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A B S T R A C T

We analyze the effectiveness of a forward capacity market (FCM) with long-term contracts in an electricity
market in the presence of a growing share of renewable energy. An agent-based model is used for this analysis.
Capacity markets can compensate for the deteriorating incentive to invest in controllable power plants when the
share of variable renewable energy sources grows, but may create volatile prices themselves. Capacity markets
with long-term contracts have been developed, e.g. in the UK, to stabilize capacity prices. In our analysis, a FCM
is effective in providing the required adequacy level and leads to lower cost to consumers and more stable
capacity prices, as compared to a yearly capacity market. In case of a demand shock, a FCM may develop an
investment cycle, but it still maintains security of supply. Its main effect on the power plant portfolio is more
investment in peak plant.

1. Introduction

We analyze the effectiveness of a forward capacity market (FCM) in
the presence of a growing share of intermittent renewable energy
sources in the generation mix. We implement a representation of a FCM
based on the United Kingdom's capacity market design in the “EMLab-
Generation” agent-based model for this analysis.

Adequacy concerns arising from the growing share of intermittent
renewable energy (cf. Nicolosi and Fürsch, 2009; Steggals et al., 2011),
along with concerns about market failure due to imperfections
(Cramton et al., 2013; Joskow, 2008a, 2006), have led to the im-
plementation of a capacity market in the United Kingdom (UK) (UK
Parliament, 2013). After much deliberation, the design for the capacity
market was finalized in 2014. The UK chose a forward capacity market
(FCM), characterized by long-term contracts for new generation capa-
city. The design of the capacity market is defined by the Electricity
Capacity Regulations 2014 (DECC, 2014a) and the Capacity Market
Rules (DECC, 2014b). The first capacity auction took place in December
2014. The expectation was that it would improve generation adequacy
by providing a more stable investment signal, thus lowering investment
risk.

Market participants’ decisions regarding investment in new power
generation assets and with respect to decommissioning existing assets

are characterized by bounded rationality, as they are limited by their
current information and therefore their forecasts are inevitably im-
perfect (Simon, 1986). The market participants’ imperfect knowledge of
the future can be expected to lead to suboptimal results in terms of
generation investments and decommissioning. This may affect the ef-
fectiveness of capacity markets in reaching public policy goals such as
generation adequacy. Our analysis considers the impact of uncertainty,
imperfect (myopic) investment behavior and path dependence on the
performance of a forward capacity market (FCM). We analyze the ef-
fectiveness of the forward capacity market under different demand
growth scenarios and design considerations.

In order to understand the impact of a FCM, we compare a FCM's
performance with that of a yearly capacity market design (YCM), ex-
tending our earlier work in this field (Bhagwat et al., 2017b, 2017a).
We base the YCM design in our analysis on the NYISO-ICAP1 market
because this is an example of a successful yearly capacity market and
has a relatively simple design.

Several types of computer models have been used to study genera-
tion investment in the electricity market. A classification of different
electricity market modeling approaches is provided by Ventosa et al.
(2005). Boomsma et al. (2012) and Fuss et al. (2012) use a real option
approach in to study investment in renewable generation capacity
under uncertainty. Hobbs (1995) uses a mixed integer linear
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programming approach to study generation investment under perfect
conditions. Eager et al. (2012) use a system dynamics approach to study
investment in thermal generation capacity in markets with high wind
penetration. In this model, the investment decision are based on net
present value and a value at risk criterion to account for uncertainty.
Bunn and Oliveira (2008) use an agent-based computational model that
is based on game theory to study the impact of market interventions on
the strategic evolution of electricity markets. Powell et al. (2012) pre-
sent an approximate dynamic programming model to study long-term
generation investment under uncertainty. Botterud et al. (2002) use a
dynamic simulation model to analyze investment under uncertainty
over the long-term. None of these studies, however, considered the
impact of a capacity mechanism on generation investment.

Hach et al. (2014) utilize a system dynamics approach to study the
effect of capacity markets on investment in generation capacity in the
UK. Similarly, Cepeda and Finon (2013) use a system dynamics ap-
proach to analyze impact of a forward capacity market on investment
decisions in presence of a large-scale wind power development. As
system dynamics is a top-down approach, Mastropietro et al. (2016) use
an optimization model to analyze the impact of explicit penalties on the
reliability option contracts auction. Meyer and Gore (2015) use a game-
theoretical approach to study the cross-border effects of capacity me-
chanisms on consumer and producer surplus. Gore et al. (2016) use an
optimization model to study the short-term cross border effects of ca-
pacity markets on the Finnish and the Russian markets. An optimization
approach is used by Doorman et al. (2007) to study the impact of dif-
ferent capacity mechanisms on generation adequacy. Elberg (2014)
uses an equilibrium model for the analysis of cross-border effects of two
capacity mechanisms, a strategic reserve and a capacity payment, on
the investment incentive. Dahlan and Kirschen (2014) and Botterud
et al. (2003) study generation investment in electricity market using an
optimization approach. Ehrenmann and Smeers (2011) study impact of
risk on capacity expansion using a stochastic equilibrium model. In this
model investment decisions are made based on the level of risk aversion
of the investor. The risk aversion is modeled using a conditional value
at risk (CVaR) approach.

None of the reviewed studies considered the combined impact of
uncertainty, myopic investment (boundedly rational investment beha-
vior) and path dependence on the development over time of an elec-
tricity market with a capacity mechanism. We do include these aspects
of imperfect investor behavior in our study, as the point of a capacity
mechanism is to compensate for them. We do this by implementing
capacity markets as an extension of the EMLab-Generation agent-based
model (De Vries et al., 2013; Richstein et al., 2015a, 2015b, 2014).2

Agent based modeling (ABM) is a bottom up approach in which actors
are modeled as autonomous decision making software agents (Chappin,
2011; Van Dam et al., 2013; Farmer and Foley, 2009). The behavior of
the agents – in our model: the generation companies – is based on
programmed decision rules. They decide about investments in new
generation capacity, dismantling of old power plants and dispatch of
their generation units (De Vries et al., 2013). The simulation results
emerge from the agents’ decisions.

