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Bank risk dynamics and distance to default 
 
 

Abstract 
 
We adapt structural models of default risk to take into account the special nature of bank assets. 
The usual assumption of log-normally distributed asset values is not appropriate for banks. 
Typical bank assets are risky debt claims, which implies that they embed a short put option on 
the borrowers' assets, leading to a concave payoff. This has important consequences for banks’ 
risk dynamics and distance to default estimation. Due to the payoff non-linearity, bank asset 
volatility rises following negative shocks to borrower asset values. As a result, standard 
structural models in which the asset volatility is assumed to be constant can severely understate 
banks’ default risk in good times when asset values are high. Bank equity payoffs resemble a 
mezzanine claim rather than a call option. Bank equity return volatility is therefore much more 
sensitive to big negative shocks to asset values than in standard structural models. 
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1 Introduction

The distress that many banks experienced during the recent financial crisis has brought renewed

emphasis on the importance of understanding and modeling bank default risk. Assessment of bank

default risk is important not only from an investor’s viewpoint, but also for risk managers analyzing

counterparty risks and for regulators gauging the risk of bank failure. Accurate modeling of bank

default risk is also required for valuing the benefits that banks derive from implicit and explicit

government guarantees.

In many applications of this kind, researchers and analysts rely on structural models of default

risk in which equity and debt are viewed as contingent claims on the assets of the firm. Following

Merton (1974), the standard approach (which we call the Merton model) is to assume that the value

of the assets of the firm follows a log-normal process. The options embedded in the firm’s equity

and debt can then be valued as in Black and Scholes (1973). Researchers have recently used this

approach to value implicit (too-big-to-fail) government guarantees for banks [Acharya, Anginer,

and Warburton (2014), Schweikhard, Tsesmelidakis, and Merton (2014)] and quasi-governmental

institutions [Lucas and McDonald (2006), Lucas and McDonald (2010)]. An extensive literature

has applied this model to price deposit insurance, going back to Merton (1977), Marcus and Shaked

(1984), Ronn and Verma (1986), and Pennacchi (1987).

The Merton model’s assumption of log-normally distributed asset values may provide a useful

approximation for the asset value process of a typical non-financial firm. However, for banks this

assumption is clearly problematic. Much of the asset portfolio of a typical bank consist of debt

claims such as mortgages. The fact that the upside of the payoffs of these debt claims is limited is

not consistent with the unlimited upside implied by a log-normal distribution.

In this paper, we propose a modification of the Merton model that takes into account the capped

upside of bank assets. Our approach has three main elements. First, we apply the log-normal

distribution assumption not to the assets of the bank, but to the assets of the bank’s borrowers

that serve as loan collateral. More precisely, we model banks’ assets as a pool of no-recourse zero-

coupon loans where loan repayments depend on the value of borrowers’ collateral assets at loan

maturity as in Vasicek (1991). Collateral asset values are subject to common factor shocks as well

as idiosyncratic risk. Second, loans have staggered maturities. Every period a fraction of the loan
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portfolio matures and the bank issues the repayment proceeds as new loans. New loans are issued

at a fixed initial loan-to-value ratio. Thus, to the extent that borrowers had excess collateral at loan

maturity, this excess collateral is removed completely and is no longer available to back the loan.

In the case of a deficiency, collateral is replenished, but only up to the level that the required initial

loan-to-value ratio is satisfied. This asymmetry in collateral removal and replenishment reinforces

the capped upside of a bank’s assets and it resembles the cash-out refinancing ratchet effect for

aggregate mortgage portfolios modeled in Khandani, Lo, and Merton (2013). Finally, the assets of

the bank are contingent claims on borrowers’ collateral assets, and equity and debt of the bank are

contingent claims on these contingent claims.

This options-on-options feature of bank equity and debt has important consequences for default

risk and equity risk dynamics. To illustrate the main intuition, it is useful to consider the simplified

case in which all borrowers are identical (with perfectly correlated defaults), all loans have identical

terms, and the bank has zero-coupon debt outstanding with the same maturity as the loans in its

asset portfolio. In this case, the payoffs at maturity as a function of borrower asset value are as

shown in Figure 1. In this example, the borrowers have loans with face value 0.80 and the bank has

issued debt with face value 0.60. Since the maximum payoff the bank can receive from the loans is

their face value, the bank asset value is capped at 0.80. Only when borrower assets fall below 0.80

is the bank asset value sensitive to borrower asset values.

Clearly, the bank asset value cannot have a log-normal distribution (which would imply unlim-

ited upside). Since the bank’s borrowers keep the upside of a rise in their asset value above the

loan face value, the bank’s equity payoff does not resemble a call option on an asset with unlimited

upside, but rather a mezzanine claim with two kinks. This mezzanine-like nature of the bank’s

equity claim has important consequence for the risk dynamics of bank equity and for default risk

estimation. Due to the capped upside, bank volatility will be very low in “good times” when asset

values are high and it is likely that asset values at maturity will end up towards the right side in

Figure 1 where the bank’s equity payoff is insensitive to fluctuations in borrower asset values.

A standard Merton-model in which equity is a call option on an asset with constant volatility

misses these nonlinear risk dynamics. Viewed through the lens of this standard model it might

seem that a bank in times of high asset values is many standard deviations away from default. But

this conclusion would be misleading because it ignores the fact that bank asset volatility could rise
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Figure 1: Payoffs at maturity in the simplified model with perfectly correlated borrower defaults

dramatically if asset values fall. Similarly, the standard model would give misleading predictions

about the riskiness of bank assets, equity, and debt.

Going beyond this simple illustrative example, our model incorporates idiosyncratic borrower

risks and overlapping cohorts of borrowers with staggered loan maturities where maturing loans get

replaced with new loans. This revolving replacement of staggered loans is a quantitatively important

and realistic feature of the model. For example, a housing boom raises collateral values and lowers

the loan-to-value ratios of mortgage borrowers with existing loans. However, loans issued to new

borrowers are typically issued with standard loan-to-value ratios (and new borrowers require bigger

loans to purchase houses at appreciated prices). Thus, if a bank’s borrowers have high collateral

values today, this provides a big safety cushion for a bank’s claims only until loans get repaid and

rolled over into new loans. The reset of collateral values when new loans are issued thus limits

the extent to which an appreciation in borrower collateral values today lowers the default risk of a

bank. The periodic reset is, effectively, a cap on the collateral values backing the bank’s loans that

kicks in when loans get rolled over to new borrowers. This reinforces the mezzanine-claim nature

of bank equity and the resulting consequences for risk dynamics and distance to default.

To assess the differences between our modified model and the Merton model, we simulate data

from our modified model and ask to what extent an analyst using the Merton model would mis-
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judge the risk-neutral probability of default. We find that this error is particularly stark when asset

values are high relative to the face value of the bank’s debt. In this case, bank asset payoffs are

likely to stay in the flat region in Figure 1 and bank equity payoffs are also likely in the flat region.

As a consequence, equity volatility is low. Based on the Merton model, an analyst observing low

equity volatility would infer that asset volatility must be low. Furthermore, since asset volatility

is constant in the Merton model, the analyst would (wrongly) conclude that asset volatility will

remain low at this level in the future. What the Merton model misses in this case is that asset

volatility could rise substantially following a bad asset value shock, because the region of likely

asset payoffs would move closer to or into the downward sloping region in Figure 1. As a result,

the Merton model substantially overestimates the distance to default and it underestimates the

risk-neutral probability of default.

We then calibrate our modified model and the standard Merton model to quarterly bank panel

data from 1987 to 2016. In the case of the Merton model, we follow the standard approach and look

for asset value and volatility of bank assets that allow the model to match the observed market value

of equity and its volatility. In the case of our modified model, we fix the volatility and correlation

of borrower asset values and the initial loan-to-value ratio at empirically plausible values. We

then look for values for the size of the bank’s loan book and a common shock to borrower asset

values after loan origination to match the bank’s market value of equity and its equity volatility.

