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Further Results on the Inequality Reducing

Properties of Income Tax Schedules

Oriol Carbonell-Nicolau* Humberto Llavador†

January 2018

Abstract

Carbonell-Nicolau and Llavador (forthcoming) extend the classic result of Jakobsson

(1976) and Fellman (1976)—according to which average-rate progressive, and only

average-rate progressive income taxes, reduce income inequality—to the case of en-

dogenous income. There it is shown that marginal-rate progressivity—in the sense of

increasing marginal tax rates on income—is necessary for tax structures to be inequality

reducing, and necessary and sufficient conditions on the social utility function are identi-

fied under which progressive and only progressive taxes are inequality reducing. This

paper takes a further step and furnishes conditions on primitives under which various

subclasses of progressive taxes are inequality reducing. The main results in Carbonell-

Nicolau and Llavador (forthcoming) are obtained as particular cases of the more general

framework presented here. Restricting the set of taxes allows for larger classes of pref-

erences consistent with inequality reducing income taxation. As an illustration of the

results’ practical implications, we provide a precise characterization of the subclass of

(progressive) taxes that are inequality reducing for some standard families of preferences.

Keywords: progressive taxation; income inequality; incentive effects of taxation.

JEL classifications: D63, D71.

1 Introduction

The link between income inequality and progressive taxation uncovered in the seminal

works of Jakobsson (1976) and Fellman (1976) has long been considered a fundamental

normative foundation for income tax progressivity.1 In a recent paper, Carbonell-Nicolau and

*Department of Economics, Rutgers University, 75 Hamilton St., New Brunswick, NJ 08901. E-mail:
carbonell-nicolau@rutgers.edu.

†Universitat Pompeu Fabra and Barcelona GSE, R. Trias Fargas 25–27, 08005 Barcelona, Spain. E-mail:
humberto.llavador@upf.edu

1The literature on the redistributive effects of tax systems was initiated by Musgrave and Thin (1948). The
contributions of Jakobsson (1976) and Fellman (1976) led to a large body of literature on the foundations of tax
progressivity (see, e.g., Kakwani (1977); Hemming and Keen (1983); Eichhorn et al. (1984); Liu (1985); Formby
et al. (1986); Thon (1987); Latham (1988); Thistle (1988); Moyes (1988, 1994); Le Breton et al. (1996); Ebert and
Moyes (2000); Ju and Moreno-Ternero (2008)).
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Llavador (forthcoming) extended the classic result of Jakobsson (1976) and Fellman (1976)—

according to which average-rate progressive, and only average-rate progressive income taxes,

reduce income inequality—to the case of endogenous income. There it was shown that

marginal-rate progressivity—in the sense of increasing marginal tax rates on income—is a

necessary condition for tax structures to be inequality reducing, and necessary and sufficient

conditions on the social utility function were identified under which progressive and only

progressive taxes are inequality reducing. While this result circumvents the difficulties

and the negative results emphasized by other authors in their attempts to incorporate the

disincentive effects of taxation (see, e.g., Allingham (1979) and Ebert and Moyes (2003, 2007)),

it remains silent about the families of social utility functions for which subclasses of the set

of all progressive tax schedules are inequality reducing. This paper identifies necessary and

sufficient conditions on social preferences ensuring that various subclasses of progressive

taxes are inequality reducing. The results obtained here are strict generalizations of those

in Carbonell-Nicolau and Llavador (forthcoming) and confer a degree of useful flexibility on

the theory, in that they allow the analyst to expand the universe of social preferences by

suitably restricting the set of progressive taxes. As an illustration of the results’ practical

implications, we provide a precise characterization of the subclass of (progressive) taxes that

are inequality reducing for some standard families of preferences.

2 Preliminaries

The setting is the same as that of Carbonell-Nicolau and Llavador (forthcoming). There

are n individuals. The social utility function is given by a continuous utility function

u :R+× [0,1] →R defined over consumption-labor pairs (c, l) ∈R+× [0,1] such that u(·, l)
is strictly increasing in c for each l ∈ [0,1), and u(c, ·) is strictly decreasing in l for each

c > 0. The map u is assumed strictly quasiconcave on R++× [0,1) and twice continuously

differentiable on R++× (0,1). For (c, l) ∈R++× (0,1), let

MRS(c, l) :=−ul(c, l)
uc(c, l)

denote the marginal rate of substitution of labor for consumption, where

uc(c, l) := ∂u(c, l)
∂c

and ul(c, l) := ∂u(c, l)
∂l

.

We assume that for each c > 0,

lim
l→1− MRS(c, l)=+∞ and lim

l→0+ MRS(c, l)<+∞. (1)

The set of all utility functions satisfying the above conditions is denoted by U .

We restrict attention to nondecreasing and order-preserving piecewise linear tax sched-

ules.
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Definition 1. Let (α0, t, y) = (
α0, (t0, ..., tK ), (y0, ..., yK )

)
, where α0 ≥ 0, K ∈Z+, tk ∈ [0,1) for

each k ∈ {0, ...,K}, tk 6= tk+1 whenever k ∈ {0, ...,K −1} and K ≥ 1, and 0 = y0 < ·· · < yK . A

(K +1)-bracket piecewise linear tax schedule is a real-valued map T on R+ uniquely

determined by (α0, t, y) as follows:

T(y) :=



−α0 + t0 y if 0= y0 ≤ y≤ y1,

−α0 + t0 y1 + t1(y− y1) if y1 < y≤ y2,
...