The advantages of using ABM in modeling complex socio-technical
systems are discussed (Chappin, 2011; Van Dam et al., 2013; Helbing,
2012; Weidlich and Veit, 2008). In the context of electricity markets,
ABM captures the complex interactions between energy producers and
a dynamic environment. No assumptions regarding the aggregate re-
sponse of the system to changes in policy are needed, as the output is
the consequence of the actions of the agents. Furthermore, the behavior
of the agents is based on the principle of bounded rationality (as de-
scribed by Simon (1986)), i.e., the decisions of the agents are limited by
their current knowledge and their (imperfect) prediction of the future.
The agents base their decisions on their understanding of their

environment, including other agents’ actions. The results from the
model are an emergent property of the agents’ interactions with each
other and their environment, thus the results typically do not follow an
optimal path. This allows us to study the possible evolution of the
electricity market under conditions of uncertainty, imperfect informa-
tion and non-equilibrium.

Aside from the advantages of using an ABM for this analysis, the
implementation of a detailed representation of capacity markets in
EMLab-Generation model provides several advantages. The first is that
the ability to vary different design parameters (such as the installed
reserve margin (IRM) requirement) of the FCM forward capacity
market allows us to study the sensitivity of the design to changes in the
design parameters. Secondly, it allows us to compare two different
capacity market designs. Furthermore, EMLab-Generation allows us to
study the effectiveness of the FCM under varying demand growth
conditions, especially a situation in which the system undergoes a de-
mand shock. A disadvantage of ABM is that it is time- intensive, both
with respect to developing the model (in Java) and running it (it re-
quires a high-performance computer cluster to conduct Monte Carlo
runs that are required for this analysis). Due to the long runtime, the
scope is limited. A key limitation for this purpose is the abstraction of
demand into a load-duration curve, which does not allow for the re-
presentation of demand elasticity or storage. This may cause more vo-
latile prices and therefore exaggerate the need for a capacity me-
chanism. Another drawback of this modeling approach is that
traditional validation processes cannot be applied, making validation of
agent-based models challenging (Louie and Carley, 2008).

We will proceed by describing the EMLab-Generation agent-based in
the next section. In Section 3, the implementation of a capacity market
in EMLab-Generation is presented. This is followed by the description of
the scenarios and performance indicators that are used in this study in
Section 4. The results are discussed in Section 5 and the conclusions are
summarized in Section 6.

2. The EMLab-Generation model

2.1. EMLab-Generation

The EMLab-Generation agent-based model (ABM) was developed in
order to model questions that arise from the heterogeneity of the
European electricity sector and the interactions between different
policy instruments (De Vries et al., 2013; Richstein et al., 2015a, 2015b,
2014). The model provides insight in the simultaneous long-term im-
pacts of different renewable energy, carbon emissions reduction and
resource adequacy policies, and their interactions, on the electricity
market.

Power generation companies are the central agents in this model.
The behavior of the agents is based on the principle of bounded ra-
tionality (as described by Simon (1986)), i.e., the decisions made by the
agents are limited by their current knowledge and their limited un-
derstanding of the future. The agents interact with each other and other
agents via the electricity market and thereby change the state of the
system. Consequently, the results from the model do not adhere to an
optimal pathway and the model is typically not in a long-term equili-
brium. Therefore, the model allows us to study the evolution of the
electricity market under conditions of uncertainty, imperfect informa-
tion and non-equilibrium.

In the short term, the power generation companies make decisions
about bidding in the power market. Their long-term decisions concern
investments in new capacity and decommissioning of power plants. The
model resembles a cost-minimizing model in which investments are
based on expected costs, as we did not program differences in the
agents’ behavioral algorithms. The only difference between the agents
develops in the state of their finances during the simulation: agents that
made bad investment decisions have less money to invest in later years.
By having multiple agents with different bank balances, the effects of2 http://emlab.tudelft.nl/.
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negative returns due to over investment develop more gradually than if
it had been a cost-minimization model with a single investment deci-
sion.

The main external drivers for change in this model are the fuel
prices, electricity demand growth scenarios and policy instruments such
as capacity mechanisms. The main outputs are investment behavior and
its impact on electricity prices, generator cost recovery, fuel con-
sumption, evolution of the supply-mix and system reliability.

The model provides the functionality for conducting an analysis of
an isolated electricity market as well as an interconnected electricity
system. The representation of an interconnected system is limited to
two zones with an interconnector. As the objective of this paper is to
understand the evolution of the electricity market over the long-term,
all scenarios consist of 40 time steps, each of which represents one year.

An overview of the model activities during a time step is presented
in a flowchart in Fig. 1. At the start of each time step, the power gen-
eration companies make annual loan payments (if any) for their power
plants. In the next step, the power generation companies submit price-
volume bids to the electricity market for all available power plants,
after which the electricity market is cleared. Next, the companies pur-
chase fuel for their power plants, pay their operation and maintenance
costs and are payed for the energy they sold on the electricity market. In
the last step, the power generation companies make decisions regarding
investment in new capacity and dismantling of existing power plants.

A detailed description of EMLab-Generation has been presented in a
report (De Vries et al., 2013), scientific literature (Bhagwat et al.,
2016b; Richstein et al., 2015a, 2015b, 2014) and in a doctoral thesis
(Richstein, 2015; Bhagwat, 2016). In the next section the structure of
the model is described in detail followed by the input assumptions,
model outcomes and model limitations. Please note that the description
of the model presented in Section 2 is based on (Bhagwat, 2016;
Bhagwat et al., 2017b)

2.2. Model

2.2.1. Demand
In this model, a single agent procures electricity on the behalf of all

consumers. Electricity demand is represented in the form of a step-wise
approximation of an empirical load-duration curve. The segments of the
step function have variable numbers of hours. (See Fig. 2.) Thus, each
segment of the load duration curve has an assigned load value and a
time duration, which is set as part of the initial input scenario. In each
time step of the simulation, the load value for all segments is updated
based on the exogenous demand growth rate. These segments are been
called “load blocks” or “load levels” in literature (Wogrin et al., 2014).

