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Fictitious Play in Networks*1

Christian Ewerharty Kremena Valkanovaz2

June 14, 20193

Abstract. This paper studies �ctitious play in networks of noncooperative two-4

person games. We show that continuous-time �ctitious play converges to the set5

of Nash equilibria if the overall n-person game is zero-sum. Moreover, the rate of6

convergence is 1=� , regardless of the size of the network. In contrast, arbitrary n-7

person zero-sum games with bilinear payo¤ functions do not possess the continuous-8

time �ctitious-play property. As extensions, we consider networks in which each9

bilateral game is either strategically zero-sum, a weighted potential game, or a two-10

by-two game. In those cases, convergence requires a condition on bilateral payo¤s or,11

alternatively, that the network is acyclic. Our results hold also for the discrete-time12

variant of �ctitious play, which implies, in particular, a generalization of Robinson�s13

theorem to arbitrary zero-sum networks. Applications include security games, con�ict14

networks, and decentralized wireless channel selection.15
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1. Introduction1

Fictitious play (Brown, 1949, 1951; Robinson, 1951) refers to a class of simple and2

intuitive models of learning in games. The common element of such models is that a3

player is assumed to respond optimally to an evolving belief on the behavior of her4

opponents, where the player�s belief at any point in time is formed on the basis of5

the empirical frequencies of strategy choices made by her opponents up to that point.6

Understanding the conditions under which �ctitious play converges to Nash equilib-7

rium is important because such results help to clarify the intuition that equilibrium8

play may be reached even if players are not perfectly rational.1 While variants of9

�ctitious play are known to converge in large classes of two-person games, the case of10

n-person games has been explored to a somewhat lesser extent.211

Inspired by recent developments in the literature (Daskalakis and Papadimitriou,12

2009; Cai and Daskalakis, 2011; Cai et al., 2016), the present paper studies the dy-13

namics of �ctitious play in general classes of network games. We start by considering14

what we call zero-sum networks (Bregman and Fokin, 1987, 1998; Daskalakis and15

Papadimitriou, 2009; Cai and Daskalakis, 2011; Cai et al., 2016). These are n-person16

zero-sum games that can be represented as a network of two-person games. This class17

of games is actually quite large and includes practically relevant examples of resource18

allocation games such as generalized Blotto and security games. Our �rst main result19

1The literature on �ctitious play is too large to be surveyed here. For an introduction to the
theory of learning in games, see Fudenberg and Levine (1998). The literature on learning in social
networks has been surveyed by Acemoglu and Ozdaglar (2011). For a concise discussion of epistemic
vs. dynamic foundations of Nash equilibrium, see Krishna and Sjöström (1997).

2Positive convergence results allowing for more than two players have been established, in partic-
ular, for games solvable by iterated dominance (Milgrom and Roberts, 1991), games with identical
interests (Monderer and Shapley 1996b; Harris, 1998), and certain classes of star-shaped network
games (Sela, 1999). Shapley (1964) pointed out that �ctitious play need not converge to Nash equi-
librium in two-person non-zero-sum games, and he also noted that this observation extends to games
with more than two players. A three-person non-zero-sum counterexample has been constructed by
Jordan (1993). See also Gaunersdorfer and Hofbauer (1995).
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says that any continuous-time �ctitious-play (CTFP) path in a zero-sum network1

converges in payo¤s to zero at rate 1=� (where � denotes time), regardless of the size2

of the network. In particular, CTFP converges to the set of Nash equilibria in any3

zero-sum network. However, as we also show with an example, arbitrary n-person4

zero-sum games with bilinear payo¤ functions need not possess the CTFP property,5

i.e., the network assumption is crucial for our conclusions.6

To prove our continuous-time convergence result, we employ the standard Lya-7

punov approach (Brown, 1951; Hofbauer, 1995; Harris, 1998; Berger, 2006; Hofbauer8

and Sorin, 2006; Hofbauer and Sandholm, 2009). Thus, we consider a Lyapunov9

function that aggregates, across all players in the network, the maximum payo¤ that10

could be obtained by optimizing against the empirical frequency distribution of prior11

play. It is then shown that the Lyapunov function diminishes along the CTFP path12

as � ! 1. In slight departure from the literature, however, this property is estab-13

lished by putting an upper bound on a Dini derivative instead of calculating the usual14

(directional) derivate. As we argue in an Appendix, this may be seen as a certain15

simpli�cation vis-à-vis existing proofs.316

To gauge the role of the zero-sum assumption, we consider three additional classes17

of network games. First, we look at networks of strategically zero-sum games, or18

con�ict networks.4 Thus, each bilateral game in the network is assumed to be best-19

response equivalent in mixed strategies to a zero-sum game. Moulin and Vial (1978)20

noted that �ctitious play converges in this class of two-person games. In con�ict21

3Driesen (2009) persues an alternative route to simpli�cation, yet at the cost of assuming pure
choices, which might interfere with existence (cf. Harris, 1998, p. 242). See also Shamma and Arslan
(2004) who unify existing Lyapunov arguments in a set-up with a �soft-max�best response.

4Recent papers that look at con�ict networks include Bozbay and Vesperoni (2018), Dziubiński
et al. (2016a), Franke and Öztürk (2015), Huremovíc (2014), Jackson and Nei (2015), König et al.
(2017), Kovenock et al. (2015), Kovenock and Roberson (2018), Matros and Rietzke (2018), and Xu
et al. (2019), among others. For a survey, see Dziubiński et al. (2016b).

2



networks, CTFP converges as well, provided that valuations in the bilateral games1

satisfy a condition that we call pairwise homogeneity of valuations. This assump-2

tion is satis�ed, for example, in transfer networks considered by Franke and Öztürk3

(2015). When valuations are heterogeneous, however, convergence need not hold in4

general. Intuitively, the aggregation of bilateral payo¤s does not commute with the5

equivalence relation, because payo¤ transformations that turn two bilateral games6

into zero-sum games need not be identical. We illustrate this possibility with an7

example of a network con�ict that does not settle down under CTFP even though8

the unique Nash equilibrium is peaceful. But convergence can still be obtained with9

heterogeneous valuations when the underlying network is acyclic, i.e., when it is a dis-10

joint union of trees.5 Second, we assume that bilateral games are weighted potential11

games. Applications include channel selection problems in wireless communication12

networks, and the spreading of ideas and technologies over social networks, for in-13

stance. Extending the analysis of Cai and Daskalakis (2011), we show that CTFP14

converges to equilibrium in any network of exact potential games. However, as we15

illustrate with still another example, �ctitious play need not converge in general net-16

works of weighted potential games. Instead, in analogy to the previously considered17

case, the convergence result holds for weighted potential games under the condition18

that the underlying network structure is acyclic. Third, by combining our �ndings19

for con�ict networks with pairwise homogeneous valuations and for networks of exact20

potential games, we obtain a generalization of Miyasawa�s (1961) theorem to network21

games on arbitrary graphs.22

As an extension, the paper looks at discrete-time �ctitious play (DTFP), gener-23

alizing Robinson�s (1951) famous result for two-person zero-sum games to arbitrary24

5E.g., any star-shaped network considered by Sela (1999) is acyclic, but the network shown in
Figure 1 below is not acyclic.
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n-person zero-sum networks, and showing that any DTFP is belief a¢ rming, which1

extends a result of Monderer et al. (1997). Finally, we discuss the possibility of2

correlated beliefs which is a relevant aspect in multiplayer games.3

Related literature. The �rst paper studying �ctitious play in an environment4

similar to ours is Sela (1999). His observation was that some of the convergence5

results for two-person games generalize quite easily to n-person games with a �one-6

against-all� structure. In that setting, one player located in the center of the star-7

shaped network chooses a compound strategy that is the same in every bilateral8

interaction. Then, the network game can be transformed into a two-person game in9

which the choices of the peripheral players are orchestrated by a single agent that10

maximizes the sum of the payo¤s of those players. Under a speci�c tie-breaking rule,11

the DTFP process in the reduced game turns out to be identical, for any given initial12

condition, to the DTFP process in the �one-against-all�game. Thereby, DTFP and13

CTFP properties in the network game can be established as a corollary of results for14

two-person games, provided that the bilateral games are all of the same type, like15

zero-sum, with identical payo¤s, or generic two-by-two. It is, however, not obvious16

how this approach could be applied to networks that are not star-shaped.6 The17

present paper extends the results of Sela (1999) to general network structures. We18

also drop the tie-breaking rule and deal more explicitly with the case of CTFP.19

An interesting recent strand of literature, related to the interdisciplinary �eld of20

algorithmic game theory, has taken up the study of networks of two-person games.721

Cai et al. (2016) have clari�ed how far results traditionally known only for two-person22

zero-sum games (such as solvability by a linear program, existence of a value, equiva-23

6Daskalakis and Papadimitriou (2009) make a related point in their discussion of the complexity
of computing Nash equilibrium in networks of zero-sum games.

7Network games have, of course, a long tradition in game theory. See, e.g., the recent survey by
Bramoullé and Kranton (2016) and references given therein.
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lence of max-min and equilibrium strategies, exchangeability of Nash equilibria, and1

the relationship to coarse correlated equilibrium) can be extended to zero-sum net-2

works. Moreover, in that class of games, discrete-time no-regret learning algorithms3

converge to the set of Nash equilibria (Daskalakis and Papadimitriou, 2009; Cai and4

Daskalakis, 2011).8 As will be discussed, those results do not allow any immediate5

conclusions regarding the convergence of �ctitious play in zero-sum networks. How-6

ever, our convergence result for discrete-time �ctitious play (Proposition 5) certainly7

has a similar �air as the existing results regarding no-regret behavior.8

Another natural class of network games is de�ned by the requirement that players9

possess identical payo¤ functions in each bilateral game (Cai and Daskalakis, 2011).910

Under the condition that pairwise interactions are games with identical payo¤s, the11

network game is shown to possess an exact potential, which implies that, in this12

class of games, certain learning algorithms converge to equilibrium. In particular,13

the discrete dynamics of pure best responses converges to the set of Nash equilibria.14

However, Cai and Daskalakis (2011) do not discuss �ctitious play.15

The remainder of this paper is structured as follows. Section 2 contains preliminar-16

ies. Convergence of CTFP in zero-sum networks is established in Section 3. Section17

4 deals with additional classes of games. DTFP is considered in Section 5. Section 618

discusses correlated beliefs. Section 7 concludes. Appendices provide auxiliary results19

from the literature, details on two of our examples, and a discussion of the case of20

two-person zero-sum games.21

8Under no-regret behavior, a player�s expected payo¤ against past play is asymptotically weakly
lower than her average payo¤ experience. An example is the multiplicative-weights adaptive learning
algorithm (Freund and Schapire, 1999). See Cesa-Bianchi and Lugosi (2006). For useful discussions
of the relationship between no-regret learning and �ctitious play, see Hart and Mas-Colell (2001)
and Viossat and Zapechelnyuk (2013).

9This class includes, e.g., binary coordination games, as considered by Bramoullé and Kranton
(2016, Prop. 3). See also Bramoullé et al. (2014) and Bourlès et al. (2017). For early uses of
potential methods in network models, see Blume (1993) and Young (1993).
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2. Preliminaries1

2.1 Network games2

There is a �nite set V = f1; :::; ng of players (countries, �rms, consumers, political3

institutions, etc).10 Let E � V �V be a set of bilateral relationships. Any two players4

i; j 2 V are either in interaction (i.e., (i; j) 2 E) or not (i.e., (i; j) =2 E). Thus, the5

pair (V;E) is a graph, and we assume that it is (i) undirected (i.e., 8i; j : (i; j) 2 E ,6

(j; i) 2 E) and (ii) irre�exive (i.e., 8i : (i; i) =2 E).11 Each edge (i; j) 2 E represents a7

�nite two-person game Gij between players i and j, where we assume that Gij and Gji8

refer to the same game, yet in the �rst (second) case from i�s (from j�s) perspective.9

The respective sets of bilateral strategies for players i and j in Gij will be denoted10

by Sij and Sji. Similarly, payo¤ functions for players i and j in Gij will be denoted11

by uij : Sij � Sji ! R and uji : Sji � Sij ! R, respectively. Note that the �rst12

argument in a bilateral payo¤ function uij always refers to player i�s strategy. E.g.,13

in the expression u21(s21; s12), strategy s21 is 2�s bilateral strategy vis-a-vis player 1,14

and s12 is 1�s bilateral strategy vis-a-vis player 2.15

Figure 1. A network game.