Even though both models are calibrated to the same equity market data, their implied risk-neutral

default probabilities are strikingly different. In line with the simulations we discussed above, the

differences are particularly big in the years before the financial crisis when equity values were high

and volatility low. Based on the Merton model, the risk-neutral default probability of the average

bank in 2006 over a 5-year horizon is roughly 5%. In contrast, the risk-neutral default probability

implied by our modified model is three times as high. Translated into credit spreads, this would

imply an annualized spread of around 5 basis points in the Merton model and close to 40 basis

points according to our modified model.

Once the financial crisis hit in 2007-08, the models’ predictions are not so different anymore. At

this point, bad asset value shocks had moved banks into the downward-sloping asset payoff region

in Figure 1. In this region, the kink in the asset payoff becomes less relevant and the predictions

from our modified model are close to those from the standard Merton model. In periods of the
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most extreme distress, Merton model default probabilities can even exceed those from our modified

model. Default probabilities estimated from the modified model again started to exceed Merton

model default probabilities by two-to-three times in the post-2012 period as the economy started to

recover from the great recession. Going back to the earlier periods, we find the same pattern. The

modified model provides a much higher default probability during the 1990s, a period characterized

by high equity valuations and low volatility. However, during the savings and loans crisis period of

1987-1993, there are spikes in default probabilities when Merton model predictions approach those

from our modified model.

Thus, the key problem with applications of standard structural models to banks is that they

understate the risk of default in “good times.” This is an important issue, for example, for the

estimation of the value of explicit or implicit government guarantees. Based on a standard Merton

model calibrated to equity value and volatility data from 2006 (i.e., pre-crisis times), one may be led

to the conclusion that the value of a guarantee is almost nil when, in fact, the value is a lot higher

if one takes into account the fact that banks’ asset volatility will go up when asset values fall. In

fact, the FDIC charged almost zero insurance premium for a number of commercial banks during

the pre-crisis period (see Duffie, Jarrow, Purnanandam, and Yang (2003)). Such a policy may seem

justified based on Merton model default probabilities, but our modified model will suggest a much

higher premium during good times.

We further investigate the plausibility of our modification of the Merton model by comparing

the models’ predictions about bank equity volatility following a bad shock to the bank’s asset value.

We calibrate both models to match data on equity values and volatility in 2006Q2. We then add a

negative shock to borrower asset values based on the change in house values. We use two measures

of shock, one based on Freddie Mac House Price Index and the other based on unlevered returns

on U.S. REITs from 2006Q2 to subsequent quarters. Since the latter measure is market based,

we expect this shock to be more informative of the true asset values of the bank’s borrowers. The

negative shock to borrower asset values then translates, in our modified model, into a shock to

the bank’s asset value. We then apply an asset value shock of the same magnitude in the Merton

model. In the Merton model, the consequences are mild. Using the Freddie Mac housing index

as a measure of shock, the average bank’s equity volatility rises by about 8-9 percentage points

from 2006Q2 to 2009. This is a modest increase compared to the average bank equity volatility
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of about 25% in 2006Q2. In contrast, in our model, average bank equity volatility increases by

about 14-15 percentage points because the model takes into account not only the drop in the

bank asset values, but also the rise in bank asset volatility. This increase is still below the actual

realized equity volatility of U.S. banking stocks during the crisis. When we use shocks based on

unlevered returns to publicly traded REITs, there is a dramatic improvement in the match between

the volatility implied by our model and the realized volatility. At the peak of the financial crisis,

the two measures come within 5% of each other. Merton model based equity volatility remains

considerably lower even with this shock. Taken together, these exercises illustrate that application

of a standard structural model with constant asset volatility can severely understate the sensitivity

of bank equity risk to negative asset value shocks, and this in turn can lead to a relatively inferior

model of default prediction.

Our objective in this paper is to improve structural models of bank default risk in one important

aspect—capturing the non-linearity of bank asset payoffs—but our modified structural model still

omits many features—e.g., liquidity concerns, interest-rate risk, complex capital structure, and

government guarantees—that would be necessary for an entirely realistic modeling of bank default

risk. Similarly, our model does not allow banks to rebalance their portfolios to change the volatility

of their assets in response to positive or negative shocks. For default prediction that takes into

account many of these complications, a reduced-form model rather than a structural one may be

the preferred method in practice. But for reduced-form models, too, our results have important

implications. Many reduced form models use a Merton model distance-to-default as one of the state

variables driving default intensity (e.g., Duffie, Saita, and Wang (2007), Bharath and Shumway

(2008) Campbell, Hilscher, and Szilagyi (2008)). Our analysis suggests that for banks the default

probability from our modified model may be better suited as a default predictor. For example, it

could be included as a predictor within a reduced-form deposit insurance pricing model as in Duffie,

Jarrow, Purnanandam, and Yang (2003). The reduced-form approach permits a lot of flexibility

to obtain realistic default risk estimates, but the structural approach that we pursue here is useful

for understanding the economic drivers of default risk (which may in turn be useful for developing

better specifications of reduced-form models).

To understand the relative predictive power of the default risk estimates from our modified

model and the Merton model, we estimate a Cox proportional hazard model to predict bank
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defaults during our sample period using the two default risk measures as predictors. The modified

model’s default probability does a considerably better job in accurately predicting future default

compared to the Merton model’s default risk estimates. We also show that the modified model’s

default probabilities are not simply a monotonic non-linear transformation of the Merton model

estimates. We estimate a non-parametric regression of the Merton model default probabilities

on the modified model default probabilities, and show that both the predicted values from this

regression and the residuals are informative about the actual subsequent defaults of banks. In

other words, our modified default risk measure contains additional information that cannot be

simply captured by a non-parametric transformation of the Merton model default probabilities.

Our paper relates to several strands in the literature. Three papers in the deposit insurance

pricing literature anticipate some elements of our approach. Ritchken, Thomson, and Popova (1995)

value deposit insurance in a model where banks’ assets are risky debt to a representative firm, but

they do not derive its implications for default risk or equity volatility dynamics. Dermine and Lajeri

(2001) look at the case of a single borrower with loan maturity that matches exactly the bank’s

debt maturity, as in our illustrative case above in Figure 1. Chen, Ju, Mazumdar, and Verma

(2006) allow for a portfolio of loans with idiosyncratic default risk, but the maturity of the bank’s

debt is still tied to be equal to the maturity of the bank’s loans. In contrast, our model de-couples

the maturities of banks’ assets and liabilities. Moreover, the staggering of loan maturities allows

us to introduce the collateral ratchet effect. Both features are quantitatively important. Moreover,

unlike these earlier papers, we empirically apply and evaluate the model. Gornall and Strebulaev

(2014) specify bank assets as loan portfolios in similar ways as we do, albeit without staggering of

loan maturities. Their focus is on modeling bank’s capital structure choices in equilibrium, while

we focus on implications for default risk estimation and valuation of bank’s securities.

Our work also relates to recent research that uses data from options markets to understand credit

risk and bank risk. Culp, Nozawa, and Veronesi (2014) construct pseudo firms that have traded

securities as assets (e.g., a stock index) and pseudo bonds—a combination of Treasuries and put

options—as liabilities. In one of their applications, they also consider a bank that owns a portfolio

of pseudo bonds. In this way, analogous to our approach, they also capture the options-on-options

nature of bank equity and debt, albeit in a non-parametric way rather than in a parametric struc-

tural model. Our parametric structure is useful for understanding and counterfactually simulating
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the economic drivers of bank default risk. Kelly, Lustig, and Van Nieuwerburgh (2016) estimate

the value of implicit government guarantees for the banking system by comparing prices of options

on a banking index and a portfolio of options on individual bank stocks. Their method involves

fitting models with stochastic volatility and jumps to option prices. In these models, the correlation

between returns and shocks to volatility (the “leverage” effect) is a reduced-form parameter. Our

structural model of bank risk predicts a specific (non-linear) relation between bank equity returns

and bank equity volatility. Finally, our work can be extended in several directions; for example,

Peleg-Lazar and Raviv (2017) study the implications of this payoff structure on the risk-shifting

incentives of shareholders. In addition, our paper’s key insight can be useful in estimating various

forward-looking measures of bank risk, a topic that has been examined extensively by a growing

literature on bank stress test (e.g., see Goldstein and Sapra (2014), Goldstein and Leitner (2018),

Leitner (2014), Greenlaw, Kashyap, Schoenholtz, and Shin (2012), Acharya, Engle, and Pierret

(2014), Boucher, Dańıelsson, Kouontchou, and Maillet (2014), and Gofman (2017)).