This approach for representing demand in electricity market models
has been utilized for power system modeling since the 1950s, especially
for medium and long-term models (Wogrin et al., 2014). The most
important advantage of using this approach is that it allows for a

shorter run time, enabling a larger number of simulations within a
practical time frame (Richstein et al., 2014). However, due to the loss of
temporal relationship between load hours, short term dynamics such as
ramping constraints, unplanned shutdowns, demand elasticity and load
shifting by storage units cannot be modeled (Wogrin et al., 2014).

2.2.2. Electricity market clearing
The electricity market is modeled as an abstraction of an hourly

power system (Richstein et al., 2014). Within each one-year time step,
the electricity market is cleared for each segment of the load-duration
curve. Therefore, the segment-clearing price is considered as the elec-
tricity price for the corresponding hours of the particular segment. In
this model the load duration curve is divided into 20 segments.

The power generation companies create price-volume bid pairs for
their controllable (thermal) power plants for each segment of the load-
duration curve. (Variable renewable energy generation is treated dif-
ferently, as described in Section 2.2.5.) The power generation compa-
nies bid their power plants into the market at their marginal cost of
generation, which is determined solely by the fuel costs. The volume
component of the bid is based on the capacity of the available power
plants. Outages are not modeled; availability is assumed to be 100%.
The supply curve for each segment is constructed by sorting the bids in
ascending order by price (merit order). The electricity market is cleared
at the point where demand and supply intersect. The highest accepted
bid sets the electricity market-clearing price for that segment of the
market. If demand exceeds supply, the clearing price is set at the value
of lost load (VOLL).

2.2.3. Investment algorithm
The investment behavior of the power generation companies is

based on the assumption that investors continue to invest up to the
point that it is no longer profitable. In this model, power generation
companies invest only in their own electricity markets thus entry into a
new market is not considered.

All investments are financed using a combination of debt and
equity. The power generation company considers investment in a new

Fig. 1. Stylized flowchart of the model activities
during a time step.

Fig. 2. Example of a load-duration curve in EMLab-Generation for one country.
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power plant only if it has sufficient cash on hand to finance the ne-
cessary equity. The power generation companies invest the equity from
their cash balance, based on a user defined expected rate of return on
equity. A bank finances the debt at a user-defined interest rate. The debt
is repaid as equal annual installments over the depreciation period for
the power plant. In this model, the power generation company can
choose between 14 power generation technologies types for making
investments (See Table A1 in Appendix A).

Power generation companies make investment decisions sequen-
tially in an iterative process. The investment decision of each power
generation company affects the investment decision of the next power
generation company by changing its forecast of available capacity (we
assume that power generation companies have full information about
investment decisions that have already been made by competitors).
This iterative process stops when no participant is willing to invest
further. To prevent a bias towards any particular agent, the sequence of
power generation companies is determined randomly in every time
step.

At the start of each investment round, each power generation
company makes a forecast of the future demand and fuel prices at a
point of time in the future (reference year) by extrapolating the growth
rate of demand from the past. The expected fuel prices are used to
calculate the marginal variable costs of all power plants that are ex-
pected to be available in the reference year. These may be new power
plants that have been announced or existing power plants that are
within their expected life span in the reference year. The future elec-
tricity price for each segment is estimated by creating a merit order of
the available power plants for each segment of the load duration curve.

Next, the power generation companies compare the outcomes of
investing in different power generation technology options available.
They calculate the expected cash flow in the reference year for a power
plant of each power generation technology under consideration. The
expected cash flow is calculated by subtracting the fixed costs of the
given power plant from its expected electricity market earnings. The
expected earnings from the electricity market are calculated based on
the power plant's expected running hours, the electricity prices and the
variable costs (calculated based on expected fuel prices) in those hours
of the reference year. The expected running hours of a power plant are
calculated by comparing the expected electricity prices for each seg-
ment and the expected variable cost of the power plant under con-
sideration. If the variable cost is lower than the electricity price, the
power plant is assumed to have cleared the market in that segment.
Therefore the power plant is assumed to have run for all hours of the
given segment.

The expected cash flow value for each power plant under con-
sideration is used to calculate the specific net present value (NPV) per
MW, over the construction period and the power plant's expected ser-
vice period. A weighted average cost of capital (WACC) is used as the
interest for the NPV calculation. The power generation company invests
in the power generation technology with the highest positive specific
NPV. If all NPVs are negative then no investment is made.

2.2.4. Decommissioning power plants
The power generation companies base their dismantling decisions

mainly on the operational profitability of each power plant. In each
time step, the power generation companies iterate through their set of
power plants in order to make decommissioning decisions. For each
power plant, the aggregated cash flow over the previous years is cal-
culated. The time horizon (in years) for this look back is a user-defined
value. If the cash flow of the power plant is negative, the power gen-
eration company makes a forecast of the cash flow for the coming year.
If this forecasted cash flow is also negative, the power plant is de-
commissioned. In order to simulate the rising costs of old power plants,
the operation and maintenance costs of power plants that are active
beyond their operational age are increased year-on-year. This ensures
that all old power plants are eventually dismantled (depending on

market conditions).

2.2.5. Intermittency of renewables
The intermittency of renewables is a short-term effect that is diffi-

cult to implement in a long-term model such as EMLab-Generation,
because demand is represented as a load duration curve. In this model,
intermittency is approximated by varying the contribution of these
technologies (availability as percentage of installed capacity) to the
different segments of the load-duration curve. The segment-dependent
availability is varied linearly from a large contribution to the base
segments, to a very small contribution to the highest peak segment. This
corresponds to the contribution of solar and wind energy to peak de-
mand in Germany.

