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Rational Filters

Hassan Nosratabadi∗

This Draft: October 14, 2017

Abstract

It has been widely documented that reference points influence the choice. If refe-

rences affect choice by attracting attention towards an alternative, what can be said

about the joint effect of the references? Assuming that references form preferences, or

are rational filters, this paper extracts a reference-dependent choice model with joint

referential effects from WARP. Assume that a DM has an “unfiltered” pairwise prefe-

rence which is inferred from her choice over doubletons. The DM’s uses her rational

filters consecutively on the pairwise preference in order to finalize her choice.

1 Introduction

Reference-dependent choice model have received quiet an attention in the literature as they

help explaining behavioral anomalies. One explanation for such effects is through relaxing

independence of irrelevant alternatives. That is a third alternative, a reference point, can

filter the naive pairwise preference between two alternative. This is indeed the essence of

the rational shortlist method introduced in Manzini and Mariotti (2007), where a DM uses

preference relations consecutively to rationalize her choice. To clarify, consider the following

scenario where a DM is choosing from Brands A-E with the following pairwise preference:

[
A ∼p B ∼p C

]
�p D ∼p E

Next assume from the respective of pairwisely dominated Brand D the follwoign rational

filtering is observed:

A �D B �D C.
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wick, NJ 08901-1248 (email: h.nosratabadi@rutgers.edu).

1

h.nosratabadi@rutgers.edu


and that Brand E induces the following rational filtering on the most favorite alternatives:

B ∼E C �E A.

The choice under classical rationality assumption, induced by the weak axiom of revealed

preferences, should be consistent with the pairwise choice and therefore consists of all ele-

ments A,B,C. However, under presence of the rational filter D choice will be filtered to only

A. On the other hand, and in the presence of E the choice should be refined to B,C. What

would be the “joint” effect of filters D,E? In particular, if the filters work sequentially then

the choice of C is not rationalizable, since after surviving the pairwise comparison, and E

filtering, C is ranked lower than B under D.

The rational filters in Manzini and Mariotti (2007) are exogenously given. The purpose of

this paper is to produce an axiomatic foundations for decision making where such sequential

rational filtering is endogenously produced. The approach taken in this paper is akin to the

one in Nosratabadi (2017). I show that how an extension of the model in that paper can help

to introduce the notion of join referential effect. Such phenomenon is absent in the results

in Nosratabadi (2017). The referential effects in this work are completely separable. This is

formalized in the main results of ht paper: the choice in any arbitrary set is characterized

with the alternative that has the highest number of reference preferences that puts it at top.

Obviously, from such a view, the only important information that a DM receives from refe-

rence preferences are the top class and ignores the information about the ranking that goes

beyond the top class.

1.1 Related Literature

The approaches that have been taken can are divided in two categories. rational, and

behavioral. In the latter category the models developed in Masatlioglu, Nakajima, and

Ozbay (2012) and Ok, Ortovela, and Riella (2015) capture the concept using the behavioral

notion of “inattention”. In the former category the results in Cherepanov, Feddersen, and

Sandroni (2013) and Nosratabadi (2017) provided explanation where rationals (reference

preference) are formed, respectively, exogenously and endogenously.

2 Preliminaries

Let X be a finite set. X is the set of all “relevant” alternatives for the DM. Therefore, it

contains not only the concrete options available to the DM, but also, for example, alternatives

that she has chosen before, or phantom alternatives that are not available to choose but
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presented to her (e.g., items that are out of stock, or shows that are sold out). In terms of

the nature of the elements, X might be alternatives available for grocery shopping, different

colleges to attend, various policies to be followed by the policy maker, etc. Let 2X be the

power set of X. Also let

Xk := {A ⊆ X : |A| = k};

that is the set of all subsets of X with cardinality equal to k, and

X
≥k

:= {A ⊆ X : |A| ≥ k};

that is the set of all subsets of X with cardinality of at least k. In order to simplify the

domain of the discussion on choice I only consider the sets that have at least two elements,

as the choice over the empty set and the singletons are trivially interpreted. Therefore let

X := X≥2. A choice correspondence on X is a function c : X → 2X such that for all A ∈ X

we have c(A) ⊆ A. c is called a non-empty valued choice correspondence if c(A) 6= Ø for all

A ⊆ X. We make the common notational abuses:

c{x, y, z} := c({x, y, z}) and c{x, y} := c({x, y}),

for all x, y, z ∈ X.

