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Non-Technical Summary 

The causal relationship of an exposure, such as adiposity, to a social outcome, such as income 
or wellbeing, is often of interest to researchers. However, when there are unobserved 
confounders (that is, variables related to the exposure and the outcome), the estimated 
association obtained using conventional regression models is not a causal effect. A causal 
effect is the effect on the outcome of changing an individual’s exposure. Mendelian 
Randomization (MR) studies are now widely used in epidemiology; these involving using 
genetic variants as instrumental variables (IVs) to estimate the causal effect of an exposure. 
An IV identifies the causal effect if the IV affects the outcome only through its effect on the 
exposure. MR studies are thus vulnerable to bias if the genetic variant is pleiotropic and 
affects the outcome through a pathway other than that through the exposure. MR studies 
involving many genetic variants have more power to detect true causal effects, but are more 
prone to pleiotropy bias. Several methods have been proposed to provide robustness when 
genetic variants are pleiotropic. In this paper, we review, apply and conduct a comprehensive 
simulation study to access the performance of these methods for Understanding Society-like 
data.   

The standard way to use IVs in economics research is to use two-stage least squares (2SLS). 
The first stage of 2SLS involves using an IV to obtain a prediction of the exposure; the 
second stage involves replacing the actual exposure with this prediction, and then regressing 
the outcome on it in the usual way.  If we have many genetic variants, the approach used for 
MR studies is typically to combine these variants into a single polygenic/polygenetic score. If 
any of the genetic variants are pleiotropic, MR-Egger can be used to produce pleiotropy-
robust estimates provided that the size of the direct effect of the genetic variant on the 
outcome is independent of its association with the exposure: the so-called InSIDE 
condition. The MR-median estimate is simply the median of the 2SLS estimates obtained 
using each genetic variant in turn as the only IV (rather than in combination); it is pleiotropy-
robust if less than half of the genetic variants are pleiotropic. The last method that we 
evaluate is the recently-developed some invalid some valid instrumental variable estimator 
(sisVIVE). This is method that fits 2SLS subject to the constraint that less than half of the 
genetic variants are pleiotropic. We investigate the performance of these methods by 
simulating data under various scenarios involving pleiotropic SNPs.  

We found, as expected, that 2SLS and polygenetic score-based methods will be biased when 
SNPs are pleiotropic. Among the robust methods, we found that sisVIVE outperformed MR-
Median and MR-Egger across a range of scenarios. However, its performance could be poor 
in absolute terms, and particularly in the presence of ‘indirect’ pleiotropy where the genetic 
variants were related to omitted variables linked to both exposure and outcome. This is 
known to lead to failure of the key ‘InSIDE’ condition for MR-Egger, but we found it also 
affects sisVIVE despite not being formally required for identification.  We argue that this is 
because the consistency criterion for sisVIVE cannot identify the true causal effect if there is 
indirect pleiotropy. In the application to Understanding Society, we found no evidence for 
pleiotropic bias, and the negative effect of body mass index (BMI) on personal income to be 



around five times larger than the observational association.  However, this conclusion 
depended on the unverifiable assumption that InSIDE holds. 

It is very important to, as far as possible, reduce the bias of estimates when seeking to 
understand the causal relationship between two variables like BMI and income. A MR study 
would estimate unbiased causal relationship between exposure and outcome if SNPs are not 
pleiotropic. Our comparisons provide guidance about in which case these estimates are 
trustable and in which they are not. Our work is focusing on methodological discussion and 
has no direct effect on policy making but would help MR researchers to better understand the 
conclusions they made and therefore could have downstream impact on policy making.       
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Abstract 

We report the results of a Mendelian randomization study in which multiple genetic variants 

are used as instrumental variables to estimate the causal effect of body mass index on 

personal income in the presence of unobserved confounding.  The data come from 

Understanding Society, a large-scale longitudinal household survey, and the GIANT 

consortium study.  Mendelian randomization studies are known to be affected by both weak 

instrument bias and the pleiotropic bias that arises when some genetic variants are invalid 

instrument variables.  We review and compare some of the recently developed techniques for 

using multiple genetic variants as instrumental variables.  Our principal focus, however, is to 

assess the ‘some invalid some valid instrumental variable estimator’ (sisVIVE) developed by 

Kang et al. (2016).  We conduct a comprehensive simulation study to assess sisVIVE for 

Understanding Society-like data, and find that it outperforms alternative methods across a 

range of scenarios.  However, its performance is poor in absolute terms when the presence of 

indirect pleiotropy leads to failure of the key ‘InSIDE’ condition, despite this not being 

explicitly required for identification.  We argue that this is because the consistency criterion 

for sisVIVE does not identify the true causal effect if InSIDE fails.  In the application to 

Understanding Society, we find no evidence for pleiotropic bias, and the negative effect of 

body mass index on income to be around five times larger than the observational association.  

However, this conclusion depends on the unverifiable assumption that InSIDE holds. 

Key words: Mendelian randomization, instrumental variables, pleiotropic bias, MR-Egger, 

MR-Median, sisVIVE 
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1 Introduction 

Mendelian randomization studies are now widely used in epidemiology [1] [2] and social and 

economic research [3] [4, 5].  These studies involve the use of genetic variants as 

instrumental variables to estimate the causal effects of modifiable exposures on outcomes 

from observational data.  Instrumental variable (IV) methods can potentially overcome the 

problems of unobserved confounding and reverse causation when estimating causal effects 

using observational data.  The genetic variant is a valid IV if a) it is associated with the 

exposure, b) it has no direct effect on the outcome, and c) it has no indirect effect on the 

outcome mediated by the unobserved confounders. 

The genetic variants used in Mendelian randomization studies are called single nucleotide 

polymorphisms (SNPs).  SNPs are variations in the DNA sequence where individuals differ 

from each other in terms of a single nucleotide. Each variant form is called an allele and 

common SNPs usually have two alleles. An individual can have none, one or two copies of a 

specific allele.  The expression of a selected SNP, called its phenotype, should be the 

exposure or an observable trait associated with this exposure.  If only one SNP is used, the 

causal effect of the exposure on the outcome can be estimated using the ratio of the estimated 

coefficient of the SNP - from the regression of the outcome on this SNP - and the 

corresponding coefficient from the regression of the exposure on the SNP [6].  If the SNP is a 

valid IV, and the causal relationship between exposure and outcome is linear, the ratio 

estimator will be consistent but not unbiased for the true causal effect. 

A well-known problem with the ratio estimator is ‘weak instrument’ bias, that is, the bias that 

arises when the instrumental variables are insufficiently predictive of the exposure [7] [8].  In 

practice, this problem tends to arise for IVs that are weakly correlated with the exposure, 

which is typically the case with Mendelian randomization studies.  One strategy for avoiding 

weak instrument bias is to use more than one SNP.  The causal exposure effect can be 

estimated by, for example, combining the SNPs into what are sometimes called allele, or 

genetic risk, scores [9], which we herein refer to as polygenic risk scores.  An alternative 

strategy is to use two-stage least squares (2SLS) with the SNPs as multiple IVs [10].  The 

rationale for using more than one SNP is that additional SNPs contain extra information 

which, it is hoped, can be combined to predict exposures more accurately and so alleviate 

weak instrument bias.   
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In this paper, we use Mendelian randomization to estimate the causal effect of body mass 

index (BMI) on personal income using data from Understanding Society: The UK 

Longitudinal Household Study (UKHLS).  UKHLS contains rich genetic data from which we 

obtain 71 out of the 97 common genetic variants found to be associated with BMI in genome-

wide association studies (GWAS) at the genome-wide level of significance [11].  We adopt 

the multiple SNPs strategy here because the single genetic marker most strongly associated 

with BMI from FTO gene (rs1558902) explains only 0.27 percent of the variation.   

However, the use of multiple SNPs presents two further challenges.  The first is that, even if 

all the SNPs were valid IVs, the combined explanatory power of the additional SNPs could 

still be small enough to lead to many weak instruments bias [12].  This is certainly possible 

here because even combining all 97 BMI-associated SNPs from the GIANT study would 

have explained only 2.7 percent of the total variation in BMI [11]. While many weak 

instruments bias can be considerably reduced by using the limited information maximum 

likelihood estimator, this comes at the cost of a substantial loss of power.  An alternative is to 

use a ‘two-sample’ approach by taking estimates of the associations between the SNPs and 

exposure from another, ideally much larger, data set [13].  Provided the second sample is 

drawn from a comparable population to the first, and the estimates are precise, this approach 

can considerably reduce weak instrument bias without any major loss of power.  Hence, we 

also use a two-sample approach for our analysis, with SNP-BMI estimates taken from the 

GIANT study [11]. 

Whether a one or two-sample approach is used, the major challenge facing all Mendelian 

randomization studies is that one or more of the SNPs is not a valid IV satisfying conditions 

a) to c) given above.  Such SNPs are related to multiple traits and so said to be ‘pleiotropic’.  

There has been recent work on methods to adjust for pleiotropic bias.  These methods are 

based on a joint model which relates the multiple SNP-exposure and SNP-outcome 

associations.  Two widely used and relatively simple techniques which offer robustness 

against invalid IVs are ‘MR-Egger’ regression [14] and ‘MR-Median’ regression [15].  MR-

Egger is regarded as being robust to invalid IVs if condition c) holds, while MR-Median is 

apparently robust if less than half of the SNPs are invalid IVs.  However, the principal focus 

of this paper is on the effectiveness of the recently developed ‘some invalid, some valid 

instrumental variable estimator’ (sisVIVE) [16].  Like MR-Median, sisVIVE is theoretically 

robust to invalid IVs if more than half of the SNPs are valid instrumental variables. 
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We use the methods above to estimate the causal effect of BMI on personal income.  Our 

main methodological aim is to evaluate the performance of sisVIVE relative to the more 

established approaches, and in absolute terms, for scenarios like our data example.  In doing 

this, we contribute to the understanding of, and good practice for, the use of these methods in 

epidemiological research.  The remainder of the paper is structured as follows: in Section 2, 

we provide model assumptions for identification of causal effects; in Section 3, we briefly 

review and compare the methods we consider for using multiple SNPs; in Section 4, we 

present the results from a simulation study that mimics data to assess the relative performance 

of these methods, and discuss the identification of sisVIVE; in Section 5, we present our real-

data application of these methods to estimate the causal effect of BMI on personal income; 

and we conclude by discussing our findings and potential avenues for future work in the 

future at Section 6. 

 

2 Modelling for Mendelian randomization studies 

2.1 Choosing SNPs 

A single-SNP Mendelian randomization study will typically involve a SNP for which there is 

robust evidence that it is a genotype for the exposure. This evidence is usually obtained from 

a dedicated genome-wide association study (GWAS).  A GWAS involves estimating the 

associations between a genome-wide set of genetic variants (typically SNPs) and biological 

traits to identify those variants which are associated with each trait.  GWAS estimates are 

adjusted for errors due to multiple testing, potential confounders of these associations and for 

population groups with different genotype distributions (so-called population stratification).  

The genome-wide level of significance is determined statistically; a p-value significance 

threshold of 5 × 10
−8

 has become a widely accepted. 

The accuracy of a GWAS in determining which SNPs are associated with which traits 

depends on the sample size and, particularly, on the adequacy of the confounding and 

population-stratification adjustments.  There is also a risk that the SNP will be pleiotropic so 

that either condition b) or c) does not hold, which would lead to biased estimates even if the 

association between the SNP and exposure were not weak [17].  In considering the impact of 

pleiotropic bias, we distinguish between ‘direct’ pleiotropy resulting from failure of condition 

b), and ‘indirect’ pleiotropy resulting from failure of condition c). 
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As explained above, the UKHLS contains 71 of the 97 SNPs identified by the GIANT 

consortium as being associated with body mass index [11].  The full list of these SNPs is 

given in Table S1 in the Supplementary Information; the distributions of each SNP in 

UKHLS and GIANT are given in the table. 

2.2 Modelling Assumptions 

We denote the outcome variable as 𝑌 and the exposure as 𝑋, and consider scenarios in which 

𝑌 can be treated as a continuous variable that is causally related to 𝑋 by the linear model 

𝑌 = 𝛾0 + 𝛾𝑋𝑋 + 𝜖𝑌,      (1) 

where 𝛾𝑋 is the causal exposure effect, and 𝜖𝑌 is the model error comprising the combined 

effect of every influence (apart from 𝑋) on outcome 𝑌.  Any adjustments for observed 

confounding variables associated with exposure and outcome may be included but, for 

notational simplicity, we have omitted these from (1).  It is supposed either way that there 

remains substantial unobserved confounding because we have omitted important confounding 

variables, which are absorbed into 𝜖𝑌 and thus induce an association between 𝜖𝑌 and 𝑋.  In 

such cases, standard regression estimation of (1) using ordinary least squares (OLS) or 

generalised least squares would be inconsistent and biased for causal parameters like 𝛾𝑋. 

The precise interpretation of 𝛾𝑋 depends on the assumptions we make about exposure-effect 

heterogeneity, that is, between-person variation in the causal effect of BMI on personal 

income.  For two-stage least squares (to be introduced below), the estimate of  𝛾𝑋 can be 

interpreted as the average causal effect of BMI on personal income, if the effect of BMI is the 

same for everyone , or its between-person variation is independent of the exposure given the 

genetic IVs (and any covariates included to adjust for observed confounding); see Chapter 5.2 

in [18]. 

Mendelian randomization studies involve choosing one or more SNPs to use as IVs.  Suppose 

that we use GWAS studies to identify 𝐽 SNPs which we denote by 𝐆 = (𝐺1, … , 𝐺𝐽)′.  Each 

SNP takes values 𝐺𝑗 ∈ {0,1,2} to indicate the number of times that the specific the allele 

associated with increased exposure was found at this gene location.  This allele is referred to 

as the ‘risk’ or ‘effect’ allele, and the other as the ‘base’ or ‘non-effect’ allele.  The effect 

allele for each of the 71 SNPs used here can be found in Table S1 of the Supplementary 

Information. 
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Using this notation, we can rewrite conditions a) to c) for a single-SNP, 𝐺𝑗, in a Mendelian 

randomization study as follows: a) Cov(𝑋, 𝐺𝑗) ≠ 0; (b) Cov(𝑌, 𝐺𝑗|𝑋) = 0 (no direct 

pleiotripy); and (iii) Cov(𝜖𝑌, 𝐺𝑗) = 0 (no indirect pleiotropy); conditioning on observed 

confounding variables is implicit.  Conditions a) to c) are sometimes referred to as the core 

conditions [10], and 𝐺𝑗 is a valid IV only if it satisfies these conditions. 

The final point to make here is that the SNPs will be assumed to be drawn from distinct gene 

regions such that the 𝐺𝑗 are mutually independent at the population level.   

 

3 Estimating causal exposure effects 

The simplest IV estimator is the ratio estimator based on candidate IV, 𝑍, which we can write 

as 

𝛾𝑋(𝑍) =
Γ̂(𝑌:𝑍)

�̂�(𝑋:𝑍)

,      (3) 

where Γ̂(𝑌:𝑍) is the OLS estimate of the coefficient of 𝑍 from the simple linear regression of 𝑌 

on 𝑍, and �̂�(𝑋:𝑍) is the OLS estimate of 𝑍 from the simple linear regression of 𝑋 on 𝑍.  If 

observed confounding variables are included in (1) as covariates, the outcome and exposure 

above are respectively replaced by the residuals obtained from regressing each in turn on 

these covariates. 

We denote the resulting ratio estimator for putative IV 𝑍 = 𝐺𝑗 by 𝛾𝑋;𝑗 = 𝛾𝑋(𝐺𝑗), its numerator 

by Γ̂𝑗 = Γ̂(𝑌:𝐺𝑗) and its denominator by �̂�𝑗 = �̂�(𝑋:𝐺𝑗).  If 𝐺𝑗 is a valid IV then 𝛾𝑋;𝑗 is consistent 

for the causal exposure effect 𝛾𝑋 but, as discussed above, it may be subject to considerable 

weak instrument bias. 