...

−α0 + t0 y1 + t1(y2 − y1)+·· ·+ tK−1(yK − yK−1)+ tK (y− yK ) if yK < y.

Here T(y) is interpreted as the tax liability for gross income level y. We write (α0, t, y)

and the associated map T interchangeably. Note that for K = 0, (α0, t0, y0 = 0) is a linear tax

with intercept α0 and marginal tax rate t0; for K = 1, (α0, (t0, t1), (y0, y1)) is a two-bracket tax

with intercept α0, marginal tax rates t0 and t1, and bracket threshold y1; and so on.

The set of piecewise linear tax schedules is denoted by T .

An ability distribution is a vector a= (a1, . . . ,an) ∈Rn++ such that a1 ≤ ·· · ≤ an. The set

of all ability distributions is denoted by A .

An agent of ability a > 0 who chooses l ∈ [0,1] units of labor and faces a tax schedule

T ∈ T consumes c = al −T(al) units of the good and obtains a utility of u(c, l). Thus, the

agent’s problem is

max
l∈[0,1]

u (al−T(al), l) . (2)

Because the members of U and T are continuous, for given u ∈U , a > 0, and T ∈T , the

optimization problem in (2) has a solution, although it need not be unique. A solution
function is a map lu : R++ ×T → [0,1] such that lu(a,T) is a solution to (2) for each

(a,T) ∈ R++×T . The pre-tax and post-tax income functions associated to a solution

function lu, denoted by yu :R++×T →R+ and xu :R++×T →R+ respectively, are given by

yu(a,T) := alu(a,T) and xu(a,T) := alu(a,T)−T
(
alu(a,T)

)
.

Given a > 0, let Ua :R+× [0,a] →R be defined by Ua(c, y) := u(c, y/a). For (c, y,a) ∈R3++
with y< a, define

Ua
c (c, y) := ∂Ua(c, y)

∂c
, Ua

y (c, y) := ∂Ua(c, y)
∂y

, and ηa(c, y) :=−
Ua

y (c, y)

Ua
c (c, y)

.

The following condition was introduced by Mirrlees (1971, Assumption B, p. 182) and

termed agent monotonicity by Seade (1982).

Definition 2. A utility function u ∈U satisfies agent monotonicity if ηa(c, y)≥ ηa′
(c, y) for

each (c, y) ∈R2+ and 0< a < a′ with y< a.

The set of all the members of U satisfying agent monotonicity is denoted by U ∗.
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An income distribution is a vector z = (z1, ..., zn) ∈Rn+ of incomes arranged in increasing

order, i.e., z1 ≤ ·· · ≤ zn.

Given two income distributions z = (z1, ..., zn) and z′ = (z′1, ..., z′n) with zn, z′n > 0, we say

that z is at least as equal as z′ if z Lorenz dominates z′, i.e., if

∑k
i=1 zi∑n
i=1 zi

≥
∑k

i=1 z′i∑n
i=1 z′i

, for all k ∈ {1, ...,n}.

For u ∈ U ∗, and given pre-tax and post-tax income functions yu and xu, an ability

distribution a = (a1, ...,an) ∈ A and a tax schedule T ∈ T determine a pre-tax income
distribution

yu(a,T) := (
yu(a1,T), ..., yu(an,T)

)
and a post-tax income distribution

xu(a,T) := (
xu(a1,T), ..., xu(an,T)

)
.2

In the absence of taxation, i.e., if T ≡ 0, one has yu(a,0)= xu(a,T).

The following is the central notion of inequality reducing tax schedule.

Definition 3. Let u ∈ U . A tax schedule T ∈ T is income inequality reducing with
respect to u, which we denote as u-iir, if xu(a,T) Lorenz dominates yu(a,0) for each ability

distribution a := (a1, ...,an) ∈A and for each pre-tax and post-tax income functions yu and

xu.

3 The results

The notion of progressivity used here is as follows.

Definition 4. A tax schedule T ∈T is marginal-rate progressive if it is a convex function.

The set of all marginal-rate progressive tax schedules in T is denoted by Tprog.

Now the following subclasses of Tprog can be defined. Given K ∈Z+, B ⊆R+ and subsets

R0, ...,RK of [0,1), let Tprog(K ,B,R0, ...,RK ) be the set of all (K +1)-bracket marginal-rate

progressive tax schedules (α0, (t0, ..., tK ), (y0, ..., yK )) ∈Tprog with intercept α0, marginal tax

rates t0, ..., tK with tk ∈ Rk for each k ∈ {0, ...,K}, and bracket thresholds y1, ..., yK , i.e.,

Tprog(K ,B,R0, ...,RK ) := {
(α0, (t0, ..., tK ), (y0, ..., yK )) ∈Tprog :α0 ∈ B and (t0, ..., tK ) ∈ R0 ×·· ·×RK

}
.