The rest of the paper is organized as follows. Section 2 presents our modified model and

simulations to illustrate the key differences to the standard Merton model. In Section 3 we apply

the model to empirical bank panel data and we analyze the resulting estimates of default risk.

Section 4 discusses implications for reduced form models of default risk. Section 5 concludes.

2 Structural Model of Default Risk for Banks

Unlike the simplified case in Figure 1, we now set up a more realistic model in which borrower

assets have idiosyncratic risk and banks issue loans with staggered maturity dates. Both of these

additional features are important because they lead to some smoothing of the bank asset payoff

function in Figure 1.

Consider a setting with continuous time. A bank issues zero-coupon loans with maturity T .

Loans are issued in staggered fashion to N cohorts of borrowers. Cohorts are indexed by the time

τ that has passed at t = 0 since their loans were issued, ordered as τ = T, T (N − 1)/N, ..., T/N .

Each cohort is comprised of a continuum of borrowers indexed by i ∈ [0, 1] with mass 1/N .

Let Aτ,it denote the collateral value of a borrower i in cohort τ at time t. Under the risk-neutral
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measure, the asset value evolves according to the stochastic differential equation

dAτ,it

Aτ,it
= (r − δ)dt+ σ(

√
ρdWt +

√
1− ρdZτ,it ), (1)

where W and Zτ,i are independent standard Brownian motions, δ is a depreciation rate, and r is

risk-free rate. The Zτ,i processes are idiosyncratic and independent across borrowers. This is a

one-factor model of borrower asset values as in Vasicek (1991). The parameter ρ represents the

correlation of asset values that arises from common exposure to W and σ is the instantaneous total

volatility.

At the time of the initial loan issue, t = −τ , borrowers in each cohort start out with the same

initial collateral asset value. For the purpose of the presentation in this section, we normalize this

initial value to Aτ,i−τ = 1. One could choose a different normalization (and we do in our empirical

analysis), but this does not affect any of the results, it just scales the balance sheet quantities in a

different way. We fix an initial loan-to-value ratio of `. The face value of the loan is

F1(µ) = `eµT , (2)

with µ as the promised yield on the loan (that we will solve for below). In line with standard

structural models of credit risk, we assume that borrowers default if the asset value at maturity

is lower than the amount owed. The payoff at maturity t = T − τ received by the bank from an

individual borrower in cohort τ then is

Lτ,iT−τ (µ) = min
[
Aτ,iT−τ , F1(µ)

]
. (3)

We assume that loans are priced competitively and so the promised yield on the loan is the µ that

solves

` = e−rTEQ
−τ [Lτ,iT−τ (µ)], (4)

where EQ
−τ [.] denotes a conditional expectation under the risk-neutral measure at the time of loan

issuance. The expression on the right-hand side is simply the value of risk-free debt with face value
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F1(µ) minus the Black-Scholes value of a put option on the borrower’s assets (with the depreciation

rate δ as dividend yield).

To analyze the payoff to the bank from the whole loan portfolio, it is useful to first solve for

the aggregate value of collateral in cohort τ , which is,

AτT−τ =
1

N

∫ 1

0
Aτ,jT−τdj

=
1

N
exp

{
(r − δ)T − 1

2
ρσ2T + σ

√
ρ(WT−τ −W−τ )

}
, (5)

and the aggregate log asset value, which is

aτT−τ =
1

N

∫ 1

0
logAτ,jT−τdj

=
1

N

[
(r − δ)T − 1

2
σ2T + σ

√
ρ(WT−τ −W−τ )

]
. (6)

Since idiosyncratic risk fully diversifies away with a continuum of borrowers in each cohort, the

stochastic component of the aggregate asset value in a cohort depends only on the common factor

realization WT−τ −W−τ .1

We now obtain the payoff that the bank receives at maturity from the portfolio of loans given

to cohort τ as

LτT−τ (µ) =
1

N

∫ 1

0
Lτ,jT−τdj

=
1

N

∫ 1

0
Aτ,jT−τdj −

1

N

∫ 1

0
max

[
Aτ,jT−τ − F1(µ), 0

]
dj

=
1

N

[
AτT−τΦ {d1(µ)}+ F1(µ)Φ {d2(µ)}

]
, (7)

where the last equality follows from the properties of the truncated log-normal distribution, Φ {·}
1Formally, for eqs. (5) and (6) to hold, we require a law of large numbers such that borrower-specific shocks dZτ,it

cancel out in aggregate within each cohort, conditional on the common factor realization. This can be accomplished,
following Uhlig (1996), by defining the integral in (5) and (6) as a Pettis integral (see, e.g., Kogan, Papanikolaou,
and Stoffman (2017) and Acemoglu and Jensen (2015) for recent applications of the same approach).
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denotes the standard normal CDF, and

d1(µ) =
logF1(µ)− aτT−τ√

1− ρ
√
Tσ

−
√

1− ρ
√
Tσ, (8)

d2(µ) = −
logF1(µ)− aτT−τ√

1− ρ
√
Tσ

. (9)

The max
[
Aτ,jT−τ − F1(µ), 0

]
term in (7) reflects the option value for the borrower, i.e., the upside

of the collateral value that is retained by the borrower. Conditional on WT−τ −W−τ , there are

some borrowers in cohort τ for whom this option is in the money, and others for whom it is not,

depending on the realization of their idiosyncratic shocks. This is why d1 and d2 are functions of

idiosyncratic risk
√

1− ρ
√
Tσ. Thus, while idiosyncratic risk is diversified away in the aggregate

borrower asset value, it matters for loan payoffs, because borrower default depends on idiosyncratic

risk.

At t = T − τ , the bank fully reinvests the proceeds, LτT−τ , from the maturing loan portfolio of

cohort τ into new loans, with uniform amounts, to members of the same cohort. The new loans

carry a face value of

F2(µ) = LτT−τe
µT . (10)

We assume that the bank keeps the time-of-issue loan-to-value ratio at the same level, i.e., `, as

for the initial round of loans. Borrowers reduce or replenish collateral assets accordingly: the asset

value of each member of cohort τ is uniformly reset to the same value

Aτ,i
(T−τ)+ =

LτT−τ
`

(11)

an instant after the re-issue of the loans. The cohort-level aggregates Aτt and aτt for t > τ are based

on these re-initialized asset values. With the same loan-to-value ratio, these loans have the same

risk as the first generation loans and hence the same promised yield µ applies.

The aggregate payoff of the portfolio of loans of cohort τ at the subsequent maturity date 2T−τ
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then follows, along similar lines as above, as

Lτ2T−τ =
1

N

∫ 1

0
Lτ,j2T−τdj

=
1

N

∫ 1

0
Aτ,j2T−τdj −

1

N

∫ 1

0
max(Aτ,j2T−τ − F2(µ), 0)dj

=
1

N

[
Aτ2T−τΦ(d3) + F2(µ)Φ(d4)

]
, (12)

where

d3 =
logF2(µ)− aτ2T−τ√

1− ρ
√
Tσ

−
√

1− ρ
√
Tσ, (13)

d4 = −
logF2(µ)− aτ2T−τ√

1− ρ
√
Tσ

. (14)

Thus, after the roll-over into new loans, there are two state variables to keep track of that Aτ2T−τ

and F2 depend on: First, the change of the common factor since roll-over, W2T−τ −WT−τ , and

second, LτT−τ , which in turn is driven by Wτ −Wτ−T .