3.1 Estimation with multiple SNPs that are all valid IVs 

Polygenic risk scores:  The properties of polygenic risk scores (also known as allele scores 

and genetic risk scores) in Mendelian randomization studies are reviewed in detail elsewhere 

[9].  To summarise, polygenic risk scores have the general form 
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𝐺 = ∑ 𝑤𝑗𝐺𝑗

𝐽

𝑗=1
,      (4) 

where 𝑤𝑗 is a user-specified weight for 𝐺𝑗.  If  𝑤𝑗 takes the same value for every SNP then 𝐺 

is called the simple polygenic risk score (SPRS).  The ratio estimator (3) using SPRS as the 

instrumental variable can be written as 

𝛾𝑆𝑃𝑅𝑆 = ∑ 𝛾𝑋;𝑗

𝐽

𝑗=1
{

�̂�𝑗�̂�𝑗

∑ �̂�𝑗′𝜐𝑗′𝑗′

},      (5) 

where �̂�𝑗 is a consistent estimate of 𝜐𝑗 = Var(𝐺𝑗).  Note that the �̂�𝑗 in (5) can be equivalently 

replaced with estimates of 𝜎𝑌;𝑗
−2 = 1 Var(Γ̂𝑗)⁄ , that is, the inverse of the estimated standard 

error of Γ̂𝑗 [14].  The term in parenthesis on the right-hand side of (5) can be viewed as the 

weight for 𝛾𝑋;𝑗 in a weighted sum of SNP-specific ratio estimates.  This weight ensures that 

any SNP weakly correlated with the exposure, or which varies little between individuals 

(relative to other SNPs), makes only a small contribution to 𝛾𝑆𝑃𝑅𝑆. 

An alternative to the SPRS is the internally weighted polygenic risk score (IPRS) with 𝑤𝑗 =

�̂�𝑗.  The IPRS can be written 

𝛾𝐼𝑃𝑅𝑆 = ∑ 𝛾𝑋;𝑗

𝐽

𝑗=1
{

�̂�𝑗
2𝜐𝑗

∑ �̂�𝑗′
2𝜐𝑗′𝑗′

},      (6) 

which is equal to (5) but with �̂�𝑗
2 rather than �̂�𝑗 appearing in the weight.  In fact, this is a very 

good approximation of the 2SLS estimator (see below) obtained using the set of SNPs 𝐆 as 

multiple IVs which would hold exactly if the sample SNPs were perfectly uncorrelated [14].  

If (6) is used with summarised rather than individual-level data then 𝛾𝐼𝑃𝑅𝑆 is known as the 

inverse weighted (IVW) estimator [14, 19]. 

Comparing (5) with (6) reveals that the two estimators differ in terms of how each SNP-

specific ratio estimate is weighted.  The numerator and denominator of the SPRS weight 

depend on the signs of �̂�𝑗 so it makes sense that 𝐺𝑗 is always coded as the number of effect 

alleles to ensure that the sign of �̂�𝑗 is always positive and the numerator is non-zero.  Because 

IPRS is equivalent to two-stage least squares if the SNPs are independent, an advantage of 

IPRS (6) is that it combines the SNP-specific estimates efficiently; the combination is 
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efficient in that the standard error of 𝛾𝐼𝑃𝑅𝑆 is as small as possible (among all consistent and 

asymptotically normal estimators) provided that 𝜀𝑌 in (1) is homoscedastic; the standard error 

of 𝛾𝑆𝑃𝑅𝑆 will be similarly small only if 𝑏𝑗 = 𝑏 for all 𝑗. 

Two-stage Least Squares: The two-stage least squares (2SLS) estimator can be described as 

follows.  Stage one involves fitting the so-called reduced-form model 

𝑋 = 𝐳′𝐛 + 𝜖𝑋 ,      (7) 

where 𝐳′ = (1, 𝐆′) comprises a constant term and the vector of SNPs, 𝐛 = (𝑏0, … , 𝑏𝐽)′ are 

the SNP-exposure effects, and 𝜖𝑋 is the model residual satisfying 𝐸(𝜖𝑋|𝐆) = 0 such that 

𝑏𝑗 = Cov(𝑋, 𝐺𝑗) Var(𝐺𝑗)⁄  for 𝑗 ≥ 1 if the SNPs are independent.  Stage two involves 

calculating �̂� = 𝐳′�̂� for each individual, and regressing 𝑌 on �̂� using OLS; the 2SLS 

estimator 𝛾𝑋
2SLS is the estimated coefficient of �̂� obtained from the stage-two regression. 

The problem of many weak instruments bias for the 2SLS estimator is explored in detail by 

Davies et al. (2015) [12].  Using a similar notation to theirs, the 2SLS estimator can be 

written as 

�̂�2SLS = argmin
𝛄

[
1

𝑁
{𝛆𝑌(𝛄)𝑍}𝑊𝑁{𝛆𝑌(𝛄)𝑍}′],      (8) 

where the observed data on the sample individuals are {𝐳𝑖, 𝑋𝑖, 𝑌𝑖: 𝑖 = 1, … , 𝑁}, 𝑍 is the 

𝑁 × (𝐽 + 1) design matrix with row 𝑖 given by 𝐳𝑖
′,  𝑊𝑁 = (𝑍′𝑍)−1 is a (𝐽 + 1) × (𝐽 + 1) 

weight matrix, 𝛆𝑌(𝛄) = (𝜀𝑌;1, … , 𝜀𝑌;𝑁), 𝜀𝑌;𝑖 = 𝑌𝑖 − 𝛾0 − 𝛾𝑋𝑋𝑖 is the vector of residuals from 

model (1) for individual 𝑖, and 𝛄 = (𝛾0, 𝛾𝑋)′.  The bias of 𝛾𝑋
2SLS has been shown to depend 

multiplicatively on the ratio of the covariance between 𝜀𝑌 and 𝜖𝑋, the inverse variance of �̂�, 

and the number of SNPs so that, the greater the number of SNPs, the greater the bias [12]. 

Limited information maximum likelihood and the generalized method of moments: Limited 

information maximum likelihood (LIML) is an alternative to 2SLS that can be used to reduce 

the impact of many weak instruments bias.  It remains biased but is considerably less biased 

than 2SLS because its bias does not increase as further SNPs are included in the analysis 

[12].  
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Davies et al. (2015) [12] also showed that 2SLS is a ‘one-step’ generalized method of 

moments (GMM) estimator (Hansen, 1982) [20], and that different choices of weight matrix 

𝑊𝑁 result in different types of GMM estimator.  Specifically, they showed that the 

‘continuously updated estimator’ (CUE) involves using (8) but with the weight matrix 

𝑊𝑁(𝛄) = [{𝛆𝑌(𝛄)𝑍}′{𝛆𝑌(𝛄)𝑍}]−𝟏.      (9) 

They also showed that CUE is effectively an extension of LIML to allow for heteroscedastic 

errors in (1) and so potentially more efficient than LIML.  If only one SNP were available 

then 2SLS, LIML and CUE would be identical [10] but, with multiple SNPs, LIML and CUE 

reduce bias avoid overfitting to the sample data and thus reduce bias.  The conventional 

standard error estimates produced by GMM for both LIML and CUE can be corrected for 

negative bias if the instruments are weak [12]. 

However, both LIML and CUE are less numerically stable estimators than 2SLS, so it is 

recommended that estimation is repeated from multiple starting values to check that the 

initial solution is the global maximum.  We focus on LIML in the subsequent simulation 

study involving only valid IVs (Section 4.1) to demonstrate how more advanced GMM 

estimators improve on 2SLS; the reader is referred to [12] for a full comparison of 2SLS, 

LIML and CUE. 

3.2 Estimation with multiple SNPs where some are invalid IVs 

If any of the chosen SNPs were invalid IVs then every estimator discussed in Section 3.1 

would be biased, regardless of whether the instruments were weak or not, because pleiotropy 

would lead to model (1) being incorrectly specified.  Bowden et al. (2015) [14] proposed the 

following model to incorporate the impact of pleiotropy: 

𝑌 = 𝜋0 + γ𝑋𝑋 + ∑ (𝛼𝑗 + 𝜃𝑗)𝐺𝑗
𝐽
𝑗=1 + 𝜖𝑌,     (10)                 

where 𝛼𝑗 ≠ 0 if there is a direct pleiotropic bias (that is, the effect of 𝐺𝑗 leads to failure of 

core condition b)), and 𝜃𝑗 ≠ 0 if there is indirect pleiotropic bias (that is, failure of core 

condition c)).  The model error 𝜖𝑌 satisfies 𝐸(𝜀𝑌|𝐆) = 0. 

Under model (10), the relationship between the true numerators and denominators of the ratio 

estimators is 
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Γ𝑗 = 𝜋𝑗 + γ𝑋𝑏𝑗,      (11) 

where 𝜋𝑗 = 𝛼𝑗 + 𝜃𝑗  is the sum of the pleiotropic errors related to SNP 𝑗 = 1, … , 𝐽.  This 

relationship drives the ‘consistency criterion’ that identifies the causal exposure effect when 

the identity of the invalid-IV SNPs is unknown [16]. 

MR-Egger regression:  Bowden et al. (2015) [14] developed MR-Egger regression by 

adapting the Egger regression technique from the meta-analysis literature to Mendelian 

randomization.  MR-Egger involves treating estimates {Γ̂𝑗, �̂�𝑗: 𝑗 = 1, … , 𝐽} as data and fitting 

the simple linear regression 

Γ̂𝑗 = γ0
Egg

+ γ𝑋
Egg

�̂�𝑗 + 𝜖𝑗
Egg

,      (12) 

where 𝜖𝑗
Egg

 is a residual that must satisfy 𝐸(𝜖𝑗
Egg

|𝑏𝑗) = 0 (noting that expectation is with 

respect to the set of chosen SNPs).  Weighted least-squares regression can alternatively be 

used with weights �̂�𝑗 or �̂�𝑌;𝑗
−2 to account for differential minor allele frequencies (MAFs) such 

that SNPs with low MAFs contribute little to the estimate of (12).  If InSIDE holds, the target 

parameter is γ𝑋
Egg

= 𝛾𝑋 and the true intercept term γ0
Egg

 is the average pleiotropic 

effect 𝐸(𝜋𝑗).  If all SNPs in the analysis were valid IVs then γ0
Egg

= 0, but this is unlikely to 

be the case in practice.   

The requirement that 𝐸(𝜖𝑗
Egg

|𝑏𝑗) = 0 is called the ‘InSIDE’ condition and is key to 

identifying (γ0
Egg

, γ𝑋
Egg

) [14].  InSIDE is thought to be plausible if (the multiple-SNPs 

equivalent of) core condition b) fails, but is generally unrealistic if condition c) fails because 

failure leads to both �̂�𝑗 and 𝜖𝑗
Egg

 depending on 𝜃𝑗  [14].  MR-Egger also requires that �̂�𝑗 is 

precisely estimated because otherwise γ𝑋
Egg

 will be biased towards zero (see the discussion of 

the ‘no measurement error assumption’ in Section 3.4). 

MR-Median: Bowden et al. (2016) [15] proposed MR-Median as an alternative to MR-Egger 

that, in theory, does not require the InSIDE condition to hold.  The authors view MR-Median 

as a practicable alternative to the sisVIVE estimator to be introduced next.  The main 

strengths of MR-Median are its simplicity and that it can be used if only summary data are 

available. 
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The MR-Median estimator is simply the median of the SNP-specific ratio estimates.  In other 

words, if {𝛾𝑋(𝑗): 𝑗 = 1, … , 𝐽} is the ordered set of ratio estimates (i.e. such that 𝛾𝑋(𝑗+1) ≥ 𝛾𝑋(𝑗) 

for all 𝑗 = 1, … , 𝐽 − 1) then γ̂𝑋
Med = 𝛾𝑋(𝐽/2) If 𝐽 is even, or γ̂𝑋

Med = {𝛾𝑋(𝐽/2) + 𝛾𝑋(𝐽/2+1)} 2⁄  if 

𝐽 is odd.  The inverse variance weighted version of MR-Median is γ̂𝑋
Med = 𝛾𝑋(𝑗) +

(𝛾𝑋(𝑗+1)−𝛾𝑋(𝑗)) × (0.5 − 𝑠𝑗) (𝑠𝑗+1−𝑠𝑗)⁄ , where 𝑠𝑗 = ∑ �̂��̂�𝑋(𝑘)

−2𝑗
𝑘=1  and 𝑗 is the largest integer 

such that 𝑠𝑗 < 0.5. 

 

MR-Median is consistent for 𝛾𝑋 if less than 𝐽/2, or 50 percent, of the SNPs are invalid 

instrumental variables (the consistency requirement for the weighted MR-Median is that at 

least 50 percent of the weight comes from valid instrumental variables).  Like MR-Egger, it 

can be used with summary as well as individual-level data. 

3.3 Some invalid, some valid instrumental variables estimator (sisVIVE) 

The next estimator is the main focus of our study.  Kang et al. (2016) [16] developed the 

‘some invalid some valid instrumental variable estimator’ (sisVIVE) by adapting the LASSO 

for 2SLS.  SisVIVE works by penalizing SNPs which are inconsistent with model (1) (that is, 

have pleiotropic effects) so that any invalid instruments are removed when fitting model (10).  

The parameters of (10) are shown to be identified if less than half of the SNPs are not valid 

IVs, whichever of conditions b) or c) fail [16]. 

Essentially, sisVIVE is an extension of 2SLS (8) under model (2) with the addition of a 

penalisation term.  We write it as follows:  

(
𝛾𝑋;𝜆

�̂�𝜆
) = argmin

𝛄,𝛑
[
1

2
{𝛆𝑌(𝛾𝑋, 𝛑)𝑍}𝑊𝑁{𝛆𝑌(𝛾𝑋, 𝝅)𝑍}′ − 𝜆 ∥ 𝛑 ∥1

2],      (13) 

where 𝜆 is the pre-specified scalar tuning parameter, ∥ 𝛑 ∥1= √∑ |𝜋𝑗|𝐽
𝑗=1  is the standard ℓ1-

norm, 𝑊𝑁 is the same weight matrix as was used in (8), 𝛆𝑌(𝛾𝑋 , 𝛑) = (𝜀𝑌;1, … , 𝜀𝑌;𝑁), 𝜀𝑌;𝑖 =

𝑌𝑖 − γ𝑋𝑋𝑖 − 𝛑′𝐳𝑖 is the value of the residuals in model (10) for individual 𝑖, and 𝛑 =

(𝜋1, … , 𝜋𝐽)′.  If both core conditions b) and c) hold then (13) reduces to 2SLS (8) because 𝛑 

equals zero.  Note that, in practice, the outcome and instrumental variable are mean centred 

so that 𝐳𝑖 = 𝐆𝑖 and 𝜋0 from model (10) equals zero. 
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The resulting procedure is closely related to the ℓ1-penalization used by the LASSO [21].  

The difference is that sisVIVE only penalises 𝛑 and not 𝛾𝑋 as it searches for solutions 

consistent with (11). The choice of tuning parameter is crucial: a large value of 𝜆 would force 

heavy penalization of 𝛑 towards zero so that all the SNPs were treated as valid instruments; 

conversely, a low value of 𝜆 would lead to all the SNPs being treated as invalid instruments.  

The optimal 𝜆 is obtained using the same cross-validation method coupled with the ‘one 

standard error’ rule as used for the LASSO [16, 21].  Windmeijer et al. (2017) [22] have 

recently detailed further properties of the sisVIVE estimator including conditions under 

which it will not be consistent.   

The estimated standard errors produced by penalized regression methods generally perform 

poorly, so we propose to use sisVIVE in conjunction with other valid-IV methods.  The 

resulting approach thus consists of two steps in which step one involves using sisVIVE to 

select a set of valid IVs, and step two involves applying the chosen valid-IV method from 

Section 3.1 to the selected IVs.  Post-estimation approaches like this have been found to have 

better finite-sample properties than 𝛾𝑋;𝜆 [23-25]. 