2.2.6. Renewable energy policy
The development of renewable electricity generation is im-

plemented as investment by a renewable ‘target investor’. If investment
in renewable energy source (RES) based capacity by the competitive
power generation companies is lower than the government target, the
target investor will invest in additional RES capacity in order to meet
the target even to the extent that the investor does not recover its costs
in the market. This simulates the current subsidy-driven development of
renewable energy sources.

3. Capacity markets

3.1. Overview

A capacity market is a quantity-based capacity mechanism. The
desired quantity of the available generation capacity is administratively
set and the market decides the price. In a capacity market, consumers,
or agents on their behalf, are obligated to purchase capacity credits
equivalent to the sum of their expected peak consumption plus a re-
serve margin through a process of auctions (Agency for the Cooperation
of Energy Regulators (ACER), 2013; Cramton and Ockenfels, 2012;
Cramton et al., 2013; Creti and Fabra, 2003; Iychettira, 2013; Stoft,
2002; Wen et al., 2004). The additional revenues from the capacity
market are intended to help power plants to recover their fixed costs
(Joskow, 2008a, 2008b, 2006; Shanker, 2003).

A capacity market is expected to provide a stronger and earlier in-
vestment signal than wholesale electricity prices and thus improve
adequacy. It can therefore be used to compensate for under investment
that might occur as a result of electricity price risk. This price risk is
expected to increase as the shares of solar and wind energy grow.
Demand response and electric energy storage, on the other hand, would
dampen prices. However, the cost of large-scale energy storage cur-
rently still is too high (Zakeri and Syri, 2015) while the potential for
demand response appears limited. Because our model is not capable of
including demand response and storage, due to the use of a load-
duration curve, it represents a pessimistic scenario. If electrical energy
storage becomes substantially cheaper and demand response achieves a
significant market share, the need for a capacity mechanism may be
lessened.

3.2. The forward capacity market design3

We based the design of the forward capacity market with long-term
contracts on the recently implemented UK capacity market. In this
section, we describe the key design elements of the UK capacity market
and its implementation in the EMLab-Generation model. A forward

3 Please note that the forward capacity market was implemented by extending the
yearly capacity market model (also described in Section 3.3 of this paper) that was de-
veloped as part of our earlier studies presented in (Bhagwat, 2016; Bhagwat et al., 2017;
Iychettira, 2013).
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market means that the capacity that clears the market in the current
year needs to be available in a future reference year, in this case four
years from the current year. Therefore, any generation unit that is ex-
pected to be available in the reference year, whether existing or under
construction, can participate in the capacity market. Moreover, in the
UK capacity market design, new and refurbished capacity that clears
the market is provided with a long-term contract. A detailed description
of all the rules of the capacity market is available in DECC (2014a).

On the supply side, the most significant element of the UK capacity
market design is the heterogeneity of contract lengths. Power plants
that clear the capacity auction and are new or less than four years from
completion, are awarded 15-year contracts. Existing power plants that
clear the four-year ahead capacity market are awarded a one-year
contract. Plants that are being refurbished may obtain contracts of 3-
year duration. Capacity that is awarded long-term contracts is ineligible
for participation in the capacity market for the duration of the contract.
Renewable energy capacity that receives renewable policy support is
also ineligible to participate on the capacity market.

In the capacity market module of our model, the power producers
submit price (in €/MW per year) - capacity (in MW) bids for each eli-
gible power plant to the capacity market. The capacity component of a
power plant's bid is determined by its capacity that is available during
peak load. Existing and new power plants bid differently. A marginal
cost-based approach is used for existing power plants. Per generation
unit, the owner calculates the expected revenue from the electricity
market. If the generation unit is expected to earn adequate revenues
from the electricity market to cover its fixed operations and main-
tenance costs (in other words, its costs of staying online), the bid price
is set to zero and the plant becomes a pure price taker. Units that are
not expected to make adequate revenues from the energy market to
cover their fixed costs of remaining online bid the difference between
the fixed costs and the expected electricity market revenue, which is the
minimum revenue that would be required to remain online. The bid
price of plant that is new or under construction is set at its fixed op-
erating cost, which is the minimum revenue that such a power plant
would require to remain online without earning any revenue from the
wholesale electricity market.

Power plants that are have a long-term capacity contract do not
participate in the capacity market for the duration of the contract. At
the end of the long-term contract period, these power plants are al-
lowed to participate in the capacity market as existing capacity that is
eligible for one-year contracts.

On the demand side, a sloping demand curve is utilized (Cramton
and Stoft, 2005; DECC, 2014b; Hobbs et al., 2007; NYISO, 2013a,
2013b; Pfeifenberger et al., 2009). The system operator purchases ca-
pacity from the generation companies and passes the cost along to the
consumers. The regulator sets the values of the installed reserve margin
(IRM), the capacity market price cap and the slope of the demand
curve. The capacity market price cap represents the consumers’ (or the
regulator's) maximum willingness to pay for capacity. The demand re-
quirement is reduced based the volume of long-term capacity contracts
and on the contribution of renewables to peak load.

A forward market means that the capacity that clears the market in
the current year needs to be available in a future year. The absolute
value of the demand requirement (Dr) in MW for the current auction is
based on four variables: the installed reserve margin (r), the expected
peak demand (Dpeak) for the forward year, which is forecasted by ex-
trapolating past peak demand values, the total capacity that already has
long-term capacity contracts (CLT) and the total peak available capacity
of renewable generation with renewable energy policy support (CRES).
The following equation describes the calculation of the demand re-
quirement value:

= − − × +D D C C r( ) (1 )r peak LT RES (1)

The demand target is calculated for the entire zone without con-
sidering locational and transmission constrains within a single zone.

