history of disability at

the time of biomarker collection (Di0 = 0):

Pr (Di4 = 1∣Xi0, Si0,Bi0) = Φ (α0 + α1Bi0 + α2Si0 + α3Xi0 + uit) (1)

The variable Di4 is the disability measure observed 4 years after baseline and Φ(.) is the

N(0,1) distribution function. Bi0 is a specific biomarker or index of biomarkers observed at

the nurse visit in period 0; Si0 is a set of dummy variables representing SAH in period 0;

Xi0 is a set of covariates describing the individual and her/his history up to the nurse visit;

uit is a random residual; and α0 . . . α3 are coefficients. For the count indicator of disability,

we extended model (1) to a 4-level ordered probit model. Note that the use of a 4-year

horizon excludes BHPS members who received the nurse visits at wave 3; however, they

were included in the LV model presented later in this section.

We did not use all twelve specific biomarkers simultaneously as predictors in model (1),

for three reasons. First, there was a significant loss of usable data when all markers are

required to be observed. Second, the full set of health measures (SAH and biomarkers)

displayed a substantial degree of collinearity, so there would have been a further loss of

statistical precision. A third reason for considering each biomarker separately is that, in

practice, it is unlikely that any screening programme would simultaneously check blood

pressure, adiposity, blood sugar, cholesterol, haemoglobin, hormone levels, liver, kidney and

lung function; so there is a practical interest in the predictive power of each specific marker

on its own. However, we also separately used the two composite indexes for allostatic load

and CVD risk to consider the potential performance of more comprehensive tests.

Biomarkers and SAH may be noisy indicators of the relevant health concepts, rather than
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direct observations of those concepts. Measurement noise may bias estimates of predictive

models like (1), usually causing attenuation of the estimated impact of biomarkers and

SAH. The LV approach offers a way of dealing with measurement error, by exploiting the

multiplicity of biomarkers that reflect to varying degrees the underlying health state. Our

aim here is to develop a form of the LV model that gives a clear indication of the predictive

value of the biomarker information beyond that contained in the SAH measure.

We used a two-factor structural LV model in which a latent variable hi0 reflects a dimen-

sion of general health at baseline, measured to varying degrees by SAH and the set of twelve

biomarkers (not the indexes for allostatic load and CVD risk). To capture the incremental

contribution of the biomarkers, we specified a second latent health variable, bi0 representing

any dimension of baseline health that the biomarkers succeed in measuring, but which is not

captured by SAH. The outcome variables, Di2,Di3,Di4, represent disability 2, 3 and 4 years

after baseline; the correlation between them is captured by an unobserved random effect, ui,

which may have different impacts in different periods. The resulting model has the structure

shown in Figure 1 and set out algebraically in the Supplement.

We used the estimated LV model to construct two predictive probabilities, π1 and π2

based on different predictor sets, one comprising the baseline covariates and SAH, the other

expanded to include also the twelve biomarkers. Omitting time subscripts, the predictive

probabilities are:

π1(X,S) = P (D = 1∣X,S)

π2(X,S,B1 . . .B12) = P (D = 1∣X,S,B1 . . .B12)

These were computed using Bayes’ rule as π1 = [E P (D = 1, S∣h, b, u,X) ] / [E P (S∣h, b, u,X) ]

and similarly for π2, where the expectations with respect to the latent variables h, b, u were

approximated using Monte Carlo simulations with 100,000 replications.

10



Figure 1: Path diagram for 2-factor LV model

4 Results

The results for model (1) at horizon t = 4 are presented in Table 1, which shows the percentage

impact on the predicted number of people classified as disabled, of a 1-standard deviation

increase in the relevant biomarker. Columns three (one or more functional difficulties), six

(mobility) and seven (benefits) of the table were derived from binary probit models; each cell

in those columns was based on a separate model for the relevant combination of biomarker

and disability measure. The cells in each row of columns four and five came from the

same ordered probit model for the number of reported disabilities, with the impact of each

biomarker evaluated respectively at the 2+ and 3+ thresholds.