10Finiteness of the network seems essential for the convergence of �ctitious play. However, we
have not looked speci�cally into this issue. Blume (1993) studies the strategic interaction of players
that are located on an in�nite lattice. Morris (2000) considers best-response dynamics in locally
�nite networks of coordination games.
11While the network structure (V;E) is exogenous, our set-up is consistent with the assumption

that players strategically choose a subset of their neighbors as (potential) partners (see, e.g., Jackson,
2005). Along these lines, the dynamic evolution of a network is subsumed as well.
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Let N(i) = fj : (i; j) 2 Eg denote the set of player i�s neighbors. Figure 1 shows1

a network with three players, each of them interacting with two neighbors. As usual,2

the number of neighbors of a player corresponds to the player�s degree as a node in3

the network of interactions. In the example, the network is complete, but this is not4

assumed.12 Let ? 6= Xi � �j2N(i) Sij denote the set of multilateral strategies of5

player i (defense policies, trade quotas, promotional strategies, prices, invitation or6

acceptance of friendship, etc.).7

For a given multilateral strategy xi 2 Xi of player i, we denote by �ij(xi) = sij 28

Sij the corresponding bilateral strategy vis-a-vis player j. Going over all neighbors of9

player i, it becomes clear that any multilateral strategy xi 2 Xi may be considered as a10

vector of bilateral strategies xi = fsijgj2N(i) = f�ij(xi)gj2N(i). It is important to note11

that we allow for Xi (�j2N(i) Sij, which is the interesting case in most applications.12

For example, there could be budget constraints, limited resources (e.g., planes in a13

military con�ict), or constraints regarding price coherence across platforms.14

An important special case arises if bilateral and multilateral strategy spaces coin-15

cide, i.e., if �ij de�nes a one-to-one correspondence Xi ' Sij for any i 2 V and any16

j 2 N(i). In that case, player i�s multilateral strategy xi 2 Xi implements the same17

compound strategy xi ' sij in each bilateral game with neighbor j 2 N(i), so that18

Xi corresponds to the diagonal in�j2N(i) Sij. Settings along these lines have been19

considered, in particular, by Sela (1999) and Cai et al. (2016), and will also be used20

in our examples. Clearly, our set-up is no less general than those settings.21

12We shall use standard terminology of graph theory (see, e.g., Bollobás, 2013). Thus, a network
(V;E) is complete if N(i) = V nfig for all i 2 V ; it is acyclic when there is no �nite sequence of
pairwise distinct players i1; :::; i� 2 V with � � 3 such that (i1; i2) 2 E, (i2; i3) 2 E,..., (i��1; i�) 2 E,
and (i�; i1) 2 E; a network is star-shaped if there is a player i 2 V such that N(i) = V nfig and
N(j) = fig for any j 2 V nfig; �nally, a network is connected if, for any i; j 2 V with i 6= j, there is
a �nite sequence i1; i2; :::; i� 2 V with i1 = i and i� = j such that (i1; i2) 2 E, (i2; i3) 2 E,..., and
(i��1; i�) 2 E.
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In an n-player network game G, each player i 2 f1; :::; ng chooses a multilateral1

strategy xi 2 Xi, and receives payo¤2

ui(xi; x�i) � ui(xi; xN(i)) =
X
j2N(i)

uij(�ij(xi); �ji(xj)), (1)

where x�i 2 X�i =�j 6=iXj speci�es a multilateral strategy for every player j 6= i3

di¤erent from player i, while xN(i) = fxjgj2N(i) 2 XN(i) = �j2N(i)Xj speci�es a4

multilateral strategy for every neighbor j 2 N(i). Re�ecting the local nature of5

interaction and payo¤s, it will be assumed below that each player i forms a belief6

about xN(i) only, rather than about x�i. While this assumption is not required for7

our results, it may be considered somewhat more plausible in a learning context.8

Finally, let X =�n

i=1Xi denote the set of multilateral strategy pro�les in G.9

We denote by �(Xi) the set of player i�s mixed multilateral strategies. Thus,10

any �i 2 �(Xi) is a (column) vector representing a probability distribution on Xi.11

Payo¤ functions extend to mixed multilateral strategies in the usual way. Speci�cally,12

if ��i 2�j 6=i�(Xj) is a pro�le of mixed strategies for all players except player i,13

and if �N(i) 2 �j2N(i)�(Xj) denotes the resulting pro�le of mixed strategies for14

the neighbors of player i, then player i�s expected payo¤ from the mixed strategy15

�i 2 �(Xi) is given by ui(�i; ��i) = E[ui(xi; x�i)] = ui(�i; �N(i)) = E[ui(xi; xN(i))],16

where the expectations are taken with respect to (�i; ��i) and (�i; �N(i)), respectively.17

Player i�s mixed best-response correspondence MBRi assigns to any pro�le �N(i) 218

�j2N(i)�(Xj) the set of mixed strategies ��i 2 �(Xi) such that ui(��i ; �N(i)) =19

max�i2�(Xi) ui(�i; �N(i)). Further, the mixed best-response correspondence MBR of20

the network game G assigns to any pro�le � = (�1; :::; �n) 2�n

i=1�(Xi) the Carte-21

sian product MBR(�) =�n

i=1MBRi(�N(i)). Since strategy spaces are �nite, a mixed-22

strategy Nash equilibrium �� = (��1; :::; �
�
n), i.e., a �xed point of MBR, exists by Nash�s23

theorem.24

8



2.2 Continuous-time �ctitious play with independent beliefs1

We start by considering the learning process in continuous time (Brown, 1951; Rosen-2

müller, 1971). Moreover, we will initially assume that beliefs formed by a player are3

independent across neighbors, so that empirical frequencies are accounted for as mar-4

ginal distributions only. Note that this latter assumption is consistent with a common5

interpretation of �ctitious play, according to which players take it as given that their6

opponents adhere to some independently chosen mixed strategy. Both assumptions7

will be relaxed in later sections of this paper.8

Let m : [0;1) ! �(X1) � ::: ��(Xn) be a measurable path specifying, for any9

point in time � � 0 and for any player i 2 f1; :::; ng, a mixed strategy mi(�) 2 �(Xi).10

As time is continuous, independent averaging over time amounts to integrating the11

components ofm over a non-degenerate interval. Consequently, the (continuous-time)12

independent average � : (0;1)! �(X1)� :::��(Xn) of the path m is de�ned, for13

any time � > 0 and for any player i 2 f1; :::; ng, by the belief14

�i(�) � �i(�;m) =
1

�

Z �

0

mi(�
0)d� 0 2 �(Xi). (2)

We will use the following de�nition of continuous-time �ctitious play.15

De�nition 1. (CTFP) A continuous-time �ctitious play (with independent beliefs)16

is a measurable mapping m : [0;1) !�n

i=1�(Xi) such that m(�) 2 MBR(�(�))17

for all � � 1.18

Thus, De�nition 1 requires optimality at any point in time � � 1, whereas the closely19

related notion of CTFP1 used by Harris (1998) demands optimality at almost any20

point in time.1321

13A formal de�nition of CTFP1 is provided in Appendix A. Which de�nition one is using is, to
our understanding, a matter of taste. E.g., Ostrovski and van Strien (2014) use CTFP for n = 2
players. In any case, all of our results remain valid when CTFP is replaced by CTFP1.

9



The following lemma assures us of the existence of a CTFP learning process.1

Lemma 1. A CTFP exists.2

Proof. By Lemma A.1 in the Appendix, a measurable path bm : [0;1)!�n

i=1�(Xi)3

exists such that bm(�) 2 MBR(�(�; bm)) for all � 2 [1;1)nN , where N � R is a set4

of measure zero. We construct a modi�ed path m : [0;1)!�n

i=1�(Xi) by letting5

m(�) = bm(�) for any � 2 [0;1)nN , and by choosing a mixed best response m(�) 26

MBR(�(�; bm)) for any � 2 N . Then, clearly, �(�;m) = �(�; bm) for any � � 1, so7

that m(�) 2 MBR(�(�;m)) for any � � 1. The claim follows. �8

The proof is based upon an existence result of Harris (1998) for CTFP1 paths.149

The CTFP1 path is modi�ed by replacing any suboptimal mixed best response by an10

optimal mixed best response. Since the original path is changed on a set of measure11

zero, averages stay the same, and the resulting path is a continuous-time �ctitious12

play according to De�nition 1.13

Next, we de�ne convergence of CTFP in a given network game G. Recall that,14

for an arbitrary measurable path m : [0;1)! �(X1)� :::��(Xn), the independent15

average � 7! �(�) � �(�;m) is a continuous path in the space of mixed strategy16

pro�les, �(X1)� :::��(Xn). Denote by A(m) the set of all accumulation points of17

�(:;m).15 Convergence in continuous time is then de�ned by the requirement that18

A(m) is a subset of the set of Nash equilibria of G.19

De�nition 2. A path m is said to converge to the set of Nash equilibria if every limit20

distribution �� 2 A(m) is a Nash equilibrium in G.21

14For a formal statement, see Appendix A.
15Thus, A(m) consists of all strategy pro�les that are limit points of some convergent sequence of

independent averages, f�(�q;m)g1q=1, where f�qg1q=1 is any sequence in [1;1) such that limq!1 �q =
1. Because the set of mixed strategy pro�les �(X1)� :::��(Xn) is compact, there will be at least
one such limit point, i.e., A(m) 6= ?.

10



The reader is cautioned that convergence is to a set where all points are Nash equi-1

libria, meaning that the trajectory of the CTFP dynamics might not converge to a2

speci�c Nash equilibrium. Only if the Nash equilibrium is unique, convergence im-3

plies that the trajectory will converge to a single point. We will say that G has the4

continuous-time �ctitious-play property if any CTFP in G converges to the set of5

Nash equilibria.6

It should be noted at this point that a network player that optimizes simultane-7

ously against several opponents behaves di¤erently from an unconstrained player in8

a bilateral game. Indeed, as pointed out by Sela (1999, Ex. 4 & 6), the �ctitious-play9

property in the bilateral games (regardless of whether it holds in continuous or discrete10

time) is not generally informative about the corresponding property in the network11

game. Thus, even if two bilateral games have the �ctitious-play property, this need12

not be the case for the network game (potentially after eliminating weakly dominated13

strategies). Conversely, if neither of the bilateral games possesses the �ctitious-play14

property, the network game may still possess the �ctitious-play property.15

3. Zero-sum networks16

By a zero-sum network, we mean a network game G that is zero-sum as an n-person17

game, i.e., a network game in which u1 + ::: + un � 0. Clearly, if each bilateral18

game Gij in a given network is two-person zero-sum, i.e., if uij + uji � 0 for any19

i; j 2 f1; :::; ng with j 6= i, then the network game G is an n-person zero-sum game.20

However, the converse is not generally true. Moreover, even if payo¤s are given in21

the n-person normal form, there are e¢ cient ways to check if the game is a zero-sum22

network.1623

16In the literature, zero-sum networks are known as zero-sum polymatrix games or separable zero-
sum multiplayer games. For additional background and discussion, see Bregman and Fokin (1987,
1998), Daskalakis and Papadimitriou (2009), Cai and Daskalakis (2011), and Cai et al. (2016).
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The following result is the �rst main result of the present paper.1