A sloping demand curve is modeled for the capacity market like in
the NYISO-ICAP and PJM-RPM capacity markets. These markets im-
plement sloping demand curves to provide more predictable revenues
to generators and to lower consumer costs by reducing price volatility
(Hobbs et al., 2007). When a sloping demand curve is implemented,
changes in the offered volume of capacity result in small price changes,
thus stabilizing capacity market prices (Pfeifenberger et al., 2009). As is
illustrated in Fig. 3, the sloping demand curve consists of two lines: a
horizontal line at the capacity market price cap (Pc) and a sloping line
intersecting the horizontal line and the X – axis. The slope and position
of the sloped line are dependent upon three user-defined variables,
namely, the demand requirement (Dr), the lower margin (lm) and the
upper margin (um). The lower and upper margins are administratively
set maximum flexibility boundaries above and below the IRM. The
sloping line intersects the horizontal line at Point (X = LM, Y = Pc).
The slope of the line is calculated using the following equation

=

−

m P
LM UM

c
(2)

= × + +UM D r um(1 )peak (3)

= × + −LM D r lm(1 )peak (4)

The capacity market clearing algorithm is modeled as a uniform
price auction. The bids submitted by the power producers are sorted in
ascending order by price and cleared against the sloping demand curve.

In our model, two types of contracts are offered to power plants that
clear the capacity market to account for the heterogeneity of contract
lengths. Existing capacity without a long-term contract is awarded a
one-year contract. Capacity that is new or under construction and ex-
pected to be functional in or before the forward year is awarded a long-
term contract at the auction clearing price. The forward period is four
years and the long-term contract length is chosen to be 15 years, like in
the UK. Since plant refurbishment is not modeled, we do not consider
this contract option in our model.

After the market is cleared, existing units that clear the capacity
market (receive a one-year contract) are paid the current capacity
market-clearing price. Newly built or under-construction capacity that
clears the market (is awarded a long-term contract) receives payments
for the period of the long-term contract fixed at the current year's
market-clearing price. All remaining power plants with long-term
contracts are also remunerated based on their contract price.

3.3. The yearly capacity market

We compare the performance of the long-term capacity market with
that of a yearly capacity market module (YCM). The YCM was devel-
oped as part of our earlier studies presented in Iychettira (2013),
Bhagwat (2016) and Bhagwat et al. (2017b, 2017a). The yearly capa-
city market module in EMLab-Generation is modeled with a few

Fig. 3. Illustration of a sloping demand curve.
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simplifications after the NYISO-ICAP model. The NYISO market was
chosen for its relatively simple design. Moreover, it was one of the first
capacity markets to be established in the United States and may be
considered as an example of a capacity market that is arguably meeting
its policy goals. Moreover, it is projected that no new resource re-
quirements would be necessary in NYISO region till 2018 (Newell et al.,
2009).

In the NYISO-ICAP, generators offer unforced capacity4 (UCAP)
(NYISO, 2013a, 2013b) in a series of auctions. The auctions are con-
ducted annually for the following year. The ISO contracts capacity on
behalf of load serving entities (LSEs); thus, consumers participate au-
tomatically. A sloping demand curve is utilized. Consumers are pro-
vided opportunity to correct their positions during the year via the
monthly spot auctions and capability period auctions. In each year
there are two capability periods, summer capability period (May
1st–Oct 31st) and winter capability period (Nov 1st–April 30th)
(Bhagwat et al., 2016a; NYISO, 2014). The LSEs are obligated to pur-
chase capacity credits equivalent to the minimum unforced capacity
(UCAP) assigned to them (Harvey, 2005; NYISO, 2013a, 2013b). The
value of unforced capacity is calculated as the product of the Installed
Reserve Margin (IRM) and the forecasted peak demand (NYISO,
2013a). The regulator calculates the IRM so as to achieve a loss of load
expectation of once in 10 years. NYISO allows bilateral capacity con-
tracts and imports to participate on the capacity market subject to
certain rules and regulations. A detailed description of the market rules
is given in (NYISO, 2013a; Spees et al., 2013).

In the yearly capacity market that is modeled in EMLab-Generation,
the capacity for the coming year is traded in a single annual auction and
is administered by an agent called the capacity market regulator. The
user sets the IRM, capacity market price cap and parameters for gen-
erating the slope of the demand curve.

The regulator calculates the demand requirement (Dr) for the cur-
rent year based on the IRM (r) and the expected peak demand (Dpeak).
Expected peak demand is forecast by extrapolating past values of peak
demand using geometric trend regression over the past four years. The
demand requirement is calculated with the following equation.

= × +D D (1 r)r peak (5)

The sloping demand curve for the yearly capacity market is modeled
similarly to the forward capacity market as described in the earlier
section.

The supply curve is based on the Price (€/MW) – Volume (MW) bid
pairs submitted by the power generators for each of their active gen-
eration units. The agents calculate the volume component of their bids
for a given year as the generation capacity of the given unit that is
available in the peak segment of the load-duration curve. A marginal
cost-based approach is used to calculate the bid price. For each of
power plant, the power producers calculate the expected revenues from
the electricity market. If the generation unit is expected to earn ade-
quate revenues from the electricity market to cover its fixed operating
and maintenance costs (in other words, its costs of staying online), the
bid price is set to zero, as no additional revenue from the capacity
market is required to remain operational. Units that are not expected to
make adequate revenues from the energy market to cover their fixed
costs of remaining online, bid the difference between the fixed costs and
the expected electricity market revenue, the minimum revenue that
would be required to remain online.

The yearly capacity market-clearing algorithm is based on the
concept of uniform price clearing. The bids submitted by the power
producers are sorted in ascending order by price and cleared against the
above-described sloping demand curve. The units that clear the capa-
city market are paid the market-clearing price. While making

investment and dismantling decisions, the power generators take into
account the expected revenues from the capacity market.