The payoffs in (12) and (7) together allow us to describe the distribution of the bank’s assets.

Consider, for example, the aggregate value of the bank’s loan portfolio at t = H, where H < T .

Aggregating across all loans outstanding at this time, we get

VH =
∑
τ<H

e−r(τ+T−H)EQ
H [Lτ2T−τ ] +

∑
τ≥H

e−r(τ−H)EQ
H [LτT−τ ], (15)

where the first term aggregates over cohorts whose loans have been rolled over into a second

round, while the second term aggregates over cohorts that still have the initial first-round loans

outstanding. Substituting in from (7) and (12) yields an expression in which the only source

of stochastic shocks is the common factor W . Therefore, by simulating W we can simulate the

distribution of VH under the risk-neutral measure and price contingent claims whose payoffs are

functions of VH .

Now suppose the bank has issued zero-coupon debt maturing at t = H with face value D.

Similar to standard structural models we assume that the bank will pay off its creditors in full if

there are sufficient assets available to do so. The bank will default if the asset value at maturity is

12



lower than the face value of debt. To allow for a realistic calibration in our empirical exercise below,

we also introduce dividend payouts of the bank to its shareholders. For simplicity, we introduce

them as a single payment, just before the bank’s debt matures, proportional to the value of the

bank’s assets at t = H,

YH = VH(1− e−γH), (16)

The parameter γ determines the payout level. The assets that leave the bank through these payouts

are no longer available to pay off the debt holders at t = H. In this aspect, our model is similar

to standard implementations of the Merton model where a constant rate of dividends is paid until

debt maturity and before the debt holders can get access to the assets.

Panel (a) of Figure 2 shows the simulated bank asset value, VH , based on 10,000 draws of the

common factor paths plotted against the aggregate borrower asset value at the time of bank debt

maturity t = H. Parameters are set at N = 10, H = 5, T = 10, σ = 0.2, ρ = 0.5, r = 0.01,

δ = 0.005, ` = 0.66, γ = 0.002, and D = 0.70, with initial collateral asset value of Aτ,i−τ = 1 for all

cohorts. The dashed lines show the payoffs that would result with perfectly correlated borrower

asset values, without staggering of loan maturities and with identical maturity of bank loans and

the bank’s debt as in Figure 1. As the scatter plot shows, the simulated asset values in our model

also exhibit concavity, but without the sharp kink that we had in the simplified case in Figure

1. There are two reasons for the lack of sharp kink. First, at t = H, many loans in the bank’s

portfolio are not at maturity. For τ < T −H, loans have not matured yet, while for τ > T −H,

they have been rolled over into new loans. Hence, the value of these non-matured loans reflects an

expectation, which smoothes the kink. Second, the existence of idiosyncratic borrower risk makes

the borrower’s default option more valuable and the loan less valuable to the bank, particularly

when the asset value is close to the face value of the debt.

Moreover, unlike in Figure 1, there is dispersion in the bank asset value conditional on the

aggregate borrower asset value. The reason is that for loans that have been rolled over into a

second generation of loans, the face value of the loan depends on the path of common factor

realizations up to the roll-over date T − τ . For example, if WT−τ is low, there will be more defaults

and hence the amount of loans re-issued will be lower than if WT−τ is high. In contrast, if WT−τ

is high and there are virtually no defaults, the face value of the maturing loans is re-issued as new

13
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(c) Bank debt value

Figure 2: Bank asset, equity, and debt value at bank debt maturity as a function of aggregate
borrower asset value at debt maturity. Simulated bank asset values are shown as dots. The dashed
lines show the kinked payoffs that would result with perfectly correlated borrower asset values,
without staggering of loan maturities and with identical maturity of bank loans and the bank’s
debt as in Figure 1.
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loans, but borrowers remove collateral to leave just enough to satisfy the required loan-to-value

ratio `. Thus, the bank asset value at t = H depends not only on the level of WH , but also on the

path that W followed leading up to t = H.

Panel (b) of Figure 2 shows the simulated bank (ex-dividend) equity value,

SH = max[0, VH − YH −D]. (17)

The mezzanine nature of equity is clearly apparent from convex-concave payoff pattern, but the

payoff function is smoothed compared to the sharply kinked one in Figure 1. Finally, the bank

debt values,

BH = VH − YH − SH , (18)

are shown in Panel (c).

The value of the bank’s assets, debt, and equity (including the claim to the dividends to be

paid just before maturity) t = 0 then follow as

V0 = e−rHEQ
0 [VH ], B0 = e−rHEQ

t [BH ], S0 = e−rHEQ
t [SH ] + (1− e−γH)V0. (19)

Figure 3, Panel (a), shows simulation results for the relationship between S0 and aggregate

borrower asset value. To explore the effect of unanticipated changes in borrower asset value, we

set common factor shocks until t = 0 to zero, we apply a single shock dW0 at t = 0 and simulate

W from then on forward. More precisely, we set the shock for each cohort equal to dW0 times

the fraction of the loan’s life, τ/T , that is completed at t = 0. This captures the notion that the

shock has accumulated over the life of the loan but remained unobserved until its revelation at

t = 0. We vary dW0 from −0.8 to 0.8 across simulations. As a consequence, we generate variation

in aggregate borrower asset value across simulations.

As Panel (a) shows, the value of bank equity is concave in borrower assets for large values. This

is in contrast to the standard Merton model in which the equity value asymptotes towards a slope

of one. Thus, we again get a mezzanine-like shape, similar to Panel (b) of Figure 1.

Figure 3, Panel (b), shows the instantaneous volatility of the bank’s equity. Given knowledge of

the parameters, one can compute the instantaneous equity volatility as the product of the numerical
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Panel (b): Instantaneous bank equity volatility
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Figure 3: Bank equity value and volatility as function of aggregate borrower asset value prior to
bank debt maturity
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first derivative of logS0 with respect to logW0 and the instantaneous common factor shock volatility

√
ρσ. Since common factor shocks are the only source of stochastic shocks to the bank equity value,

the derivative of logS0 with respect to logW0 is directly related to the slope of the curve in Panel

(a). As Panel (b) shows, equity volatility converges towards zero for high borrower asset values as

the bank’s loan portfolio becomes perfectly safe. In the Merton model, in contrast, equity volatility

would asymptote towards the (strictly positive) volatility of assets.

This very low equity volatility at high borrower asset values arises from the mezzanine-claim

nature of bank equity. Positive shocks raise borrower asset values far above the default thresholds.

As a result, bank assets have very low instantaneous risk and bank equity risk resembles the risk of

a defaultable bond because the region of concavity dominates. Application of a standard Merton

model with log-normal asset value would miss this non-linearity in bank’s equity risk. Our modified

model suggests that this non-linearity is a key property of bank equity risk dynamics.

In particular, our model makes clear that low instantaneous bank equity volatility in good times

can quickly turn into high risk in bad times if asset values fall. In the standard model with a log-

normal asset value, a fall in asset values would only trigger a moderate rise in bank equity volatility

because bank asset volatility is fixed. In our modified model, bank asset volatility goes up as loans

fall in value and become riskier. The rise in equity volatility following bad shocks is therefore more

dramatic than in the standard Merton model.

The figure also shows that equity volatility is non-monotonic in asset value. At very low asset

value, equity volatility declines as the asset value is lowered. This feature is due to the assumption

about dividends (that our model shares with the Merton model): At very low asset values, a

substantial portion of the equity value represents the value of the claim to the dividend that is to

be paid before the bank’s debtholders are paid off. Because of this priority over debtholders, this

part of equity payoffs is less risky.

2.1 Default Risk Assessment: Comparison with Standard Merton Model

The highly nonlinear relation between borrower asset value and bank equity risk due to the short put

option embedded in bank assets leads to important consequences for distance to default estimation

and empirical assessment of default risk. To illustrate these consequences, we now analyze a setting

in which our modified model represents the true data generating process. We simulate from our
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Figure 4: Risk-neutral default probabilities as function of aggregate borrower asset value: Merton
(red) and modified (blue)

model with parameter values set to the same values as above in Figures 2 and 3. We then study

to what extent an analyst applying the (misspecified) standard Merton model would arrive at

misleading conclusions about bank default risk.