Proposition 1. Any zero-sum network G has the CTFP property.2

Proof. For an arbitrary pro�le of mixed strategies � = (�1; :::; �n) 2 �(X1) � ::: �3

�(Xn), we de�ne the Lyapunov function4

L(�) =
nX
i=1

max
xi2Xi

�
ui(xi; �N(i))� ui(�i; �N(i))

	
, (3)

where �N(i) = f�jgj2N(i) denotes the restriction of � to the neighbors of player i. As5

a direct consequence of the de�nition, L(�) � 0. Further, given that G is an n-person6

zero-sum game, we may rewrite the Lyapunov function as7

L(�) =
nX
i=1

��
max
xi2Xi

ui(xi; �N(i))

�
� ui(�i; �N(i))

�
(4)

=

 
nX
i=1

max
xi2Xi

ui(xi; �N(i))

!
�

nX
i=1

ui(�i; �N(i))| {z }
=0

(5)

=
nX
i=1

max
xi2Xi

ui(xi; �N(i)). (6)

Take a CTFP path m : [0;1)! �(X1)� :::��(Xn), and let �(�) � �(�;m) denote8

the independent average at some point in time � > 1. Then, becausemi(�) is a mixed9

best response to �N(i)(�) for i 2 f1; :::; ng, and because interactions are bilateral,10

L(�(�)) =
nX
i=1

ui(mi(�); �N(i)(�)) (7)

=
nX
i=1

X
j2N(i)

uij(mi(�); �j(�)) (8)

=

nX
i=1

X
j2N(i)

mi(�) � Aij�j(�), (9)

where Aij is the matrix of player i�s payo¤s in the bilateral game Gij, i.e.,1711

17Here and in the sequel, the thick dot � denotes the scalar product between two vectors.
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�i � Aij�j � uij(�i; �j). (10)

Multiplying the expression for L(�(�)) found in (9) by � , and subsequently using the1

de�nition of �j(�), yields2

�L(�(�)) =
nX
i=1

X
j2N(i)

mi(�) � Aij
Z �

0

mj(�
0)d� 0. (11)

Consider now a player i 2 f1; :::; ng, and some b� 2 (1; �). Then, given that mi(b�) is3

a mixed best response to �N(i)(b�), we have4 X
j2N(i)

mi(b�) � Aij�j(b�) � X
j2N(i)

mi(�) � Aij�j(b�). (12)

Adding up across players, and subsequently multiplying through with b� , one obtains5

b�L(�(b�)) � nX
i=1

X
j2N(i)

mi(�) � Aij
Z b�
0

mj(�
0)d� 0. (13)

Subtracting inequality (13) from equation (11), one arrives at6

�L(�(�))� b�L(�(b�)) � nX
i=1

X
j2N(i)

mi(�) � Aij
Z �

b� mj(�
0)d� 0. (14)

We divide this inequality by � �b� > 0 and consider the limit for b� ! � . Then, by the7

fundamental theorem of calculus, the limit on the right-hand side exists for almost8

any � > 1, in which case9

lim supb�!�;b�<�
�L(�(�))� b�L(�(b�))

� � b� �
nX
i=1

X
j2N(i)

mi(�) � Aijmj(�) = 0. (15)

Thus, the upper-left Dini derivative of �L(�(�)) is a.e. weakly negative. Since, in10

addition, the mapping � 7! �L(�(�)) is continuous, this implies that �L(�(�)) is11

monotone decreasing (cf. Royden, 1988, p. 99). Hence, there is a constant C � 0 such12

that L(�(�)) � C=� for any � � 1. Noting that the individual terms of the Lyapunov13

function (3) are all positive, we therefore obtain for any player i 2 f1; :::; ng and for14

any pure strategy xi 2 Xi that15

ui(xi; �N(i)(�))� ui(�i(�); �N(i)(�)) �
C

�
(� � 1). (16)
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Take now any accumulation point �� 2 A(m) of the path �(:). Then, there ex-1

ists a sequence f�qg1q=1 in [1;1) such that limq!1 �q = 1 and limq!1 �(�q) = ��.2

Evaluating (16) at � = �q, and considering the limit for q !1, shows that3

ui(xi; �
�
N(i))� ui(��i ; ��N(i)) � 0, (17)

i.e., xi is not a pro�table deviation for player i. Since the inequality holds for any4

i 2 f1; :::; ng and any xi 2 Xi, the strategy pro�le �� is necessarily a Nash equilibrium.5

This completes the proof. �6

Thus, the convergence result for two-person zero-sum games extends to zero-sum7

networks in a rather straightforward way. It may be noted that Proposition 1, in8

particular, provides a proof of existence of a Nash equilibrium in the considered class9

of n-person games.1810

Apart from a minor modi�cation (see Appendix C for details), the proof presented11

above follows the literature by combining the Lyapunov method with an envelope ar-12

gument (Brown, 1951; Hofbauer, 1995; Harris, 1998; Berger, 2006; Hofbauer and13

Sorin, 2006; Hofbauer and Sandholm, 2009). Intuitively, L(�) measures each player�s14

scope for individual improvement relative to �, and aggregates the result across all n15

players in the network. Then, as equation (11) shows, the product �L(�(�)) corre-16

sponds to the total (across all players in the network) of the maxima over �cumulative17

payo¤s.�However, the network game is zero-sum, so that the sum of instantaneous18

payo¤s vanishes. Therefore, �L(�(�)) cannot increase in � .1919

Regarding the rate of convergence, we mention that a minor re�nement of the proof20

18However, in contrast to the case of two-person zero-sum games, this observation does not imply
a minmax theorem for zero-sum networks. For a generalization of the minmax theorem to zero-sum
networks, the reader is referred to Cai et al. (2016).
19An alternative way to establish Proposition 1 would involve showing that any zero-sum network

(considered as a population game with unit-sized populations) is stable in the sense of Hofbauer and
Sandholm (2009). We are grateful for Josef Hofbauer for pointing this connection out to us.
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shows that, as in the case of two-person zero-sum games considered by Harris (1998),1

the rate of convergence in payo¤s, i.e., the rate by which the Lyapunov function2

approaches zero, is precisely 1=� .3

Corollary 1. The rate of convergence of CTFP in any zero-sum network is 1=� .4

Proof. It su¢ ces to note that, while inequality (14) holds likewise for any b� 2 (�;1),5

the direction of the inequality is reversed when dividing by � � b� < 0. Considering6

then the lower-right Dini derivative, the mapping � 7! �L(�(�)) is seen to be not7

only monotone decreasing, but also monotone increasing, hence constant. �8

The observation that the rate of convergence does not depend on the size of the9

network may be surprising. However, it should be noted that convergence is measured10

here on the aggregate level. Thus, for a large network, the value of the Lyapunov11

function provides little information about the scope of improvement that is feasible12

for an individual player. Therefore, it might indeed take longer in a larger network13

to reach, say, an "-equilibrium.14

One might conjecture that the zero-sum property alone is su¢ cient to guarantee15

convergence of CTFP also in n-person games with n � 3. However, as a straightfor-16

ward adaption of Shapley�s (1964) example illustrates, this is not the case. I.e., there17

are multiplayer zero-sum games in which CTFP need not converge.18

Example 1. (Three-person zero-sum game) Consider the following game G119

between three players:2020

20Here and elsewhere in the paper, payo¤ vectors are arranged diagonally in each box, starting
with player 1�s payo¤ in the respective upper-left corner.

15



Figure 2. The game G1.

In G1, player 1 and player 2 each have three pure strategies, whereas player 3 has just1

one pure strategy. Therefore, to see what happens in equilibrium or under �ctitious2

play, player 3 may be safely ignored. But with player 3 eliminated from the game,3

the two-person game between players 1 and 2 is of the Shapley (1964) type, so that4

nonconvergence obtains.215

Example 1 shows that the network assumption in Proposition 1 cannot be easily6

dropped. Actually, the example shows a bit more, namely that CTFP need not7

converge even in a three-person zero-sum game with bilinear payo¤s. To see the point,8

note that the payo¤ functions in the mixed extension of G1 are indeed bilinear. E.g.,9

player 3�s payo¤ reads10

u3 = (�1)�

0@ prfx1 = Tgprfx2 = Lg+ prfx1 = Mgprfx2 = Lg
+ prfx1 = Mgprfx2 = Mg+ prfx1 = Bgprfx2 = Mg
+ prfx1 = Tgprfx2 = Rg+ prfx1 = Bgprfx2 = Rg

1A . (18)

Thus, to obtain the conclusion of Proposition 1, it does not in general su¢ ce to11

21That conclusion does not depend on the fact that player 3 has only one strategy. In fact,
we have constructed (details omitted) an example of a 2 � 2 � 2 zero-sum game with a Shapley
hexagon, similar to the three-person non-zero-sum example of Jordan (1993). On a related note, we
conjecture that Example 1 as well as the later examples of the present paper could be made robust
by introducing additional strategies for all players.
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assume that payo¤s may be represented as a sum of bilinear terms.221

While the network assumption in Proposition 1 cannot be easily dropped, the2

zero-sum assumption may be relaxed to a certain extent for convergence in network3

games, as will be discussed in the next section.4

4. Additional classes of network games5

4.1 Con�icts6

A bilateral game Gij will be called a con�ict if there exist valuations vij > 0 and7

vji > 0, success functions pij : Sij � Sji ! [0; 1] and pji : Sji � Sij ! [0; 1], as well as8

cost functions cij : Sij ! R and cji : Sji ! R such that9

uij(sij; sji) = pij(sij; sji)vij � cij(sij), (19)

uji(sji; sij) = pji(sji; sij)vji � cji(sji), (20)

and10

pij(sij; sji) + pji(sji; sij) = 1 (21)

hold for any sij 2 Sij and sji 2 Sji. Examples include discrete variants of probabilistic11

contests (Tullock, 1980; Hirshleifer, 1989; Lazear and Rosen, 1981), the �rst-price all-12

pay auction (Baye et al., 1996), and Colonel Blotto games (Roberson, 2006).2313

A network game G will be called a con�ict network if the bilateral game Gij is14

a con�ict for each pair (i; j) 2 E. We will say that a con�ict network has pairwise15

22To resolve the apparent contradiction, it su¢ ces to note that in a network game, any bilinear
term arising in u3 would have to multiply a probability of a pure strategy for player 3 with a
probability of a pure strategy for another player. In relationship (18), however, u3 contains bilinear
terms that combine a probability of a pure strategy for player 1 with a probability of a pure strategy
for player 2, which is inconsistent with the de�nition of a network game. We are grateful to one of
the anonymous reviewers for hinting towards this distinction.
23The class of con�icts de�ned above corresponds precisely to the class of strategically zero-sum

games (Moulin and Vial, 1978). However, we will use the terminology of con�ict because it is more
suggestive and because it allows making an important distinction (homogeneous vs. heterogeneous
valuations) that is absent from the theory of strategically zero-sum games but crucially needed
below.
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homogeneous valuations if valuations of two players coincide in any pairwise con�ict,1

i.e., if vij = vji for any (i; j) 2 E. An example is Franke and Öztürk�s (2015) transfer2

network where the net valuations of winning a con�ict are assumed identical across3

players. If valuations are not pairwise homogeneous, we will (somewhat loosely) say4

that the con�ict network exhibits heterogeneous valuations.5

Proposition 1 can be extended to these additional classes of games as follows.6

Proposition 2. Let G be either (i) a con�ict network with pairwise homogeneous7

valuations, or (ii) an acyclic con�ict network. Then, G has the CTFP property.8

Proof. (i) Starting from the con�ict network G, we construct another network game9 eG on the same graph and with identical strategy sets by letting payo¤s in the bilateral10

game eGij be given by11

euij(sij; sji) = uij(sij; sji)� vij
2
+ cji(sji). (22)