Let S ⊆ X. Unless otherwise stated, whenever used throughout this paper let S ∈ X≥3;

that is let S have at least three elements. Similar to X, for S let

Sk := {A ⊆ S : |A| = k} and S≥k := {A ⊆ S : |A| ≥ k}.

For x ∈ S let S − x := S \ {x}; that is the set which is derived by removing x from S.

A binary relation R on X is a subset of X×X. Let R be the asymmetric relation derived

from R; that is

xRy ⇐⇒ xRy and ¬(yRx).

A cycle of order k in R is a set {x1, x2, . . . , xk} with xi ∈ X such that

x1Rx2R . . . RxkRx1.

R is said to be acyclic if it does not posses any cycle of any order. A preference relation on

X is a binary relation which is transitive and complete. For a binary relation R on X, and
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S ⊆ X, x is called a maximum element of R on S if

xRy : ∀y ∈ S.

Let

argmax
S

R := {x ∈ S : x is a maximum for R on S};

x is called a maximal element of R on S if there does note exist y ∈ A such that yRx, where

R is the asymmetric relation derived from R.

A cover for S ⊆ X is a family of sets, {Ai}ni=1 such that Ai ⊆ S for all i and

S =
n⋃

i=1

Ai.

For a choice correspondence c define the relation %p on X by

x %p y ⇐⇒ x ∈ c{x, y}.

Let �p and ∼p be asymmetric and symmetric parts of %p. Note that %p matches the notion

of revealed preference in the sense of Samuelson (1938). We call %p the pairwise revealed

preference throughout this paper. We next define the key notion of references.

In order to extend the model in Nosratabadi (2017) to the case where reference have

correlated effect, it turns out, an expansion of the consideration sets with which a DM

makes here choice does the job. To do this let

S− = {S − x : x ∈ S}.

Note that here a DM considers her respective choice in all of the first-order diminished sets.

Next following the same idea introduce in Nosratabadi (2017) I introduce the axioms to be

used in the decomposition theorem by introducing the concepts of beating and dominance.

Definition 1. (Beating) Let S ⊆ X. For x, y ∈ S we say x beats y in S whenever x ∈ c(S)

and y /∈ c(S).

Definition 2. (Dominance) Let S ⊆ X. We say x dominates y in S and we write

x I
S
y,

if there exists Ā ∈ S− such that x beats y in Ā, and there does not exist A ∈ S− such that

y beats x in A.
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3 Choice Axioms

I start this section with a formal statement of WARP.

Axiom 0. (Weak Axiom of Revealed Preferences - WARP): We say a choice corre-

spondence c satisfies WARP if for S1, S2 ⊆ X such that x, y ∈ S1 ∩ S2 we have

x ∈ c(S1) and y ∈ c(S2) implies x ∈ c(S2).

Axiom 1. (Top-Down Rationality - TDR) We say S satisfies TDR if

x ∈ c(S) =⇒ x is a maximal element of I
S

.

We say a choice correspondence c satisfies TDR on S if all A ∈ S≥3 satisfy TDR. If S = X,

then we simply say c satisfies TDR.

Axiom 2. (Bottom-Up Rationality - BUR) We say S satisfies BUR if

x is a maximal element of I
S

=⇒ x ∈ c(S).

We say a choice correspondence c satisfies BUR on S if all A ∈ S≥3 satisfy BUR. If S = X,

then we simply say c satisfies BUR.

Axiom 3. (Pairwise Transitivity - PT) We say a choice correspondence c satisfies PT

on S if for all x, y, z ∈ S

x %p y and y %p z implies x %p z.

If S = X, then we simply say c satisfies PT.

Note that PT implies transitivity of both �p and ∼p. To conclude this section note that

from the structure of my axioms it follows that if c satisfies TDR (resp. BUR, PT), then

it satisfies TDR (resp. BUR, PT) on all S ⊆ X; that is these rationales are induced from

larger menus to smaller ones.

It turns out the same decomposition theorem works in this extended version of referential

revealed preference theory. This theorem is presented here.

Theorem 1. (Decomposition Theorem) Let c be a choice correspondence. Then the

following are equivalent:

(i) c is non-empty valued and satisfies WARP

(ii) c{x, y} 6= Ø for all x, y ∈ X and c satisfies TDR, BUR, and PT.
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4 Classical and Referential Decision Makers

Following Nosratabadi (2017) let me use the notation Ip(S) =: argmax
S

%p . Ip(S) is,

therefore, the set of best alternatives in S from the perspective of the pairwise revealed

preference. S is called fully indecisive if S ⊆ Ip(S).