First note that, when SAH was excluded from the prediction models, almost all biomark-

ers had substantial and statistically significant (at least at the 5% level) predictive power.
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The exceptions were for hypertension, DHEAS, EGFR and Hgb, where estimates were in-

significant at the 5% level for some disability measures. When dummy variables for SAH

status were introduced into the model, the magnitudes of the biomarker coefficients fell,

mostly by 20-40%, but generally remained statistically significant. Consequently, the SAH

measure succeeded in capturing some of the predictive power of the more objective measures,

but far from all.

There was some variation across biomarkers but, overall, the nurse-collected and blood-

based biomarkers were comparable in terms of their predictive power. As expected, biomark-

ers for which higher values represent worse health states had a positive percentage impact on

future disability and vice versa. Note that lung function, which emerged as a strong influence

on disability, was not acting as a proxy for smoking, since inclusion of smoking variables left

the estimated effect practically unchanged. To save space, the results for shorter prediction

horizons (t=2, 3) are reported in the Supplement (Tables S5-S7); they show systematic pre-

dictive power for most of the biomarkers, with the effects mostly rising for longer prediction

horizons.

Both composite biomarker measures gave strong effects, with allostatic load having the

strongest impact. The results for the benefit receipt measure of disability were an interesting

exception to this: when SAH was included in the model, the magnitude of the biomarker

effect halved and retained significance only at the 10% level. There may be two behavioural

factors involved in that result. One is justification bias – receipt of benefit may lead some

respondents to report a worse state of health in SAH to justify their receipt of disability

benefit. Alternatively, some people may be reluctant to accept or admit that their health is

poor, leading them both to under-represent their current health difficulties in SAH and avoid

claiming their potential entitlement to disability benefit. Both of these behaviours would be

likely to strengthen the empirical SAH effect relative to the estimated effect of allostatic load

or CVD risk indexes (which are more highly correlated with SAH than individual biomarkers,

and therefore more affected by bias in SAH).
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Table 1: Four year ahead prediction models: % impact on mean disability prevalence of a
standard deviation increase

No. of functional difficulties reported Mobility Benefit
Marker SAH 1 or more§ 2 or more� 3 or more� difficulty receipt

Nurse-collected measures
Waist/height ratio excluded 20.2∗∗∗ 25.1∗∗∗ 28.0∗∗∗ 38.1∗∗∗ 33.7∗∗∗

included 11.1∗∗∗ 13.9∗∗∗ 15.5∗∗∗ 27.0∗∗∗ 20.9∗∗∗

Grip Strength excluded −13.5∗∗∗ −20.0∗∗∗ −25.1∗∗∗ −18.0∗∗∗ −32.6∗∗∗

included −10.3∗∗∗ −15.9∗∗∗ −20.1∗∗∗ −10.2 −22.3∗∗∗

Hypertension1 excluded 14.3∗ 17.0∗ 18.8∗ 26.0∗∗∗ 24.6∗

included 3.7 4.3 4.7 11.8 11.4
Heart rate excluded 13.3∗∗∗ 16.3∗∗∗ 18.1∗∗∗ 15.9∗∗∗ 16.1∗∗∗

included 9.9∗∗∗ 12.1∗∗∗ 13.4∗∗∗ 12.2∗∗∗ 13.8∗∗∗

FVC2 excluded −26.3∗∗∗ −26.4∗∗∗ −28.3∗∗∗ −31.1∗∗∗ −39.3∗∗∗

included −15.3∗∗∗ −15.1∗∗∗ −16.2∗∗∗ −16.6∗∗ −22.0∗∗

FVC3 excluded −25.6∗∗∗ −26.3∗∗∗ −28.2∗∗∗ −29.3∗∗∗ −38.1∗∗∗

included −14.7∗∗∗ −15.1∗∗∗ −16.2∗∗∗ −15.5∗∗ −21.2∗∗

Blood-based biomarkers
HDL excluded −20.8∗∗∗ −22.4∗∗∗ −24.8∗∗∗ −21.1∗∗∗ −8.3

included −15.5∗∗∗ −15.9∗∗∗ −17.5∗∗∗ −15.0∗∗∗ −1.2
CRP excluded 15.4∗∗∗ 15.3∗∗∗ 16.4∗∗∗ 19.6∗∗∗ 20.2∗∗∗