Finally, we make the following note about sisVIVE in the presence of heterogeneous causal 

effects.  In Section 2.2, we noted for 2SLS that 𝛾𝑋 can be interpreted as the average causal 

effect if the effect of BMI is homogenous, or there is heterogeneity but the between-

individual variation in BMI effects is independent of the exposure given the genetic IVs.  

Kang et al. [16] showed that the same assumptions are required if we wish to interpret 𝛾𝑋 as 

the average causal effect when using sisVIVE.  However, we have shown that potential 

dependence of the mean treatment effect on the SNPs can result in 𝜋𝑗 ≠ 0 even if SNP 𝑗 is a 

valid IV, but that this can be prevented if we can further assume that the between-individual 

variation in BMI causal effects is mean independent of both exposure and the SNPs (see 

Section S2.1 in the Supplementary Information). 

3.4 Two-sample strategies 

In the discussion so far, it has been assumed that the analysis will be based on one individual-

level data set.  It is, however, also possible to adopt a two-sample strategy if estimates of the 

SNP-exposure estimates are available from another, preferably larger, study [26-28].  We 

denote the estimates obtained from this second sample as {𝑏�̃�: 𝑗 = 1, … , 𝐽}. 
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Estimates from a second sample can be incorporated into the approaches described above as 

follows: 

 Simple polygenic risk scores: as before. 

 Externally weighted polygenic risk score: choose 𝑤𝑗 = 𝛽�̃� to give externally weighted 

polygenic risk score (EPRS) 𝛾𝐸𝑃𝑅𝑆.  This is the two-sample version of IPRS; the 

resulting estimator is equal to (6) but with �̂�𝑗�̃�𝑗 rather than �̂�𝑗
2 in the weights for the 

SNP-specific contributions. 

 Two-stage least squares: Use �̃� = 𝐳′�̃� in stage two rather than �̂�. 

 MR-Egger: Fit Γ̂𝑗 = γ0
Egg

+ γ𝑋
Egg

�̃�𝑗 + 𝜖𝑗
Egg

 rather than (12). 

 MR-Median: Use the (possibly weighted) median of  �̃̂�𝑗 = Γ̂𝑗 𝑏�̃�⁄  from {�̃̂�(𝑗): 𝑗 =

1, … , 𝐽}. 

 sisVIVE: Use 𝜀𝑌;𝑖 = 𝑌𝑖 − γ𝑋�̃�𝑖 − 𝛑′𝐳𝑖, where �̃�𝑖 = 𝐳𝑖
′�̃�, and apply (13).   

If the IVs were all valid, we could additionally use �̃̂�𝑗 = Γ̂𝑗 𝑏�̃�⁄  rather than 𝛾𝑗 in SPRS or 

EPRS to further reduce weak instrument bias because, in contrast to �̂�𝑗 and Γ̂𝑗, there would be 

no association between �̃�𝑗 and Γ̂𝑗 [13]; in fact, if �̃�𝑗 = 𝑏𝑗 then �̃̂�𝑗 would be unbiased because it 

would reduce to an OLS estimate from the regression of 𝑌 on the known and unconfounded 

variable 𝐺𝑗𝑏𝑗.  More realistically, we require that the standard error of �̃�𝑗 to be small, and that 

both samples are drawn from the same population (or at least from two populations that were 

similar in terms of known characteristics like ethnic group related to population 

stratification), for �̃�𝑗 ≃ 𝑏𝑗 to hold [29, 30].  Such scenarios satisfy what is called the no 

measurement error (NOME) condition [13].  However, if �̃�𝑗 is not precisely estimated then 

NOME will not hold.  NOME is so-called because the imprecision means that �̃�𝑗 = 𝑏𝑗 + 𝜇𝑗, 

where 𝜇𝑗 behaves like mean-zero measurement error if �̃�𝑗 is unbiased; the estimate is hence 

subject to an attenuation bias towards zero if NOME fails.  This second form of weak 

instrument bias can be viewed as a kind of conservative shrinkage, which is less harmful than 

the first because it makes it more difficult to reject the null hypothesis of no causal effect. 

In the same spirit as the second stage of 2SLS, sisVIVE can also be implemented as part of a 

two-sample strategy by simply replacing 𝑋 in (13) with �̃�𝑖 = 𝐳𝑖
′�̃�; this is equivalent to 
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performing a standard sisVIVE under the constraint 𝑍{(𝑍′𝑍)−1𝑍′𝑋} = 𝑍�̃�.  Like MR-Egger, 

neither MR-Median nor sisVIVE are robust to failure of NOME. 

 

4 Simulation results 

We now carry out a simulation study to explore the effectiveness of sisVIVE for the types of 

scenario we believe to be plausible for UKHLS.  Two sets of scenarios are considered: in the 

first, the SNPS are all valid instrument variables; and in the second, we allow some SNPs to 

be invalid instrumental variables.  The design of the study is based on those elsewhere (e.g. 

Bowden et al. 2015) [14], but the data are simulated in such a way as to mimic key 

characteristics of the UKHLS data.  For example, the 71 SNPs 𝐺1, … , 𝐺71 are generated 

independently from a trinomial distribution in which the probabilities of 𝐺𝑗 being 0, 1, 2 are 

respectively equal to the proportions of 𝐺𝑗  being 0, 1 and 2 in the UKHLS data (see Table S1 

in the Supplementary Information).  The causal association of BMI and SNP 𝑗 is denoted by 

𝛽𝑗 and set to a value of which is taken from the GIANT consortium study [11].  The true 

value of the causal effect of BMI on income is 𝛾𝑋 = −0.2.  All the results presented below 

are based on 1000 generated samples each of size 𝑁 = 10 000. 

We use the following Stata functions to implement the methods described above: ivreg2 to 

implement 2SLS or LIML with single IV/multiple IVs; mregger from the mrrobust package 

to implement IVW/MR-Egger method; and mrmedian from the mrrobust package to perform 

MR-Median. The R package sisVIVE (downloaded from CRAN at https://cran.r-

project.org/web/packages/sisVIVE.html) is used to implement sisVIVE.  

 

4.1 Scenarios where all SNPs are valid IVs 

To simulate data subject to unobserved confounding, the error terms in model (1) and model 

(7) are respectively decomposed as 𝜖𝑌 = 𝑈𝛾𝑈 + 𝜖�̇� and 𝜖𝑋 = 𝑈 + 𝜖�̇�, where 𝑈 is a zero-mean 

variable representing unobserved confounding, and 𝜀�̇� and 𝜖�̇� are not only mutually 

independent but jointly independent of (𝑌, 𝑋, 𝐆′, 𝑈).  Parameter 𝛾𝑈 = 1 indexes the extent of 

unobserved confounding by controlling the strength and sign of the correlation between 𝜖𝑌 

and 𝜖𝑋, such that there is no unobserved confounding if 𝛾𝑈 = 0.  Values of the outcome and 

https://cran.r-project.org/web/packages/sisVIVE.html
https://cran.r-project.org/web/packages/sisVIVE.html
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exposure are respectively generated under model (1) and model (7), with 𝑈, 𝜖�̇� and 𝜖�̇� all 

independently generated from standard normal distributions.  The average of F-statistics of 

the SNPs with BMI exposure 𝑋 is 2.5, which indicates that these are weak instruments. 

Using a one-sample strategy, we compare the performance of sisVIVE on the generated data 

with that of SPRS, IPRS, LIML, MR-Egger and MR-Median.  As discussed in Section 3.3, 

rather than use sisVIVE alone we use it in conjunction with valid-IV methods.  We choose 

SPRS and IPRS to partner sisVIVE and respectively refer to the resulting estimates as 

sisVIVE-SPRS and sisVIVE-IPRS (noting that IPRS is the equivalent of 2SLS in these 

scenarios, and inverse-variance weighting is used for both MR-Egger and MR-Median).  

Using a two-sample strategy, we compare sisVIVE-SPRS and sisVIVE-2SLS with EPRS, 

2SLS, MR-Egger and MR-Median under different levels of precision for �̃�𝑗.  The first 

precision level (“True”) is the gold standard in which �̃�𝑗 is taken to equal the true causal 

effect 𝛽𝑗; the second precision “Precise”) with �̃�𝑗~𝑁(𝛽𝑗, 0.012) represents situations where 

the estimates are fairly accurate; and the third level (“Imprecise”) with �̃�𝑗~𝑁(𝛽𝑗, 0.052) 

represents imprecise estimates from the second sample.   

(Table 1 is here) 

As expected, we found the valid-IV methods SPRS, IPRS, EPRS and LIML to perform at 

least as well as the robust methods in every scenario.  Some numerical results from this study 

are presented in Table 1; we present only the gold standard two-sample results here, but the 

results for all three precision levels can be found in Table S2 in the Supplementary 

Information.  Table 1 contains an assessment of each estimator’s sampling distribution (bias, 

standard error and mean square error) and the performance of its normal-based confidence 

intervals (coverage and power).  In addition, the first row of Table 2 (below) contains the 

average proportion of valid-IV SNPs falsely selected out (FSO) by sisVIVE from the set of 

valid IVs (see below for the definition of FSO). 

In summary, we find, as expected, that the one-sample versions of the valid-IV estimators, 

except for SPRS and LIML, are affected by many weak instruments bias [12].  SPRS 

outperforms IPRS in terms of bias and overall in terms of MSE, despite IPRS being more 

efficient.  Only SPRS and LIML offer close-to-nominal coverage and are the most powerful 

at detecting the true causal effects.  The MSEs of MR-Egger and MR-Median, and 
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particularly MR-Egger, are inferior to those of the valid-IV estimators by dint of having 

much larger standard errors; both also perform poorly in terms of coverage and power. 

Using a two-sample strategy, every estimator is nearly unbiased when the true SNP-exposure 

association is known, or at least precisely estimated.  On average, sisVIVE correctly selects 

99 percent of the SNPs as valid IVs, which means the performance of sisVIVE-SPRS and 

sisVIVE-2SLS is respectively identical to that of SPRS and 2SLS.  The inefficiency of both 

MR-estimators considerably reduces the coverage and power of both.  However, it can be 

seen in Table S2 (in the Supplementary Information) that every method is increasingly biased 

towards zero due as the precision of �̂�𝑗 decreases, due to failure of NOME, with a consequent 

impact on coverage and power.  The bias of EPRS is less affected by NOME than the others, 

but its standard error is inflated and power very low.  

4.2 Where some SNPs are invalid IVs 

The outcomes are now generated under model (10) under three different pleiotropy scenarios: 

1. Direct pleiotropy under which the InSIDE condition holds so that 𝜃𝑗 = 0 for all 

𝑗 = 1, … , 𝐽, where the direct pleiotropy is balanced by generating ∑ 𝛼𝑠
𝑆
𝑠=1 = 0, 

𝛼𝑠~𝑈(−0.2,0.2), 𝑠 = 1, … , 𝑆, where 𝑆 ≤ 𝐽/2 is the number of invalid SNPs, and 

𝑈(𝑎, 𝑏) indicates the continuous uniform distribution on real interval (𝑎, 𝑏).  In this 

scenario, individual SNPs lead to direct pleiotropy but the full set of SNPs does not.  

The true SNP-exposure association equals the causal effect of the SNP: 𝑏𝑗 = 𝛽𝑗. 

2. As in Scenario 1 (including that 𝜃𝑗 = 0 for all 𝑗 = 1, … , 𝐽, and 𝑏𝑗 = 𝛽𝑗) but the direct 

pleiotropy is now unbalanced with  ∑ 𝛼𝑠
𝑆
𝑠=1 > 0 and  𝛼𝑠~𝑈(0,0.2), 𝑠 = 1, … , 𝑆 for 

the pleiotropic SNPs. 

3. As in Scenario 2, except there is indirect pleiotropy with positive 𝜃𝑠~𝑈(0,0.4) for 

pleiotropic SNP 𝑠 = 1, … , 𝑆, and InSIDE fails because the true association between 

𝐺𝑠 and exposure is 𝑏𝑠 = 𝛽𝑠 + 𝜃𝑠 rather than 𝛽𝑠; for the valid-IV SNPs, 𝑏𝑗 = 𝛽𝑗 as 

before.  

Values of the outcome and exposure are respectively generated under model (10) and model 

(7) with true SNP-exposure association for invalid SNP 𝐺𝑗 is 𝛽𝑗 + 𝜃𝑗  for Scenario 3.  The 

error terms of (10) and (7) are generated the same way as described in in Section 4.1 (see also 

Section S1 in the Supplementary Information). 
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 For each of these scenarios, the performance of each estimator is assessed for 𝑆 =

10, 20 and 30 invalid IVs, which corresponds respectively to 14, 28 and 42 percent of the 

SNPs; these scenarios all satisfy the requirement that less than 50 percent of the SNPs are 

invalid. Details of simulation design are given in Section S1 in the Supplementary 

information.  

 (Table 2 is here) 

We first assess the performance of sisVIVE in terms of mean False Select In (FSI) and mean 

False Select Out (FSO).  For each simulated data set, FSI is the ratio of number of pleiotropic 

SNPs which sisVIVE has not identified divided by total number of pleiotropic SNPs; and 

FSO is the ratio of valid SNPs which have been identified divided by the total number of 

valid SNPs.  The results are shown in Table 2 are the mean of FSI and FSO cross 1000 

simulation sets for all three pleiotropy scenarios defined above.  When the number of 

pleiotropic SNPs is 30, sisVIVE incorrectly discards (on average) up to 71 percent of the 

valid-IV SNPs, but it performs well (no more than 5 percent of valid-IV SNPs incorrectly 

discarded) when there are only 10 invalid IVs.  Continuing to focus on FSO, the performance 

of the two-sample version of sisVIVE is very similar to the one-sample version if only direct 

pleiotropic effects are present.  It does slightly better than the one-sample version if the true 

SNP effects are known, but less well if there is indirect pleiotropy and InSIDE fails, even in 

the true precision scenario.  Across all the presented scenarios, FSI is as high as 39 percent 

and as low as 11 percent; sisVIVE performs best in the Imprecise precision scenario with 

both types of pleiotropy and InSIDE fails, but this is offset by it performing worst in terms of 

FSO. 

Table 3 contains the results for scenarios with 10 invalid-IV SNPs using one- and two-sample 

strategies.  Estimates for SPRS, IPRS/EPRS, 2SLS, MR-Egger, MR-Median, sisVIVE-SPRS 

and sisVIVE-IPRS/EPRS/2SLS are presented under pleiotropy Scenarios 2 and 3.  The two-

sample results presented are, again, those for True precision scenario in which the true SNP-

exposure associations are known.  The full set of results across all three pleiotropy scenarios 

for 10, 20 and 30 invalid IVs are presented in Tables S3 to S11 in the Supplementary 

Information.  

(Table 3 is here) 
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The picture that emerges from these results is that, across these scenarios, sisVIVE-SPRS has 

the best performance in terms of bias and MSE, closely followed by sisVIVE-IPRS/2SLS.  

However, every method is subject to major bias, and this is particularly true if a) a one-

sample strategy is used (in any circumstances except for the least plausible pleiotropy 

scenario in which only direct balanced pleiotropy is present), and b) the third pleiotropy 

scenario where InSIDE has failed due to the presence of both types of pleiotropy.  This 

conclusion also holds if performance is judged in terms of coverage and power of the normal-

based confidence intervals.   

If InSIDE holds and only direct pleiotropy is present, MR-Egger performs best in terms of 

bias and confidence-interval coverage using a two-sample strategy, but even here it performs 

less well than sisVIVE-SPRS and sisVIVE-2SLS in terms of MSE; this is also the case in the 

Precise and Imprecise precision scenarios (see Tables S6-S8 in the Supplementary 

Information). 