Definition 3. (Referential DM: RDM) Let

A = {A ∈ S3 such that A is not fully indecisive }.

A choice correspondence c is called a RDM on S if

(i) c satisfies TDR and PT on S

(ii) c satisfies BUR for all A ∈ S≥3 \ A.

If S = X, then we simply say c is a RDM.

The basic properties of a RDM follows directly from the results in Nosratabadi (2017). In

particular, references are indeed elements of a lower indifference class and change the relative

importance of two more preferable alternatives.1. Also the decision maker still chooses an

alternative from the most preferable indifference class. That is c(S) ⊆ Ip(S) for all S ⊆ X.2

5 Reference Transitivity

Definition 4. (References) For a choice correspondence c and S ⊆ X we say r is a

reference in S if there exits two distinct elements x, y ∈ S, both different from r such that

c{x, y, r} ⊂ c{x, y}.

We say r is a maximal reference if there exists x, y ∈ Ip(S) such that

c{x, y, r} ⊂ c{x, y.}.

Definition 5. (Reference Relation) Let S ⊆ X and r ∈ R(S). For two distinct element

x, y ∈ S, both different from r, define

x %r y ⇐⇒ x ∈ c{x, y, r}.

Also let �r and ∼r be the asymmetric and symmetric parts of %r.

1See Proposition ??? in Nosratabadi (2017)
2See Proposition ??? in Nosratabadi (2017).
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As shown in Nosratabadi (2017) if c is non-empty valued then %r defines a complete and

acylic binary relation on Ip(S).3. In order to make the choice of a DM more structured I

strengthen the latter result by enforcing transitivity of reference as an axiom.

Axiom 4. (Reference Transitivity - RT): %r defines a transitive binary relation on

Ip(S).

6 Main Results

The referential effects produced in Nosratabadi (2017) are completely separable. In particu-

lar, the from Theorem ??? it follows that a choice in a set is characterized by the element(s)

that have the “most number” of references. That is the effect of references from the re-

spective of the DM are completely separable. Let me consider a example here. Suppose that

the menu in a restaurant included the item {x, y, z, r1, r2}. DM’s preferences on the menu

is defined by

x ∼p y ∼p z �p r1 ∼p r2.

Next assume that r1, r2 are maximal referneces that produce the following reference prefe-

rence relation over the most favorable alternatives; that is Ip(S) = {x, y, z}:

r1 : x �r1 y �r1 z,

r2 : y ∼r2 z �r2 x.

That is from the perspective of r1 DM likes x the best, and from the perspective of r2 does

y, z. If DM completely separates the referential effects then the choice in the menu would

consist of {x, y, z} = Ip(S). That is DM’s acts as her behavior was satisfying WARP. On

the other hand it is viable to think that a DM considers the join effects of the references.

That is after adopting to a reference point r1 she further “filters” her choice by adopting

to r2 and vice versa.4. In this example under r1 the unique most preferable alternative is x

and applying r2 does not change the choice. However, y, z are most preference under r2 but

y �r1 z. If referential effects are joint then the choice of z is not desirable from the DM.

To make this formal, let S ⊆ X be a set that has at most two maximal reference. Let

3See Proposition ??? and Theorem ??? in Nosratabadi (2017)
4This indeed is generalizing the notion of sequential rationality introduced in Manzini and Mariotti

(2007)
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M1(S) = argmax
Ip(S)

%r1 . For a reference r1, define

r12(S) = argmax
M1(S)

%r2 ,

and respectively,

r21(S) = argmax
M2

%r1 .

Also define

r(S) = r12(S) ∪ r21(S).

Note that if there are no maximal references in S then r(S) = Ip(S). Also Let argmax
Ip(S)

%r1r2=

argmax
Ip(S)

%r1 ∩ argmax
Ip(S)

%r2 . The next theorem formalized the notion of joint referential effect.

Theorem 2. Let S ⊆ X have at most two maximal references. Then

c(S) = r(S).

The results in Theorem 2 shows the endogenous formation of the notion of rational short-

list model introduced in Manzini and Mariotti (2007). The two preferences are exogenously

given in their work. From the point of view of joint referential effects introduce in this

paper, a rational referential DM has a “naıve” preference which is free of referential effects.

Such preference however get updated adopting to reference points one after the other. The

order does not matter here and the results are consisted of both directions of the reference

influence.

7 Appendix

7.1 Proof of Decomposition Theorem

Since under WARP there are no reference, therefore B(S) in Nosratabadi (2017) is indeed

S− and the proof coincidences with the proof of Theorem 1 in Nosratabadi (2017).