Let D be the set of all (B, (Rk)∞k=0) with B ⊆R and Rk ⊆ [0,1) for each k. For each (B, (Rk)) ∈D,

define

Tprog(B, (Rk)) := ⋃
K∈Z+

Tprog(K ,B,R0, ...,RK ).

2Under the agent monotonicity condition, in both cases the vector components are arranged in increasing
order. See Carbonell-Nicolau and Llavador (forthcoming).
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When R0 = R1 = ·· · = R, we write Tprog(B,R) for Tprog(B, (Rk)).

We now recapture a result from Carbonell-Nicolau and Llavador (forthcoming).

Theorem 1 (Carbonell-Nicolau and Llavador (forthcoming, Theorem 1)). Given u ∈U ∗, a
tax schedule in T is u-iir only if it is marginal-rate progressive.

Definition 5. A tax schedule T ∈T is linear if T(y)=−b+ ry for all y ∈R+ and some b ≥ 0

and r ∈ [0,1).

The set of all linear tax schedules in T is denoted by Tlin. Given B ⊆R+ and R ⊆ [0,1),

define

Tlin(B,R) := {−b+ ry ∈Tlin : (b, r) ∈ B×R} .

Given u ∈U , let Tu-iir be the set of all u-iir tax schedules in T .

The following result generalizes Theorem 2 in Carbonell-Nicolau and Llavador (forthcom-

ing). It can be proven using an adaptation of the proof of Theorem 2 in Carbonell-Nicolau

and Llavador (forthcoming). The details are provided in the Appendix.

For B ⊆R+, define

B := ⋃
b∈B

{
b′ ∈R+ : b′ ≥ b

}
.

Theorem 2. Given u ∈U ∗ and (B, (Rk)) ∈D, Tprog(B, (Rk))⊆Tu-iir ⊆Tprog if and only if the
members of Tlin(B,

⋃
k Rk) are u-iir.

For B =R+ and Rk = [0,1) for each k, one has Tprog(B, (Rk))=Tprog and Tlin(B,
⋃

k Rk)=
Tlin, and Theorem 2 immediately gives Theorem 2 in Carbonell-Nicolau and Llavador

(forthcoming).

Corollary 1 (to Theorem 2). Given u ∈U ∗, Tu-iir =Tprog if and only if the members of Tlin

are u-iir.

When T is a linear tax schedule in Tlin with T(y)=−b, where b ≥ 0, we write lu(a,b) for

lu(a,T). For each (a,b) ∈R++×R+, lu(a,b) is a solution to the problem

max
l∈[0,1]

u (al+b, l) . (3)

Since u is strictly quasiconcave on R++× [0,1), for each (a,b) ∈R++×R+, there is a unique

solution lu(a,b) to (3). For given b ≥ 0, the derivative of the map a 7→ lu(a,b) exists for all

but perhaps one a > 0 (see Carbonell-Nicolau and Llavador (forthcoming)).

For (a,b) ∈R++×R+, define

ζu(a,b) := ∂(alu(a,b)+b)
∂a

· a
alu(a,b)+b

;

this is the elasticity of income with respect to ability at ability level a and endowment b.
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Given B ⊆R+ and R ⊆ [0,1), let U (B,R) be the set of all u ∈U ∗ satisfying the following

condition:

ζu((1− r)a,b)≤ ζu(a,0), for all (a,b, r) ∈R++×B×R.

The following result generalizes Theorem 3 in Carbonell-Nicolau and Llavador (forthcom-

ing). The proof is relegated to the Appendix.

Theorem 3. For u ∈U ∗, the members of Tlin(B,R) are u-iir if and only if u ∈U (B,R).

Let Û denote the class of utility functions u ∈U ∗ satisfying the following two conditions:

(i) ζu(a,b)≤ ζu(a,0) for all (a,b) ∈R++×R+; and

(ii) the map a 7→ ζu(a,0) defined on R++ is nondecreasing.

From the proof of Theorem 3 in Carbonell-Nicolau and Llavador (forthcoming), U (R+, [0,1))=
Û , and in this case Theorem 3 immediately gives Theorem 3 in Carbonell-Nicolau and

Llavador (forthcoming).

Corollary 2 (to Theorem 3). For u ∈U ∗, the members of Tlin are u-iir if and only if u ∈ Û .

Now combining Theorem 2 and Theorem 3 yields the following result, which refines

Corollary 3 in Carbonell-Nicolau and Llavador (forthcoming).

Theorem 4. Given u ∈ U ∗ and (B, (Rk)) ∈ D, Tprog(B, (Rk)) ⊆ Tu-iir ⊆ Tprog if and only if
u ∈U (B,

⋃
k Rk).

4 Applications

In this section we characterize the subclasses of progressive taxes that are inequality reducing

for two commonly used families of income-leisure preferences: the CES and the quasi-

linear preferences. The CES utility function (often in its Cobb-Douglas version) is very

common in the literature on life-cycle models (Heckman and MaCurdy, 1982; French, 2005;

Blundell et al., 2016), while static models with fixed costs traditionally work with quasi-linear

preferences (Cogan, 1981).3 These utilities are also dominant in surveys and textbooks on

labor supply and fiscal policy (Pencavel, 1986; Killingsworth and Heckman, 1986; Auerbach

and Kotlikoff, 1987; Keane, 2011; Blundell et al., 2016).