Overall, the same patterns are found for scenarios with 20 (see Tables S4, S7 and S10 in the 

Supplementary Information) and 30 (see Tables S5, S8 and S11) invalid-IV SNPs, except that 

the magnitude of the biases and MSEs, and the extent to which the confidence intervals fail to 

achieve nominal coverage, becomes worse as the number of invalid-IV SNPs increases. 

The performance of sisVIVE can sometimes be explained in terms of its FSO and FSI: it 

tends to indicate a high proportion of the invalid-IV SNPs are valid IVs, and incorrectly lead 

us to discard a high proportion of valid IVs.  This is also true when using two-sample 

strategies where we have knowledge of the true SNP-exposure associations. 

The poor performance of MR-Median and sisVIVE in the third pleiotropy scenario is 

surprising because both methods, in theory, only require that less than half of the SNPs are 

invalid.  We investigated this further by rerunning the simulations for the third pleiotropy 

scenario but, when using a two-sample strategy, taking the true causal effects 𝛽𝑗 of the SNPs 

on the exposure to be known to us for the pleiotropic SNPs rather than 𝑏𝑗 = 𝛽𝑗 + 𝜃𝑗 .  The 

results (not presented) show the bias, MSE and coverage of the sisVIVE-based approaches 

are at a similar level to those for the scenarios in which there is only direct pleiotropy; the 

same is true for MR-Median.  Taken together, these results indicate that indirect pleiotropy 

and the failure of InSIDE have a detrimental effect. 
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Proposition 2 of [22] contains conditions under which sisVIVE will not satisfy the 

‘irrepresentable condition’ of [31] and hence cannot be consistent.  These conditions roughly 

imply that sisVIVE will not be consistent if the strength of the invalid-IV SNPs is greater 

than those of the valid-IV ones.  This is a possible explanation for the poor performance of 

sisVIVE because our scenario 3 simulations satisfy this condition.  However, using their 

Corollary 1[22], we set up a new version of our third scenario in which InSIDE fails but 

Proposition 2 is satisfied.  The set up of the study is given in Section S2.2, and the results for 

FSI 10, 20 and 30 invalid-IV SNPs respectively presented in Tables S12-S14 in the 

Supplementary Information.  It can be seen that the sisVIVE performs almost as badly as the 

original Scenario 3 so we conclude [31] failure of the irrepresentable condition does not 

explain our results.    

We argue that this is because the consistency criterion underpinning the identification of MR-

Median and sisVIVE (set out by Kang et al. (2016) [16] in their Theorem 1), is not satisfied if 

there is indirect pleiotropy and InSIDE fails.  In short, identification is not possible because 

the effects of direct pleiotropy are generally confounded with the causal effects on the 

exposure of the invalid-IV SNPs, so the consistency criterion cannot hold.  However, the 

moment condition is identified if there is no indirect confounding or we known 𝛽𝑗 (the causal 

effect of SNP on exposure) which explains the improved performance of sisVIVE and MR-

Median in our further simulations.  We provide a more detailed argument in Section S2.3 in 

the Supplementary Information. 

 

5. Analysis using UKHLS data 

To estimate the causal effect of BMI on personal income using UKHLS, we use 71 out of the 

97 common genetic variants identified as being associated with BMI at a genome-wide level 

of significance [11].  We excluded 16 of the 97 SNPs because the inclusion of these in 

original GWAS study [11] was based on secondary analyses involving only men, only 

women or non-Europeans (6 SNPs), or because the SNP had an imputation quality less than 

the 0.9 threshold (10 SNPs).  The remaining 71 variants explain 1.6 percent of the variation 

in BMI among UKHLS participants; the effect alleles frequencies from both UKHLS and the 

GIANT study [11] are listed in Supplementary Information Table S1. 
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UKHLS is an annual household-based panel study which started collecting information about 

the social, economic and health status of its participants in 2009.  The data set for our 

analysis is drawn from the General Population Sample (GPS) and the British Household 

Panel Survey (BHPS) arms of UKHLS; BHPS merged with UKHLS in 2010 at the start of 

UKHLS wave two.  UKHLS collected additional health information, including BMI and 

blood samples, at wave two (for GPS) and wave three (for BHPS).  In total, 10 480 

individuals were genotyped on the Infinium Human Core Exome Beadchip. After quality-

control steps, a sample of 9944 individuals was obtained from which a further 1104 

individuals were excluded based on the following criteria: genetic relatedness larger than 

0.05 percent (707); BMI greater than 60 kg/m
2
 (8); and aged under 25 (389).  The number of 

cases with at least one wave of personal income and no missing on BMI, SNPs and covariates 

is N = 8047.  

The outcome is the average annual personal income (API) taken over three consecutive 

waves starting from the wave at which the individual’s health information was recorded.  For 

individuals with one or two of these observations missing, we took the average API over the 

available waves.  We standardised API separately for the GPS and BHPS samples because 

average API is higher in the BHPS than the GPS (possibly due to inflation).  We also 

standardized BMI, and included the following baseline covariates 𝐂: age (at which BMI was 

measured), gender, and the first 20 genetic principal components where genome-wide 

principal components function as ancestry markers [30]. Controlling for population 

stratification and focusing on the white population would go further to ensure that the core 

condition c) is not violated.  

The reported causal effect estimates to follow are all conditional on these covariates.  For a 

one-sample strategy, we estimate 𝑏𝑗 and Γ𝑗 from the UKHLS data controlling for 𝐂.  

Following the guidelines for sisVIVE with covariates, we use the residual obtained from 

regressing API on 𝐂 rather than raw API, and the residual obtained from regressing BMI on 𝐂 

rather than raw BMI.  Following a two-sample strategy, the exposure-SNP estimate �̃�𝑗 was 

taken from the GIANT study [11].  These estimates are also adjusted for 𝐂 and so comparable 

with those from UKHLS if we assume the underlying populations of UKHLS and the GIANT 

consortium are similar.  

(Table 4 is here) 
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It can be seen from Table 4 that BMI has a significant negative observational association with 

personal income.  The one-sample Mendelian Randomization estimates are even larger 

negative numbers, but not significant: MR-Egger test finds no evidence to reject the null 

hypothesis that there is no pleiotropic effect (𝛾0
Egg

= 0); and sisVIVE indicates that all 71 

SNPs are valid IVs, so sisVIVE-SPRS and sisVIVE-IPRS would respectively give the same 

estimate as SPRS and IPRS.  Using a two-sample strategy, we must believe the population of 

external GIANT study is comparable to that of UKHLS.  The estimated causal effects of BMI 

on income are all negative, statistically significant and much larger in magnitude than the 

one-sample results.  The two-sample Egger test again shows no significant average pleiotropy 

effect, and two-sample sisVIVE again indicates there are no invalid IVs.  The underlying 

assumption that both samples are drawn from equivalent populations cannot be directly 

tested, but we can say that the effect-allele frequencies for UKHLS and GIANT are similar, 

which supports this assumption.  As neither sisVIVE nor MR-Egger shows any evidence of 

pleiotropy, we should be able to trust EPRS which indicates that higher BMI cause the lower 

personal income.  

Finally, we rerun the analysis with the additional inclusion of the 707 people originally 

excluded due to genetic relatedness.  These people can be included if the possible correlation 

between genetically related people is accounted for using cluster-robust standard error 

estimation (e.g. using the cluster option in Stata).  The results (not shown) do not 

significantly vary from those presented in Table 4. 

 

6. Discussion 

Our investigation has revealed that, while it outperforms the alternative approaches we 

considered, sisVIVE performed poorly if the InSIDE condition failed due to the presence of 

indirect pleiotropy.  This is despite these scenarios satisfying the requirement for Kang et 

al.’s consistency criterion that more than 50 percent of the SNPs are valid instrumental 

variables.  We argue that this is due to non-identification of leading to failure of the 

consistency criterion; this would explain the similarly poor performance of MR-Median 

which also depends on the consistency criterion.  The conclusion from our data analysis, 

which indicates the true causal effect of body mass index could be under-estimated by a 

factor of five, is thus dependent on an assumption that there is no indirect pleiotropy through 
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which the SNPs are related to the confounders.  In general, such an occurrence cannot be 

ruled out because genes are determined at conception, and confounders determined at any 

point up to the time at which an individual’s exposure is determined.  The exception to this 

would be if there was strong scientific evidence that the phenotypical trait of each SNP was 

functionally related to the exposure of interest. 

The performance of sisVIVE in scenarios where InSIDE holds and there is no indirect 

pleiotropy are more encouraging, but indicate that any Mendelian randomization study should 

be based on a sensitivity analysis involving robust MR-Egger and ‘valid IV’ methods to 

capture whether differences between the estimates point to the presence of pleiotropic SNPs 

or even unobserved confounding.  Our conclusions are also line with others who suggest 

using unweighted polygenic risk scores or a two-sample strategy [32-34]. In one-sample 

strategies, it appears that imprecision in the estimated weights of an internally weighted 

polygenic risk score, while improving efficiency, can lead to substantial bias.  While simple 

polygenic risk scores perform well here, it is important to note that in further simulations we 

found (results not shown) severe bias was introduced if the effect-allele coding of the SNPs 

led to �̂�𝑗 (or 𝛽𝑗) being positive when true 𝛽𝑗 would have led us to code it the other way.  Such 

‘flip flopping’ is possible [35] even in the absence of population stratification, but remains a 

potential source of bias for SPRS despite its being discounted elsewhere (e.g. [36], page 

1883).  The LIML or CUE estimators would, however, be unaffected by flip-flopping and, 

unlike 2SLS, not subject to large biases. 
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Table 1 Simulation results for multiple instruments, all SNPs are valid, U~N(0,1), εXi 

~N(0,1), εYi ~N(0,1),  MC step=1000 and sample size=10,000 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Methods 

 

Mean (SD) Mean  SE MSE Coverage % Power % 

True value 

One sample methods 

    -0.2 - - - - 

-SPRS  
 

-0.202 (0.104) 0.104 0.011 96.0 49.2 

IPRS    -0.008 (0.068) 0.071 0.041 23.5 3.8 

LIML -0.206 (0.121) 0.096 0.015 89.0 57.9 

Weighted Egger  0.054 (0.119) 0.122 0.079 43.7 7.3 

Weighted Median  0.003 (0.090) 0.104 0.049 49.5 2.6 

sisVIVE-SPRS -0.202 (0.104) 0.104 0.011 95.9 48.8 

sisVIVE-IPRS -0.008 (0.068) 0.071 0.042 23.4 3.8 

Two samples methods 

(True, �̃�𝒋 = 𝜷𝒋) 

     

EPRS   -0.203 (0.095) 0.095 0.009 95.8 58.6 

2SLS  -0.199 (0.085) 0.089 0.007 95.8 61.3 

Weighted Egger  -0.208 (0.218) 0.220 0.047 95.5 16.5 

Weighted Median -0.200 (0.126) 0.142 0.016 97.4 26.2 

sisVIVE-SPRS -0.202 (0.104) 0.104 0.011 96.0 49.2 

sisVIVE-2SLS -0.199 (0.085) 0.089 0.007 95.8 61.3 
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Table 2 Mean FSI% and FSO% of sisVIVE for 1000 simulation data sets 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

One sample 

 

 

 

True: 

 �̃�𝒋 = 𝜷𝒋 �̃�𝒋~𝑵(𝜷𝒋, 𝟎. 𝟎𝟏𝟐) 

Two sample 

Precise: 

�̃�𝒋~𝑵(𝜷𝒋, 𝟎. 𝟎𝟓𝟐) 

 

Imprecise: 

 

Scenarios 
No. IVs 

Invalid  

MFSI 

(%) 

MFSO 

(%) 

MFSI 

(%) 

MFSO 

(%) 

MFSI 

(%) 

MFSO 

(%) 

MFSI 

(%) 

MFSO 

(%) 

All IVs are valid 0 - 6.9 - 0 - 0 - 0.42 

          

InSIDE holds and 

Direct Pleiotropy 

(balanced) 

10 30.1 2.9 29.9 1.7 30.3 1.8 30.0 2.1 

20 20.6 9.2 21.2 6.8 21.3 6.7 20.8 7.9 

30 17.0 13.3 17.3 13.3 17.2 13.4 17.3 14.7 

          

InSIDE holds and 

Direct Pleiotropy 

(positive) 

10 36.1 1.9 30.5 2.4 31.0 2.2 31.6 2.2 

20 25.3 12.8 24.9 13.0 24.8 12.5 23.7 8.9 

30 21.2 31.9 23.3 32.3 23.0 30.4 21.0 18.6 

          

InSIDE fails and 

Direct Pleiotropy 

(positive) 

10 31.9 41.3 35.7 42.7 34.4 43.9 10.6 40.8 

20 39.2 42.1 32.5 54.2 32.6 54.2 23.1 66.3 

30 37.6 44.5 29.5 59.5 29.1 59.3 22.4 70.6 
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Table 3 Simulation results for multiple instruments when 10 SNPs are invalid, U~N(0,1), εXi ~N(0,1),  

εYi ~N(0,1), MC step=1000 and sample size=10,000 

 

 

 

 

 

 

 

 10 pleiotropic SNPs  

(Positive direct pleiotropy, InSIDE holds) 

True value  -0.2 

 Mean (SD) Mean  SE MSE Coverage % Power % 

One-sample strategy      

SPRS  
 

0.342 (0.145) 0.092 0.315 9.0 86.4 

IPRS    0.270 (0.124) 0.150 0.236 7.0 42.5 

Weighted Egger  0.199 (0.258) 0.257 0.225 64.8 13.3 

Weighted Median  0.076 (0.110) 0.114 0.088 30.6 9.2 

sisVIVE-SPRS -0.106 (0.115) 0.106 0.022 81.2 15.1 

sisVIVE-IPRS 0.042 (0.083) 0.078 0.065 14.5 11.6 

Two-sample strategy, True precision �̃�𝒋 = 𝜷𝒋     

EPRS 0.251 (0.136) 0.084 0.222 2.0 75.4 

2SLS 0.255 (0.139) 0.192 0.226 24.7 15.3 

Weighted Egger  -0.214 (0.483) 0.473 0.233 93.7 6.4 

Weighted Median  -0.099 (0.154) 0.152 0.034 90.3 10.6 

sisVIVE-SPRS -0.130 (0.118) 0.108 0.019 85.3 20.0 

sisVIVE-2SLS -0.128 (0.109) 0.096 0.017 84.2 29.5 

 

 10 pleiotropic SNPs  

(Positive direct and indirect pleiotropy, InSIDE fails) 
 

 Mean (SD) Mean  SE MSE Coverage % Power % 

One-sample strategy
      

SPRS 0.574 (0.079) 0.047 0.606 0 100 

IPRS       0.938 (0.078) 0.056 1.301 0 100 

Weighted Egger  1.093 (0.097) 0.061 1.682 0 100 

Weighted Median  0.998 (0.115) 0.065 1.449 0 100 

sisVIVE-SPRS 0.517 (0.145) 0.115 0.535 2.3 91.5 

sisVIVE-IPRS 0.761 (0.140) 0.058 0.944 0.1 99.4 

Two-sample strategy, True precision �̃�𝒋 = 𝜷𝒋    

EPRS 0.968 (0.080) 0.031 1.371 0 100 

2SLS 0.970 (0.079) 0.057 1.376 0 100 

Weighted Egger  1.149 (0.104) 0.057 1.830 0 100 

Weighted Median  1.016 (0.116) 0.066 1.492 0 100 

sisVIVE-SPRS 0.550 (0.149) 0.077 0.585 0.1 98.8 

sisVIVE-2SLS 0.814 (0.133) 0.051 1.062 0 99.7 
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Table 4 Real data analysis, the association/causal effect estimates of BMI on personal income 

using n = 8047 Understand Society (UKHLS) data 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Estimate Std. Error P-value 

Observational study -0.032 0.011 0.002*** 

    

One-sample strategy    

SPRS  
 

-0.112 0.082 0.173 

IPRS -0.049 0.066 0.458 

2SLS  -0.048 0.064 0.449 

LIML -0.058 0.081 0.470 

Weighted MR-Egger  -0.126 0.115 0.272 

     Egger test  0.003 0.004 0.411 

Weighted MR-Median  -0.137 0.097 0.157 

sisVIVE    -0.048 - - 

Number of invalid IVs 

detected by sisVIVE 

0   

    

Two-sample strategy    

EPRS -0.155 0.076 0.041** 

2SLS -0.154 0.071 0.030** 

Weighted MR-Egger  -0.311 0.179 0.082* 

     Egger test  0.005 0.005 0.302 

Weighted MR-Median  -0.292 0.106 0.006*** 

sisVIVE -0.141 - - 

No. invalid IVs detected by 

sisVIVE 

0   
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Supplementary section 1: Data design for simulation 

All the results in simulation study are based on 1000 generated samples each of size 𝑁 =

10 000. 