7.2 Proof of Theorem 2

7.2.1 The Case of No Maximal Reference

Lemma 6. Let c be a RDM. If x ∈ c{x, y, z} for all pair of distinct elements y, z ∈ S, both

different from x, then x ∈ c(S).
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Proof. We prove this by induction on |S|. For |S| = 3 there is nothing to prove. Assume

that the statement is true for all the sets with cardinality k. Let |S| = k + 1 and take x ∈ S

be such that x ∈ c{x, y, z} for all two distinct elements y, z ∈ S, both different from x. Let

xS− = {A ∈ S− : x ∈ A}.

Obviously xS− 6= Ø. Take A ∈ xS−. Note that since

x ∈ c{x, y, z},

for two distinct elements y, z ∈ S and, since A ⊆ S, we conclude that

x ∈ c{x, y, z},

for two distinct elements y, z ∈ A, both different from x. Finally induction assumption

implies that x ∈ c(A). Since A was an arbitrary element of xS− we conclude x is chosen in

all elements of xS−. This means x is not dominated by any element of S. Therefore BUR

implies that x ∈ c(S). �

Lemma 7. If R
M

(S) = Ø then c(S) = Ip(S).

Proof. Assume RM(S) = Ø. We need to show c(S) = Ip(S). First note that in the proof

of Lemma ??? (⇒) we only used TDR. Since an RDM satisfies TDR we conclude that from

Lemma ??? (⇒) that c(S) ⊆ Ip(S). So we only need to prove Ip(S) ⊆ c(S). Take x ∈ Ip(S)

and consider the set {x, y, z} for two distinct elements y, z ∈ S, both different from x.

Step 1: R{x, y, z} = Ø.

Proof. By contradiction assume R{x, y, z} 6= Ø. First note that by Proposition ??.ii it has

to be the case that there is only one reference in {x, y, z}. Second by Corollary ?? and the

fact that x ∈ Ip(S) we conclude x /∈ R(S). Wlog, assume z is the reference in {x, y, z}.
Then it has to be the case that

c{x, y, z} ⊂ c{x, y},

which implies c{x, y} = {x, y}, which in turn implies y %p x. Since x ∈ Ip(S) PT implies

y ∈ Ip(S). This means z ∈ RM(S) which is not possible. This completes the proof of Step

1. �

Step 2: x ∈ c{x, y, z}.
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Proof. From Step 1 we have R{x, y, z} = Ø. Therefore

B{x, y, z} =
{
{x, y}, {y, z}, {x, z}

}
.

We first argue that y or z can not be the single choice in c{x, y, z}. To do this, and wlog,

assume c{x, y, z} = {y}. Then TDR implies y %p x which in turn means x, y ∈ Ip(S). Then

we conclude that

c{x, y, z} ⊂ c{x, y},

which means z is a maximal reference in S which is impossible. Second assume {y, z} ⊆
c{x, y, z}. We show that x ∈ c{x, y, z}. From TDR we conclude y, z %p x and, since

x ∈ Ip(S), it follows that x, y, z ∈ Ip(S) which means {x, y, z} is fully indecisive. Using

Proposition ??.i we conclude c{x, y, z} = {x, y, z} which obviously means x ∈ c{x, y, z}.
Since c{x, y, z} 6= Ø the proof of this Step 2 is complete. �

To finish the proof note that by Lemma 6.ii we conclude x ∈ c(S). This means Ip(S) ⊆
c(S). Therefore c(S) = Ip(S). �

7.3 The Case of Single Maximal Reference

Lemma 8. If R
M

(S) = {r} then c(S) = argmax
Ip(S)

%r.

Proof. We prove this by induction on |S|. For k = 3 assume S = {x1, x2, r}. Obviously

x ∈ c{x1, x2, r} if and only if x ∈ argmax
Ip(S)

%r . Now assume for |S| = k the statement is

true and let |S| = k + 1. First note that c(S) ⊆ Ip(S). Take x ∈ c(S). First note that

by Theorem 7 we conclude that c(S − r) = Ip(S). Assume there exists y ∈ S and A ∈ S−

such that y beats x in A. Therefore r ∈ A and by induction assumption y �r x. Note that

y ∈ Ip(S). This means y beats x in all elements of S− except S− r. Since y ∈ c(S− r) then

we conclude x does not beat y in any elements of S− and therefore y I
S
x. This contradicts

the assumption that x ∈ c(S) and c satisfies TDR. This establishes that c(S) ⊆ argmax
Ip(S)

%r.