included 11.4∗∗∗ 10.7∗∗∗ 11.4∗∗∗ 13.6∗∗∗ 14.9∗∗∗

HbA1c excluded 14.8∗∗∗ 16.3∗∗∗ 17.9∗∗∗ 14.0∗∗∗ 10.0∗

included 10.4∗∗∗ 11.2∗∗∗ 12.3∗∗∗ 7.2∗ 3.5
DHEAS excluded −12.1∗∗ −12.5∗∗ −13.8∗∗ −13.2∗ −10.0

included −9.1∗ −9.0 −9.9 −7.0 −3.0
EGFR excluded −9.2∗ −10.6∗ −11.7∗ −15.0∗∗ −9.2

included −7.6 −8.4 −9.2 −11.5∗ −4.7
Hgb excluded −5.2 −6.4 −7.1 −10.7∗ −16.7∗∗

included −3.0 −3.6 −4.0 −6.9 −12.7∗

Albumin excluded −10.8∗∗∗ −13.9∗∗∗ −15.3∗∗∗ −19.4∗∗∗ −16.2∗∗

included −7.6∗∗ −10.0∗∗ −11.0∗∗∗ −14.6∗∗∗ −11.2∗

Systemic risk indexes
Allostatic load excluded 26.2∗∗∗ 28.8∗∗∗ 30.0∗∗∗ 39.1∗∗∗ 25.4∗∗∗

included 18.1∗∗∗ 19.5∗∗∗ 20.0∗∗∗ 27.2∗∗∗ 13.0∗

CVD risk excluded 20.4∗∗∗ 22.4∗∗∗ 23.3∗∗∗ 33.6∗∗∗ 24.1∗∗∗

included 13.4∗∗∗ 14.4∗∗∗ 15.0∗∗∗ 23.3∗∗∗ 12.4∗

Sample proportion with disability 0.127 0.057 0.026 0.072 0.042
§ derived from binary probit model. � derived from ordered probit model. 1 Impact of switch from non-hypertensive to hypertensive;

2 without smoking covariate; 3 with smoking covariate. Statistical significance: * = 10%, ** = 5%, *** = 1%.

The SAH impact and most of the biomarker impacts were statistically significant at

the 5% level, but statistical significance does not necessarily imply that biomarkers make a

contribution to prediction large enough to be of practical significance. Table 2 compares the

magnitude of the SAH and biomarker impacts calculated from models where both SAH and

the relevant biomarker were included among the covariates. Note that the estimated SAH

impact varies slightly across rows, since each model used a different biomarker and there were
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also slight differences in sample sizes due to missing data. The SAH impact was calculated

as the mean predicted impact of switching the individual from the best (“excellent”) to

worst (“poor/very poor”) category of SAH; with the exception of the binary hypertension

marker, the biomarker effect was calculated as the mean impact of switching from a value

approximately 1.5 standard deviations better to 1.5 standard deviations worse than the mean

(between the 5th and 95th percentiles). Impacts are calculated using the covariates X for

each sampled individual and then averaged.

Table 2 shows that the biomarkers with statistically significant impacts made predictive

contributions of about 20-25% of the SAH effect. For disability measures based on the

number of disabilities reported and mobility difficulties, allostatic load made the largest

contribution to prediction, both absolutely and as a proportion of the SAH impact: the

impact of a three standard deviation change in allostatic load was approximately one third

that of the hypothetical SAH shift. For the mobility-based disability criterion, allostatic

load and WHR had the largest impacts in absolute terms (roughly 40% of the SAH effect).

In accordance with the results in Table 1, allostatic load contributed little to the prediction

of benefit receipt, while the markers for grip strength, adiposity and lung function all gave

substantially greater impacts (around one third of the SAH effect).