Figure 4 shows the simulated true risk-neutral default probabilities (RNPD) in our model (blue)

and those estimated based on the Merton model (red) applied to our simulated data. The Merton

model default probabilities are obtained by using the simulated equity values and instantaneous

volatilities to extract asset values and asset volatilities under the (false) assumption of a log-normal

asset value process (see Appendix A.1). This corresponds to the common practice of inverting the

Merton model to obtain asset value and asset volatility from empirically observed equity value and

volatility. As the figure shows, the Merton model underestimates the probability of default for

moderate and low default probabilities. In very good states of the world, the default probabilities

are massively understated when the (misspecified) Merton model is applied.

There are two main reasons why our modified model produces different predictions. First, the

Merton model misses the non-linearity coming from the mezzanine nature of bank equity. If bor-

rower asset values are relatively high, bank equity volatility is very low because bank asset volatility
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is very low. However, asset volatility could quickly rise if asset values fall. As a consequence, the

bank could reach the default threshold much more quickly than one would think based on the

Merton model. Low instantaneous equity volatility hence does not mean that the bank operates at

a high distance to default. However, an analyst applying the standard Merton model with constant

bank asset volatility would miss these nonlinear risk dynamics. Within the standard Merton model,

the analyst would interpret the low instantaneous equity volatility as a high distance to default

and hence low default risk. Thus, particularly in good times, application of the Merton model is

likely to lead to severe underestimation of bank default risk. Only in a severely distressed situation,

when asset values are depressed and default is quite likely, the Merton model overstates risk-neutral

default probabilities. Here the above effect works in reverse.

Second, our model features revolving replacement of staggered loans with a collateral reset.

When loans get rolled over in good times after collateral values have risen, some of this collateral is

removed between t = 0 and t = H as new loans are issued at a fixed loan-to-value ratio. Compared

with the Merton model, the collateral reset dampens the risk reduction coming from rising asset

prices. By the same token, when asset values fall, borrowers replenish collateral when new loans

are issued. This dampens the rise of the bank’s default risk when asset prices fall.

To show in more detail how these different model assumptions play out in generating the

wedge in RNPDs between our modified model and the Merton model, the next subsection presents

simplified versions of our model that shut off some of the features that differ from the Merton

model.

2.2 Decomposing Deviations from the Merton Model

We start by considering a version of our modified model that retains the asset payoff nonlinearity

induced by the borrower default options embedded in the loan portfolio, but it only has a single

cohort of borrowers. Since there is no loan rollover anymore, the collateral reset effect disappears.

We set T = 5, equal to the average maturity of loans in our full modified model. The remaining

parameters remain unchanged.

The black dashed line in Figure 5 Panel (a) presents the results for this simplified single cohort

model. For comparison, we also plot the RNPD from the full modified model and the Merton

model. As in Figure 4, the aggregate borrower asset value on the x-axis is the aggregate borrower
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Panel (a): Single-cohort and single borrower versions of the modified model
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Panel (b): Merton model with bank asset value and volatility taken from modified model
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Figure 5: Imperfect approximation with simplified models
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asset value in the full modified model. For each of these asset values, we compute the RNPD as

well as the equity value and volatility from our full modified model. We then choose the borrower

asset value at t = 0 and the loan face value in the single cohort version of the model to exactly

match these equity values and equity volatilities.

Over a wide range of relatively high borrower asset values towards the right-hand side of the

figure, the simplified model produces a RNPD of only about two thirds to half of the true RNPD,

even though at every point the simplified model exactly matches the equity value and equity

volatility implied by the full modified model. In line with our discussion of the collateral reset

effect above, the simplified model ignores the loss of excess collateral upon loan roll-over and hence

underestimates bank credit risk in good times. For very low asset values, the bank effectively

becomes an owner of the borrower’s assets, so the payoff nonlinearity disappears (as the borrower’s

assets are far to the left of the kink in the bank’s payoff). As a consequence, the RNPD of the

single cohort model approaches the RNPD of the Merton model for very low asset values. In our full

modified model, this also happens eventually, but for lower asset values than in the single cohort

model because of collateral replenishment in the event of loan roll-over. The collateral reset is an

important ingredient of our model and it is arguably a realistic one.

The red dashed line in Figure 5 Panel (a) presents another simplified version in which there

is only a single borrower. The only remaining difference to the Merton model is the bank asset

payoff nonlinearity. We again set T = 5, equal to the average maturity of loans in our full modified

model. To let the assets of the single borrower have the same volatility as the aggregate borrower

asset portfolio in the full model, we set σ = 0.2 ×
√

0.5. With a single borrower, the nonlinearity

in the bank’s asset payoff is more pronounced than in the single cohort model. At the same level

of equity value and equity volatility, we get a higher level of tail risk and hence default risk than in

the single cohort model. This is why, as the figure shows, the RNPD is substantially higher than

in the single cohort model, especially for moderately high asset values where the kink in the bank

asset payoff function matters most.

Figure 5 Panel (b) considers an alternative simplification that turns off the bank asset payoff

nonlinearity by sticking to the standard Merton model. However, rather than inferring asset value

and asset volatility from equity value and equity volatility, we plug in the correct bank asset value
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and (instantaneous) asset volatility that are implied by our modified model.2 Instantaneously, this

simplified model correctly matches the asset risks of our full modified model. However, in terms

of the longer-term risks, the model is misspecified because it misses the asset payoff nonlinearity

and the resulting risk of changes in future volatility. The plot in Panel (b) shows that this leads

to drastically different default risk predictions compared with the full modified model. Especially

in good times, when asset values are high, the simplified model’s predictions are very close to

the Merton model and far from our full modified model. Hence, the payoff nonlinearity is very

important for default risk prediction, even after inputting the correct current bank asset value and

instantaneous volatility.

Finally, another potential simplification approach that might seem promising is to approximate

the full modified model’s RNPD with a nonlinear transformation of the Merton model RNPD.

For example, from Figure 4 it may seem that a monotone nonlinear transformation of the Merton

model RNPD is all that is needed to get to the modified models RNPD. However, this is not the

case. In Figure 4, we only change the borrower’s asset value (dW0), but we keep the bank’s level

of debt, D, fixed. But if D varies, too—as it would, in any typical empirical application with

heterogeneously levered banks—there is no one-to-one mapping of the Merton model RNPD into

the modified model’s RNPD.

Figure 6 illustrates this by plotting the RNPD of our modified model against the RNPD obtained

from applying the (misspecified) Merton model to data generated from the modified model. In this

figure, we vary dW0, as in Figure 4, which affects the riskiness of the bank’s assets and its leverage,

and we also vary D, which changes only the bank’s leverage, keeping the level and risk of its assets

fixed. Each point on the scatterplot represents one (dW0, D) combination. As the figure shows,

there is no one-to-one correspondence between modified model and Merton model RNPD. A given

Merton model RNPD could map into different levels for the modified model RNPD depending on

the level of D. The payoff nonlinearities induced by the two layers of leverage within the modified

model are too complex to be captured by standard Merton model RNPDs. A change in dW0

changes the moneyness of the borrower’s put option and hence the extent to which assets of the

2One could imagine that a bank examiner in practice might be able to come up with asset value and volatility
estimates by carefully valuing assets bottom-up and looking at short-term volatility of traded proxies for these assets.
In this sense, an examination whether this variant of the Merton model with corrected asset value and volatility could
work well as an approximation is also practically relevant.
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Figure 6: Risk-neutral default probabilities in modified model (actual) and Merton model

bank deviate from the log-normal assumption of the standard Merton model. In contrast, changing

D does not change these asset properties, it only changes the leverage of the bank’s balance sheet.