4. Scenarios and indicators

All scenarios are run over a time horizon of 40 years, 120 times in a
Monte Carlo fashion with identical initial conditions. The initial supply
mix is roughly based on the Eurelectric (2012) data for the UK. The
renewable energy growth trends in all the scenarios are modeled based
on UK's national renewable action plan (Beurskens et al., 2011; DECC,
2010) up to year 2020 and thereafter they follow the 80% pathway of
the European Climate foundation's Roadmap 2050 projections
(European Climate Foundation, 2010). The load duration curve is based
on the ENTSO-E hourly demand data for the year 2014 for UK.

The fuel prices and demand growth are uncertain. The uncertainty
of these parameters is created using a triangular trend distribution. The
natural gas and coal price trends are based on fuel projects of the UK
Department of Energy and Climate Change (Department of Energy and
Climate Change, 2012) and extrapolated beyond 2035. The price trends
for biomass (based on Faaij (2006)) and uranium are modeled sto-
chastically using a triangular distribution. The average annual demand
growth is 1%.

Depending upon the nature and location of the load, the estimate of
value of lost load can vary significantly as observed from literature
(Anderson and Taylor, 1986; Baarsma and Hop, 2009; Leahy and Tol,
2011; Linares and Rey, 2013; Pachauri et al., 2011; Wilks and
Bloemhof, 2005). In this modeling, VOLL was chosen at the relatively
low level of 2000 €/MWh. We also chose this level to take into account
demand flexibility that might occur during periods of high prices.

We consider an isolated electricity market without interconnection
and with four similar generation companies. The baseline scenario BL
consists of an energy-only market (no capacity market). The scenario
LTCC consists of an electricity market with a four-year forward capacity
market implemented in the system. New and under construction ca-
pacity that clears the capacity market is awarded a 15-year long-term
contract while existing capacity is awarded a one-year contract. The
scenario STCC consists of an electricity market with a yearly capacity
market in which the capacity market is cleared for the coming year. In
both the LTCC and STCC scenarios, the capacity market price cap is set
at 95 k€/MW. This value is based on the price cap used in the UK ca-
pacity market. The lower and upper margins of the sloping demand
curve are set at 3.5%. The installed reserve margin (IRM) requirement
is set at 10% of peak demand.

The following indicators are used for evaluating the performance of
the capacity markets:

• The average electricity price (€/MWh): the average electricity price
over an entire run.

• The number of shortage hours (hours/year): the average number of
hours per year with scarcity prices, averaged over all years and all
Monte Carlo “runs” of a scenario.

• The supply ratio (MW/MW): the ratio of available supply over peak
demand.

• The average cost to consumers of the capacity market (€/MWh): the
cost incurred by consumers for contracting the mandated capacity
credits from the capacity market, divided by the total units (MWh)
of electricity consumed.

• The total average cost to consumers5 (€/MWh): the sum of the
electricity price, the cost from the capacity market and cost of re-
newable policy (if applicable) per unit of electricity consumed.

4 Unforced capacity is defined as the amount of electricity generated by a power
generator after accounting for any outages (NYISO, 2013a, 2013b).

5 Note that this includes the cost of outages, because in our model the electricity price
rises to the VOLL during shortages.

P.C. Bhagwat et al. Energy Policy 111 (2017) 255–267

260



5. Results and analysis

In this section, the model results are analyzed. Fig. 4 presents an
overview. The results are also presented in a numerical form in Table
A2 of the Appendix A.

5.1. Performance of the forward capacity market

In this section, results from the scenario with a forward capacity
market (LTCC) are compared with the baseline scenario (BL). The
presence of a capacity market leads to an average supply ratio of 1.12 (a
reserve margin of 12%). This value is two percentage points higher than
the adequacy target of 10%, but it is within the 3.5% point upper
boundary. This overshoot can be attributed to the configuration (price
cap and slope) of the demand curve used in this analysis. The capacity
market clears at a level where it becomes economically viable for excess
idle capacity above the targeted IRM to remain available. On an
average, the forward capacity market clears at a price of 32,850 €/MW.

The implementation of a forward capacity market increases the
reserve margin substantially and reduces most of the investment cycles
that we see in the baseline scenario, but a smaller and slower invest-
ment cycle is still present. See Fig. 5. In this figure and the ones like it,
the mean is indicated with a solid line, the average with a dashed line,
the 50% confidence interval with a dark grey area and the 90% con-
fidence interval with the lightly shaded area. The difference with an
yearly capacity market, in which capacity contracts last only a year, is
not big, however; in fact, the yearly capacity market seems to provide a
more stable reserve margin than the long-term capacity market.

Early in the model runs, the power producers invest in new capacity

because they expect sufficient returns from the capacity market. Due to
its short construction time and low capital cost, OCGT is the preferred
technology type for investment (See Fig. 6.). This new-built and/or
under construction capacity clears the capacity market and is awarded
long-term contracts, as it requires the lowest capacity price to remain
online, even if it has little or no revenue from the electricity market.
This capacity either operates during peak hours or remains idle alto-
gether. The increase in capacity with long-term contracts leads to a
reduction in the remaining capacity requirement (as the capacity re-
quirement is reduced by the capacity having long-term contracts).
However, these new ‘peaker’ plants are low in the merit order. Conse-
quently, the existing supply function is extended with the new ‘peaker’
plants and the capacity market clearing prices are depressed, making
investment in new capacity less attractive. The revenues of existing
power plants that receive annual capacity contracts also decline,

Fig. 4. Performance overview of the three market designs.

Fig. 5. The supply ratio in scenarios without a capacity market (left), with a forward capacity market (center) and a yearly capacity market (right).

Fig. 6. The average volume of OCGT capacity awarded with long-term contracts in the
capacity auction.
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leading to dismantlement of power plants that do not receive adequate
revenues. Because of the time delay in the market parties’ responses, an
investment cycle develops.