Despite some differences between disability definitions in the pattern of results, the overall

conclusion seems robust – biomarkers made a contribution to prediction of disability four

years ahead that is significant both statistically and in terms of absolute magnitude. But

that contribution is moderate in comparison with the information contained in SAH.

Tables 3 and 4 summarise results from the LV model. Table 3 gives the estimated factor

loadings relating observable biomarkers to the two latent dimensions of health. The loadings

were normalised to give the proportional impacts of latent health on observed indicators in

standard deviation units. The loadings of the primary latent health factor hi0 were mostly as

expected, with disability risk raised significantly by WHR, hypertension, CRP and HbA1c;
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Table 2: Estimated mean partial impacts of deterioration in SAH (“excellent” to “poor/very
poor”) and biomarkers (3-standard deviation change centred on mean) on disability preva-
lence 4 years ahead

Health No. of functional difficulties reported Mobility Benefit
indicator 1 or more§ 2 or more� 3 or more� difficulty receipt

SAH 0.208 0.118 0.061 0.129 0.076
WHR 0.042 0.024 0.012 0.057 0.026
SAH 0.213 0.121 0.063 0.135 0.078
Grip strength 0.039 0.027 0.014 0.022 0.028
SAH 0.225 0.127 0.064 0.152 0.088
Hypertension∗ 0.004 0.003 0.001 0.009 0.005
SAH 0.221 0.125 0.063 0.152 0.086
HR 0.038 0.022 0.010 0.026 0.017
SAH 0.202 0.114 0.056 0.124 0.086
FVC 0.056 0.026 0.012 0.036 0.027
SAH 0.219 0.125 0.064 0.160 0.080
HDL 0.059 0.028 0.014 0.032 0.002
SAH 0.215 0.120 0.060 0.158 0.076
CRP 0.036 0.016 0.010 0.024 0.015
SAH 0.211 0.120 0.061 0.158 0.076
HbA1c 0.042 0.019 0.009 0.015 0.004
SAH 0.224 0.128 0.065 0.167 0.080
DHEAS 0.034 0.015 0.008 0.015 0.004
SAH 0.228 0.129 0.066 0.167 0.080
EGFR 0.028 0.015 0.007 0.025 0.006
SAH 0.216 0.123 0.063 0.160 0.075
Hgb 0.013 0.006 0.003 0.015 0.017
SAH 0.228 0.129 0.066 0.165 0.078
Albumin 0.030 0.018 0.008 0.031 0.014
SAH 0.184 0.104 0.050 0.139 0.072
Allostatic load 0.069 0.033 0.015 0.056 0.016
SAH 0.196 0.110 0.052 0.143 0.073
CVD risk 0.051 0.025 0.011 0.049 0.015
§ derived from binary probit model. � derived from ordered probit model. ∗ Impact of switch from

non-hypertensive to hypertensive. Statistical significance: all SAH effects significant at 1% level;

for statistical significance of biomarkers, see Table 1

and lowered by grip strength, lung capacity, HDL cholesterol, DHEAS, EGFR and Albumin.

Small perverse effects (not all statistically significant at the 5% level) were found for HR and

Hgb.

For any given marker, if the loading on h has the correct sign and the loading on b has the

same sign, then this implies that the health concept implicitly captured by SAH understates

the role of the biological pathway which the marker measures. Under this interpretation, our

finding was that SAH strongly understates the importance of grip strength, lung function,
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DHEAS and liver function and weakly understates the effect of CRP. If the loading on h has

the correct sign and the loading on b has the opposite sign, then SAH can be interpreted

as over-emphasising the pathway measured by the marker. This was the case for WHR,

hypertension and HDL cholesterol and, more weakly, for HbA1c and EGFR.

In two cases, HR and Hgb, the loading on h was small, with an a priori wrong sign,

which was strongly reversed in the loading for b. This finding can be interpreted to mean

that, in these dimensions, SAH is a potentially misleading indicator of future disability.