4.1 CES utility

Consider the well-know CES utility function

u(c, l) :=
cγ+β(1− l)γ if γ ∈ (0,1),

−cγ−β(1− l)γ if γ< 0,
(4)

3Static models tend to specify a labor supply function directly, which makes it difficult to identify a widely
used utility function (Keane, 2011, page 966).
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where β is a positive constant. One has

lu(a,b)=


(

a
β

) 1
1−γ−b

a+
(

a
β

) 1
1−γ

if
(

a
β

) 1
1−γ ≥ b,

0 otherwise,

alu(a,b)+b =


(

a
β

) 1
1−γ (a+b)

a+
(

a
β

) 1
1−γ

if
(

a
β

) 1
1−γ ≥ b,

b otherwise,

ζu(a,0)=


(1−γ)a

2
1−γ+a

2−γ
1−γ β

1
1−γ

(1−γ)a
2

1−γ+(1−γ)a
2−γ
1−γ β

1
1−γ

if
(

a
β

) 1
1−γ ≥ b,

0 otherwise,

and

ζu((1− r)a,b)=


(1−γ)((1−r)a)

2
1−γ+β

1
1−γ bγ((1−r)a)

1
1−γ+β

1
1−γ ((1−r)a)

2−γ
1−γ

(1−γ)((1−r)a)
γ

1−γ ((1−r)a+b)[(1−r)aβ
1

1−γ+((1−r)a)
1

1−γ ]
if

(
(1−r)a
β

) 1
1−γ ≥ b,

0 otherwise.

The following result can be proven for the specification in (4). Intuition for the result is

presented after the formal proof.

Proposition 1. Let u be the CES utility function given in (4). Suppose that R ⊆ [0,1) and
supR < 1. Then there exists b ≥ 0 such that Tprog(B∗,R)⊆Tu-iir ⊆Tprog if and only if γ ∈ [1

2 ,1),
where B∗ := {b ∈R+ : b ≥ b}.

Proof. Since u ∈ U ∗, given b ≥ 0, B∗ := {b ∈ R+ : b ≥ b}, and R ⊆ [0,1), Theorem 4 gives

Tprog(B∗,R)⊆Tu-iir ⊆Tprog if and only if u ∈U (B∗,R).

Given (a,b, r) ∈ R++×B∗×R, if ( a
β

)
1

1−γ < b, then ( (1−r)a
β

)
1

1−γ < b, implying ζu(a,0) = 0 ≥
0 = ζu((1− r)a,b). If ( a

β
)

1
1−γ ≥ b > ( (1−r)a

β
)

1
1−γ , then ζu(a,0) ≥ 0 = ζu((1− r)a,b). If ( a

β
)

1
1−γ ≥

( (1−r)a
β

)
1

1−γ ≥ b, then ζu(a,0)≥ ζu((1− r)a,b) if and only if

(1−γ)a
2

1−γ +a
2−γ
1−γβ

1
1−γ

(1−γ)a
2

1−γ + (1−γ)a
2−γ
1−γβ

1
1−γ

≥ (1−γ)((1− r)a)
2

1−γ +β 1
1−γ bγ((1− r)a)

1
1−γ +β 1

1−γ ((1− r)a)
2−γ
1−γ

(1−γ)((1− r)a)
γ

1−γ ((1− r)a+b)[(1− r)aβ
1

1−γ + ((1− r)a)
1

1−γ ]
.
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Arranging terms gives

a
1

1−γ (a(1− r))
1

1−γ
[
(a(1− r))−1((1−γ)a

1
1−γ +aβ

1
1−γ )(a(1− r)β

1
1−γ + (a(1− r))

1
1−γ )

−γβ 1
1−γ (a

1
1−γ +aβ

1
1−γ )

]
b

≥ a
1

1−γ (a(1− r))
1

1−γ
[
(a

1
1−γ +aβ

1
1−γ )(a(1− r)β

1
1−γ + (1−γ)(a(1− r))

1
1−γ )

−((1−γ)a
1

1−γ +aβ
1

1−γ )(a(1− r)β
1

1−γ + (a(1− r))
1

1−γ )
]

.

This simplifies to[
((1−γ)a

1
1−γ +aβ

1
1−γ )(β

1
1−γ + (a(1− r))

γ
1−γ )−γβ 1

1−γ (a
1

1−γ +aβ
1

1−γ )
]

b

≥ a1+ 1
1−γβ

1
1−γγ(1− r− (1− r)

1
1−γ ).