Because the IRM is set well above the real need for capacity, the
capacity market stimulates power generators to invest in generation
capacity that either remains idle or runs rarely. (This is partly a model

artifact, as we do not model generator outages.) Therefore, investment
in OCGT technology with lowest capital cost becomes the preferred
choice. The average volume of installed OCGT capacity increases from
6.1 GW in the baseline scenario to 14.7 GW in the forward capacity
market (Fig. 7). The presence of a forward capacity market does not

Fig. 7. The average volume of installed capacity of OCGT in a scenario without (left) and with a forward capacity market (right).

Fig. 8. Electricity price in scenario without (left) and with (right) forward capacity market.

Fig. 9. Average electricity price difference between scenarios with a yearly capacity
market (STCC) and a forward capacity market (LTCC).

Fig. 10. Capacity prices in scenario with a forward capacity market (left) and with a yearly capacity market (right).

Fig. 11. Peak demand trend in the demand shock scenarios.
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affects the development of nuclear capacity in the system, because the
remuneration from the capacity market does not add sufficient revenue
for new nuclear power plants to recover their costs.

In the presence of a forward capacity market, the high reserve
margin causes the number of shortage hours to decline to almost nil. As
a result, the average wholesale electricity price declines by 33% as
compared to the baseline scenario. A significant reduction in price
volatility is also observed due to the overcapacity (Fig. 8). As is ob-
served in Fig. 4, the reduction in shortage hours leads to an increase in
the cost of renewable energy subsidy. The cost to consumers of the
capacity market is 5.7 €/MWh. However, the savings from reduction in
shortage hours is large enough to compensate for these additional costs.
In the presence of a forward capacity market, the overall cost to con-
sumers declines by 15% on average as compared to the baseline sce-
nario. We observe that on average, the annual generation increases by
234 GWh in the scenario with a forward capacity market as compared

Fig. 12. Supply ratios in a scenario with a forward capacity market (left) and a yearly capacity market (right), in the presence of a demand shock.

Fig. 13. Capacity market prices in scenario with a forward capacity market (left) and a yearly capacity market (right), in the presence of a demand shock.

Table 1
Scenario settings for the sensitivity analysis.

Scenario Capacity market
cap (k€/MW)

Upper
margin (%)

Lower
margin (%)

Long-term
contract length
(years)

1 75 3.5 3.5 15
2 95
3 105
4 95 1.5 1.5
5 3.5 3.5
6 5.5 5.5
7 3.5 3.5 10
8 15
9 20

Fig. 14. Standard deviation of forward capacity market prices in scenarios with different
price caps.

Fig. 15. Price uncertainty of forward capacity market prices in scenarios with different
demand slopes.
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to the baseline scenario, which leads to elimination of the shortage
hours in scenario LTCC.

5.2. Comparison with the yearly capacity market

In this section, we compare the forward capacity market (scenario
LTCC) with a yearly capacity market (scenario STCC). Both capacity
market designs are able to provide the mandated installed reserve
margins (IRM) levels. The average supply ratios in both scenarios are
comparable (1.12 in LTCC and 1.125 in STCC). A similar reduction in
shortage hours is observed in both scenarios (LTCC and STCC). The
average electricity prices in both the scenarios are also comparable
(prices in a scenario with a forward capacity market are marginally
(1%) lower than that in the yearly capacity market). Fig. 9 illustrates
the difference between average electricity prices in the two scenarios.
The maximum difference between the prices is less than 2 €/MWh.

The capacity market prices in the yearly capacity market are more
volatile than those in the forward capacity market (Fig. 10). This can be
attributed to the short-term nature of the yearly capacity market.
Consequently, the average cost of the capacity market to the consumers
is significantly higher in a scenario with a yearly capacity market (8.6
€/MWh) than with a forward capacity market (5.7 €/MWh). This
translates into a 4% higher total cost to consumers in the scenario with
a yearly capacity market as compared to a scenario with a forward
capacity market. The total cost to consumer in a scenario with a FCM is
53.7 €/MWh while in the one with a YCM is 56.1 €/MWh.

5.3. The effectiveness of a forward capacity market in the event of a
demand shock

While both capacity market designs perform well in scenarios with
generally smooth demand growth, we also tested how well they stand
up to a sudden shock like the drop in electricity demand in Europe in
the aftermath of the 2008 financial crises. We apply this scenario to
both the short-term and the long-term capacity markets. The average
demand growth trend (over all 120 Monte Carlo runs) is 1.5% for the
first 14 years of the simulation. Then there is a sudden drop in demand.
Subsequently, the average growth rate is zero for several years, after
which it returns to 1.5% in the last 11 years of the simulation. The
demand growth trajectory including the 50% and 90% confidence in-
tervals is presented in Fig. 11. The above described demand growth
trajectory also was used in our earlier research (Bhagwat et al., 2017a).

The drop in the demand leads to an investment cycle, both in a
forward and an yearly capacity market. In case of a forward capacity
market (FCM), the dip in demand leads to a spike in the supply ratio,
which proceeds to decline gradually as the system adjusts to the zero
growth level. The supply ratio stabilizes at the 10% IRM level. As de-
mand growth picks up again, the capacity market price rises, which is
followed by investment in new generation capacity. The total cost to

consumers in a demand shock scenario with an FCM is 55.1 €/MWh.
In the case of an yearly capacity market (YCM), the capacity

clearing price is more sensitive to the demand growth changes. The
demand shock leads to overcapacity and a steep drop in the capacity
price. As demand growth does not rebound, we see a gradual dis-
mantling of unprofitable power plants over the next years. When de-
mand starts to grow again, this causes a price spike in the capacity
market as the reserve margin is significantly diminished due to the
dismantling. This reinforces the investment cycle. The total cost to
consumers in a demand shock scenario with an YCM is 57.3 €/MWh.

As the capacity is traded year-ahead only, significantly higher price
volatility is observed in the yearly capacity market than in the forward
capacity market. As the decision regarding the decommissioning of
power plants is based on their profitability, the price volatility provides
these power plants with adequate revenues to break-even and remain in
the system for a longer time, thus decommissioning of power plants is
slower with a yearly capacity market as compared to a forward capacity
market. This results in an overall higher reserve margin in a region with
a yearly capacity market during the period with no demand growth (See
Figs. 12 and 13). When we compare the results of both scenarios, we
find that while both capacity markets experience an investment cycle
but both continue to provide adequacy.