Then, clearly, player i�s payo¤ function in eG reads12

eui(xi; xN(i)) = X
j2N(i)

euij(�ij(xi); �ji(xj)) (23)

= ui(xi; xN(i))�
X
j2N(i)

nvij
2
� cji(�ji(xj))

o
, (24)

which shows that eG is best-response equivalent in mixed strategies to G.24 We claim13

that each bilateral game eGij is two-person zero-sum. Indeed, for any pair (i; j) 2 E,14

using (19-21) and vij = vji, we have15

24We call two network games G and eG best-response equivalent in mixed strategies (Monderer and
Shapley, 1996b; Morris and Ui, 2004) if for any i 2 f1; :::; ng and any �N(i) 2 �(XN(i)), we have
argmax�i2�(Xi) ui(�i; �N(i)) = argmax�i2�(Xi) eui(�i; �N(i)). Because of the network structure,
it actually su¢ ces to check the condition for any �N(i) 2 �j2N(i)�(Xj), rather than for any
�N(i) 2 �(XN(i)) (cf. Section 6).
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euij(sij; sji) + euji(sji; sij)
= uij(sij; sji)�

vij
2
+ cji(sji) + uji(sji; sij)�

vji
2
+ cij(sij) (25)

= pij(sij; sji)vij � cij(sij)�
vij
2
+ cji(sji)

+ pji(sji; sij)vji � cji(sji)�
vji
2
+ cij(sij) (26)

= 0, (27)

which proves the claim. As a result, eG is a zero-sum network. By Proposition 1,1

CTFP converges in eG. Using the best-response equivalence in mixed strategies, both2

the set of continuous-time �ctitious plays and the set of Nash equilibria are the same3

for G and eG. Hence, CTFP converges also in G.4

(ii)Without loss of generality, the network may be assumed to be connected. The5

set of players can then be partitioned into a �nite number of subsets V0; V1; :::; VL,6

where i 2 V` for ` 2 f0; :::; Lg if and only if the graph-theoretic distance between7

players 1 and i equals `. See Figure 3 for illustration.8

Figure 3. Partitioning the set of nodes in an acyclic network.
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Thus,1

V0 = f1g, (28)

V1 = N(1), and (29)

V` = f
[

i2V`�1
N(i)gnV`�2 (` = 2; :::; L). (30)

We will describe an iterative construction that transforms the con�ict network with2

bilateral payo¤ function uij and heterogeneous valuations vij into a con�ict network3

with bilateral payo¤ functions buij and homogeneous valuations bvij. For this, we4

initialize the iteration by letting bu1j = u1j and bv1j = v1j for any neighbor j 2 N(1).5

We start now with ` = 1 and consider some player j 2 V`. Since the network is6

acyclic, there is precisely one player i 2 V`�1 such that j 2 N(i). We rescale player7

j�s payo¤ function ujk in her relationship with any neighbor k 2 N(j) by letting8

bujk(sjk; skj) = bvij
vji
� ujk(ski; sik), (31)

so that player j�s valuation becomes9

bvjk = bvij
vji
� vjk. (32)

Since the factor (bvij=vji) does not depend on the neighbor k 2 N(j), such rescaling10

does not a¤ect player j�s multilateral best-response correspondence. Moreover, in11

the special case k = i, the resulting bilateral game bGij (with payo¤ functions buij for12

player i and buji for player j) is a con�ict with homogeneous valuations, since bvji = bvij13

by equation (32). Once this is accomplished for any j 2 V`, the running index ` is14

incremented, and the rescaling procedure repeated. After the iteration has reached15

` = L, we end up with a con�ict network bG with pairwise homogeneous valuations16

that is best-response equivalent in mixed strategies to G. Convergence of CTFP17

follows, therefore, from part (i). �18
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The intuition is as follows. If valuations are homogeneous, then each bilateral game1

is essentially a constant-sum game with costly strategies.25 Suppose that the cost2

of a player in any bilateral con�ict is not lost, but reaches the other player as a3

subsidy. Then, as the size of the subsidy does not depend on the player�s choice4

of strategy, her best-response correspondence remains una¤ected. However, if the5

subsidy is implemented in any bilateral con�ict, the network game becomes constant-6

sum, and we are done. If valuations are heterogeneous, and the underlying network7

structure is acyclic, then the con�ict network can be transformed into a con�ict8

network with pairwise homogeneous valuations by a simple iteration that starts at9

player 1 and works its way through the tree, where in each step, valuations and cost10

functions of a new set of players are rescaled so as to render the backward-looking11

con�ict homogeneous.12

However, rescaling does not work in general con�ict networks. Indeed, as the fol-13

lowing example illustrates, �ctitious play need not converge in cyclic con�ict networks14

with heterogeneous valuations.15

Figure 4. Fictitious play need not converge in a network of con�icts.

25This useful interpretation is borrowed from Ben-Sasson et al. (2007).
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Example 2. (Network of con�icts) Suppose there are three players i = 1; 2; 3,1

where X1 = X2 = X3 = fL;Hg. The network structure is a triangle. In the network2

game G2, each bilateral game is a con�ict with heterogeneous valuations. Speci�cally,3

one assumes4

vi;i+1 = 6, vi;i�1 = 3, (33)

ci;i+1(L) = ci;i�1(L) = 0, ci;i+1(H) = ci;i�1(H) = 1 (34)

pi;i+1(H;L) = 3
4
, pi;i+1(L;H) = 1

3
, pi;i+1(L;L) = pi;i+1(H;H) = 1

2
, (35)

where i + 1 refers to player 1 if i = 3, and similarly, i� 1 refers to player 3 if i = 1.5

Denote by ri = prfxi = Hg the probability that player i uses strategy H. There is6

a unique Nash equilibrium (r�1; r
�
2; r

�
3) = (0; 0; 0).26 Moreover, �ctitious play need7

not converge to equilibrium, but may follow a triangle-shaped path that runs in a8

round-robin fashion through the points9

:::! p1 = (
2
7
; 4
7
; 1
7
)! p2 = (

1
7
; 2
7
; 4
7
)! p3 = (

4
7
; 1
7
; 2
7
)! :::, (36)

as illustrated in Figure 4. On the linear segment from p1 to p2, for instance, players10

1 and 2 each choose L, while player 3 chooses H, so that the process moves in the11

direction of the corner point (0; 0; 1). A similar logic applies to the other two segments12

of the triangle. Thus, the dynamic con�ict does not settle down, which shows that13

the assumption of homogeneous valuations cannot be dropped in general.14

4.2 Potential games15

We introduce notions of increasing �exibility �rst for bilateral games and then for16

network games. A bilateral game Gij is said to possess identical payo¤ functions17

if uij(sij; sji) = uji(sji; sij) for all sij 2 Sij and sji 2 Sji. A bilateral game Gij is18

26So all players would choose the e¤ort level L. For proofs, see Appendix B.
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an exact potential game (Monderer and Shapley, 1996a) if there exists a potential1

function Pij : Sij � Sji ! R such that2

uij(sij; sji)� uij(bsij; sji) = Pij(sij; sji)� Pij(bsij; sji), (37)

uji(sji; sij)� uji(bsji; sij) = Pij(sij; sji)� Pij(sij; bsji), (38)

for all sij; bsij 2 Sij and sji; bsji 2 Sji. Next, a bilateral game Gij is a weighted3

potential game (Monderer and Shapley, 1996a) if there exists a potential function4

Pij : Sij � Sji ! R as well as weights wij > 0 and wji > 0 such that5

uij(sij; sji)� uij(bsij; sji) = wij fPij(sij; sji)� Pij(bsij; sji)g , (39)

uji(sji; sij)� uji(bsji; sij) = wji fPij(sij; sji)� Pij(sij; bsji)g , (40)

for all sij; bsij 2 Sij and sji; bsji 2 Sji.27 Potential games and weighted potential games6

belong to the class of games with identical interests (Monderer and Shapley, 1996b),7

i.e., they are best-response equivalent in mixed strategies to a game with identical8

payo¤ functions.28 A network game G will be said to be an exact potential network9

if all bilateral games Gij are exact potential games. Finally, a network game G will10

be referred to as a weighted potential network if all bilateral games Gij are weighted11

potential games.12

Cai and Daskalakis (2011) have shown that if all bilateral games in a network13

have identical payo¤ functions then the network game admits an exact potential14

(the welfare function). The following result applies their reasoning, but also o¤ers15

some extensions because bilateral games may here be exact potential games or even16

27The following observation shows that the notation need not lead to confusion: Let Gij be a
weighted potential game with potential Pij and weight wij for player i and weight wji for player j.
De�ne a potential Pji : Sji � Sij ! R by Pji(sji; sij) = Pij(sij ; sji). Then, the bilateral game Gji
(i.e., the game Gij with the roles of players i and j exchanged) is a weighted potential game with
potential Pji and weight wji for player j and weight wij for player i.
28Thus, games with identical interests relate to games with identical payo¤ functions in the same

way as strategically zero-sum games relate to zero-sum games.
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weighted potential games. We also use a slightly di¤erent proof. Speci�cally, we1

construct the potential of the network game as the sum over all potentials rather2

than as the sum over all payo¤ functions. Moreover, in the case of weighted potential3

games, we employ a similar induction argument as in the proof of Proposition 2(ii).4

Proposition 3. Let G be either (i) an exact potential network, or (ii) a weighted5

potential network on an acyclic graph. Then, G has the CTFP property.6

Proof. (i) Suppose that G is an exact potential network. Since any bilateral game7

Gij is an exact potential game, there exists a potential function Pij : Sij � Sji ! R8

such that equations (37) and (38) hold for any sij; bsij 2 Sij and sji; bsji 2 Sji. In9

particular, by exchanging the roles of players i and j in equation (38) and comparing10

with (37), we obtain11

Pij(sij; sji)� Pij(bsij; sji) = Pji(sji; sij)� Pji(sji; bsij). (41)

Consider now the aggregate potential P : X ! R de�ned through12

P(x) = 1

2

X
(i;j)2E

Pij(sij; sji), (42)

where sij = �ij(xi) 2 Sij and sji = �ji(xj) 2 Sji. It is claimed that P is an exact13

potential for G. For this, �x a player i 2 f1; :::; ng. Then, for any xi 2 Xi, bxi 2 Xi,14

and x�i 2 X�i, writing bsij = �ij(bxi) 2 Sij, it is straightforward to check that15

ui(xi; x�i)� ui(bxi; x�i)
=
(1)

X
j2N(i)

fuij(sij; sji)� uij(bsij; sji)g (43)

=
(37)

X
j2N(i)

fPij(sij; sji)� Pij(bsij; sji)g (44)

=
(41)

1

2

8<: X
(i;j)2E

fPij(sij; sji)� Pij(bsij; sji)g+ X
(j;i)2E

fPji(sji; sij)� Pji(sji; bsij)g
9=; (45)
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=
1

2

8>><>>:
X
(i;j)2E

Pij(sij; sji) +
X
(j;i)2E

Pji(sji; sij) +
X

(j;k)2E
j 6=i6=k

Pjk(sjk; skj)

9>>=>>;
� 1
2

8>><>>:
X
(i;j)2E

Pij(bsij; sji) + X
(j;i)2E

Pji(sji; bsij) + X
(j;k)2E
j 6=i6=k

Pjk(sjk; skj)

9>>=>>; (46)

=
(42)

P(xi; x�i)� P(bxi; x�i). (47)

Hence, P is indeed an exact potential for the n-person game G. Therefore, from1

Lemma A.2 in the Appendix, any CTFP1 converges to the set of Nash equilibria.2

Since every CTFP is, in particular, a CTFP1, also any CTFP converges to the set of3