(5)

We claim that if supR < 1 there exists b ≥ 0 such that Tprog(B∗,R)⊆Tu-iir ⊆Tprog if and

only if γ ∈ [1
2 ,1). To see this, it suffices to show that (i) for γ < 1

2 and b ≥ 0, there exists

(a,b, r) ∈R++×B∗×R with ( a
β

)
1

1−γ ≥ ( (1−r)a
β

)
1

1−γ ≥ b such that (5) does not hold, and (ii) for

γ ∈ [1
2 ,1), there exists b ≥ 0 such that for (a,b, r) ∈R++×B∗×R with ( a

β
)

1
1−γ ≥ ( (1−r)a

β
)

1
1−γ ≥ b,

(5) holds.

Given b ≥ 0 and γ< 0, the bracketed term on the left-hand side of (5) is positive and the

right-hand side of (5) divided by the bracketed term on the left-hand side of (5) converges

to infinity as a tends to infinity. Consequently, there exists (a,b, r) ∈ R++×B∗×R with

( a
β

)
1

1−γ ≥ ( (1−r)a
β

)
1

1−γ ≥ b such that (5) does not hold. If 0 < γ < 1
2 , the right-hand side of (5)

is positive, the bracketed term on the left-hand side of (5) is positive for a large enough,

and the right-hand side of (5) divided by the bracketed term on the left-hand side of (5)

converges to infinity as a tends to infinity. Therefore, there exists (a,b, r) ∈R++×B∗×R with

( a
β

)
1

1−γ ≥ ( (1−r)a
β

)
1

1−γ ≥ b such that (5) does not hold.

If γ= 1
2 , the bracketed term on the left-hand side of (5) is positive and the and the right-

hand side of (5) divided by the bracketed term on the left-hand side of (5) is increasing in a
and converges to rβ2 as a →∞. Consequently, it suffices to set b =β2 supR ≤β2.4

If γ ∈ (1
2 ,1), the bracketed term on the left-hand side of (5) is positive for large enough

a, and the right-hand side of (5) divided by the bracketed term on the left-hand side of (5)

tends to 0 as a →∞, and so if supR < 1 there exists b such that for (a,b, r) ∈R++×B∗×R
with ( (1−r)a

β
)

1
1−γ ≥ b, (5) holds.5 ■

The parameter γ in the CES utility function (4) determines the elasticity of substitution

between consumption and leisure. As γ tends to 1, the CES utility function becomes linear

4For example, if β= 1 and the maximum marginal tax rate is 1
2 , then it suffices to consider the set of all

the marginal-rate progressive tax schedules that provide a subsidy of at least $ 1
2 for those individuals with no

income.
5For instance, if γ= 3

4 , supR = 0.6, and β= 1, (5) becomes[
(0.25a4 +a)(1+ (a(1− r))3)−0.75(a4 +a)

]
b ≥ 0.75a4(1− r)(1− (1− r)3). (6)



9

and consumption and leisure become perfect substitutes. As γ tends to −∞, the indifference

curves become “right angles,” i.e., the social utility function regards the two goods as perfect

complements.

Proposition 1 states that when the elasticity of substitution is large enough, i.e., when

consumption and leisure substitute “sufficiently well” for each other, there are (nonempty)

subclasses of progressive tax schedules whose members are inequality reducing. Specifically,

in this case it suffices to choose a sufficiently large subsidy for a progressive tax schedule to

be inequality reducing.

leisure
1

consumption

c*

b

a+b

a'+b

aa'

Ray

u*

u'
u

Figure 1: Perfect complements. Individual choice for different ability levels and exogenous
income b. The ray represents the bundles with the “correct” proportions between leisure and
consumption. The maximum utility level u∗ is attained for the bundle (1, c∗). For sufficiently
high abilities, income (the chosen level of consumption) cannot increase at increasing rates.
Hence, the elasticity of income to ability must decrease and not all progressive taxes are
income inequality reducing (Theorem 3 and Corollary 1).

In order to capture the intuition for this result, recall that a necessary and sufficient

condition for the containments Tprog(B∗,R) ⊆ Tu−iir ⊆ Tprog to hold is that u ∈ U (B∗,R),

and consider first the opposite extreme case when consumption and leisure are perfect

complements. Because leisure is bounded above by 1, utility has an upper bound, with

(1, c∗) as the optimal bundle, where c∗ is the “ideal” consumption level corresponding to

If b = 81, then given (a,b, r) ∈R++×B∗×R with ( (1−r)a
β

)
1

1−γ = (1− r)4a4 ≥ b ≥ b, i.e., a ≥ b
1
4

1−r ≥ b
1
4

1−r = 3
1−r , (6) is

equivalent to

b ≥ 0.75a4(1− r)(1− (1− r)3)
(0.25a4 +a)(1+ (a(1− r))3)−0.75(a4 +a)

, (7)

and since
0.75a4(1− r)(1− (1− r)3)

(0.25a4 +a)(1+ (a(1− r))3)−0.75(a4 +a)
< 81

and b ≥ b, it follows that (7) holds.
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leisure
1

consumption

b

a'+b

a''+b

a'
a''

u'

u''

Figure 2: Perfect substitutes. Individual choice for different ability levels and exogenous
income b. Individuals with a sufficiently high ability, like a′′, choose zero leisure; while those
with sufficiently low ability, like a′, choose zero labor. Hence, the elasticity of income to
ability is non-decreasing and all progressive taxes are income inequality reducing (Theorem
3 and Corollary 1).

maximum leisure (see Figure 1). Individuals of higher ability, whose consumption entails

a lower opportunity cost in terms of leisure time, choose higher consumption levels. As a
grows large, the optimal consumption level converges to c∗. Hence, for a sufficiently large

ability, the change in consumption (and hence in income) with respect to ability increases

less than proportionally in ability. This implies that the elasticity of income with respect to

ability must decrease at some point, and so u ∉U (B∗,R).