 

S1.1 All SNPs are invalid 

The 71 SNPs 𝐺1, … , 𝐺71 are generated independently from a trinomial distribution in which 

the probabilities of 𝐺𝑗 being 0, 1, 2 are respectively equal to the proportions of 𝐺𝑗  being 0, 1 

and 2 in the UKHLS data (column 4,5,6 in Table S1) and the true causal effects of X-SNPs 

are from GIANT study (Table S1 last column) . The true value of the causal effect of X on Y 

is 𝛾𝑋 = −0.2.  Outcomes Y are generated from  

𝑌 = 𝛾0 + 𝛾𝑋𝑋 + 𝜖𝑌  (1) 

where exposures X are generated from  

𝑋 = 𝛽0 + ∑ 𝛽𝑗𝐺𝑗
𝐽
𝑗=1 + 𝜖𝑋 (2) 

To simulate data subject to unobserved confounding, the error terms in model (1) and (2) are 

respectively decomposed as 𝜖𝑌 = 𝑈𝛾𝑈 + 𝜖�̇� and 𝜖𝑋 = 𝑈 + 𝜖�̇�, where 𝑈 is a zero-mean 

variable representing unobserved confounding, and 𝜀�̇� and 𝜖�̇� are not only mutually 

independent but jointly independent of (𝑌, 𝑋, 𝐆′, 𝑈).  Parameter 𝛾𝑈 = 1 indexes the extent of 

unobserved confounding by controlling the strength and sign of the correlation between 𝜖𝑌 

and 𝜖𝑋, such that there is no unobserved confounding if 𝛾𝑈 = 0.  𝑈, 𝜖�̇� and 𝜖�̇� all 

independently generated from standard normal distributions. 

 

S1.2 Some SNPs are invalid 

The outcomes Y and X are respectively generated from  

𝑌 = 𝛾0 + γ𝑋𝑋 + ∑ (𝛼𝑗 + 𝜃𝑗)𝐺𝑗
𝐽
𝑗=1 + 𝜖𝑌  (3) 



𝑋 = 𝛽0 + ∑ (𝛽𝑗 + 𝜃𝑗)𝐺𝑗

𝐽

𝑗=1
+ 𝜖𝑋 ≡ 𝑏0 + ∑ 𝑏𝑗𝐺𝑗

𝐽

𝑗=1
+ 𝜖𝑋 (4) 

where 𝜃𝑗 = 0 if this SNP is a valid IV.  The three different pleiotropy scenarios are defined as 

follows: 

1. Direct pleiotropy under which the InSIDE condition holds so that 𝜃𝑗 = 0 for all 

𝑗 = 1, … , 𝐽, where the direct pleiotropy is balanced by generating ∑ 𝛼𝑠
𝑆
𝑠=1 = 0, 

𝛼𝑠~𝑈(−0.2,0.2), 𝑠 = 1, … , 𝑆, where 𝑆 is the number of invalid SNPs. 𝑈(𝑎, 𝑏) 

indicates the continuous uniform distribution on real interval (𝑎, 𝑏).  In this scenario, 

individual SNPs lead to direct pleiotropy but the full set of SNPs does not.  The true 

SNP-exposure association equals the causal effect of the SNP: 𝑏𝑗 = 𝛽𝑗.  

2. As in Scenario 1 (including that 𝜃𝑗 = 0 for all 𝑗 = 1, … , 𝐽, and 𝑏𝑗 = 𝛽𝑗) but the direct 

pleiotropy is now unbalanced with  ∑ 𝛼𝑠
𝑆
𝑠=1 > 0 and 𝛼𝑠~𝑈(0,0.2), 𝑠 = 1, … , 𝑆. 

3. As in Scenario 2, except there is indirect pleiotropy with positive 𝜃𝑠~𝑈(0,0.4), 𝑠 =

1, … , 𝑆 and InSIDE fails because the true association between SNP  𝐺𝑠 and exposure 

is 𝑏𝑠 = 𝛽𝑠 + 𝜃𝑠. 

The error terms of (3) and (4) are generated the same way as above. For each of these 

scenarios, the performance of each estimator is assessed for 𝑆 = 10, 20 and 30 invalid IVs 

corresponds respectively to 14%, 28% and 42% of the SNPs; these invalid SNPs are 

randomly selected from 71 SNPs at each simulation; these scenarios all satisfy the 

requirement that less than 50% of the SNPs are invalid. 

  



Table S1 The effect/Non-effect Allele, frequency of 0/1/2 and Beta and standard errors from GIANT 

study for 71 common BMI-associated SNPs 
 

Genetic 

variant 

Effect 

Allele 

Non-effect 

allele 

Frequency 

of Zero 

Frequency 

of One 

Frequency 

of Two 

EAF of 

UKHLS 

EAF of 

GIANT 

Beta (se) of 

GIANT 

rs1558902 A T 0.357 0.477 0.165 0.404 0.415 0.082 (0.003) 

rs10938397 G A 0.313 0.489 0.198 0.442 0.434 0.040 (0.003) 

rs10182181 G A 0.259 0.499 0.242 0.491 0.462 0.031 (0.003) 

rs7138803 A G 0.399 0.465 0.136 0.369 0.384 0.032 (0.003) 

rs3101336 C T 0.156 0.480 0.363 0.604 0.613 0.033 (0.003) 

rs9540493 A G 0.301 0.497 0.202 0.451 0.452 0.021 (0.003)  

rs11030104 A G 0.041 0.321 0.638 0.499 0.792 0.041 (0.004) 

rs12566985 G A 0.319 0.490 0.191 0.436 0.446 0.024 (0.003) 

rs13021737 G A 0.027 0.273 0.700 0.836 0.828 0.060 (0.004) 

rs17405819 T C 0.087 0.414 0.499 0.706 0.700 0.022 (0.003) 

rs1516725 C T 0.019 0.232 0.749 0.865 0.872 0.045 (0.005) 

rs12016871 T C 0.676 0.296 0.028 0.176 0.203 0.030 (0.005) 

rs2650492 A G 0.498 0.411 0.091 0.296 0.303 0.021 (0.004) 

rs12885454 C A 0.130 0.459 0.411 0.640 0.642 0.021 (0.003)  

rs1928295 T C 0.190 0.485 0.325 0.567 0.548 0.019 (0.003) 

rs11057405 G A 0.011 0.196 0.793 0.891 0.901 0.031 (0.006) 

rs12940622 G A 0.191 0.499 0.309 0.559 0.575 0.018 (0.003) 

rs16951275 T C 0.051 0.350 0.599 0.774 0.784 0.031 (0.004) 

rs12446632 G A 0.022 0.240 0.738 0.858 0.865 0.040 (0.005) 

rs4740619 T C 0.206 0.493 0.300 0.547 0.542 0.018 (0.003) 

rs10968576 G A 0.460 0.437 0.103 0.321 0.320 0.025 (0.003) 

rs3810291 A G 0.109 0.437 0.454 0.672 0.666 0.028 (0.004) 

rs657452 A G 0.376 0.467 0.157 0.391 0.394 0.023 (0.003) 

rs17724992 A G 0.068 0.388 0.543 0.737 0.746 0.019 (0.004) 

rs2176598 T C 0.562 0.374 0.064 0.251 0.251 0.020 (0.004) 

rs12401738 A G 0.384 0.472 0.144 0.380 0.352 0.021 (0.003) 

rs11847697 T C 0.915 0.083 0.002 0.043 0.042 0.049 (0.008) 

rs2112347 T G 0.132 0.460 0.408 0.638 0.629 0.026 (0.003) 

rs17001654 G C 0.720 0.258 0.022 0.151 0.153 0.031 (0.005) 

rs7141420 T C 0.241 0.504 0.255 0.508 0.527 0.024 (0.003) 

rs1000940 G A 0.481 0.427 0.092 0.306 0.320 0.019 (0.003) 

rs6567160 C T 0.580 0.361 0.059 0.240 0.236 0.056 (0.004) 

rs11583200 C T 0.382 0.466 0.152 0.385 0.396 0.018 (0.003) 

rs7903146 C T 0.083 0.410 0.507 0.712 0.713 0.023 (0.003) 

rs2365389 C T 0.170 0.472 0.358 0.594 0.582 0.020 (0.003) 

rs1808579 C T 0.235 0.501 0.264 0.514 0.534 0.017 (0.003) 

rs6804842 G A 0.178 0.489 0.333 0.578 0.575 0.019 (0.003) 

rs6477694 C T 0.425 0.457 0.118 0.346 0.365 0.017 (0.003) 

rs9400239 C T 0.084 0.420 0.496 0.706 0.688 0.019 (0.003) 

rs3817334 T C 0.343 0.489 0.167 0.412 0.407 0.026 (0.003) 

rs2075650 A G 0.024 0.248 0.728 0.852 0.848 0.026 (0.005) 

rs2207139 G A 0.693 0.279 0.028 0.167 0.177 0.045 (0.004) 

rs1016287 T C 0.501 0.406 0.093 0.296 0.287 0.023 (0.003) 

rs543874 G A 0.628 0.330 0.042 0.207 0.193 0.048 (0.004) 

rs9925964 A G 0.123 0.460 0.416 0.646 0.620 0.019 (0.003) 

rs758747 T C 0.514 0.404 0.082 0.284 0.265 0.023 (0.004) 

rs2033529 G A 0.512 0.407 0.081 0.285 0.293 0.019 (0.003) 



rs13107325 T C 0.847 0.146 0.007 0.080 0.072 0.048 (0.007) 

rs7599312 G A 0.073 0.393 0.534 0.730 0.724 0.022 (0.003) 

rs2121279 T C 0.764 0.220 0.016 0.126 0.152 0.025 (0.004) 

rs9374842 T C 0.055 0.349 0.596 0.771 0.744 0.023 (0.004) 

rs4787491 G A 0.215 0.497 0.288 0.536 0.510 0.022 (0.004) 

rs13191362 A G 0.015 0.214 0.771 0.878 0.879 0.028 (0.005) 

rs2820292 C A 0.187 0.487 0.326 0.569 0.555 0.020 (0.003) 

rs7899106 G A 0.899 0.098 0.003 0.052 0.052 0.040 (0.007) 

rs11165643 T C 0.168 0.481 0.351 0.592 0.583 0.022 (0.003) 

rs4256980 G C 0.116 0.449 0.435 0.659 0.646 0.021 (0.003) 

rs13078960 G T 0.633 0.323 0.044 0.206 0.196 0.030 (0.004) 

rs11126666 A G 0.555 0.379 0.066 0.255 0.283 0.021 (0.003) 

rs7243357 T G 0.028 0.279 0.692 0.832 0.812 0.022 (0.004) 

rs2287019 C T 0.035 0.298 0.667 0.816 0.804 0.036 (0.004) 

rs1167827 G A 0.186 0.487 0.327 0.570 0.553 0.020 (0.003) 

rs16851483 T G 0.871 0.125 0.004 0.067 0.066 0.048 (0.008) 

rs29941 G A 0.109 0.438 0.453 0.672 0.669 0.018 (0.003) 

rs9641123 C G 0.353 0.487 0.159 0.403 0.430 0.029 (0.005) 

rs3736485 A G 0.294 0.496 0.210 0.458 0.454 0.018 (0.003) 

rs3849570 A C 0.430 0.451 0.119 0.345 0.359 0.019 (0.003) 

rs1528435 T C 0.147 0.463 0.390 0.622 0.631 0.018 (0.003) 

rs2033732 C T 0.063 0.378 0.558 0.748 0.747 0.019 (0.004) 

rs12429545 A G 0.753 0.230 0.017 0.132 0.133 0.033 (0.005) 

rs12286929 G A 0.223 0.496 0.281 0.529 0.523 0.022 (0.003) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table S2 Simulation results for multiple instruments (All SNPs are valid) 

 

 

 

 

 

 

 

Methods Median Mean (SD)  Mean  SE MSE Coverage % Power % 

True value -0.2      

One sample methods       

SPRS   -0.196 -0.202 (0.104) 0.104 0.011 96.0 49.2 

IPRS    -0.009 -0.008 (0.068) 0.068 0.041 21.7 4.3 

2SLS  -0.009 -0.007 (0.067) 0.068 0.042 20.7 4.3 

LIML -0.200 -0.206 (0.121) 0.096 0.015 89.0 57.9 

Weighted Egger  0.057 0.054 (0.119) 0.122 0.079 43.7 7.3 

Weighted Median  0.005 0.003 (0.090) 0.104 0.049 49.5 2.6 

sisVIVE + SPRS -0.196 -0.202 (0.104) 0.104 0.011 95.9 48.8 

sisVIVE + IPRS -0.009 -0.008 (0.068) 0.071 0.042 23.4 3.8 

Two samples methods       

True: �̃�𝒋 = 𝜷𝒋        

EPRS -0.200 -0.203 (0.095) 0.095 0.009 95.8 58.6 

2SLS  -0.201 -0.199 (0.085) 0.089 0.007 95.8 61.3 

Weighted Egger  -0.195 -0.208 (0.218) 0.220 0.047 95.5 16.5 

Weighted Median  -0.202 -0.200 (0.126) 0.142 0.016 97.4 26.2 

sisVIVE + SPRS -0.196 -0.202 (0.104) 0.104 0.011 96.0 49.2 

sisVIVE + 2SLS -0.201 -0.199 (0.085) 0.089 0.007 95.8 61.3 

�̃�𝒋~𝑵(𝜷𝒋, 𝟎. 𝟎𝟏𝟐) 

Precise:        

EPRS -0.202 -0.204 (0.100) 0.100 0.010 95.5 53.7 

2SLS  -0.181 -0.178 (0.081) 0.084 0.007 95.2 57.5 

Weighted Egger  -0.128 -0.134 (0.175) 0.171 0.034 93.5 14.0 

Weighted Median  -0.177 -0.176 (0.114) 0.130 0.014 97.6 8.4 

sisVIVE + SPRS -0.196 -0.202 (0.104) 0.104 0.011 96.0 49.2 

sisVIVE + 2SLS -0.181 -0.178 (0.081) 0.084 0.007 95.2 57.5 

�̃�𝒋~𝑵(𝜷𝒋, 𝟎. 𝟎𝟓𝟐) 

Imprecise:       

EPRS -0.189 -0.218 (0.215) 0.210 0.041 96.4 9.7 

2SLS  -0.049 -0.050 (0.044) 0.045 0.024 9.9 19.4 

Weighted Egger  -0.046 -0.047 (0.072) 0.076 0.029 46.0 8.7 

Weighted Median  -0.048 -0.047 (0.058) 0.066 0.027 33.1 4.5 

sisVIVE + SPRS -0.196 -0.202 (0.104) 0.104 0.011 96.0 49.1 

sisVIVE + 2SLS -0.049 -0.050 (0.044) 0.045 0.024 9.9 19.4 



Table S3 Simulation results for multiple instruments (InSIDE holds, 10 SNPs have Balance pleiotropy 

with 𝛼𝑠~𝑈(−0.2,0.2)) 

 

 

 

 

 

 

 

 