Figure 6 further shows that the wedge between our modified model’s RNPD and the Merton

model RNPD increases with the bank’s leverage. Intuitively, when a bank’s leverage is low, borrower

asset values need to fall a lot for the bank to get close to default. In this default-relevant region,

where many of the bank’s borrowers are distressed the bank’s asset payoffs are close to linear. As

a consequence, the misspecification error from using the Merton model is small. In contrast, when

bank leverage is high, the nonlinearity in the bank’s asset payoff is very important.

Overall, these results show that one cannot easily simplify our model without substantial effects

on the default risk predictions. Aside from the effect on default risk predictions, the single-borrower

and single-cohort versions of our models are also somewhat awkward in that one cannot change the

maturity of the bank’s debt, H, without also changing the remaining maturity of the borrower’s

debt, and hence the risk profile of the bank’s assets, at the time the bank’s debt matures. The

stationary overlapping cohorts setup in our full modified model ensures that the risk profile of the

bank’s assets at t = H is invariant to the choice of H.
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Figure 7: Implied credit spread: Merton (red) and modified (blue)

2.3 Pricing of Credit Instruments

We now return to our full modified model to explore the pricing of credit instruments. Figure

7 takes our baseline case of D = 0.70 and presents the annualized implied credit spread of the

bank’s 5-year debt. The credit spread reflects the product of the risk-neutral probability of default

(as shown in Figure 4) and the loss given default (which equals one minus the recovery rate).

The recovery rate in a Merton-style models can often be quite high because the asset value in

default could be just slightly below the face value of the debt. As a consequence, the implied credit

spreads are much lower than 1/H times the risk-neutral default probabilities (which would be the

annualized credit spread with zero recovery). However, by assuming constant asset volatility, the

Merton model misses the rise in the bank’s asset volatility that is associated with a fall in asset

values towards the default boundary. As a consequence, the model underestimates the risk that,

conditional on default, asset values could be far below the face value of the debt. Recovery values

in our modified model tend to be lower, which contributes to the higher credit spread.

Table 1 provides the numbers corresponding to some of the points in Figure 7. As the table

shows, the differences between the true credit spreads and those extracted via the Merton model are
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Table 1: Summary of Simulation Results

Borrower Asset Value Shock
No shock Positive shock Negative shock

Panel A: True properties
Aggregate Borrower Asset Value 1.06 1.33 0.85
Bank Asset Value 0.74 0.79 0.66
Bank Market Equity/Market Assets 0.12 0.16 0.07
Bank 5Y RN Default Prob. 0.23 0.11 0.49
Bank Credit Spread (%) 0.50 0.19 1.39

Panel B: Misspecified estimates based on standard Merton model
Merton 5Y RN Default Prob. 0.13 0.01 0.57
Merton Credit Spread (%) 0.12 0.00 1.50

bigger than the differences in risk-neutral default probabilities (RNPD) in Figure 4. For example, in

the absence of substantial positive or negative shocks to asset values, with aggregate borrower asset

value slightly above one, the true credit spread of 50bp is more than four times the spread of 12bp

extracted using the Merton model. In comparison, with 0.23 and 0.13, respectively, the RNPD are

only moderately different. The divergence is bigger for credit spreads because the Merton model

not only underestimates default probabilities, but the model also overestimates recovery rates.

The difference gets more extreme in good times. With aggregate borrower asset value of 1.33, the

true credit spread is 19bp while application of the Merton model yields a spread that is essentially

zero. Thus, during economic booms, the application of the standard Merton model could lead an

analyst to the conclusion that banks’ credit risk is virtually nil, when in fact it is still far from

negligible.

Figure 8 shows how application of the standard Merton model would severely underestimate

the value of a government guarantee. For illustration, we suppose that there is a 50% risk-neutral

probability that the government will fully bail out the debt holders of the bank (and absorb the

entire loss given default) in the event of default. The value of the government guarantee then is

0.5 times the value of the bank’s default option. To interpret the magnitudes in Figure 8, recall

from Table 1 that when the aggregate borrower asset value is around 1.06, the value of the bank’s

loan portfolio is about 0.74. The value of the guarantee in this case is about 0.01, i.e., about 1%

of the value of the bank’s assets. Estimation based on the (misspecified) Merton model would lead

an analyst to conclude that the value is 0.002, i.e., roughly a fifth of the actual value. As in the
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Figure 8: Value of a government guarantee: Merton (red) and modified (blue)

case of credit spreads, the difference between the actual and Merton-implied values gets bigger in

good times when borrower asset values are high.

3 Empirical Calibration

To find out how much, quantitatively, the standard Merton model and our modified model differ

in their predictions about default probabilities and risk dynamics, we now calibrate these models

with empirical data on bank’s capital structures and equity volatility.

3.1 Data

Our sample covers all commercial banks listed in the Federal Reserve Bank of New York’s CRSP-

FRB linked dataset from 1987-2016 that are also covered by Compustat Quarterly bank files. We

obtain equity returns and market value of equity from CRSP and the accounting data from the

Compustat Quarterly files for banks. We take the most recently available data from the quarterly

files as of the beginning of the estimation month. We consider the entire outstanding debt of the

bank (including demand and time deposits) in our calculation of the debt face value and we do the
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Table 2: Model Inputs

Our sample covers all commercial banks listed in the Federal Reserve Bank of New York’s CRSP-FRB linked
dataset from 1987-2016 that are also covered by Compustat Quarterly Bank Database. Market equity values
are normalized by D, i.e., the numbers shown in the table are based on the market equity/book debt ratio.
Equity volatility is annualized and estimated from daily stock returns over one-year moving windows. Our
risk-free interest rate proxy is the Federal Reserve Board’s 10-year Treasury bond yield series.

Mean S.D. Min 25th pctile Median 75 pctile Max

Market Equity 0.15 0.14 0.00 0.10 0.14 0.19 16.09
Equity Volatility 0.29 0.10 0.17 0.23 0.27 0.32 0.65
Risk-free Rate 0.04 0.02 0.01 0.03 0.04 0.06 0.09

Observations 45,077

same for the Merton model.3 We also add the book value of preferred equity to the firm’s debt if

the bank has any outstanding preferred equity. However, relaxation of this assumption makes no

qualitative difference to our main results since the amount of preferred equity is very small (less

than 0.25% of total assets on average) for the entire sample. To be included in the sample, the

bank-year observation must have non-missing information on book value of debt and a positive

value of book equity. To compute the face value of debt from its book value consistent with the

zero-coupon debt assumption in the model, we multiply book debt by exp(rH) where H is the debt

maturity we assume in the calibration. Appendix B provides more details on the construction of

the bank-level variables.

To calibrate the modified model, we need a risk-free interest rate. Both the Merton model and

our modified model abstract from interest-rate risk and a term structure of default-free interest

rates. As an approximation, we use the Federal Reserve Board’s 10-year Treasury yield series.

We also need a good estimate of the conditional equity volatility of the bank on each estimation

date. To do so, we first compute the realized value of equity volatility (in annualized form) from

daily bank stock returns over backward-looking one-year moving windows. We then regress these

realized volatilities on their 12-month lagged values in a panel regression. We use the fitted values

3Note that this is different from several earlier papers that estimate distance-to-default following the KMV ap-
proach of including short-term debt and only half of long-term debt in the debt face value calculation. The rationale
for the KMV approach is that a substantial portion of long-term debt does not mature and hence won’t trigger
default during the horizon that is used to calculate default probabilities. While this may be a reasonable approach
for non-financial firms, it’s less plausible for banks. Banks are funded to a large extent by short term debt (including
demand deposits and time deposits) and roll-over of short-term debt would likely fail if the outstanding long-term
debt renders the bank insolvent. Further, our analysis is in line with capital requirement regulations that are based
on total outstanding debt of the bank.
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from this regression as proxy for the (forward-looking) conditional equity volatility in our default

risk calculations. Further details on this computation are provided in Appendix C. Summary

statistics of key inputs used for our estimation are provided in Table 2.