At the other extreme, when consumption and leisure are treated as perfect substitutes,

higher ability individuals will choose zero leisure and low ability individuals zero labor,

implying that the elasticity of income with respect to ability is not decreasing (Figure 2).

For non-extreme cases, when consumption and leisure are not good substitutes, one can

always find individuals of sufficiently high ability for whom the elasticity of income with

respect to ability decreases, as in the case of perfect complements. Alternatively, when

consumption and leisure substitute relatively well, the elasticity condition is satisfied for

sufficiently high ability levels and can also be guaranteed for low ability agents by equalizing

their incomes with a sufficiently large subsidy. Hence the condition B∗ in the statement of

Proposition 1.

Remark 1. When γ→ 0 the CES utility function converges to the Cobb-Douglas utility

function, and in this limiting case (5) holds for all (a,b, r) ∈ R++× [0,+∞)× [0,1), and so
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Theorem 4 gives Tu-iir = Tprog (this was established in Carbonell-Nicolau and Llavador

(forthcoming, Remark 3)).

4.2 Quasi-linear utility

Consider the quasi-linear utility function

u(c, l) := c+ β(1− l)1−δ

1−δ , (8)

where β> 0 and δ> 0, with δ 6= 1.6 One has

lu(a,b)=
1−

(
a
β

)−1/δ
if a ≥β

0 if a ≤β,

and

alu(a,b)+b =
a+b−a

(
a
β

)−1/δ
if a ≥β

b if a ≤β.

Define θ(a) :=
(

a
β

)−1/δ
and θr(a) :=

(
(1−r)a
β

)−1/δ
. Note that θ(a) > 1 for a ≥ β, and θr(a) > 1 for

a ≥ β

1−r >β. Compute

ζu(a,0)=
1− 1

δ(1−θ(a)) if a ≥β,

0 otherwise,

and

ζu((1− r)a,b)=


a(1−r)−(1−θr(a))(1−r)aδ
bθr(a)δ−(1−θr(a))(1−r)aδ if a ≥ β

(1−r) ,

0 otherwise.

The following result can be proven for the specification in (8). Intuition is furnished after

the formal proof.

Proposition 2. Let u be the quasi-linear utility function given in (8). Suppose that R ⊆ [0,1)

and supR < 1. Then there exists b ≥ 0 such that Tprog(B∗,R) ⊆ Tu-iir ⊆ Tprog if and only if
δ ∈ (0,1), where B∗ := {b ∈R+ : b ≥ b}.

Proof. Since u ∈ U ∗, given b ≥ 0, B∗ := {b ∈ R+ : b ≥ b}, and R ⊆ [0,1), Theorem 4 gives

Tprog(B∗,R)⊆Tu-iir ⊆Tprog if and only if u ∈U (B∗,R).

Given (a,b, r) ∈R++×B∗×R, if a ≤β/(1−r), then ζu((1−r)a,b)= 0≤ ζu(a,0). If a >β/(1−r),

then ζu(a,0)≥ ζu((1− r)a,b) if and only if

1− 1
δ(1−θ(a))

≥ a(1− r)− (1−θr(a))(1− r)aδ
bθr(a)δ− (1−θr(a))(1− r)aδ

.

6The MRS(c, l) tends to +∞ as l → 1− (recall the Inada condition in (1)) if and only if δ> 0.
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Using θ(a)> θr(a)> 1, and arranging terms, we obtain

b (δ(θ(a)−1)θr(a)δ+θr(a)δ)≥ (θ(a)−1)(1− r)aδ− (θr(a)−1)(1− r)aδ.

This simplifies to

b ≥ (θ(a)−θr(a)) (1− r)a
(1+δ(θ(a)−1))θr(a)

.

Finally, since θr(a)= (1− r)1/δθ(a)= (1− r)1/δ
(

a
β

)−1/δ
,

b ≥
(
(1− r)−1/δ−1

)
(1− r)

a

1+
((

a
β

)1/δ−1
)
δ

= K(r)ϕ(a), (9)

where K(r) := (
(1− r)−1/δ−1

)
(1− r)> 0 for all r ∈ (0,1), and ϕ(a) := a

1+
(
(a/β)1/δ−1

)
δ

for a ≥β.

We claim that if supR < 1 there exists b ≥ 0 such that Tprog(B∗,R)⊆Tu-iir ⊆Tprog if and

only if δ ∈ (0,1). To see this, it suffices to show that (i) for δ > 1 and b ≥ 0, there exists

(a,b, r) ∈R++×B∗×R with a >β such that (9) does not hold; and (ii) for δ ∈ (0,1), there exists

b ≥ 0 such that for (a,b, r) ∈ [β,∞)×B∗×R, (9) holds.