Methods Median  Mean (SD)  Mean  SE MSE Coverage % Power % 

True value -0.2      

One sample methods       

SPRS -0.192 -0.200 (0.231) 0.107 0.053 64.2 52.9 

IPRS 0.000 -0.008 (0.157) 0.157 0.061 75.7 4.1 

Weighted Egger  0.064 0.059 (0.276) 0.268 0.143 82.0 5.4 

Weighted Median  -0.004 -0.002 (0.108) 0.113 0.051 59.4 3.3 

sisVIVE + SPRS -0.165 -0.169 (0.117) 0.110 0.015 91.6 31.0 

sisVIVE + IPRS -0.008 -0.007 (0.083) 0.077 0.044 31.3 7.3 

Two samples methods       

True: �̃�𝒋 = 𝜷𝒋        

EPRS -0.189 -0.195 (0.203) 0.097 0.044 63.2 54.7 

2SLS  -0.189 -0.195 (0.203) 0.197 0.041 94.1 18.5 

Weighted Egger  -0.201 -0.198 (0.542) 0.490 0.293 91.3 24.6 

Weighted Median  -0.199 -0.203 (0.152) 0.155 0.023 95.9 25.4 

sisVIVE + SPRS -0.210 -0.210 (0.120) 0.113 0.015 94.3 46.8 

sisVIVE + 2SLS -0.209 -0.204 (0.105) 0.096 0.011 92.2 57.9 

�̃�𝒋~𝑵(𝜷𝒋, 𝟎. 𝟎𝟏𝟐) 

Precise:        

EPRS -0.180 -0.197 (0.219) 0.103 0.048 64.9 51.1 

2SLS  -0.163 -0.173 (0.191) 0.187 0.037 94.3 16.1 

Weighted Egger  -0.124 -0.124 (0.411) 0.380 0.175 91.7 8.4 

Weighted Median  -0.173 -0.177 (0.137) 0.142 0.019 96.1 22.3 

sisVIVE + SPRS -0.200 -0.204 (0.118) 0.112 0.014 94.4 44.7 

sisVIVE + 2SLS -0.179 -0.182 (0.098) 0.091 0.010 92.7 52.3 

�̃�𝒋~𝑵(𝜷𝒋, 𝟎. 𝟎𝟓𝟐) 

Imprecise:       

EPRS -0.195 -0.208 (0.558) 0.249 0.311 69.0 37.6 

2SLS  -0.048 -0.045 (0.101) 0.100 0.034 65.4 8.1 

Weighted Egger  -0.046 -0.040 (0.174) 0.168 0.056 82.4 6.4 

Weighted Median  -0.049 -0.050 (0.068) 0.071 0.028 42.9 8.8 

sisVIVE + SPRS -0.179 -0.185 (0.110) 0.111 0.012 94.8 35.4 

sisVIVE + 2SLS -0.052 -0.052 (0.055) 0.048 0.025 17.3 22.6 



Table S4 Simulation results for multiple instruments (InSIDE holds, 20 SNPs have Balance pleiotropy 

with 𝛼𝑠~𝑈(−0.2,0.2)) 

 

 

 

 

 

 

 

 

 

Methods Median  Mean (SD)  Mean  SE MSE Coverage%  Power%  

True value -0.2      

One sample methods       

SPRS -0.205 -0.214 (0.304) 0.110 0.092 52.6 60.3 

IPRS -0.012 -0.018 (0.218) 0.212 0.081 84.9 5.2 

Weighted Egger  0.023 0.025 (0.371) 0.363 0.188 90.0 6.9 

Weighted Median  -0.001 -0.004 (0.129) 0.124 0.055 64.0 4.7 

sisVIVE + SPRS -0.129 -0.126 (0.129) 0.122 0.022 86.8 15.8 

sisVIVE + IPRS -0.006 -0.006 (0.101) 0.084 0.048 37.4 9.5 

Two samples methods       

True: �̃�𝒋 = 𝜷𝒋        

EPRS -0.204 -0.211 (0.276) 0.100 0.075 54.5 59.2 

2SLS  -0.204 -0.207 (0.269) 0.268 0.073 94.4 11.7 

Weighted Egger  -0.216 -0.193 (0.658) 0.666 0.432 93.9 7.6 

Weighted Median  -0.201 -0.204 (0.186) 0.170 0.034 94.3 23.2 

sisVIVE + SPRS -0.204 -0.210 (0.147) 0.127 0.022 92.5 36.6 

sisVIVE + 2SLS -0.200 -0.201 (0.129) 0.104 0.017 89.3 49.0 

�̃�𝒋~𝑵(𝜷𝒋, 𝟎. 𝟎𝟏𝟐) 

Precise:        

EPRS -0.195 -0.214 (0.291) 0.106 0.084 54.9 60.4 

2SLS  -0.175 -0.186 (0.255) 0.263 0.065 94.2 11.4 

Weighted Egger  -0.119 -0.138 (0.542) 0.598 0.297 93.3 7.2 

Weighted Median  -0.167 -0.175 (0.166) 0.165 0.028 93.9 20.6 

sisVIVE + SPRS -0.195 -0.199 (0.138) 0.126 0.019 93.1 33.6 

sisVIVE + 2SLS -0.176 -0.177 (0.119) 0.099 0.015 89.0 44.8 

�̃�𝒋~𝑵(𝜷𝒋, 𝟎. 𝟎𝟓𝟐) 

Imprecise:       

EPRS -0.238 -0.267 (0.670) 0.260 0.453 56.1 59.3 

2SLS  -0.062 -0.059 (0.141) 0.249 0.040 79.2 8.5 

Weighted Egger  -0.040 -0.050 (0.250) 0.476 0.085 86.9 7.8 

Weighted Median  -0.048 -0.049 (0.085) 0.152 0.015 47.6 11.3 

sisVIVE + SPRS -0.151 -0.153 (0.115) 0.123 0.027 92.8 17.1 

sisVIVE + 2SLS -0.049 -0.052 (0.067) 0.053 0.026 25.2 22.8 



Table S5 Simulation results for multiple instruments (InSIDE holds, 30 SNPs have Balance pleiotropy 

with 𝛼𝑠~𝑈(−0.2,0.2)) 

 

 

 

 

 

 

 

 

 

Methods Median  Mean (SD)  Mean  SE MSE Coverage % Power % 

True value -0.2      

One sample methods       

SPRS -0.190 -0.194 (0.376) 0.113 0.141 41.8 63.6 

IPRS -0.014 -0.010 (0.269) 0.257 0.108 86.7 6.4 

Weighted Egger  0.065 0.053 (0.450) 0.440 0.266 90.9 5.3 

Weighted Median  -0.008 -0.005 (0.165) 0.139 0.065 65.3 7.8 

sisVIVE + SPRS -0.091 -0.095 (0.157) 0.140 0.036 83.5 11.7 

sisVIVE + IPRS -0.008 -0.008 (0.132) 0.097 0.054 49.2 15.1 

Two samples methods       

True: �̃�𝒋 = 𝜷𝒋        

EPRS -0.192 -0.194 (0.334) 0.102 0.111 45.2 63.4 

2SLS  -0.190 -0.189 (0.326) 0.323 0.106 94.5 9.0 

Weighted Egger  -0.203 -0.193 (0.837) 0.801 0.670 92.7 7.6 

Weighted Median  -0.200 -0.202 (0.232) 0.191 0.054 91.8 22.4 

sisVIVE + SPRS -0.204 -0.213 (0.188) 0.149 0.036 90.9 30.7 

sisVIVE + 2SLS -0.206 -0.201 (0.164) 0.120 0.027 86.1 42.7 

�̃�𝒋~𝑵(𝜷𝒋, 𝟎. 𝟎𝟏𝟐) 

Precise:        

EPRS -0.195 -0.198 (0.356) 0.109 0.127 45.3 63.5 

2SLS  -0.173 -0.173 (0.311) 0.305 0.097 94.7 9.7 

Weighted Egger  -0.157 -0.125 (0.666) 0.619 0.448 91.8 7.1 

Weighted Median  -0.183 -0.179 (0.217) 0.176 0.048 91.2 21.6 

sisVIVE + SPRS -0.192 -0.202 (0.179) 0.147 0.032 90.4 28.4 

sisVIVE + 2SLS -0.187 -0.181 (0.157) 0.114 0.025 85.4 40.2 

�̃�𝒋~𝑵(𝜷𝒋, 𝟎. 𝟎𝟓𝟐) 

Imprecise:       

EPRS -0.219 -0.239 (0.820) 0.272 0.672 47.6 57.1 

2SLS  -0.052 -0.057 (0.174) 0.163 0.051 83.2 9.0 

Weighted Egger  -0.085 -0.074 (0.271) 0.274 0.089 93.1 7.0 

Weighted Median  -0.053 -0.056 (0.107) 0.085 0.032 56.4 19.3 

sisVIVE + SPRS -0.122 -0.131 (0.134) 0.140 0.023 91.6 9.6 

sisVIVE + 2SLS -0.052 -0.055 (0.084) 0.061 0.028 35.6 23.3 



Table S6 Simulation results for multiple instruments (InSIDE holds, 10 have positive pleiotropy 

with 𝛼𝑠~𝑈(0,0.2)) 

 

 

 

 

 

 

 

 

 

Methods Median  Mean (SD)  Mean  SE MSE Coverage % Power % 

True value -0.2      

One sample methods       

SPRS 0.341 0.342 (0.145) 0.092 0.315 9.0 86.4 

IPRS 0.271 0.270 (0.124) 0.150 0.236 7.0 42.5 

Weighted Egger  0.190 0.199 (0.258) 0.257 0.225 64.8 13.3 

Weighted Median  0.073 0.076 (0.110) 0.114 0.088 30.6 9.2 

sisVIVE + SPRS -0.104 -0.106 (0.115) 0.106 0.022 81.2 15.1 

sisVIVE + IPRS 0.041 0.042 (0.083) 0.078 0.065 14.5 11.6 

Two samples methods       

True: �̃�𝒋 = 𝜷𝒋        

EPRS 0.248 0.251 (0.136) 0.084 0.222 2.0 75.4 

2SLS  0.245 0.255 (0.139) 0.192 0.226 24.7 15.3 

Weighted Egger  -0.275 -0.214 (0.483) 0.473 0.233 93.7 6.4 

Weighted Median  -0.103 -0.099 (0.154) 0.152 0.034 90.3 10.6 

sisVIVE + SPRS -0.126 -0.130 (0.118) 0.108 0.019 85.3 20.0 

sisVIVE + 2SLS -0.131 -0.128 (0.109) 0.096 0.017 84.2 29.5 

�̃�𝒋~𝑵(𝜷𝒋, 𝟎. 𝟎𝟏𝟐) 

Precise:        

EPRS 0.232 0.246 (0.148) 0.089 0.221 3.4 67.4 

2SLS  0.210 0.223 (0.136) 0.182 0.197 30.6 14.1 

Weighted Egger  -0.087 -0.083 (0.138) 0.367 0.144 92.6 5.6 

Weighted Median  -0.096 -0.091 (0.147) 0.140 0.033 87.9 8.7 

sisVIVE + SPRS -0.128 -0.130 (0.116) 0.108 0.018 85.6 20.5 

sisVIVE + 2SLS -0.116 -0.115 (0.104) 0.091 0.018 81.7 28.7 

�̃�𝒋~𝑵(𝜷𝒋, 𝟎. 𝟎𝟓𝟐) 

Imprecise:       

EPRS 0.235 0.248 (0.441) 0.199 0.394 35.6 44.0 

2SLS  0.062 0.065 (0.099) 0.097 0.080 21.9 10.3 

Weighted Egger  0.054 0.057 (0.169) 0.164 0.094 64.0 7.3 

Weighted Median  -0.017 -0.016 (0.070) 0.071 0.039 25.2 4.6 

sisVIVE + SPRS -0.126 -0.129 (0.109) 0.107 0.017 87.0 17.8 

sisVIVE + 2SLS -0.030 -0.030 (0.056) 0.049 0.032 8.1 13.4 



Table S7 Simulation results for multiple instruments (InSIDE holds, 20 SNPs have positive pleiotropy 

with 𝛼𝑠~𝑈(0,0.2)) 

 

 

 

 

 

 

 

 

 

Methods Median  Mean (SD)  Mean  SE MSE Coverage % Power % 

True value -0.2      

One sample methods       

SPRS 0.869 0.880 (0.190) 0.110 1.203 0 100 

IPRS 0.550 0.554 (0.162) 0.194 0.594 1 87.4 

Weighted Egger  0.343 0.350 (0.334) 0.332 0.414 63.0 18.5 

Weighted Median  0.172 0.181 (0.140) 0.131 0.165 15.0 27.5 

sisVIVE + SPRS 0.011 0.018 (0.136) 0.121 0.066 54.0 8.1 

sisVIVE + IPRS 0.123 0.128 (0.114) 0.087 0.121 6.0 35.1 

Two samples methods       

True: �̃�𝒋 = 𝜷𝒋        

EPRS 0.686 0.701 (0.173) 0.093 0.842 0 100 

2SLS  0.686 0.704 (0.171) 0.247 0.846 0 92.3 

Weighted Egger  -0.300 -0.222 (0.612) 0.602 0.374 94.4 5.8 

Weighted Median  0.031 0.052 (0.205) 0.171 0.106 71.3 9.7 

sisVIVE + SPRS 0.007 0.009 (0.136) 0.117 0.062 53.2 8.7 

sisVIVE + 2SLS 0.012 0.018 (0.138) 0.011 0.067 49.9 11.5 

�̃�𝒋~𝑵(𝜷𝒋, 𝟎. 𝟎𝟏𝟐) 

Precise:        

EPRS 0.678 0.696 (0.198) 0.099 0.842 0 99.9 

2SLS  0.613 0.625 (0.175) 0.129 0.711 0.8 84.1 

Weighted Egger  -0.099 -0.078 (0.485) 0.469 0.250 93.7 6.0 

Weighted Median  0.036 0.049 (0.184) 0.160 0.096 66.2 7.0 

sisVIVE + SPRS 0.003 -0.001 (0.134) 0.117 0.058 56.0 7.8 

sisVIVE + 2SLS 0.009 0.016 (0.134) 0.104 0.064 47.1 11.7 

�̃�𝒋~𝑵(𝜷𝒋, 𝟎. 𝟎𝟓𝟐) 

Imprecise:       

EPRS 0.672 0.712 (0.055) 0.227 1.134 13.0 79.0 

2SLS  0.173 0.174 (0.118) 0.072 0.154 15.5 24.2 

Weighted Egger  0.131 0.135 (0.223) 0.218 0.162 64.7 9.2 

Weighted Median  0.022 0.025 (0.090) 0.078 0.059 19.2 6.9 

sisVIVE + SPRS -0.067 -0.066 (0.113) 0.118 0.031 74.6 4.2 

sisVIVE + 2SLS -0.003 -0.000 (0.069) 0.053 0.045 7.4 13.2 



Table S8 Simulation results for multiple instruments (InSIDE holds, 30 SNPs have positive pleiotropy 

with 𝛼𝑠~𝑈(0,0.2)) 

 

 

 

 

 

 

 

 

 

Methods Median  Mean (SD)  Mean  SE MSE Coverage % Power % 

True value -0.2      

One sample methods       

SPRS 1.409 1.420 (0.242) 0.151 2.683 0 100 

IPRS 0.829 0.829 (0.184) 0.225 1.092 0 99.1 

Weighted Egger  0.514 0.524 (0.378) 0.382 0.667 52.7 27.0 

Weighted Median  0.316 0.344 (0.208) 0.157 0.339 5.8 55.8 

sisVIVE + SPRS 0.207 0.214 (0.178) 0.157 0.203 23.9 28.7 

sisVIVE + IPRS 0.283 0.297 (0.161) 0.112 0.272 2.3 70.5 

Two samples methods       

True: �̃�𝒋 = 𝜷𝒋        

EPRS 1.144 1.154 (0.209) 0.119 1.880 0 100 

2SLS  1.142 1.148 (0.194) 0.280 1.854 0 100 

Weighted Egger  -0.222 -0.197 (0.702) 0.674 0.493 94.2 6.6 

Weighted Median  0.247 0.311 (0.328) 0.206 0.363 38.2 31.1 

sisVIVE + SPRS 0.248 0.252 (0.168) 0.135 0.233 13.0 47.8 

sisVIVE + 2SLS 0.276 0.288 (0.192) 0.140 0.274 10.9 50.1 

�̃�𝒋~𝑵(𝜷𝒋, 𝟎. 𝟎𝟏𝟐) 