To show the other inclusion take x ∈ argmax
Ip(S)

%r. Note that by induction assumption

and since x ∈ argmax
Ip(S−)

%r for all t 6= r we conclude x ∈ c(S − r). Also since x ∈ Ip(S) we

conclude from Theorem 7 that x ∈ c(S − r). Now BUR implies x ∈ c(S). This establishes

that argmax
Ip(S)

%r⊆ c(S). Therefore the proof is complete. �
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7.3.1 The Case of Double Maximal References

Lemma 9. (WARP Lemma) Let % be a preference relation on S ⊆ X. For A ⊆ B ⊆ S

we have

argmax
B

% ∩ A = argmax
A

%,

whenever argmax
B

% ∩ A 6= Ø.

Proof. Take x ∈ argmax
B

% ∩ A. Obviously x ∈ A. Also x % y for all y ∈ B ⊇ A

and therefore x ∈ argmax
A

% . To see the other inclusion take x ∈ argmax
A

%. Since

argmax
B

% ∩ A 6= Ø also take y ∈ argmax
B

% ∩ A. Since y ∈ A and x ∈ argmax
A

%

we conclude x % y. Since y ∈ argmax
B

% it follows that y % t for all t ∈ B. Therefore

transitivity of % implies x % t for all t ∈ B, which in turn means x ∈ argmax
B

%. Finally

x ∈ A and we conclude x ∈ argmax
B

% ∩ A. �

Lemma 10. The following are true:

(i) x ∈ r(S) then x ∈ argmax
Ip(S)

%rt for some t ∈ {1, 2}.

(ii) For x ∈ r(S) if y �r1 x then x �r2 y.

(iii) For x, y ∈ r12(S) we have x ∼ri y for all i ∈ {1, 2}.

Proof. (i) Wlog, assume that x ∈ r12(S). Then

x ∈ argmax
M1(S)

%r2

this means x ∈M1(S) = argmax
Ip(S)

%r1

(ii) Since y �r1 x then we conclude that x /∈M1(S) and therefore x /∈ r12(S). This means

x ∈ r21(S) = argmax
M2(S)

%r1 . Since y �r1 x then then we conclude y /∈ M2(S), which by

transitivity of %r2 and the fact that x ∈M2(S) implies x �r2 y.

(iii)

x, y ∈ r12(S) = argmax
M1(S)

%r2

This, first means x, y ∈M1(S) and therefore x ∼r1 y, second, x ∼r2 y.

�
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Lemma 11. The followings are true:

i. If xi ∈ r(S) then xi ∈ r(S − xt) for t 6= i.

ii. argmax
Ip(S)

%r1r2 6= Ø if and only if r(S) = argmax
Ip(S)

%r1r2

Proof. i . Take xi ∈ r(S) and t 6= i. Wlog assume xi ∈ r12(S), so xi ∈ argmax
Ip(S)

%r1 .

First note that by WA Lemma we conclude

xi ∈ argmax
Ip(S)

%r1 ∩ Ip(S − xt) = argmax
Ip(S−xt)

%r1 .

Let N(S) = argmax
Ip(S)

%r1 and N(S−xt) = argmax
Ip(S−xt)

%r1 . Note that xi ∈ N(S−xt)∩N(S).

This latter fact means N(S− xt) ⊆ N(S). To see that note take xj ∈ N(S− xt). This

means xj %r1 x. Since xi ∈ N(S) and x∈S from transitivity of %r1 it follows that

xj ∈ N(S). Next using WA Lemma one more time we conclude

xi ∈ argmax
N1(S)

%r2 ∩ N1(S − xt) = argmax
N1(S−xt)

%r2= r12(S − xt) ⊆ r(S − xt)

ii. (⇐): Since r(S) 6= Ø then this is obvious.

(⇒): Now assume argmax
Ip(S)

%r1r2 6= Ø and take xi ∈ argmax
Ip(S)

%r1r2 . Then we have

xi ∈M1(S) and since M1(S) ⊆ Ip(S) by WA Lemma

xi ∈ argmax
Ip(S)

%r2 ∩M1(S) = argmax
M1(S)

%r2= r12(S) ⊆ r(S).

This establishes that argmax
Ip(S)

%r1r2⊆ r(S). Now take xi ∈ r(S). By contradiction

assume xi /∈ argmax
Ip(S)

%r1r2 . Since this latter set is non-empty take xj ∈ argmax
Ip(S)

%r1r2 .