Given b ≥ 0 and δ> 1, ϕ(a) converges to infinity as a tends to infinity, and consequently,

there exists (a,b, r) ∈R++×B∗×R with a >β such that (9) does not hold.

If δ ∈ (0,1), ϕ(a) tends to 0 as a →∞ and K(r) is monotone increasing. Hence, if supR < 1,

there exists b such that for (a,b, r) ∈ [β,∞)×B∗×R, (9) holds. ■

For the quasi-linear utility function, the parameter δ determines the inverse of the

elasticity of leisure with respect to ability, so that leisure is elastic for δ< 1 and inelastic for

δ> 1.7 Proposition 2 states that when the demand of leisure is inelastic, any progressive tax

schedule is inequality reducing once an appropriate subsidy is chosen.

The intuition for this result is related to that for the CES utility function. Observe

that consumption and leisure become perfect substitutes for δ= 0, and that the degree of

substitutability decreases as δ increases.8 As δ→ 0, the demand of leisure becomes perfectly

elastic, with consumption and leisure becoming perfect substitutes. High ability individuals

choose zero leisure and low ability individuals zero labor, implying that the elasticity of

income with respect to ability is not decreasing. (Recall Figure 2.)

For δ< 1, leisure demand is elastic and an ability increase leads to a more than propor-

tional leisure decrease, producing a larger increase in income for sufficiently large ability

levels, and satisfying the elasticity condition for sufficiently large ability levels. The elasticity

condition can also be guaranteed for low ability individuals by equalizing their incomes with

a sufficiently large subsidy. Hence the condition B∗ in the statement of Proposition 1.

7It is easy to obtain the demand of leisure as (a/β)−1/δ for a ≥β, and hence the elasticity of leisure to ability
as −1/δ.

8Both the quasilinear utility function considered here and the CES utility function from Subsection 4.1
become the linear utility function u(c, l)= c+β(1− l) for δ= 0 and γ= 1, respectively.
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5 Concluding remarks

This paper characterizes social preferences for which various subclasses of progressive tax

schedules are inequality reducing. The framework considered here, which subsumes that

in Carbonell-Nicolau and Llavador (forthcoming), allows one to expand the set of social

preferences by suitably restricting the set of progressive taxes. This is illustrated in Section

4 for two standard families of utility functions: the CES and the quasi-linear utility functions.

Indeed, the characterizations in Proposition 1 and Proposition 2 state that when the elasticity

of substitution between consumption and leisure is large enough, it suffices to choose a

sufficiently large subsidy for a progressive tax schedule to be inequality reducing. In this

regard, while the relevant parameter regions may differ across families of social preferences,

our discussions in Section 4 suggest that the elasticity of substitution between consumption

and leisure crucially determines the existence of nonempty subclasses of inequality reducing

tax systems.

Appendix

In this appendix we present the proofs of Theorem 2 and Theorem 3. Each proof is preceded

by a restatement of its corresponding theorem for the convenience of the reader.

The following two lemmas, whose proofs can be found in Carbonell-Nicolau and Llavador

(forthcoming) (see Lemma 2 and Lemma 3 in Carbonell-Nicolau and Llavador (forthcoming)),

are instrumental in the proofs of Theorem 2 and Theorem 3.

Lemma 1. Given u ∈U , (c, y) ∈R2++, and q ∈ (0,+∞), there exists an a > y such that ηa(c, y)=
q.

Lemma 2. Given u ∈U ∗, a tax schedule T ∈T is u-iir if and only if for any ability distribu-
tion a ∈A and for any pre-tax and post-tax income functions yu and xu,

xu(ai,T)
yu(ai,0)

≥ xu(ai+1,T)
yu(ai+1,0)

∀i ∈ {1, . . . ,n−1} : yu(ai,0)> 0. (10)

A Proof of Theorem 2

Theorem 2. Given u ∈U ∗ and (B, (Rk)) ∈D, Tprog(B, (Rk))⊆Tu-iir ⊆Tprog if and only if the
members of Tlin(B,

⋃
k Rk) are u-iir.

Proof.9 Suppose that u ∈U ∗ and (B, (Rk)) ∈D.

Since Tlin(B,
⋃

k Rk)⊆Tprog(B, (Rk)), the ‘only if ’ part of the equivalence is obvious.

Assume now that the members of Tlin(B,
⋃

k Rk)⊆Tu-iir. We need to prove that Tprog(B, (Rk))⊆
Tu-iir. By Lemma 2, this is equivalent to showing that that condition (10) holds for any

T ∈Tprog(B, (Rk)), for any ability distribution a ∈A , and for any pre-tax and post-tax income

functions yu and xu.

9This proof is an adaptation of the proof for Theorem 2 in Carbonell-Nicolau and Llavador (forthcoming).
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Figure 3: Figure for Theorem 2

Take T = (α0, t, y) ∈Tprog(B, (Rk)) and, for each income threshold yk of T, define the linear

tax schedule Tk(y) := tk y−αk with α0 ∈ B, tk ∈ Rk for k ∈ {0, ...,K}, and αk :=αk−1+(tk−tk−1)yk

for k ∈ {1, . . . ,K}.