Precise:        

EPRS 1.141 1.158 (0.239) 0.126 1.901 0 100 

2SLS  1.019 1.028 (0.203) 0.268 1.549 0 99.9 

Weighted Egger  0.045 0.010 (0.568) 0.527 0.366 91.1 6.8 

Weighted Median  0.246 0.287 (0.290) 0.193 0.321 35.2 30.7 

sisVIVE + SPRS 0.219 0.215 (0.164) 0.134 0.199 17.5 40.2 

sisVIVE + 2SLS 0.255 0.262 (0.192) 0.133 0.250 12.4 49.1 

�̃�𝒋~𝑵(𝜷𝒋, 𝟎. 𝟎𝟓𝟐) 

Imprecise:       

EPRS 1.160 1.184 (0.631) 0.283 2.313 4.4 92.8 

2SLS  0.284 0.287 (0.143) 0.152 0.258 10.1 48.5 

Weighted Egger  0.251 0.250 (0.253) 0.257 0.266 57.6 16.1 

Weighted Median  0.076 0.092 (0.121) 0.088 0.100 9.5 18.6 

sisVIVE + SPRS 0.012 0.015 (0.129) 0.134 0.063 61.7 5.1 

sisVIVE + 2SLS 0.054 0.063 (0.096) 0.063 0.078 4.4 24.9 



Table S9 Simulation results for multiple instruments (10 SNPs have positive direct and indirect 

pleiotropy with 𝛼𝑠~𝑈(0,0.2), 𝜃𝑠~𝑈(0, 0.4)) 

 

 

 

 

 

 

 

 

 

Methods Median  Mean (SD)  Mean  SE MSE Coverage % Power % 

True value -0.2      

One sample methods       

SPRS 0.578 0.574 (0.079) 0.047 0.606 0 100 

IPRS 0.937 0.938 (0.078) 0.056 1.301 0 100 

Weighted Egger  1.090 1.093 (0.097) 0.061 1.682 0 100 

Weighted Median  1.000 0.998 (0.115) 0.065 1.449 0 100 

sisVIVE + SPRS 0.527 0.517 (0.145) 0.115 0.535 2.3 91.5 

sisVIVE + IPRS 0.772 0.761 (0.140) 0.058 0.944 0.1 99.4 

Two samples methods       

True: �̃�𝒋 = 𝜷𝒋 +  𝜽𝒋        

EPRS 0.967 0.968 (0.080) 0.031 1.371 0 100 

2SLS  0.969 0.970 (0.079) 0.057 1.376 0 100 

Weighted Egger  1.145 1.149 (0.104) 0.057 1.830 0 100 

Weighted Median  1.015 1.016 (0.116) 0.066 1.492 0 100 

sisVIVE + SPRS 0.547 0.550 (0.149) 0.077 0.585 0.1 98.8 

sisVIVE + 2SLS 0.823 0.823 (0.129) 0.051 1.062 0 99.7 

�̃�𝒋~𝑵(𝜷𝒋  + 𝜽𝒋, 𝟎. 𝟎𝟏𝟐) 

Precise:        

EPRS 0.968 0.968 (0.081) 0.031 1.371 0 100 

2SLS  0.960 0.960 (0.079) 0.058 1.353 0 100 

Weighted Egger  1.128 1.132 (0.101) 0.059 1.784 0 100 

Weighted Median  1.010 1.011 (0.117) 0.066 1.480 0 100 

sisVIVE + SPRS 0.534 0.529 (0.144) 0.078 0.552 0.1 98.8 

sisVIVE + 2SLS 0.817 0.814 (0.133) 0.051 1.045 0 99.8 

�̃�𝒋~𝑵(𝜷𝒋 + 𝜽𝒋, 𝟎. 𝟎𝟓𝟐) 

Imprecise:       

EPRS 0.967 0.969 (0.087) 0.035 1.374 0 100 

2SLS  0.777 0.773 (0.091) 0.069 0.955 0 100 

Weighted Egger  1.002 1.002 (0.114) 0.064 1.459 0 100 

Weighted Median  0.894 0.891 (0.139) 0.078 1.210 0 100 

sisVIVE + SPRS 0.097 0.112 (0.184) 0.123 0.131 38.6 26.3 

sisVIVE + 2SLS 0.302 0.352 (0.235) 0.074 0.360 0.1 77.4 



Table S10 Simulation results for multiple instruments (20 SNPs have positive direct and indirect 

pleiotropy with 𝛼𝑠~𝑈(0,0.2), 𝜃𝑠~𝑈(0, 0.4)) 

 

 

 

 

 

 

 

 

 

Methods Median  Mean (SD)  Mean  SE MSE Coverage % Power % 

True value -0.2      

One sample methods       

SPRS 0.822 0.822 (0.061) 0.034 1.049 0 100 

IPRS 1.001 1.000 (0.056) 0.045 1.444 0 100 

Weighted Egger  1.093 1.097 (0.069) 0.055 1.687 0 100 

Weighted Median  1.009 1.007 (0.085) 0.052 1.465 0 100 

sisVIVE + SPRS 0.788 0.784 (0.094) 0.069 0.976 0 99.9 

sisVIVE + IPRS 0.931 0.933 (0.082) 0.036 1.292 0 100 

Two samples methods       

True: �̃�𝒋 = 𝜷𝒋 +  𝜽𝒋       

EPRS 1.018 1.018 (0.058) 0.023 1.487 0 100 

2SLS  1.019 1.018 (0.057) 0.045 1.488 0 100 

Weighted Egger  1.130 1.132 (0.071) 0.053 1.778 0 100 

Weighted Median  1.016 1.019 (0.084) 0.053 1.493 0 100 

sisVIVE + SPRS 0.795 0.792 (0.114) 0.062 0.997 0.1 99.9 

sisVIVE + 2SLS 0.956 0.955 (0.094) 0.039 1.342 0.1 100 

�̃�𝒋~𝑵(𝜷𝒋  + 𝜽𝒋, 𝟎. 𝟎𝟏𝟐) 

Precise:        

EPRS 1.018 1.018 (0.058) 0.023 1.487 0 100 

2SLS  1.013 1.013 (0.057) 0.046 1.474 0 100 

Weighted Egger  1.122 1.123 (0.071) 0.054 1.754 0 100 

Weighted Median  1.013 1.015 (0.086) 0.053 1.484 0 100 

sisVIVE + SPRS 0.775 0.774 (0.113) 0.062 0.961 0.1 99.9 

sisVIVE + 2SLS 0.951 0.952 (0.096) 0.039 1.335 0.1 100 

�̃�𝒋~𝑵(𝜷𝒋 + 𝜽𝒋, 𝟎. 𝟎𝟓𝟐) 

Imprecise:       

EPRS 1.019 1.018 (0.060) 0.024 1.487 0 100 

2SLS  0.902 0.902 (0.064) 0.058 1.218 0 100 

Weighted Egger  1.060 1.061 (0.087) 0.073 1.598 0 100 

Weighted Median  0.945 0.944 (0.095) 0.052 1.317 0 100 

sisVIVE + SPRS 0.636 0.637 (0.153) 0.074 0.707 0.6 98.1 

sisVIVE + 2SLS 0.837 0.833 (0.104) 0.044 1.079 0.1 99.9 



Table S11 Simulation results for multiple instruments (30 SNPs have positive direct and indirect 

pleiotropy with 𝛼𝑠~𝑈(0,0.2), 𝜃𝑠~𝑈(0, 0.4)) 

 

 

 

 

 

 

 

 

 

Methods Median  Mean (SD)  Mean  SE MSE Coverage % Power % 

True value -0.2      

One sample methods       

SPRS 0.944 0.945 (0.052) 0.027 1.313 0 100 

IPRS 1.025 1.025 (0.048) 0.041 1.502 0 100 

Weighted Egger  1.080 1.080 (0.060) 0.055 1.643 0 100 

Weighted Median  1.017 1.014 (0.071) 0.046 1.480 0 100 

sisVIVE + SPRS 0.894 0.895 (0.078) 0.053 1.206 0 100 

sisVIVE + IPRS 0.988 0.987 (0.071) 0.031 1.415 0 100 

Two samples methods       

True: �̃�𝒋 = 𝜷𝒋 +  𝜽𝒋        

EPRS 1.038 1.037 (0.048) 0.017 1.532 0 100 

2SLS  1.037 1.037 (0.048) 0.041 1.533 0 100 

Weighted Egger  1.112 1.111 (0.059) 0.054 1.722 0 100 

Weighted Median  1.025 1.025 (0.071) 0.046 1.505 0 100 

sisVIVE + SPRS 0.901 0.896 (0.089) 0.053 1.210 0 100 

sisVIVE + 2SLS 1.003 1.002 (0.072) 0.036 1.450 0 100 

�̃�𝒋~𝑵(𝜷𝒋  + 𝜽𝒋, 𝟎. 𝟎𝟏𝟐) 

Precise:        

EPRS 1.036 1.037 (0.048) 0.017 1.532 0 100 

2SLS  1.032 1.034 (0.048) 0.042 1.524 0 100 

Weighted Egger  1.104 1.105 (0.060) 0.055 1.705 0 100 

Weighted Median  1.020 1.023 (0.071) 0.046 1.500 0 100 

sisVIVE + SPRS 0.880 0.882 (0.093) 0.053 1.179 0 100 

sisVIVE + 2SLS 0.999 1.000 (0.075) 0.036 1.447 0 100 

�̃�𝒋~𝑵(𝜷𝒋 + 𝜽𝒋, 𝟎. 𝟎𝟓𝟐) 

Imprecise:       

EPRS 1.036 1.036 (0.049) 0.020 1.530 0 100 

2SLS  0.952 0.953 (0.057) 0.052 1.333 0 100 

Weighted Egger  1.062 1.061 (0.077) 0.072 1.596 0 100 

Weighted Median  0.962 0.962 (0.079) 0.046 1.356 0 100 

sisVIVE + SPRS 0.802 0.798 (0.122) 0.058 1.012 0 99.9 

sisVIVE + 2SLS 0.918 0.920 (0.081) 0.039 1.262 0 100 



Supplementary Section 2:  Interpretation and Identification 

S2.1 Interpretation of the ALICE causal model 

Kang et al. (2016) [1] use the ALICE model [2] for the potential outcome 𝑌𝑖(𝑑, 𝐳).  The 

model comprises two components which can be written as follows: 

𝐸{𝑌𝑖(0, 𝟎)|𝐙𝑖 = 𝐳} = 𝜋0 + 𝐳′𝛉  and 𝑌𝑖(𝑑, 𝐳) − 𝑌𝑖(0, 𝟎) = 𝐳′𝛂 + 𝑑𝛾𝑋;𝑖 ,      (S. 1) 

where the multiple instrumental variables 𝐙𝑖 are the SNPs, and 𝐳 is one of the possible 

outcomes that this random vector can take.  The exposure variable is 𝐷𝑖 which we take to be 

binary without loss of generality.  The causal exposure effect for individual 𝑖 = 1, … , 𝑁 is 

𝛾𝑋;𝑖.  The homogeneous-effects model is the special case of model (S. 1) with 𝛾𝑋;𝑖 = 𝛾𝑋. 

Under the consistency assumption, the observed outcome is related to model (S.1) by 

𝑌𝑖 = 𝑌𝑖(𝐷𝑖, 𝐙𝑖). We can hence write 

𝑌𝑖 = 𝑌𝑖(0,0) + {𝑌𝑖(𝐷𝑖, 𝐙𝑖) − 𝑌𝑖(0, 𝟎)}

= 𝜋0 + 𝐙𝑖
′(𝛂 + 𝛉) + 𝐷𝑖𝐸(𝛽𝑖) + 𝐷𝑖{𝛽𝑖 − 𝐸(𝛾𝑋;𝑖)} + {𝑌𝑖(0,0) − 𝜋0 − 𝐙𝑖

′𝛉}

≡ 𝐙1𝑖
′ 𝛑 + 𝐷𝑖𝐸(𝛽𝑖) + 𝐷𝑖{𝛽𝑖 − 𝐸(𝛾𝑋;𝑖)} + 𝜖𝑖,      (S. 2) 

where 𝐙1𝑖 = (1, 𝐙𝑖
′)′, 𝛑 = (𝜋0, … , 𝜋𝐽)′ and 𝜋𝑗 = 𝛼𝑗 + 𝜃𝑗  for 𝑗 = 1, … , 𝐽.  In practice, sisVIVE 

is used with mean-centred outcomes and instruments so that 𝜋0 = 0. 

Putting aside the penalization term, the identification of sisVIVE comes from the conditional 

moment restriction 

𝐸(𝜖𝑌𝑖|𝐙𝑖) = 0,      (S. 3) 

which holds by construction for model (S. 2).  This can be expanded under model (S. 2) as 

𝐸(𝜖𝑌𝑖|𝐙𝑖) = 𝐸[𝑌𝑖 − 𝐙1𝑖
′ 𝛑 − 𝐷𝑖𝐸(𝛾𝑋;𝑖) − 𝐷𝑖{𝛾𝑋;𝑖 − 𝐸(𝛾𝑋;𝑖)}|𝐙𝑖]. 

We can thus see that, under the homogeneous-effects assumption, this reduces to 

𝐸(𝜖𝑌𝑖|𝐙𝑖) = 𝐸(𝑌𝑖 − 𝐙1𝑖
′ 𝛑 − 𝐷𝑖𝛾𝑋|𝐙𝑖) ≡ 𝐸{𝑟𝑖(𝛑, 𝛾𝑋)|𝐙𝑖}.      (𝑆. 4) 

It follows that, if we want the residual for the heterogeneous-effects model to have the same 

form as 𝑟𝑖(𝛑, 𝛾𝑋) (with 𝛾𝑋 = 𝐸(𝛾𝑋;𝑖) the average causal effect), we need 𝐸[𝐷𝑖{𝛾𝑋;𝑖 −

𝐸(𝛾𝑋;𝑖)}|𝐙𝑖] = 0 to hold. 

The assumption given in Section 2.3 of Kang et al. (2016) [1] is that there must be a zero 

covariance between 𝛾𝑋;𝑖 − 𝐸(𝛾𝑋;𝑖) and 𝐷𝑖 given 𝐙𝑖.  This implies that 

𝐸[𝐷𝑖{𝛾𝑋;𝑖 − 𝐸(𝛾𝑋;𝑖)}|𝐙𝑖] = 𝐸(𝐷𝑖|𝐙𝑖)𝐸{𝛾𝑋;𝑖 − 𝐸(𝛾𝑋;𝑖)|𝐙𝑖}, 

which is non-zero unless 𝐸{𝛾𝑋;𝑖 − 𝐸(𝛾𝑋;𝑖)|𝐙𝑖} = 0 because 𝐸(𝐷𝑖|𝐙𝑖) ≠ 0.  We hence require 

that 𝐸(𝛾𝑋;𝑖|𝐙𝑖) = 𝐸(𝛾𝑋;𝑖), that is, the average treatment effect must also be uncorrelated with 

the instrument.  It follows that not only do we require a conditional correlation of zero (which 

they make clear), but also a marginal correlation of zero between 𝛾𝑋;𝑖 − 𝐸(𝛾𝑋;𝑖) and 𝐙𝑖. 