Nash equilibria.4

(ii) From the weighted potential network G, an exact potential network bG is5

constructed as follows. We start by assigning players to subsets V0; V1; :::; VL according6

to their distance ` from player 1, as in the proof of Proposition 2. Then, we initiate7

an iteration by letting ` = 1. Consider any player j 2 V`, and recall that there8

is precisely one player i 2 V`�1 such that j 2 N(i). By assumption, the bilateral9

game Gij is a weighted potential game. Therefore, there exists a potential function10

Pij : Sij � Sji ! R, as well as weights wij > 0 and wji > 0 such that (39) and (40)11

hold for any sij; bsij 2 Sij and sji; bsji 2 Sji. Note that Pij may be chosen such that12

wij = 1. Given this normalization, we rescale all bilateral payo¤ functions of player13

j by letting bujk = ujk=wji, for any k 2 N(j). Then, the bilateral game bGij with14

payo¤ functions buij = uij for player i and buji = uji=wji for player j is easily seen to15

admit the exact potential Pij. Moreover, any bilateral game Gjk with k 6= i remains16

a weighted potential game when ujk is replaced by bujk. All players j 2 V` are dealt17

with in this fashion. Then, the index ` is incremented, and the iteration continued.18

When the iteration ends at ` = L, the bilateral games bGij form an exact potential19
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network bG. Moreover, since each player�s payo¤ has merely been rescaled, bG is best-1

response equivalent in mixed strategies to the weighted potential network we started2

from. Hence, invoking part (i), CTFP converges to the set of Nash equilibria. �3

The intuition of the �rst part is simple. Because bilateral games possess exact poten-4

tials, the aggregate potential re�ects incentives precisely as the network game.29 The5

intuition of the second part is very similar to Proposition 2(ii).6

Sela (1999, Prop. 12) has shown that a star-shaped network of generic weighted7

potential two-by-two games is, when reduced to a two-person game, best-response8

equivalent in mixed strategies to a game with identical payo¤ functions. This implies9

the CTFP property. Proposition 3 shows that the �one-against-all�assumption, the10

assumption on the number of strategies, and the genericity of payo¤s may be dropped11

without weakening the conclusion.12

The following example shows that a general network consisting of weighted po-13

tential games need not have the �ctitious-play property.14

Example 3. (Network of weighted potential games) Consider the following15

game G3 between three players i = 1; 2; 3, each of them having two compound strate-16

gies, i.e., X1 = X2 = X3 = fH;Lg. Bilateral payo¤s are speci�ed in Figure 5.17

Figure 5. A network of weighted potential games.

29Extending the proof, one can easily convince oneself that arbitrary networks (i.e., hypergraphs)
of multiplayer exact potential games admit an exact potential.

26



Thus, each player is involved in two coordination games, where for player i, co-1

ordination with player i� 1, is more valuable than coordination with player i + 1.302

Moreover, there is a twist in the coordination between players 1 and 3. The game3

G3 admits a unique Nash equilibrium in which each player randomizes with equal4

probability over her two alternatives. However, CTFP runs inde�nitely through the5

hexagonal cycle6

:::! p1 = (a; b; c)! p2 = (1� c; a; b)! p3 = (1� b; 1� c; a)! (48)

! p4 = (1� a; 1� b; 1� c)! p5 = (c; 1� a; 1� b)! p6 = (b; c; 1� a)! :::,

where (a; b; c) = (4
9
; 8
9
; 7
9
), and the entries correspond to the respective probabilities of7

choosing H. Figure 6 shows a numerical �ctitious-play path approaching the hexagon.8

Figure 6. A network of weighted potential games without the CTFP property.

In contrast to the case of zero-sum networks, we make no claims whatsoever regarding9

the rate of convergence in networks of weighted potential games.3110

30We use the same notational conventions as in the previous example. Further, all proofs related
to Example 3 can be found in Appendix B.
31However, a recent paper by Swenson and Kar (2017) might throw some light on this di¢ cult

question.
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4.3 Two-by-two games1

Finally, we consider two-by-two games, i.e., two-person games in which each player2

has just two strategies.32 It will be recalled (e.g., Krishna and Sjöström, 1997, Prop.3

3) that any two-by-two game without weakly dominated or identical strategies is best-4

response equivalent in mixed strategies to either a zero-sum game or to a game with5

identical payo¤ functions. Miyasawa�s theorem is therefore customarily presented as6

a corollary of the corresponding results for those classes of games. The approach will7

be similar here.8

A network game G will be called a network of strategically similar two-by-two9

games if (i) Xi has precisely two elements, for any i 2 f1; :::; ng, and (ii) either all10

bilateral games Gij are con�icts with pairwise homogeneous valuations, or all bilateral11

games Gij admit an exact potential.12

Proposition 4. Let G be a network of strategically similar two-by-two games. Then,13

G has the CTFP property.14

Proof. Immediate from Propositions 2 and 3. �15

Proposition 4 extends Miyasawa�s theorem to arbitrary network structures. As seen16

above, the assumptions on the bilateral games can be relaxed if the underlying network17

structure is acyclic. This implies, in particular, a related result by Sela (1999, Cor.18

13) for star-shaped networks. However, Examples 2 and 3 show that it is not possible19

to generalize Proposition 4 to arbitrary networks of strategically zero-sum games, nor20

to arbitrary networks of weighted potential games.3321

32Miyasawa (1961) has shown that (discrete-time) �ctitious play converges in every two-by-two
game. That result was later seen to depend on a particular tie-breaking rule (Monderer and Sela,
1996). With generic payo¤s, however, the theorem holds. For further discussion of this important
special case, see Metrick and Polak (1994), Monderer and Sela (1997), and Sela (1999).
33Similarly, it does not seem possible to obtain a general convergence result in mixed networks,

i.e., in networks where some bilateral games are zero-sum, while others re�ect identical interests.
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5. Discrete-time �ctitious play1

While the continuous-time variant of �ctitious play considered above is analytically2

more convenient, there are reasons to be interested also in the discrete-time variant.3

For instance, the �rst major result in the literature by Robinson (1951) concerned4

the discrete-time process in two-person zero-sum games. It has often been suggested5

that the two processes should behave similarly. This is also intuitive because the in-6

cremental changes in the discrete-time process become smaller and smaller over time.7

Harris (1998) has developed a very useful approach that, indeed, allows transferring8

results for the continuous-time case to the discrete-time case. Below, we will use his9

approach to extend some of our conclusions to the case of DTFP.3410

In contrast to the analysis so far, time progresses now in stages. At any given11

stage t 2 N0 = f0; 1; 2; :::g, each player i 2 f1; :::; ng is assumed to choose a pure12

multilateral strategy yi(t) 2 Xi.35 We denote by �yi(t) 2 �(Xi) the Dirac measure13

on Xi that places all probability weight on yi(t). Then, the empirical frequencies14

of pure-strategy choices made by player i before stage t 2 N = f1; 2; 3; :::g may be15

summarized in the discrete-time independent average16

�di (t) � �di (t; y(:)) =
1

t

t�1X
t0=0

�yi(t
0). (49)

Let �d(t) 2 �(X1)� :::��(Xn) denote the (column) vector whose i-th entry is �di (t).17

For any pro�le �N(i) 2�j2N(i)�(Xj), we will write BRi(�N(i)) for the set of pure18

strategies yi 2 Xi such that the corresponding Dirac measure �yi 2 �(Xi) satis�es �yi 219

34The idea is to make a change in the time scale, such that the di¤erential inclusion de�ning the
continuous-time process becomes autonomous and, in fact, equivalent to the best-response popula-
tion dynamics, as in Gilboa and Matsui (1991) and Matsui (1992). Thereby, as detailed in Harris
(1998) and Hofbauer and Sorin (2006), it is feasible to exploit the near-convergence of a su¢ ciently
delayed discrete-time process. That method of proof extends to arbitrary �nite n-person games in
which �ctitious play converges uniformly across initial conditions (cf. Hofbauer, 1995, p. 23). It
follows from the proof of Proposition 1 that the class of zero-sum networks satis�es this condition.
35It can be checked that our results hold likewise, with essentially unchanged proofs, when DTFP

is de�ned in terms of mixed strategies.
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MBRi(�N(i)). Further, for a pro�le of mixed strategies � = (�1; :::; �n) 2�n

i=1�(Xi),1

let BR(�) =�n

i=1BRi(�N(i)).2

De�nition 3. (DTFP) A discrete-time �ctitious play in the network game G is3

a sequence of multilateral pure-strategy pro�les y(:) = fy(t)g1t=0 such that, for some4

t� 2 N, it holds that y(t) 2 BR(�d(t; y(:))) for any t � t�.5

Thus, in a DTFP y(:), there is a stage t� � 1 from which onwards players optimize6

against historical averages of their neighbors�past behavior. However, there is no7

restriction on choices before stage t�.8

For a given DTFP y(:) = fy(t)g1t=0, the corresponding sequence of independent9

averages f�d(t)g1t=1 de�ned in (49) is a sequence in �(X1)� :::��(Xn). We denote10

by Ad(y(:)) the set of all accumulation points of f�d(t)g1t=1.11

De�nition 4. A sequence of multilateral pure-strategy pro�les y(:) = fy(t)g1t=0 is12

said to converge to the set of Nash equilibria if every limit distribution �� 2 Ad(y(:))13

is a Nash equilibrium in G.14

In analogy to the continuous case, we will say that G has the discrete-time �ctitious-15

play property if any DTFP in G converges to the set of Nash equilibria. The following16

result generalizes Robinson�s (1951) theorem to n-person zero-sum networks.17

Proposition 5. Any zero-sum network G has the DTFP property.18

Proof. The proof has three parts. It is shown �rst that, for any DTFP, the corre-19

sponding process of discrete-time independent averages solves a particular di¤erence20

inclusion. Subsequently, we verify that the set of Nash equilibria in G is a global21

uniform attractor36 of the best-response population dynamics (Gilboa and Matsui,22

36See Appendix A for de�nitions and additional background.
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1991; Matsui, 1992). Finally, we apply an approximation result of Hofbauer and1

Sorin (2006) to conclude that any accumulation point of the process of discrete-time2

independent averages is a Nash equilibrium.3

(i) Take a zero-sum network G and a DTFP process y(:) = fy(t)g1t=0 in G. Thus,4

y(:) = fy(t)g1t=0 is a sequence in X such that, for some t� 2 N, it holds that y(t) 25

BR(�d(t; y(:))) for any t � t�. Fix some player i 2 f1; :::; ng and some t � t�. Then,6

by simple algebraic manipulation,7

�di (t+ 1) =
1

t+ 1

tX
t0=0

�yi(t
0) (50)

=
1

t+ 1
�yi(t) +

1

t+ 1

t�1X
t0=0

�yi(t
0) (51)

=
1

t+ 1
�yi(t) +

t

t+ 1
�di (t). (52)

Hence, recalling that �yi(t) 2 MBRi(�dN(i)(t)), the discrete-time process f�d(t)g1t=1 of8

independent averages is seen to solve the di¤erence inclusion9

�d(t+ 1) 2 1

t+ 1
MBR(�d(t)) +

t

t+ 1
�d(t), (53)

for any t � t�.10

(ii) Let ZG ��n

i=1�(Xi) denote the set of Nash equilibria in G. We claim that11

ZG is a global uniform attractor of the di¤erential inclusion12

_z 2 MBR(z)� z. (54)

To see this, let " > 0, and take some solution z of (54). Then, z : [0;1) !13

�n

i=1�(Xi) is an absolutely continuous mapping satisfying14

@z(e�)
@e� 2 MBR(z(e�))� z(e�) (55)

at all points in time e� 2 [0;1) at which z is di¤erentiable. Let now � = exp(e�),15

and de�ne the rescaled solution � : [1;1) !�n

i=1�(Xi) associated with z by the16
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relationship �(�) = z(e�). Then, clearly, @z(e�)=@e� = � � (@�(�)=@�). Using (55), we1

get2

@(��(�))

@�
= � � @�(�)