Pre-tax and post-tax income functions, yu and xu, are uniquely defined, since preferences

are strictly quasiconcave and the tax function T is convex. For k ∈ {1, ...,K}, define the

abilities a−
k and ak such that

a−
k :=min

{
a : yu(a,Tk−1)= yu

k
}

and ak :=max
{
a : y(a,Tk)= yk

}
(see Figure 3). Lemma 1 guarantees that a−

k and ak exist and are well-defined for all

k ∈ {1, . . . ,K}.

Furthermore, since T is marginal-rate progressive (and hence tk−1 < tk for all k ∈
{1, . . . ,K}), agent monotonicity (Definition 2) implies that a−

k ≤ ak < a−
k+1.

Next, define the following family of sets covering (0,+∞):

A :=
{
(0,a−

1 ],
{[

a−
k ,ak

]}K
k=1 ,

{[
ak,a−

k+1
]}K−1

k=1 , [aK ,+∞)
}

.

We first show that condition (10) is satisfied for ability distributions contained in each

element of the family A.
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(i) Consider first the interval (0,a−
1 ]. Observe that yu(a,T) = yu(a,T0) for all a ≤ a−

1 .

Because T0 is a linear tax, it is u-iir, and so Lemma 2 gives

xu(a,T)
yu(a,0)

= xu(a,T0)
yu(a,0)

≥ xu(a′,T0)
yu(a′,0)

= xu(a′,T)
yu(a′,0)

∀a ≤ a′ ≤ a−
1 . (11)

(ii) For [aK ,+∞), a symmetric argument shows that

xu(a,T)
yu(a,0)

≥ xu(a′,T)
yu(a′,0)

∀aK ≤ a ≤ a′. (12)

(iii) Now consider the interval [a−
k ,ak] for k ∈ {1, . . . ,K}. Observe that

yu(ak,T)= yu(ak,Tk)= yk = yu(a−
k ,Tk−1)= yu(a−

k ,T).

Because the map a 7→ yu(a,T) is monotone (Mirrlees, 1971, Theorem 1), yu(a,T)= yk

for all a ∈ [a−
k ,ak], and yu(a′,0)≥ yu(a,0) for all a−

k ≤ a ≤ a′ ≤ ak. Therefore,

xu(a,T)
yu(a,0)

= yk −T(yk)
yu(a,0)

≥ yk −T(yk)
yu(a′,0)

= xu(a′,T)
yu(a′,0)

∀a,a′ ∈ [a−
k ,ak], a ≤ a′. (13)

(iv) Finally, consider the interval [ak,a−
k+1] for k ∈ {1, . . . ,K − 1}. By construction, we

have yu(a,T) = yu(a,Tk) for all a ∈ [ak,a−
k+1]. Therefore, since Tk is a linear tax

in Tlin((B,
⋃

k Rk), and hence u-iir, Lemma 2 gives

xu(a,T)
yu(a,0)

= xu(a,Tk)
yu(a,0)

≥ xu(a′,Tk)
yu(a′,0)

= xu(a′,T)
yu(a′,0)

∀a,a′ ∈ [ak,a−
k+1], a ≤ a′. (14)

Combining equations (11)-(14) we obtain (10) for every a ∈A .

■

B Proof of Theorem 3

Theorem 3. For u ∈U ∗, the members of Tlin(B,R) are u-iir if and only if u ∈U (B,R).

Proof. Given u ∈ U ∗, B ⊆R+, and R ⊆ [0,1), the members T(y) = −b+ ry of Tlin(B,R) are

u-iir if and only if the map

a 7→ xu(a,T)
yu(a,0)

= a(1− r)lu(a,T)+b
alu(a,0)

= a(1− r)lu((1− r)a,b)+b
alu(a,0)

(15)
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defined onR++ is nonincreasing for every (b, r) ∈ B×R (Lemma 2). Equivalently, the members

of Tlin(B,R) are u-iir if and only if

(1− r)
(
(1− r)a′ ∂lu((1−r)a′,b)

∂a + lu((1− r)a′,b)
)
a′lu(a′,0)

(a′lu(a′,0))2

−
((1− r)a′lu((1− r)a′,b)+b)

(
a′ ∂lu(a′,0)

∂a + lu(a′,0)
)

(a′lu(a′,0))2 ≤ 0

(16)

for every (a′,b, r) ∈R++×B×R.10 Since the above inequality can be expressed as

(1− r)a′
(
(1− r)a′ ∂lu((1−r)a′,b)

∂a + lu((1− r)a′,b)
)

(1− r)a′lu((1− r)a′,b)+b
≤

a′
(
a′ ∂lu(a′,0)

∂a + lu(a′,0)
)

a′lu(a′,0)
,

or, equivalently, as

ζu((1− r)a′,b)≤ ζu(a′,0),

we see that the members of Tlin(B,R) are u-iir if and only if (B) holds for every (a′,b, r) ∈
R++×B×R. Consequently, for u ∈ U ∗, the members of Tlin(B,R) are u-iir if and only if

u ∈U (B,R). ■
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