3.2 Model calibration

For both the standard Merton model and our modified model, we set the maturity of bank debt

to H = 5. It is well known that models with only diffusive shocks do not succeed in delivering

realistic default risk and credit spread predictions for short-term debt [Duffie and Lando (2001),

Zhou (2001)]. Our modified model is no different. At short horizons, therefore, differences between

our modified model and the standard model are also relatively small. The non-linearity in banks’

asset payoffs becomes more relevant as the probability distribution of borrower asset values spreads

out with longer horizons. Longer horizons may also be relevant even for investors in short-term

debt (or guarantors of short-term debt). Solvency problems may not be immediately apparent

when bad shocks are realized. Deterioration in asset values may be hidden for a while, perhaps

facilitated by regulatory forbearance, and short-term debt may be rolled over even if the bank is

actually insolvent. By the time default happens, additional losses may have accumulated.4

Based on empirical estimates, we fix the payout rate γ = 0.002 for all bank-year observations

for both the Merton model and our modified model.5

We calibrate the standard Merton model by simultaneously solving for asset value and asset

volatility that deliver the observed values of a bank’s equity and stock return volatility (see Ap-

pendix A.1). This approach has been used by prior researchers such as Jones, Mason, and Rosenfeld

(1984), Vassalou and Xing (2004), Campbell, Hilscher, and Szilagyi (2008) and Acharya, Anginer,

and Warburton (2014). We solve the model quarterly from 1987Q1 to 2016Q4.

For our modified model, we have several additional parameters that we fix exogenously, as

shown in Table 3. We set the depreciation rate δ = 0.005. We assume that the borrower’s asset

volatility is 20%. This is in line with the implied asset volatility estimates of 17%–21% by Stanton

4Earlier literature in deposit insurance pricing dating back to Merton (1977) often interprets debt maturity as the
time until the next regulatory audit, which is typically 1 year or less. See, for example, Marcus and Shaked (1984),
Ronn and Verma (1986). However, in the presence of regulatory forbearance, even if a bank is undercapitalized on
an auditing date, it may be allowed to continue for a longer period without additional capital replenishment. This,
in turn, justifies a maturity exceeding the time until the next audit.

5The payout ratio, computed as the ratio of cash dividend on common equity to the book value of assets, has a
mean of 0.0023 and a median of 0.0018 during our sample period.
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Table 3: Parameters

Parameter Description Value

δ Borrower Asset Depreciation Rate 0.005
γ Bank payout Rate 0.002
T Bank Loan Maturity 10 years
H Bank Debt Maturity 5 years
ρ Borrower asset value correlation 0.5
` Loan-to-Value Ratio 0.66
σ Borrower Asset Volatility 0.20

and Wallace (2012) who extract these implied volatilities from newly issued mortgages in the

commercial mortgage market. We assume that borrower asset values have a pairwise correlation of

ρ = 0.5. This implies a factor volatility of
√

0.5× 20% ≈ 14%. For comparison, based on unlevered

returns of an aggregate index of Real Estate Investment Trusts (REIT) Ling and Naranjo (2015)

find an implied asset volatility of slightly more than 10%. It seems reasonable to assume that bank

loan portfolios are not always as well diversified as market-wide REIT portfolio (e.g., in terms of

geographic exposure), and so a moderately higher factor shock volatility in our calibration seems

appropriate.6 We fix the loan-to-value ratio at loan origination at 0.66. Finally, we assume that

the maturity of loans issued by banks is T = 10 years.

Just like the standard Merton model treats asset value and volatility as unobservable, we treat

dW0 (shock to borrower asset values after loan was issued) and F1 (face value of borrowers’ loans)

as unobservable. By changing dW0 and F1 we can change the value and volatility of the bank’s

assets. For example, since the LTV ratio at loan origination is fixed, raising F1 raises the value

of the bank’s loan portfolio, leaving its volatility constant. Raising dW0 raises the value of the

loan portfolio, while reducing its riskiness. Empirically, we look for values of dW0 and F1 that

allow us to match the empirically observed equity value and equity volatility of the bank with the

model-implied value. Appendix A.2 provides more detail on the invertibility of the mapping from

dW0 and F1 to equity value and volatility.

3.3 Model-implied risk-neutral default probabilities

We calibrate each model quarterly from 1987-2016. We follow standard practice of calibrating the

models each quarter, without imposing restrictions across time. We winsorize the estimated RNPDs

6By matching borrower’s asset volatility to unlevered REITs and assuming a loan maturity of 10 years, our
calibration exercise assumes that banks have invested heavily in mortgages or mortgage related instruments.
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Table 4: Model-Implied Risk-Neutral Probabilities of Default

We calibrate the Merton model and our modified model quarterly from 1987-2016 based on the data summa-

rized in Table 2. For each bank in each calibration period, we compute the risk-neutral default probability

from the two models. The table reports summary statistics for these risk-neutral default probabilities for

the whole panel of banks over the full sample period.

Mean S.D. Min 25th pctile Median 75 pctile Max

Merton Model PD 0.14 0.19 0.00 0.03 0.07 0.15 0.98
Modified Model PD 0.25 0.16 0.04 0.15 0.21 0.31 0.89

Observations 45,077

from both models at 0.5% from both tails to minimize the effect of outliers in our estimation. Table 4

gives the summary statistics of the two calibrated models’ implied risk-neutral default probabilities

(RNPD) for our panel of banks. The average 5-year RNPD is higher by about 10 percentage points

in our modified model compared with the standard Merton model. Further, the Merton model

RNPD is much more positively skewed. The reason is that when a bank is not in distress, the

implied RNPD in the Merton model is very low because it is based on the assumption that the

bank’s assets have constant volatility. In contrast, our model takes into account that bad shocks to

asset values in the future would drive up the volatility of the bank’s assets (as borrowers’ default

options move into the money), which drastically shrinks the distance to default and hence raises

the RNPD in times when asset values are relatively high.

Figure 9 further illustrates the different behavior of the RNPD from the two models over time.

The figure shows the average RNPD across all banks each quarter from 1987-2016. The modified

model’s RNPD is two to three times as high as Merton RNPD during the time before the financial

crisis of 2007-2008. Expressed in terms of annualized credit spreads, the RNPDs in 2006 would

correspond, roughly, to 5 basis points for the Merton model and around 40 basis points for our

modified model.

This behavior of the relative RNPDs is in line with the intuition that bank assets have nonlinear

debt-like payoffs. In good times, the Merton model’s assumption of constant asset volatility pro-

duces very high distance to default and low RNPD. In our model, the analysis recognizes that the

volatility of bank assets in good times (in the flat part of the concave asset payoff region in Figure 2)

is low, but that it can quickly rise after a bad shock (when the bank gets into the downward sloping
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Figure 9: Comparison of calibrated risk-neutral default probabilities (5-year horizon, cumulative)

asset payoff region). Once the asset value has suffered a sufficiently big bad shock, the asset payoff

is dominated by the linear downward sloping region and the kink is not playing much of a role. In

this case, the predictions of the Merton model and our modified model are relatively similar. This

is why after the onset of the financial crisis in 2007, the difference between the RNPD shrinks and

eventually inverts for some time period in 2008-2010. But as the economy recovers from the Great

Recession, the estimates from the two model begin to diverge in 2014-2016. Similarly, the two

models provide roughly similar estimates during the relatively stressful periods of 1999-2000. But

the modified model produces a much higher RNPD during the 1993-1998 period when the banking

sector performed well.

Going further back in time, the modified model’s RNPD is in general higher than the Merton

Model RNPD during the stressful years of savings and loans crisis (1987-1992). While this was a

stressful time for the banking sector, the extent of distress was not as high as the recent financial

crisis period. Second, the S&L crisis was spread out over a number of years in the late 1980s and

early 1990s, with significant yearly variations in the extent of stress faced by the sector during this

period. Our estimates reflect such variations. During some quarters, the estimates from the two

models come close to each other just as in other stressful periods. Yet, in other quarters, our model
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Table 5: Differences in Model-Implied Risk-Neutral Default Probability: Comparison Between
High- and Low-VIX Periods

The dependent variable is the log risk-neutral default probability from our modified model minus the log

risk-neutral default probability from the standard Merton model for our panel of banks from 1987-2016.