@�
+ �(�) 2 MBR(�(�)) (56)

at all � � 1 where � is di¤erentiable. Since � is absolutely continuous, the set3

N� of points where � is not di¤erentiable has measure zero. Choose now a path4

m : [0;1)!�n

i=1�(Xi) satisfying m(�) = �(1) for � 2 [0; 1), m(�) = @(��(�))=@�5

for � 2 [1;1)nN� , and m(�) 2 MBR(�(�)) for � 2 N� . Then, from equation (2), for6

any i 2 f1; :::; ng and any � � 1,7

�i(�;m) =
1

�

�
�i(1) +

Z �

1

mi(�
0)d� 0

�
= �i(�). (57)

Hence, from (56), we see that m(�) 2 MBR(�(�;m)) for any � � 1. Thus, m is a8

CTFP. By Corollary 1, L(�(�;m)) declines at rate 1=� . Moreover, since L is bounded,9

there exists a constant C, independent of m, such that10

L(�(�;m)) � C

�
(� � 1). (58)

To provoke a contradiction, suppose there is a sequence fe��g1�=1 in [0;1) with11

lim�!1 e�� =1, and a sequence fz(�)g1�=1 of solutions of (54), such that12

d(z(�)(e��); ZG) > " (� 2 N), (59)

where d(:; :) denotes the Hausdor¤ distance (see Appendix A for a de�nition). Let13

�� = exp(e��), and denote by �(�) the rescaled solution associated with z(�). Then,14

from (57) and (58),15

L(�(�)(��)) �
C

��
(� 2 N), (60)

By the compactness of�(X1)�:::��(Xn), the sequence f�(�)(��)g1�=1 = fz(�)(e��)g1�=116

has a converging subsequence. Denote the limit by ��. By (60), and the continuity of17
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L, we have L(��) = 0. Hence, �� 2 ZG and, consequently, d(��; ZG) = 0. However,1

for some � large enough, d(z(�)(e��); ��) < ", so that via (59),2

d(��; ZG) � d(z(�)(e��); ZG)� d(z(�)(e��); ��) > 0. (61)

The contradiction shows that, indeed, ZG is a global uniform attractor of (54).3

(iii) We have to show that y(:) = fy(t)g1t=0 converges to the set of Nash equilibria.4

For this, let �� 2 Ad(y(:)) be an accumulation point of f�d(t; y(:))g1t=1. By part (i)5

of the proof, the di¤erence inclusion6

Pt+1 2 �t�(Pt) + (1� �t)Pt (t 2 N = f1; 2; :::g), (62)

with �t = 1=(t� + t) for t 2 N, admits the solution7

Pt = �
d(t� + t� 1) (t 2 N). (63)

Moreover, by part (ii), ZG is a global uniform attractor of (54). Applying Lemma A.38

from the Appendix, it follows that, for any " > 0, there exists t#(") 2 N such that, for9

any t � t#("), we have d(Pt; ZG) � ". By assumption, �� is an accumulation point of10

f�d(t)g1t=1, and consequently, also of the subsequence fPtg1t=1. Hence, d(��; Pt) < "11

for in�nitely many t. In particular, there exists t0 � t#(") such that d(��; Pt0) < ".12

Moreover, since d(Pt0 ; ZG) � " and ZG is compact, we �nd ��� 2 ZG of G such that13

d(Pt0 ; �
��) � ". Combining these observations, the triangle inequality implies14

d(��; ZG) � d(��; ���) (64)

� d(��; Pt0) + d(Pt0 ; ���) (65)

< 2". (66)

Since this holds for any " > 0, it follows that d(��; ZG) = 0. But ZG is compact.15

Hence, �� 2 ZG, which proves the proposition. �16
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The result above extends Sela�s (1999, Prop. 7) result for star-shaped networks in1

three ways. First, the restriction regarding the network structure is dropped. Second,2

Proposition 5 imposes the zero-sum assumption only on the network, rather than on3

each of the bilateral games. Finally, no assumptions regarding tie-breaking are used4

here. In sum, it is feasible to address additional applications such as security games5

(Cai et al., 2016) and, as has been seen, con�ict networks.6

As in the case of two-person zero-sum games, the transformation of the CTFP7

process into a discrete-time process comes at a cost, which is the slower rate of con-8

vergence. More speci�cally, the discrete-time process is known to �overshoot,�which9

makes it generally hard to nail down its rate of convergence. For two-person zero-sum10

games, Robinson�s proof allows deriving an upper bound on the rate of convergence11

in payo¤s (Shapiro, 1958). The resulting estimate is of order O(t�1=(�1+�2�2)), where12

�i is the number of strategies for player i = 1; 2.37 Given the lack of a direct extension13

of Robinson�s proof to zero-sum networks, however, that upper bound is not easily14

generalized to zero-sum networks. Improving on Shapiro�s upper bound, Karlin�s15

strong conjecture says (or more precisely, said) that DTFP converges in payo¤s at16

rate O(t�1=2) in two-person zero-sum games, regardless of the number of strategies.17

Daskalakis and Pan (2014) have recently disproved that conjecture, showing that the18

rate of convergence in an asymmetric two-person zero-sum game in which both play-19

ers have the same number of strategies � may be as low as O(t�1=�). That lower20

bound holds, obviously, also for zero-sum networks.3821

The �Rosy Theorem�of Monderer et al. (1997, Th. A) says that a player�s ex-22

pected payo¤ in DTFP at any given stage is weakly higher than her average payo¤23

37If the game is symmetric, and consequently both players have the same number of strategies
�1 = �2 � �, then the upper bound may be sharpened to O(t�1=(��1)).
38For related work, see Gjerstad (1996), Conitzer (2009), and Brandt et al. (2013).
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experience. Using Robinson�s theorem, this result implies that every DTFP in a1

two-person zero-sum game is belief-a¢ rming, which means that, in the limit, the gap2

between expected payo¤s at any given stage and the average payo¤ experience van-3

ishes for each player. This is just the �rst part of Monderer et al. (1997, Th. B).4

Using Proposition 5, we can derive the following extension.5

Corollary 2. Let G be a zero-sum network. Then, any DTFP process fy(t)g1t=0 in6

G is belief-a¢ rming.7

Proof. Let �d(:) denote, as before, the independent discrete-time average of fy(t)g1t=0.8

As has been shown in the proof of Proposition 5, limt!1 d(�
d(t); ZG) = 0. Therefore,9

limt!1 L(�d(t)) = 0. Using (4)-(6), this implies10

lim
t!1

(
nX
i=1

max
xi2Xi

ui(xi; �
d
N(i)(t))

)
= 0. (67)

By the �Rosy Theorem,�11

max
xi2Xi

ui(xi; �
d
N(i)(t)) �

1

t

t�1X
t0=0

ui(y(t
0)), (68)

for any t 2 N and any player i 2 f1; :::; ng. Hence,12

lim sup
t!1

(�
max
xi2Xi

ui(xi; �
d
N(i)(t))

�
� 1
t

t�1X
t0=0

ui(y(t
0))

)
� 0, (69)

any i 2 f1; :::; ng. Suppose now that fy(t)g1t=0 is not belief-a¢ rming. Then, for some13

player, inequality (69) holds strictly. Adding up across players, and exploiting the14

zero-sum property, this yields15

lim sup
t!1

(
nX
i=1

max
xi2Xi

ui(xi; �
d
N(i)(t))

)
> 0, (70)

in con�ict with relationship (67). This proves the claim. �16
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However, there is an important di¤erence to the case of two-person zero-sum games,1

which is that Nash equilibrium payo¤s are not necessarily unique in zero-sum networks2

(cf. Cai et al., 2016). Hence, the second part of Monderer et al. (1997, Th. B), which3

states an equality between a player�s long-run payo¤ experience and the value of the4

game, cannot be easily generalized to zero-sum networks.5

Cai and Daskalakis (2011) have shown that, if every node in a network game6

plays a no-regret sequence of mixed strategies over su¢ ciently many stages, then7

the resulting frequency distributions over pure strategies form an "-equilibrium. By8

de�nition, no-regret is a property of DTFP that is less stringent than being belief-9

a¢ rming. Speci�cally, under no-regret behavior, a player�s expected payo¤ against10

past play is asymptotically weakly below her average payo¤ experience, while in a11

belief-a¢ rming DTFP process, a player�s expected payo¤ is asymptotically equal to12

her average payo¤ experience. Therefore, Monderer et al. (1997, Th. B) implies that13

DTFP in two-person zero-sum games has no-regret. Given Corollary 2, the same14

conclusion holds for DTFP in zero-sum networks.3915

The following should now be immediate.16

Corollary 3. Let G be a network game that satis�es the assumptions of any of the17

Propositions 1 through 4. Then, any DTFP process in G converges to the set of Nash18

equilibria.19

Proof. For zero-sum networks, the claim follows directly from Proposition 5. Since20

con�ict networks with pairwise homogeneous valuations and acyclic con�ict networks21

are best-response equivalent in mixed strategies to zero-sum networks, the claim holds22

39One may even go one step further. Using the �Rosy Theorem,� we see that DTFP exhibits
no-regret if and only if it is belief-a¢ rming. This observation might help to see that, despite the
obvious similarity in the conclusion, there is no simple way of deducing Proposition 5 from existing
results on the convergence of no-regret behavior.
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also for these classes of games. Next, it was shown above that networks of exact1

potential games admit an exact potential. In this case, therefore, the claim follows2

from Monderer and Shapley (1996b, Th. A).40 Finally, to deal with acyclic networks3

of weighted potential games, it su¢ ces to recall that any such network game is best-4

response equivalent in mixed strategies to a network of exact potential games. �5

6. The case of joint beliefs6

So far, we assumed that players�beliefs are independent across neighbors. In a general7

network game, however, a player might observe correlations between the behavior of8

her neighbors.41 In this section, we will explore the implications of assuming that9

players take account of such correlations.10

Let e�N(i) 2 �(XN(i)) be player i�s joint belief over strategies chosen by i�s neigh-11

bors, where the tilde indicates that correlation is feasible. Player i�s expected pay-12

o¤ from a mixed strategy �i 2 �(Xi) is written as ui(�i; e�N(i)) = E[ui(xi; xN(i))],13

where the expectation is taken with respect to (�i; e�N(i)). Player i�s mixed best-14

response correspondence MBRi extends as usual to joint beliefs, e�N(i) 2 �(XN(i)),15

in the sense that MBRi(e�N(i)) is the set of mixed strategies ��i 2 �(Xi) such that16

ui(�
�
i ; e�N(i)) = max�i2�(Xi) ui(�i; e�N(i)). Similarly, the mixed best-response corre-17

spondence MBR of the network game G extends to arbitrary probability distributions18

e� 2 �(X) by letting MBR(e�) =�n

i=1MBRi(e�N(i)), where e�N(i) denotes the marginal19

of e� on XN(i). Let m : [0;1)! �(X1)� :::��(Xn) be a measurable path specifying20

each player i�s mixed strategy at any point in time � � 0. Then, the continuous-time21

40To see this, note that our de�nition of convergence to equilibrium is equivalent to the one used
by Monderer and Shapley (1996b, pp. 260-261). Moreover, while their analysis formally restricts
attention to the case t� = 1, they mention that their convergence result holds more generally. Indeed,
their proof extends in a straightforward way to t� � 1.
41Indeed, correlation of the limit pro�le is a well-documented possibility (Young, 1993; Fudenberg

and Kreps, 1993; Jordan, 1993; Fudenberg and Levine, 1998).