5.4. Sensitivity analysis

In this section, we study the sensitivity of the forward capacity
market (FCM) to different design parameters. The variations to the
design parameters used in this analysis are presented in Table 1.

5.4.1. The capacity market price cap
As the capacity market price cap (the maximum willingness to pay

for capacity) is set by the regulator, we tested the model's sensitivity to
this parameter. The model was run with capacity market price cap
values between 75 k€/MW and 115 k€/MW in increments of 20 k
€/MW. See Table 1, Scenarios 1–3. All other parameters in the scenarios
were kept the same as in the LTCC scenario. The forward capacity
market design does not exhibit a strong sensitivity to change in the
value of capacity market price cap in terms of costs or supply ratios. The
differences in the average cost to consumers and average supply ratio
values are negligible.

Considering the development of the capacity clearing price trends
over the entire simulation run, we observe that a lower capacity market
price cap reduses the price uncertainty in the capacity market. This can
be observed from the standard deviation values in Fig. 14. An increase
in the price cap would effectively make the slope of the capacity market
demand curve steeper, making the capacity price more volatile. This
result conforms to the theory that a vertical or steep demand curve
leads to more volatile prices (Hobbs et al., 2007).

Fig. 16. Price uncertainty of capacity market prices in scenarios
with differing long-term contract periods.
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5.4.2. The slope of the capacity demand curve
We also tested the sensitivity of the forward capacity market to

three different slope configurations by varying the upper and lower
margins of the capacity demand curve. See Table 1: Scenarios 4–6.

The performance of the forward capacity market, in terms of the
supply ratio and cost of capacity, is not very sensitive to changes in
slope of the capacity demand curve. However, a steeper demand curve
causes the capacity market prices to be more volatile (Fig. 15). This
indicates that a sloping demand curve is effective in reducing price
uncertainty in the capacity market. As mentioned above, this observa-
tion corresponds with theoretically expectations.

5.5. Contract duration

We vary the contract length from 10 to 20 years in steps of 5 years.
See Table 1: Scenarios 7–9. As explained in Section 5.1, the generation
capacity that obtains long-term contracts is mostly OCGT, as it has the
lowest cost of remaining online, even with little or no revenue from the
electricity market. This leads to reduction of the capacity requirement
in the FCM and consequently to lower capacity clearing prices. Longer
contract duration leads to longer periods with lower capacity market
prices. This translates into a lower average capacity market clearing
price and a reduction in the price uncertainty on the capacity market.
See Fig. 16.

However, it does not lead to a reduction in the overall cost to
consumer from the capacity market. The cost savings from to the lower
capacity market price are not very large, while the longer contract
duration entails remunerating this capacity for a longer period, which
adds to the cost to consumers. Therefore, on an average, the overall cost
to consumer from the capacity market is not affected significantly by
the duration of the long-term contracts.

6. Model limitations

As was described in earlier work (Bhagwat et al., 2017b, 2017a,
2016b, 2014), we do not consider market power or strategic behavior of
power producers in neither the electricity market nor the capacity
markets. Therefore, the dynamics that may arise due to strategic be-
havior of various market participants, e.g. during shortages, are not
captured. The impacts of demand response and storage on the long-
term development of the electricity market are left out of the scope of
this study. However, they have a stabilizing impact on electricity prices
and may reduce the need for a capacity mechanism. As EMLab-Gen-
eration model was developed to study the long-term development of the
electricity market, short-term effects such as unscheduled shutdowns of
power plants are not modeled. These assumptions, along with the
segmented nature of the load-duration curve, make the short-term dy-
namics less precise. Among others, they explain the overshoot in ade-
quacy that is observed in the model results. Finally, mothballing of
power-plants has not been modeled. Such a provision could be attrac-
tive for generation companies during periods of uncertainty. In the
context of this model it may dampen investment cycles.

7. Conclusions

We present a model of a forward capacity market with long-term
contracts that is based on the UK capacity market design in a system
with a growing share of renewable energy. We compare this forward
capacity market with a yearly capacity market that is based on the
NYISO-ICAP design. The model represents a pessimistic scenario in
which electrical energy storage and demand response do not gain a
significant market share.

The implementation of a forward capacity market reduces the in-
vestment cycles observed in our baseline energy-only scenario.
However, a smaller and slower investment cycle still exists. A forward
capacity market leads to a significantly higher supply ratio, substantial
reduction in the number of shortage hours and lower overall cost to
consumers as compared to a baseline energy-only market, but its per-
formance is not significantly better than that of a short-term (yearly)
capacity market. To the contrary, both without and with a demand
shock, the capacity market with long-term contracts exhibited a higher
risk of failing to maintain system adequacy. The reason is that the
forward capacity market responds a little slower to changes as com-
pared to a yearly capacity market.

On the other hand, the forward capacity market reduces overall
consumer cost, as compared to a scenario with a yearly capacity
market, because the capacity price in a forward capacity market is less
volatile and slightly lower on average than in a yearly capacity market.
Like the yearly capacity market, the forward capacity market increases
investment in low-cost peak generation capacity as compared to an
energy-only market.

In accordance with the literature, we found that a gentler slope of
the capacity demand function (larger upper and lower margins) reduces
capacity price uncertainty. The performance of the capacity market
does not change significantly if the contract duration is extended be-
yond ten years. Our model was run with perfectly inelastic demand.
Demand response and electric energy storage could significantly
dampen electricity prices and thereby reduce the need for a capacity
market, but as their shares are not large and their economic potential is
uncertain, our model reflects the current state of electricity markets.
Future extensions could include plant outages and the impact of de-
mand response, energy storage and cross-border exchanges on the need
for, and the performance of, a capacity market.
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