Table 3: Estimated factor loadings (marginal impact on each health measure of a standard
deviation increase in latent factor h or b)

Disability measure:
Any difficulty ≥ 2 difficulties Mobility Benefit receipt

Marker h b h b h b h b

SAH§ 0.237 - 0.288 - 0.309 - 0.367 -
Nurse-measured markers

WHR 0.498 -0.171 0.512 -0.189 0.504 -0.207 0.540 -0.193
Grip -0.006� -0.829 -0.043� -0.819 -0.122 -0.794 -0.092 -0.808
Hypertension§ 0.924 -0.219 0.953 -0.253 0.944 -0.298 0.966 -0.248
HR -0.095 0.134 -0.090 0.132 -0.080 0.130 -0.082 0.131
FVC -0.324 -0.676 -0.358 -0.654 -0.426 -0.618 -0.407 -0.632

Blood-based biomarkers
HDL -0.100 0.377 -0.111 0.380 -0.083 0.375 -0.128 0.382
CRP 0.185 0.060 0.205 0.044 0.215 0.033 0.235 0.031
HbA1c 0.424 -0.061 0.426 -0.087 0.425 -0.100 0.443 -0.088
DHEAS -0.527 -0.309 -0.799 -0.284 -0.576 -0.248 -0.558 -0.272
EGFR -0.796 0.082 -0.799 0.099 -0.794 0.136 -0.801 0.103
Hgb 0.131 -0.639 0.105 -0.634 0.051� -0.619 0.073 -0.622
Albumin -0.326 -0.273 -0.346 -0.253 -0.375 -0.225 -0.377 -0.235
� loading not significantly different from zero at 5% (2-tailed test); all other loadings significant at 1%.

§ for discrete indicators, marginal impact on the continuous latent variable underlying the observed indicator.

Our finding from the simple predictive model (1) was that biomarkers provide significant

and substantial predictive power which is nevertheless moderate in relation to SAH. The same

result is also evident in results from the LV model. Table 4 gives summary statistics for the

predictive probabilities of future disability conditional only on SAH and covariates (π1), and

conditional on SAH, covariates and twelve biomarkers (π2). These predictive probabilities

were calculated for all disability definitions and prediction horizons.

For three of the predictors, the mean predicted probability of disability rose as we raised
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the prediction horizon from t = 2 to t = 4, by approximately 20% (1 or more functional dif-

ficulties), 28% (mobility problem) or 62% (benefit receipt). This rise in disability risk over

time is a natural reflection of the age-related character of disability prevalence. However,

there was no such rise in prevalence measured as the proportion of individuals reporting two

or more functional difficulties. For all four disability measures, the predictive probabilities

also became substantially more variable (their standard deviations increased) as the predic-

tion horizon lengthened. For (almost) all of the predictions, there was a rise in the variability

of the predictor when we expanded the baseline predictor set by adding the biomarkers. This

reflects the fact that adding biomarkers gives a more detailed and diverse picture of each in-

dividual’s disability risk. The correlations between π1 and π2 were generally high, reflecting

the good – but not perfect – performance of SAH as a general health proxy.

Table 4: Summary statistics of predictive probabilities for alternative disability measures at
horizons t = 2,3,4, derived from estimated LV models

Prediction π1(X,S) π2(X,S,B1 . . .BJ)

horizon Mean S.D. Mean S.D. corr(π1, π2)

One or more functional difficulties
t = 2 0.113 0.075 0.110 0.081 0.911
t = 3 0.124 0.087 0.120 0.093 0.908
t = 4 0.135 0.086 0.132 0.092 0.914

Two or more functional difficulties
t = 2 0.068 0.063 0.084 0.070 0.894
t = 3 0.067 0.066 0.082 0.074 0.891
t = 4 0.066 0.068 0.080 0.076 0.893

Mobility problem
t = 2 0.061 0.058 0.058 0.063 0.883
t = 3 0.069 0.064 0.066 0.070 0.874
t = 4 0.078 0.069 0.074 0.075 0.879