37



joint average e� : (0;1)! �(X) of the path m is de�ned at time � > 0 as1

e�(�) � e�(�;m) = 1

�

Z �

0

m(� 0)d� 0, (71)

where the integral is now taken in �(X) rather than for each player separately.2

Similarly, if fy(t)g1t=0 is a sequence in X, we de�ne the discrete-time joint average e�d3

as4

e�d(t) � e�d(t; y(:)) = 1

t

t�1X
t0=0

�y(t0) (t = 1; 2; 3; :::), (72)

where �y(t0) denotes the Dirac measure in �(X) that assigns all probability weight to5

y(t0). The following de�nition of joint �ctitious play should contain no surprises.6

De�nition 5. (ĈTFP, D̂TFP) A continuous-time �ctitious play with joint beliefs7

is a measurable mapping m : [0;1)!�n

i=1�(Xi) such that m(�) 2 MBR(e�(�;m))8

for any � � 1.42 Similarly, a discrete-time �ctitious play with joint beliefs is a9

sequence fy(t)g1t=0 in �n

i=1Xi such that, for some t� 2 N, it holds that y(t) 210

BR(e�d(t; y(:))) for any t � t�.11

Denote by eA(m) and eAd(y(:)), respectively, the set of all accumulation points of e�(:)12

and e�d(:). The de�nition of convergence is adapted as follows.13

De�nition 6. We will say that the joint probability distribution e�� 2 �(X) is an14

observational equilibrium when each player i�s marginal distribution e��i 2 �(Xi) is15

a mixed best response to the marginal e��N(i) 2 �(XN(i)), i.e., when ui(e��i ; e��N(i)) �16

ui(�i; e��N(i)) for any i 2 f1; :::; ng and any �i 2 �(Xi). We will further say that a17

path m, or a sequence y(:), converges observationally to Nash if any e�� 2 eA(m), or18

e�� 2 eAd(y(:)), is an observational equilibrium.19

42Adapting the proof of Harris (1998), existence of ĈTFP can be veri�ed for any n-person game.
For network games, however, existence follows more easily from the proof of Proposition 6 below.
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Thus, in an observational equilibrium, each player�s marginal optimizes against the1

joint strategy pro�le. For example, any coarse correlated equilibrium in a zero-sum2

network is an observational equilibrium, as follows from the analysis of Cai et al.3

(2016). The corresponding notions of observational convergence require that any4

accumulation point of the joint average of the �ctitious-play path or sequence is an5

observational equilibrium.6

In the proof of the following result, we generalize an insight due to Sela (1999,7

Lemma 1) to arbitrary networks, and apply it to the present situation.8

Proposition 6. Let G be an arbitrary network game satisfying assumptions of any of9

the Propositions 1 through 4. Then any ĈTFP, and likewise any D̂TFP, converges10

observationally to Nash.11

Proof. Let e� 2 �(X) be a probability distribution over pure strategy pro�les in12

G, and let � = (�1; :::; �n) 2 �(X1) � ::: � �(Xn) denote the corresponding pro�le13

composed of marginal distributions. Then clearly, because interactions are bilateral,14

and because expectations ignore correlations, expected payo¤s satisfy15

ui(�i; e�N(i)) = X
j2N(i)

uij(�i; �j), (73)

for any i 2 f1; :::; ng. Therefore, MBR(e�) = MBR(�). The claim follows. �16

Intuitively, correlation is irrelevant for the best-response correspondence in a network17

game G because all interactions are bilateral. As a consequence, a path m is a CTFP18

if and only if it is a ĈTFP, and a sequence y(:) = fy(t)g1t=0 is a DTFP if and only if19

it is a D̂TFP. Therefore, in the considered classes of network games, �ctitious play20

with joint beliefs converges to the set of potentially correlated pro�les in which each21

player�s marginal distribution is a mixed best response to the marginal distribution,22

taken jointly or independently, of her neighbors�pure strategies.23
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7. Concluding remarks1

In this paper, we have identi�ed new classes of network games in which �ctitious play2

processes converge to the set of Nash equilibria. In particular, the analysis has led to3

simple conditions on bilateral payo¤s and the network structure that are su¢ cient to4

guarantee convergence of continuous-time �ctitious play even when a player�s deci-5

sions across bilateral games are interdependent. We have also constructed examples6

of multiplayer games that show that these conditions cannot be easily relaxed.7

Applications are manifold and include security games, con�ict networks, and de-8

centralized wireless channel selection, for instance. Moreover, the �ndings con�rm9

the intuition that equilibrium behavior in important types of social interaction can10

be reached without assuming strong forms of economic rationality.11

Regarding the discrete-time variant of �ctitious play, our results entail an exten-12

sion of Robinson�s (1951) classic result. This might serve as a basis for further analysis13

and simulation exercises. But the derivation also provides an additional illustration of14

the intimate relationship between the continuous-time and the discrete-time processes15

that has been suggested in many studies.16

Obviously, we did not address all open issues related to �ctitious play in network17

games. For instance, we did not examine stochastic �ctitious play. It should be noted,18

however, that the convergence of stochastic �ctitious play follows directly from our19

results for networks of exact potential games and, similarly, for acyclic networks20

of weighted potential games. Moreover, it may be conjectured that the techniques21

developed by Hofbauer and Sandholm (2002) apply also to the zero-sum networks22

and con�ict networks discussed in the present paper.23

Last but not least, there is some recent work that digs deeply into the di¤eren-24

tial topology and projective geometry of �ctitious-play paths in two-person zero-sum25
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games (van Strien, 2011; Berger, 2012). Exploring the potentially interesting impli-1

cations of such approaches for zero-sum networks remains, however, beyond the scope2

of the present study.433

Appendix A. Results from the literature used in the proofs4

A.1 Existence of continuous-time �ctitious play5

Harris (1998, Sec. 3) de�nes �ctitious play in continuous-time in a way that is some-6

what more �exible than our de�nition. Speci�cally, he assumes optimizing behavior at7

almost every point in time � � 1, while our De�nition 1 assumes optimizing behavior8

at every point in time � � 1.9

De�nition A.1 (Harris, 1998) A continuous-time �ctitious play of the �rst kind10

(CTFP1) is a measurable path bm : [0;1) ! �n

i=1�(Xi) with the property that11

bm(�) 2 MBR(�(�; bm)) for all � 2 [1;1)nN , where N � R is a set of measure zero.12

It is obvious from the de�nition that any CTFP, as de�ned in the body of the paper,13

is in particular a CTFP1. As noted by Harris (1998), general results from the theory14

of di¤erential inclusions imply that a continuous-time �ctitious play of the �rst kind15

exists for any �nite normal-form game.16

Lemma A.1 (Harris, 1998) CTFP1 exists.17

Proof. See Harris (1998, p. 244, paragraph following Prop. 7). �18

Lemma A.1 is used in the proof of Lemma 1.19

43Further, one might want to seek conditions that ensure that the results of the present paper
continue to hold if all bilateral games are dominance solvable (Milgrom and Roberts, 1991) or exhibit
strategic complementarities and diminishing returns (Krishna, 1992; Berger, 2008). However, as
discussed in Sela (1999), this last route seems less promising because interdependencies between
choices in bilateral games undermine such structural properties of the bilateral games.
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A.2 Convergence of continuous-time �ctitious play in weighted potential games1

In a later section of his paper, Harris (1998, Sec. 8) considers convergence of �cti-2

tious play in continuous-time for the class of �nite weighted potential games (with n3

players), and establishes the following result.4

Lemma A.2 (Harris, 1998) Any CTFP1 in a �nite weighted potential game con-5

verges to the set of Nash equilibria.6

Proof. See Harris (1998, Th. 24). �7

As any CTFP is, a fortiori, a CTFP1, Lemma A.2 implies that any �nite weighted po-8

tential game has the CTFP property as de�ned in the present paper. This observation9

is used in the proof of Proposition 3.10

A.3 Di¤erential inclusions11

Harris (1998, Sec. 7) derives convergence in discrete time from uniform convergence12

in continuous time. For the reader�s convenience, this theory is reviewed below, where13

we closely follow the exposition in Hofbauer and Sorin (2006, pp. 221-222).14

Let Z be a nonempty, compact, and convex subset of some Euclidean space RM ,15

whereM � 1, and let � be an upper semi-continuous,44 compact-valued, and convex-16

valued correspondence from Z to itself.45 Considered is the formal relationship17

_z 2 �(z)� z, (74)

commonly referred to as a di¤erential inclusion. By a solution of (74), we mean any18

44The correspondence � is called upper semi-continuous (Aubin and Cellina, 1984, p. 41) if at any
z0 2 Z and for any open set O containing �(z0), there exists an open neighborhoodM of z0 such
that �(M) � O.
45As is well-known, these assumptions hold, in particular, for the correspondence MBR on�(X1)�

:::��(Xn).
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absolutely continuous mapping z : [0;1)! Z satisfying1

@z(�)

@�
2 �(z(�))� z(�) (75)

at all points of di¤erentiability of z.2

Let d(:; :) denote the Euclidean distance in RM . Then, for any point z1 2 RM and3

any nonempty subset Z0 � RM , we may de�ne the Hausdor¤ distance by d(z1; Z0) =4

infz02Z0 d(z1; z0).5

De�nition A.2A subset Z0 � Z is called a global uniform attractor of the di¤erential6

inclusion (74) if, for any " > 0, there exists �#(") � 0 such that, for any solution z7

of (74) with z(0) 2 Z, and for any � � �#("), it holds that d(z(�); Z0) � ".8

Let f�tg1t=1 be a sequence of parameters in [0; 1], strictly decreasing to zero as t!1,9

and such that �1t=1�t =1. Then, a discrete-time counterpart to di¤erential inclusion10

(74) is given by11

Pt+1 2 �t�(Pt) + (1� �t)Pt (t 2 N = f1; 2; :::g), (76)

where fPtg1t=1 is a sequence in Z.12

Lemma A.3 (Hofbauer and Sorin, 2006) Assume that Z0 � Z is a global uniform13

attractor of the di¤erential inclusion (74). Then, for any " > 0, there exists t#(") 2 N14

such that for any solution fPtg1t=1 of (76), and any t � t#("), we have d(Pt; Z0) � ".15

Proof. See Hofbauer and Sorin (2006, Prop. 7). �16

We make use of Lemma A.3 in the proof of Proposition 5.17
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Appendix B. Details on Examples 2 and 31

Details on Example 2. Payo¤s in the bilateral con�ict Gi;i+1, where i 2 f1; 2; 3g,2

are shown in the left panel of Figure 7. One can check that G2 has the payo¤s shown3

in the right panel of Figure 7.4

Figure 7. Bilateral payo¤s (left panel), and the normal form of G2 (right panel).