If this condition did not hold then we could have 𝐸{𝛾𝑋;𝑖 − 𝐸(𝛾𝑋;𝑖)|𝐙𝑖} = 𝐙𝑖
′𝛈, which would 

change the interpretation of 𝐙𝑖
′𝛑 in (S.4) to 𝐙𝑖

′𝛑new, where 𝛑new ≡ 𝛑 + 𝛈 and 𝛑new = 𝟎 

does not correspond to the absence of pleiotropy. 

  



Section S.2: Pleiotropy Scenario 3 where InSIDE fails but sisVIVE satisfies the 

Irrepresentable Condition of [3]. 

 

From Corollary 1 of [4]: Lasso is consistent if 𝑠 < 𝐿 − |𝑏1 𝑏2⁄ |𝑔 where 𝑔 = 𝑠 if all total 

(direct plus indirect) pleiotropy effects are positive.  Under indirect pleiotropy, 𝑏1 = 𝛽 + 𝜃 

for invalid SNPs and 𝑏2 = 𝛽 otherwise, so we need to choose 𝜃 < (𝐿 − 2𝑆)𝛽/𝑠. 

This leads the following simulation design: 

 𝑍1, … , 𝑍71 generated from trinomial distribution as before;  

 𝛽𝑗 = 𝛽 = 0.028, j=1,…,71,  

 𝛼𝑠 = 𝛼 = 0.05; 

 For S=10, 𝜃𝑠 = 𝜃 = 0.1 < (71 − 2 ∗ 10) ∗
0.028

10
= 0.1428, s=1, …, 10 

 For S=20, 𝜃𝑠 = 𝜃 = 0.02 < (71 − 2 ∗ 20) ∗
0.028

20
= 0.0434, s=1,…, 20 

 For S=30, 𝜃𝑠 = 𝜃 = 0.005 < (71 − 2 ∗ 30) ∗
0.028

30
= 0.0102, s=1,…, 30 

  𝛼𝑗 = 0 and  𝜃𝑗 = 0 if 𝑗 ≠ 𝑠; 

 𝑋 = ∑ (𝐽
𝑗 𝛽𝑗 + 𝜃𝑗)𝑍𝑗 + 𝑈 + 𝜖𝑋; 

 𝑌 = 𝛾𝑋 + ∑  (𝛼𝑗
𝐽
𝑗 + 𝜃𝑗)𝑍𝑗 + 𝛾𝑈𝑈 + 𝜖𝑌; 

 𝑈, 𝜖𝑋, 𝜖𝑌 are independent and from ~ 𝑁(0,1) 

 

 

Table S12 Monte Carlo estimates of FSO and FSI in simulated population 

 

 

 

 

  

No of 

invalid 

IVs 
�̂�𝒋 = �̂�𝒋 

One sample Two sample  

True: �̃�𝒋 = 𝜷𝒋 

�̃�𝒋~𝑵(𝜷𝒋, 𝟎. 𝟎𝟏𝟐) 

Two sample 

Precise:  

�̃�𝒋~𝑵(𝜷𝒋, 𝟎. 𝟎𝟓𝟐) 

Two sample  

Imprecise: 

 MFSI 

(%) 

MFSO 

(%) 

MFSI 

(%) 

MFSO 

(%) 

MFSI 

(%) 

MFSO 

(%) 

MFSI 

(%) 

MFSO 

(%) 

10 20.8 37.9 63.9 21.2 54.3 23.8 5.2 16.0 

20 48.8 21.3 75.3 13.8 68.6 14.6 30.5 13.0 

30 67.4 17.1 82.5 13.9 76.9 15.2 45.9 13.4 



Table S13 Simulation results for multiple instruments (10 SNPs have positive direct and indirect 

pleiotropy) 

 

 

 

 

 

 

 

 

Methods Median  Mean (SD)  Mean  SE MSE Coverage % Power % 

True value -0.2      

One sample methods       

SPRS 0.316 0.317 (0.054) 0.055 0.270 0 100.0 

IPRS 0.659 0.661 (0.048) 0.068 0.744 0 100.0 

Weighted Egger  1.024 1.027 (0.077) 0.086 1.511 0 100.0 

Weighted Median  0.852 0.851 (0.069) 0.088 1.110 0 100.0 

sisVIVE + SPRS 0.283 0.273 (0.129) 0.123 0.240 7.4 59.5 

sisVIVE + IPRS 0.440 0.445 (0.158) 0.091 0.442 0 93.9 

Two samples methods       

True: �̃�𝒋 = 𝜷𝒋        

EPRS 0.719 0.719 (0.048) 0.047 0.848 0 100.0 

2SLS  0.718 0.717 (0.045)  0.072 0.843 0 100.0 

Weighted Egger  1.299 1.298 (0.072) 0.073 2.250 0 100.0 

Weighted Median  0.922 0.923 (0.062) 0.091 1.265 0 100.0 

sisVIVE + SPRS 0.349 0.354 (0.098) 0.070 0.316 0.5 96.2 

sisVIVE + 2SLS 0.673 0.646 (0.118) 0.072 0.730 0.1 98.6 

�̃�𝒋~𝑵(𝜷𝒋, 𝟎. 𝟎𝟏𝟐) 

Precise:        

EPRS 0.717 0.719 (0.050) 0.048 0.848 0 100.0 

2SLS  0.692 0.695 (0.047) 0.073 0.803 0 100.0 

Weighted Egger  1.208 1.206 (0.079) 0.079 1.984 0 100.0 

Weighted Median  0.901 0.901 (0.066)  0.091 1.216 0 100.0 

sisVIVE + SPRS 0.328 0.325 (0.104) 0.074 0.286 0.8 91.8 

sisVIVE + 2SLS 0.630 0.601 (0.139) 0.073 0.661 0.2 97.0 

�̃�𝒋~𝑵(𝜷𝒋, 𝟎. 𝟎𝟓𝟐) 

Imprecise:       

EPRS 0.723 0.726 (0.089) 0.064 0.866 0 100.0 

2SLS  0.400 0.402 (0.056) 0.069 0.365 0 100.0 

Weighted Egger  0.590 0.590 (0.105) 0.107 0.635 0 99.5 

Weighted Median  0.478 0.444 (0.175) 0.083 0.445 0.1 89.0 

sisVIVE + SPRS -0.047 -0.047 (0.112) 0.103 0.035 64.6 7.9 

sisVIVE + 2SLS 0.072 0.092 (0.106) 0.056 0.097 0.7 33.6 



Table S14 Simulation results for multiple instruments (20 SNPs have positive direct and indirect 

pleiotropy) 

 

 

 

 

 

 

 

 

 

Methods Median  Mean (SD)  Mean  SE MSE Coverage % Power % 

True value -0.2      

One sample methods       

SPRS 0.427 0.431 (0.069) 0.070 0.403 0 100.0 

IPRS 0.529 0.532 (0.068) 0.093 0.541 0 100.0 

Weighted Egger  0.701 0.707 (0.170) 0.182 0.851 0.3 97.2 

Weighted Median  0.569 0.558 (0.152) 0.121 0.597 0 98.1 

sisVIVE + SPRS 0.319 0.311 (0.122) 0.096 0.276 1.7 80.3 

sisVIVE + IPRS 0.430 0.419 (0.127) 0.085 0.400 0 96.5 

Two samples methods       

True: �̃�𝒋 = 𝜷𝒋        

EPRS 0.624 0.628 (0.071) 0.071 0.690 0 100.0 

2SLS  0.623 0.624 (0.068) 0.111 0.683 0 100.0 

Weighted Egger  3.284 3.291 (0.269) 0.278 12.26 0 100.0 

Weighted Median  0.873 0.873 (0.113) 0.145 1.163 0 100.0 

sisVIVE + SPRS 0.417 0.412 (0.105) 0.080 0.386 0 97.5 

sisVIVE + 2SLS 0.576 0.562 (0.119) 0.101 0.594 0 99.3 

�̃�𝒋~𝑵(𝜷𝒋, 𝟎. 𝟎𝟏𝟐) 

Precise:        

EPRS 0.622 0.627 (0.079) 0.074 0.690 0 100.0 

2SLS  0.573 0.578 (0.072) 0.109 0.611 0 100.0 

Weighted Egger  1.528 1.540 (0.229) 0.272 3.080 0 100.0 

Weighted Median  0.744 0.741 (0.133) 0.141 0.904 0 99.9 

sisVIVE + SPRS 0.386 0.374 (0.105) 0.082 0.343 0.5 93.5 

sisVIVE + 2SLS 0.519 0.501 (0.130) 0.096 0.509 0.1 97.2 

�̃�𝒋~𝑵(𝜷𝒋, 𝟎. 𝟎𝟓𝟐) 

Imprecise:       

EPRS 0.640 0.645 (0.201) 0.134 0.754 0.7 97.8 

2SLS  0.211 0.212 (0.066) 0.074 0.174 0.1 84.1 

Weighted Egger  0.209 0.204 (0.131) 0.126 0.181 13.4 39.6 

Weighted Median  0.162 0.167 (0.118) 0.077 0.149 2.1 51.8 

sisVIVE + SPRS 0.077 0.086 (0.143) 0.099 0.102 28.6 25.6 

sisVIVE + 2SLS 0.130 0.133 (0.101) 0.054 0.121 1.0 60.9 



Table S15 Simulation results for multiple instruments (30 SNPs have positive direct and indirect 

pleiotropy) 

 

 

 

 

 

  

Methods Median  Mean (SD)  Mean  SE MSE Coverage % Power % 

True value -0.2      

One sample methods       

SPRS 0.586 0.591 (0.083) 0.083 0.633 0 100.0 

IPRS 0.527 0.530 (0.077) 0.103 0.539 0 100.0 

Weighted Egger  0.467 0.470 (0.192) 0.199 0.486 7.6 65.4 

Weighted Median  0.511 0.505 (0.154) 0.128 0.521 0 94.7 

sisVIVE + SPRS 0.474 0.471 (0.134) 0.099 0.468 0 95.8 

sisVIVE + IPRS 0.483 0.475 (0.115) 0.093 0.469 0 99.0 

Two samples methods       

True: �̃�𝒋 = 𝜷𝒋        

EPRS 0.656 0.660 (0.085) 0.085 0.757 0 100.0 

2SLS  0.654 0.655 (0.080) 0.129 0.738 0 100.0 

Weighted Egger  10.75 10.78 (1.015) 1.035 121.6 0 100.0 

Weighted Median  0.752 0.752 (0.133) 0.167 0.925 0 99.9 

sisVIVE + SPRS 0.576 0.578 (0.115) 0.093 0.621 0 99.9 

sisVIVE + 2SLS 0.636 0.632 (0.116) 0.116 0.705 0 99.9 

�̃�𝒋~𝑵(𝜷𝒋, 𝟎. 𝟎𝟏𝟐) 

Precise:        

EPRS 0.652 0.660 (0.097) 0.090 0.749 0 100.0 

2SLS  0.585 0.592 (0.085) 0.124 0.634 0 100.0 

Weighted Egger  0.625 0.635 (0.379) 0.392 0.841 44.9 36.9 

Weighted Median  0.612  0.608 (0.162) 0.157 0.679 0.2 96.5 

sisVIVE + SPRS 0.551 0.542 (0.122) 0.094 0.566 0.1 99.2 

sisVIVE + 2SLS 0.565 0.564 (0.124) 0.109 0.599 0.1 99.2 

�̃�𝒋~𝑵(𝜷𝒋, 𝟎. 𝟎𝟓𝟐) 

Imprecise:       

EPRS 0.667 0.699 (0.402) 0.248 0.969 3.3 92.0 

2SLS  0.178 0.179 (0.070) 0.076 0.149 0.2 67.3 

Weighted Egger  0.145 0.149 (0.133) 0.129 0.140 23.1 23.2 

Weighted Median  0.154 0.157 (0.110) 0.079 0.139 2.7 51.0 

sisVIVE + SPRS 0.227 0.233 (0.160) 0.105 0.213 11.1 56.0 

sisVIVE + 2SLS 0.164 0.159 (0.100) 0.056 0.139 0.8 70.3 



S2.3 Identification with indirect pleiotropy and failure of InSIDE 

We proceed by contradiction: suppose that Theorem 1 is satisfied and 𝛽 is identified.  

Ignoring the constant term, model (S.1) directly implies that 

𝐸(𝑌|𝐙) = 𝐙′𝛑 + 𝐸(𝐷|𝐙)𝛾𝑋.      (𝑆. 5) 

The identification of 𝛾𝑋 comes through the additional assumption that 

𝐸(𝐷|𝐙) = 𝑏0 + ∑ 𝑏𝑗𝑍𝑗 ,
𝐽

𝑗=1
      (𝑆. 6) 

where our simulation design coupled with orthogonal SNPs give us that 𝑏𝑗 = 𝛽𝑗 + 𝜃𝑗  if 𝑍𝑗 is 

not valid, and 𝑏𝑗 = 𝛽𝑗 if it is.  (We can interpret 𝛽𝑗 as the direct/causal effect of 𝑍𝑗 on the 

exposure, and 𝜃𝑗  as its indirect effect via the unobserved confounding variables.) 

Combining (S.5) and (S.6) gives 

𝐸(𝑌|𝐙) = 𝑏0 + ∑ {𝛼𝑗 + 𝜃𝑗 + (𝛽𝑗 + 𝜃𝑗)𝛾𝑋}𝑍𝑗 
𝐽

𝑗=1
≡ 𝑏0 + ∑ 𝑎𝑗𝑍𝑗

𝐽

𝑗=1
,      (𝑆. 7) 

so the data fix �̂�𝑗 = 𝛽𝑗 + 𝜃𝑗  and 

�̂�𝑗 = 𝛼𝑗 + 𝜃𝑗 + (𝛽𝑗 + 𝜃𝑗)𝛾𝑋 . 

Because 𝜃𝑗 = �̂�𝑗 − 𝛽𝑗, the right-hand side above can be rewritten as 

𝛼𝑗 + 𝜃𝑗(1 + 𝛾𝑋) + 𝛽𝑗𝛾𝑋 = 𝛼𝑗 + �̂�𝑗(1 + 𝛾𝑋) − 𝛽𝑗 , 

which still equals �̂�𝑗.  Both �̂�𝑗 and 𝛾𝑋 are fixed, but any values 𝛼𝑗 ≠ 𝛼𝑗
∗ and 𝛽𝑗

∗ ≠ 𝛽𝑗 

satisfying 𝛼𝑗
∗ − 𝛽𝑗

∗ = 𝛼𝑗 − 𝛽𝑗 will satisfy the data constraints.  

Thus, with indirect pleiotropy, 𝜋𝑗 is not identified (among the invalid SNPs) because one can 

always find 𝜋𝑗
∗ = 𝛼𝑗

∗ + 𝜃𝑗 ≠ 𝜋𝑗  subject to the above.  This contradicts our initial assertion 

because, as Kang et al. (2016) [1] pointed out (on page 136), 

“Theorem 1 is a statement about uniqueness of solutions for the parameters [𝛑], and 

[𝛾𝑋] in Equation (7) … In the proof of Theorem 1, we show that … the parameter [𝛾𝑋] 

is a unique solution to (7) if and only if the parameter [𝛑] is a unique solution to (7)” 

where their equation (7) is our equation (11) in the main paper.  In other words, if the solution 

to (S.5) is not unique then a unique solution cannot exist to the consistency criterion in 

Theorem 1. 

Conversely, if there were no indirect pleiotropy in the simulation model, �̂�𝑗 = 𝛼𝑗 + 𝛽𝑗𝛾𝑋 and 

�̂�𝑗 = 𝛽𝑗 would uniquely identify 𝛾𝑗 and hence 𝜋𝑗 = 𝛼𝑗.  Similarly, if the simulation model 

held and 𝛽𝑗 were known instead of 𝑏𝑗 = 𝛽𝑗 + 𝜃𝑗 , then unique 𝛼𝑗 and 𝜃𝑗  could be found and 

the consistency criterion would hold.  This fits with our findings (not presented) in the 

simulation study in which knowledge of the direct effect of SNP on exposure led to greatly 

improved sisVIVE performance. 
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