Receipt of disability benefit
t = 2 0.027 0.032 0.025 0.034 0.856
t = 3 0.031 0.039 0.028 0.042 0.852
t = 4 0.044 0.047 0.040 0.050 0.866
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5 Discussion and conlusions

We investigated the predictive power of objective nurse-collected biomeasures and blood-

based biomarkers for functional disability, following individuals who reported no disability 

at baseline for up to four years after collection of the health measures. We used a wide range 

of biomarkers, and alternative measures of disability, covering the existence and number of 

functional disabilities, mobility difficulties and receipt of disability benefits.

For almost all of the biomarkers, we found 4-year-ahead predictive effects that were sub-

stantial in magnitude and statistically significant. When SAH was introduced as a predictor 

alongside the biomarkers, the magnitude of the biomarker effects fell, in most cases by 20-

40%, but remained important in magnitude and highly statistically significant for most of the 

biomarkers examined. Although there were some differences across biomarkers and disability 

measures, we found that measures of adiposity, grip strength, heart rate, lung functioning, 

cholesterol levels, inflammation, blood sugar and anaemia had strong predictive power for 

future disability risk, over and above SAH.

In addition to simple predictive models, we also developed a new latent variable approach 

capable of incorporating large numbers of biomarkers and longitudinal observation of disabil-

ity outcomes, while allowing for measurement error in SAH and biomarkers. This approach 

allowed us to identify distortions in SAH as a measure of health, by detecting an additional 

predictive factor that is revealed by the biomarkers but not by SAH. The corresponding fac-

tor loadings indicate dimensions of biological function that are given too much or too little 

weight by SAH in predicting disability. We found that SAH is excessively sensitive to the 

biological pathways reflected in adiposity, hypertension and cholesterol, and insufficiently 

sensitive to strength, lung function, hormonal balance and liver function.

Nevertheless, SAH emerged as a good general health proxy in the sense that, when SAH 

and biomarkers were both used as predictors, the estimated biomarker impacts on future 

disability, although substantial absolutely, were moderate in comparison with the effects
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of SAH. For example, using a composite summary measure to proxy allostatic load (our

strongest biomarker predictor), we found that moving from the best (excellent) to worst

(fair/poor) category of SAH increased the risk of disability 4 years later by 5-18 percentage

points on average, depending on the disability concept used, while an increase in allostatic

load from the fifth to the lowest 95th percentile (roughly a 3-standard deviation rise) in-

creased disability risk by 2-7 points.

5.1 Limitations

Key strengths of our analysis come from its use of UKHLS data which allowed us to use a

large, nationally representative sample covering all adult ages. The bio-social character of

UKHLS provided a wide range of nurse-collected and blood-based biomarkers, in addition

to SAH, disability indicators and extensive measures of household characteristics and socio-

economic status. This adds breadth and depth to the small body of evidence that already

exists on biomarkers as predictors of future disability. Existing studies are more limited

in terms of the range of biomarkers used and also the study population, which is mainly

restricted to older people, nonrepresentative samples or specific patient groups (Brex et al.,

2002; Reuben et al., 1999; Baylis et al., 2013; Seeman et al., 1994). As far as we are aware,

ours is the first study that makes an explicit evaluation of subjective SAH against objective

biomarker information in relation to disability.

Despite these advantages, there are limitations. First, the available data follow individ-

uals for a relatively short time horizon. We have found evidence of a rise in the estimated

effect of biomarkers as the length of the prediction horizon increases, suggesting that our

results may understate the full long-term predictive role of biomarkers. Second, functional

disability is a slippery, hard-to-measure concept and the measures used in our analysis are

necessarily limited. Our use of a range of alternative disability measures alleviates these con-

cerns to some degree, but a complete solution requires further research. Finally, although we
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used an unusually extensive set of biomarkers, the multidimensional nature of the biomedical

processes underlying disability means that there may remain significant aspects of physical

health that are not covered by our analysis.
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