Lemma B.1 In G2, player i 2 f1; 2; 3g optimally chooses H if ri�1� 2ri+1 � 0 (and5

L if ri�1 � 2ri+1 � 0).6

Proof. Using the bilateral payo¤ functions, one �nds7

ui(H; ri+1; ri�1)� ui(L; ri+1; ri�1)

= ui;i+1(H; ri+1)� ui;i+1(L; ri+1) + ui;i�1(H; ri�1)� ui;i�1(L; ri�1) (77)

= ri+1 � 0 + (1� ri+1) � 12 + ri�1 � (�
1
4
) + (1� ri�1) � (�1

2
) (78)

= 1
4
(ri�1 � 2ri+1). (79)

The claim follows. �8

Lemma B.2 G2 has a unique Nash equilibrium, given by (r�1; r
�
2; r

�
3) = (0; 0; 0).9

Proof. Clearly, (L;L;L) is a pure-strategy Nash equilibrium in G2. Next, we show10

that the equilibrium is unique. Suppose �rst that there is a completely mixed-strategy11

equilibrium (r1; r2; r3). Then, it follows from Lemma B.1 that r3�2r2 = 0, r1�2r3 =12

0, and r2�2r1 = 0. But the sole solution of this system is (r1; r2; r3) = (0; 0; 0). Hence,13
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G2 does not admit a completely mixed equilibrium. Further, if another equilibrium1

exists, at least one player must choose a pure strategy. Without loss of generality,2

suppose this is player 3. Assume �rst that r3 = 1, so that player 3 chooses H. Then3

the iterated elimination of strictly dominated strategies implies that player 2 chooses4

L and that player 1 chooses H, but then player 3 would want to deviate to x3 = L.5

Next, assume that player 3 chooses L. In this case, if r1 > 0, then player 2 chooses6

H and consequently r1 = 0, which is impossible. If, however, player 1 chooses L with7

probability one, then player 3 would want to deviate unless also player 2 chooses L8

with probability one. But that only brings us back to (r1; r2; r3) = (0; 0; 0). This9

proves uniqueness, and hence, the lemma. �10

Next, recall the coordinates of the points at which the process changes its direction:11

:::! p1 = (
2
7
; 4
7
; 1
7
)! p2 = (

1
7
; 2
7
; 4
7
)! p3 = (

4
7
; 1
7
; 2
7
)! :::, (80)

The following lemma shows that this path is indeed a stable cycle.12

Lemma B.3 (i) At point pi, with i 2 f1; 2; 3g, player i optimally chooses L, while13

players i� 1 and i+ 1 are both indi¤erent. (ii) There is � > 1 such that14

�(p1 � (0; 1; 0)) = p3 � (0; 1; 0), (81)

�(p2 � (0; 0; 1)) = p1 � (0; 0; 1), (82)

�(p3 � (1; 0; 0)) = p2 � (1; 0; 0). (83)

Proof. (i) From Lemma B.1, player i = 1 optimally chooses L if r3 � 2r2 � 0. But15

at p1 = (2
7
; 4
7
; 1
7
), we even have r3 � 2r2 = �1 < 0. Moreover, players 2 and 3 are16

indi¤erent at p1 because r1 � 2r3 = 0 and r2 � 2r1 = 0. The points p2 and p3 can17

now be dealt with by straightforward symmetry considerations. This proves the �rst18

claim. (ii) Note that, with � = 2 > 1,19
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�(p1 � (0; 1; 0)) = 2 � (27 ;�
3
7
; 1
7
) = (4

7
;�6

7
; 2
7
) = p3 � (0; 1; 0): (84)

The other two equations follow, again, by symmetry. This proves the second claim,1

and hence, the lemma. �2

To see how Lemma B.3 implies the existence of a stable path, note that, on the linear3

segment from p1 to p2, players 1 and 2 indeed optimally choose L, while player 3 is4

indi¤erent and can be assumed to choose H. Thus, consistent with the de�nition of a5

CTFP, the path moves from p1 in the direction of the vector (0; 0; 1). However, the6

collinearity condition (82) ensures that p2 is eventually reached.46 Similar arguments7

can be used to deal with the remaining segments.8

Details on Example 3. The payo¤ matrix of G3 is shown in Figure 8.9

Figure 8. The game G3.

Lemma B.4 In G3, player 1 optimally chooses H if 5r3�r2 � 2 (and L if 5r3�r2 �10

2); player 2 optimally chooses H if 5r1 + r3 � 3 (and L if 5r1 + r3 � 3); player 311

optimally chooses H if 5r2 � r1 � 2 (and L if 5r2 � r1 � 2).12

46Indeed, equation (82) obviously implies that p2 may be written as a strict convex combination
of p1 and (0; 0; 1). See Figure 4 for illustration.
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Proof. As for player 1, one notes that1

u1(H; r2; r3)� u1(L; r2; r3)

= r2r3 � (�4) + (1� r2)r3 � (�6) + r2(1� r3) � 6 + (1� r2)(1� r3) � 4 (85)

= 4 + 2r2 � 10r3. (86)

This proves the claim regarding player 1. Similarly,2

u2(r1;H; r3)� u2(r1;L; r3)

= r1r3 � 6 + (1� r1)r3 � (�4) + r1(1� r3) � 4 + (1� r1)(1� r3) � (�6) (87)

= �6 + 10r1 + 2r3, (88)

proving the claim regarding player 2. Finally,3

u3(r1; r2;H)� u3(r1; r2;L)

= r1r2 � 4 + (1� r1)r2 � 6 + r1(1� r2) � (�6) + (1� r1)(1� r2) � (�4) (89)

= 4� 2r1 + 10r2. (90)

This proves the �nal claim, and hence, the lemma. �4

Lemma B.5 G3 has a unique Nash equilibrium, given by (r�1; r
�
2; r

�
3) = (

1
2
; 1
2
; 1
2
):5

Proof. Suppose �rst that player 1 chooses H with probability one. Then, by iterated6

elimination of strictly dominated strategies, player 2 chooses H, and so does player7

3. But then, player 1 would deviate to L. Suppose next that player 1 chooses L with8

probability one. Then, by the iterated elimination of strictly dominated strategies,9

player 2 chooses L, and so does player 3. But then player 1 would deviate to H. Thus,10

there is no equilibrium in which player 1 plays a pure strategy. Thus, r1 2 (0; 1),11

and by Lemma B.4, 5r3 � r2 = 2. Clearly, this precludes r3 = 0 and r3 = 1,12

so that also player 3 must randomize. By Lemma B.4, 5r2 � r1 = 2. But this13
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excludes r2 = 0 and r2 = 1. Hence, any equilibrium is necessarily completely mixed.1

There is a unique completely mixed equilibrium, because the system of indi¤erence2

relationships �r2 + 5r3 = 2, 5r1 + r3 = 3, and �r1 + 5r2 = 2 has the unique solution3

(r1; r2; r3) = (
1
2
; 1
2
; 1
2
). �4

Recall the cycle5

:::! p1 = (a; b; c)! p2 = (1� c; a; b)! p3 = (1� b; 1� c; a)! (91)

! p4 = (1� a; 1� b; 1� c)! p5 = (c; 1� a; 1� b)! p6 = (b; c; 1� a)! :::,

where (a; b; c) = (4
9
; 8
9
; 7
9
) correspond to the respective probabilities to play H. The6

following two lemmas show that the cyclic process is indeed a CTFP.7

Lemma B.6 (i) At p1, players 1 optimally chooses L, player 2 is indi¤erent, and8

player 3 optimally chooses H. (ii) At p2, players 1 and 2 optimally choose L, whereas9

player 3 is indi¤erent. (iii) At p3, player 1 is indi¤erent, while players 2 and 310

optimally choose L. (iv) At p4, player 1 optimally chooses H, player 2 is indi¤erent,11

and player 3 optimally chooses L. (v) At p5, players 1 and 2 optimally choose H,12

whereas player 3 is indi¤erent. (vi) At p6, player 1 is indi¤erent, while players 2 and13

3 optimally choose H.14

Proof. (i) By Lemma B.4, player 1 optimally chooses L if 5r3 � r2 � 2. At p1 =15

(a; b; c) = (4
9
; 8
9
; 7
9
), we even have 5r3 � r2 = 3 > 2. Next, player 2 is indi¤erent if16

5r1+ r3 = 3. This is true at p1. Finally, player 3 optimally chooses H if 5r2� r1 � 2.17

At p1, we even have 5r2�r1 = 4 > 2. (ii) Player 1 optimally chooses L if 5r3�r2 � 2.18

At p2 = (1�c; a; b) = (29 ;
4
9
; 8
9
), we even have 5r3�r2 = 4 > 2. Next, player 2 optimally19

chooses L if 5r1 + r3 � 3. At p2, we even have 5r1 + r3 = 2 < 3. Finally, player 320

is indi¤erent if 5r2 � r1 = 2. At p2, we indeed have 5r2 � r1 = 2. (iii) Player 1 is21
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indi¤erent if 5r3 � r2 = 2. And indeed, at p3 = (1 � b; 1 � c; a) = (19 ;
2
9
; 4
9
), we have1

5r3 � r2 = 2. Player 2 optimally chooses L if 5r1 + r3 � 3. At p3, we even have2

5r1 + r3 = 1 < 3. Finally, player 3 optimally chooses L if 5r2 � r1 � 2. At p3, we3

even have 5r2 � r1 = 1 < 2. (iv) Player 1 optimally chooses H if 5r3 � r2 � 2. At4

p4 = (1� a; 1� b; 1� c) = (59 ;
1
9
; 2
9
), we even have 5r3 � r2 = 1 < 2. Next, player 2 is5

indi¤erent if 5r1 + r3 = 3. This is true at p4. Finally, player 3 optimally chooses L if6

5r2�r1 � 2. At p4, we even have 5r2�r1 = 0 < 2. (v) Player 1 optimally chooses H if7

5r3�r2 � 2. At p5 = (c; 1�a; 1� b) = (79 ;
5
9
; 1
9
), we even have 5r3�r2 = 0 < 2. Next,8

player 2 optimally chooses H if 5r1 + r3 � 3. At p5, we even have 5r1 + r3 = 4 > 3.9

Finally, player 3 is indi¤erent if 5r2 � r1 = 2. And at p5, we indeed have this. (vi)10

Player 1 is indi¤erent if 5r3 � r2 = 2. And indeed, at p6 = (b; c; 1 � a) = (8
9
; 7
9
; 5
9
),11

we have this. Player 2 optimally chooses H if 5r1 + r3 � 3. At p6, we even have12

5r1 + r3 = 5 > 3. Finally, player 3 optimally chooses H if 5r2 � r1 � 2. At p6, we13

even have 5r2 � r1 = 3 > 2. This proves the last claim and therefore the lemma. �14

The �nal lemma shows that process (91) is a stable cycle.15

Lemma B.7 There is � > 1 such that16

�(p2 � (0; 0; 1)) = p1 � (0; 0; 1) (92)

�p3 = p2 (93)

�(p4 � (1; 0; 0)) = p3 � (1; 0; 0) (94)

�(p5 � (1; 1; 0)) = p4 � (1; 1; 0) (95)

�(p6 � (1; 1; 1)) = p5 � (1; 1; 1) (96)

�(p1 � (0; 1; 1)) = p6 � (0; 1; 1). (97)

Proof. One can easily verify that equations (92-97) are satis�ed for � = 2. �17
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Appendix C. The case of a two-person zero-sum game1

This section presents a self-contained proof of convergence of CTFP for �nite two-2

person zero-sum games. Needless to say, the sole departure from existing proofs3

(Hofbauer, 1995; Harris, 1998; Berger, 2006; Hofbauer and Sorin, 2006) consists in4

the use of the Dini derivative.5

Lemma C.1 (Brown 1951; Hofbauer 1995; Harris, 1998) Any �nite two-person6

zero-sum game has the continuous-time �ctitious-play property.7

Proof. We closely follow the steps of the proof of Proposition 1. Denote by Xi8

player i�s strategy space, for i 2 f1; 2g, and by A player 1�s payo¤ matrix. For9

� = (�1; �2) 2 �(X1)��(X2), let10

L(�) = max
�12�(X1)

�1 � A�2 � min
�22�(X2)

�1 � A�2. (98)

Take any CTFP m, with corresponding process of independent averages �. Then,11

L(�(�)) = m1(�) � A�2(�)� �1(�) � Am2(�), (99)

for any � � 1. Moreover, for any b� 2 (0; �),12

L(�(b�)) � m1(�) � A�2(b�)� �1(b�) � Am2(�). (100)

Hence,13

�L(�(�))� b�L(�(b�)) � m1(�) � A
Z �

b� m2(�
0)d� 0 �

Z �

b� m1(�
0)d� 0 � Am2(�). (101)

Dividing by � � b� , and taking the limit b� ! � shows that14

lim supb�!�;b�<�
�L(�(�))� b�L(�(b�))

� � b� � m1(�) � Am2(�)�m1(�) � Am2(�) = 0 (102)

for a.e. � � 1. Given that �L(�(�)) is continuous in � , this implies that �L(�(�)) is15

declining (Royden, 1988, Prop. 2, p. 99). But L � 0, so that L(�(�))! 0 as � !1.16

Thus, any accumulation point of � is indeed a Nash equilibrium. �17
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