Wlog, it follows that xj �r1 xi. This means xi /∈ M1(S) which in turn means xi /∈
r12(S). Also since xj ∈ M2(S) and xj �r1 xi it follows that x /∈ r21(S) and therefore

xi /∈ r(S). This is a contradiction. This establishes that xi ∈ argmax
Ip(S)

%r1r2 and

therefore r(S) = argmax
Ip(S)

%r1r2

�

Theorem 2. Let S ⊆ X have at most two maximal references. Then

c(S) = r(S)
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Proof. Let S = {x1, x2, . . . , xn, r1, r2}. We prove the result by induction on n.

Induction Base: (⇒) For k = 2 assume S = {x1, x2, r1, r2} and assume wlog x1 ∈ c(S).

If x1 %ri x2 for all i ∈ {1, 2} then x ∈ argmax
Ip(S)

%ri for all i ∈ {1, 2} and therefore x ∈ r(S).

So assume there exists i ∈ {1, 2} such that x2 �ri x1. Then TDR implies x1 �rj x2 for j 6= i

which implies x1 ∈ rji(S) ⊆ rirj(S).

(⇐) Now assume x1 ∈ r(S). We show that x2 does not dominate x1 in S (that is we

show that x2 I
S
x1 is not true). For this assume, wlog, x2 �r1 x1, then x1 /∈ r12(S) which

implies x1 ∈ r21(S). This means x1 �r2 x2. Therefore BUR implies x1 ∈ c(S).

Induction Assumption: Assume that for S with n − 1 non-maximal reference elements

the statement is true and assume S has n non-maximal reference elements.

(⇒): Let xi ∈ c(S).

Claim: xi ∈ argmax %ri for some i ∈ {1, 2}.

Proof. By contradiction assume that xi /∈ argmax
Ip(S)

%rt for all t ∈ {1, 2}. Take xj ∈ r(S).

Then Lemma 11.ii and for all t /∈ {i, j} we conclude from induction assumption that

xi ∈ c(S − xt).

Next note that since xj ∈ r(S) then Lemma 10.ii, and wlog, xj ∈ argmax
Ip(S)

%r1 . Since

xi /∈ argmax
Ip(S)

%r1 Then Lemma 8 implies that c(S − r2) ∩ {xi, xj} = {xj}. This means that

xj beats xi in S − r2. By the argument before we also conclude that xi does not beat xj in

all A ∈ S− and therefore xj I
S
xi. This contradicts xi ∈ c(S) and the fact that c satisfies

TDR. �

To complete the proof we consider two cases:

Case I: If xi ∈ argmax
Ip(S)

%r1r2 by Lemma 11.ii then xi ∈ r(S) and the proof is complete.

Case II: Wlog, assume that xi ∈ argmax
Ip(S)

%r1 and xi /∈ argmax
Ip(S)

%r2 . Note that the latter,

by Lemma 8 implies that xi /∈ c(S − r1). Obviously xi /∈ r21(S). By contradiction assume

xi /∈ r12(S). Take xj ∈ argmax
Ip(S)

%r1 such that xj ∈ r12(S). Note that since r12(S) 6= Ø
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such xj exists. Next note that it has to be the case that xj �r2 xi. Now consider the set

S − xt for t /∈ {i, j}. By Lemma 11.i xj ∈ r(S − xt). Also xi /∈ r(S − xt) which by induction

hypothesis implies xi /∈ c(S− xt). This means xj beats xi in S− xt. Since xj, xi ∈ c(S− r2)

and xi /∈ c(S − r1) it follows that xi does not beat xj in any elements of S− which in turn

means xj I
S
xi. This contradicts the fact that xi ∈ c(S) and c satisfies TDR.

(⇐): Now assume that xi ∈ r(S). First note that by Lemma 11.i xi ∈ r(S − xt) and by

induction assumption xi ∈ c(S − xt) for all t 6= i. Wlog, assume xi ∈ argmax
Ip(S)

%r1 , which

implies xi ∈ c(S − r2). If xi ∈ argmax
Ip(S)

%r2 then xi ∈ c(S − r1) and BUR implies xi ∈ c(S).

So take xj such that xj �r2 xi . Therefore Lemma 8 implies that xj beats xi in S− r1. Since

xi ∈ r(S) this implies xi ∈ argmax
Ip(S)

%r1 . Next by Lemma 10.iii xi �r1 xj and therefore xi

beats xj in S − r2. Now from BUR it follows that xi ∈ c(S). �
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