Explanatory variables include a dummy for quarters with below median VIX index, and the bank’s log

market equity (normalized by total debt, as in Table 2). t-statistics, estimated with clustering at both bank

and year-quarter level, are presented in the parentheses below the coefficients.

(i) (ii) (iii) (iv)

Low VIX 0.55 0.52 0.84
(7.63) (7.81) (6.44)

Equity 0.31 0.25 0.20
(5.55) (5.26) (3.77)

Low VIX x Equity 0.16
(2.34)

Observations 45,059 45,059 45,059 45,059
Within-R2 0.10 0.02 0.13 0.13
Absorbed FE Bank Bank Bank Bank
Clustered by Bank yq Bank yq Bank yq Bank yq

provides significantly higher estimates of RNPD than the Merton model. Overall a clear pattern

emerges from this figure: Merton-model RNPDs are significantly lower than modified model RNPD

especially during the good times of the economy.

We further illustrate this cyclical behavior of the RNPD differences between the Merton model

and our modified model with the following panel regression:

log
RNPDModified

it

RNPDMerton
it

= αi + β1 × LowV IXt + β2 × logEit + β3 × LowV IXt × logEit + εit (20)

The dependent variable is the log difference in default probabilities for a bank i in quarter t. VIX

is the CBOE index of implied volatilities on S&P100 index options. We compute the average level

of this index over the trailing one year for each estimation date. LowVIX equals one for quarters

with below median VIX, zero otherwise. E measures each bank’s market equity (normalized by

total debt, as in Table 2). The regression results in Table 5 show that the modified model RNPD is

significantly higher during “quiet” periods, and for high-equity banks. Column (iv) further shows

the interaction effect: The standard Merton model delivers a lower default probability especially

for banks with higher equity during low VIX periods.
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The incremental explanatory power of individual banks’ market equity in this panel regression

also hints at the fact that there is substantial cross-sectional variation in the wedge between the

standard model and the modified models’ RNPD. Indeed, as we have shown in Figure 6, there is no

simple linear or nonlinear mapping from the Merton model RNPD to our modified model’s RNPD.

This is also true with our empirical estimates as we show in Appendix D. The empirical size of the

wedge between the two RNPDs varies substantially with individual bank characteristics as well as

the time-series factors that we have emphasized so far.

In our model we treat dW0, i.e., shocks to borrower asset values, as unobservable, and estimate

the RNPD based on the values of dW0 and F1 (face value of borrower loans) that best match with

the empirically observed equity value and equity volatility of banks. As a reality check, it would be

useful to see whether the backed-out dW0 series has plausible time-variation: it should be high when

borrower asset values are high. Figure 10 plots the average values of model implied dW0 shocks

with realized five year growth rate in national house price index of Freddie Mac.7 As the figure

shows, model-implied asset value shocks line up well with house price growth. In particular, both

series show an upward trend during the 2001-06 period, they both fall during the stressful periods

of financial crisis in 2008-09, and finally they both trend back upward in 2013-2016. Of course, in

reality, a bank’s asset portfolio is exposed to other assets as well, not just residential real estate,

hence we do not expect the two series to be perfectly correlated. Moreover, house price indices are

subject to smoothing and time lags in updating and so one should not expect measured house price

growth rates to capture forward-looking expectations in the same instantaneous manner as bank

equity values do. Nonetheless, the broad trend presented in Figure 10 shows that our estimation

exercise extracts borrower asset values with reasonable time-series properties.

3.4 Model-implied equity risk dynamics

The motivation for our modification of the standard Merton model is based on a priori reasoning

that the nature of bank asset payoffs is fundamentally inconsistent with a log-normal process.

Improving the model on this dimension seems of first-order importance and should lead to an

improvement in the empirical performance of the model. At the same time, it is clear that even the

modified model, in this simple form, is likely to miss important features of a bank’s capital structure

7See the FreddieMac house price index at http://www.freddiemac.com/finance/fmhpi/archive.html
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Figure 10: Comparison of asset value shocks in the model with actual house price growth rate

and of how a distressed bank enters into default. Among other things, our modified model does not

take into account the presence of implicit and explicit government guarantees. Furthermore, bank

capital structures are a lot more complex than our simple model allows for. A direct comparison

of the model implied RNPD with bank CDS rates or credit spreads would therefore be difficult to

interpret.

At this point, we do not focus on refining the model to account for these additional complexities.

Instead, we evaluate the plausibility of our modification of the Merton model by studying the

dynamics of bank equity risk. The risk of the equity claim should be less sensitive to government

guarantees and interventions than default risk measures, as their main effect is on the more senior

claims in a bank’s capital structure.

The modified model and the standard model differ starkly in their predictions of how bank

equity risk responds to asset value shocks. To study these differences, we subject bank asset values

to a realistic negative asset value shock. We then calculate the models’ equity volatility predictions,

conditional on this shock, and we compare these predictions with actual data on the trajectory of

bank equity volatilities going into the financial crisis around 2008/09. In the standard model, a
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shock to a bank’s asset value leaves the asset volatility unchanged. In contrast, in our modified

model a shock to a bank’s asset value is associated with a shock to the asset volatility in the opposite

direction. As a consequence, the volatility of the bank’s equity return rises more in response to a

negative asset value shock than in the standard model.

We start by calibrating both models to fit the pre-crisis data in 2006Q2 for each bank, as we

did in our earlier analyses above. In our modified model we then apply a shock to the asset value

of the bank’s borrowers by modifying dW0. To get a measure of asset value shock, we conduct two

tests. In the first test, we take the cumulative log change in the Freddie Mac House Price Index for

the entire country on a quarterly basis from 2006Q2 until a subsequent quarter t as the measure

of dW0 shock. This measure is likely to be a conservative estimate of the actual shock experienced

by banks since house price index may not correctly reflect the market values of assets during the

crisis for several reasons such as sellers’ reluctance to see the house, delay in foreclosure process, and

other financial distress costs incurred by homeowners. Indeed, even during the peak of the financial

crisis in 2008-2009, the cumulative percentage drop in the house price index was a modest 20%. In

contrast, market-based estimates suggest a much steeper drop in asset values during this period.

For example, Giacomini, Ling, and Naranjo (2015) estimate the unlevered return on a sample of

U.S. REITs and report a drop of almost 40% from peak to trough during the crisis period. In our

second approach, we conduct a stress test that shocks asset values by gradual amount till it drops

by 40% by the middle of the financial crisis in 2009. The extent of shock is equivalent to a two

standard deviation decline in asset value in our model, and therefore it represents a reasonable left

tail event. This approach is akin to the scenario based stress tests conducted by banking supervisors

around the world.

Leaving all other parameters unchanged at the 2006Q2 values, we re-calculate the risk-neutral

probability distribution of the bank’s loan portfolio payoffs, the loan portfolio value, and then the

bank’s equity value and equity volatility. For the Merton model, we start by calibrating the model

to fit the pre-crisis data in 2006Q2 and we then subject the model to the asset value shock. To

compare the Merton model and the modified model on an equal footing, we use the same shock

to bank asset values, i.e., we use the proportional change in post-shock loan portfolio value from

our modified model as the proportional change in the post-shock bank asset value in the Merton

model. The crucial difference is that the Merton model features a constant asset volatility. Thus,
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an analyst making predictions about equity volatility conditional on a shock to the bank’s asset

value would be led to assume that the asset volatility will remain at its 2006Q2 level.

Panel (a) in Figure 11 shows the trajectories of model-implied equity volatilities (annualized)

from the two models, averaged across all banks in the data set when assets are subject to shocks

based on Freddie Mac House Price Index. The differences are quite stark. Even though the drop

in the banks’ asset values is the same in both models, equity volatility rises only by a modest 8-9

percentage points in the Merton model while it increases by about 14-15 percentage points in the

modified model. Compared to average equity volatility of about 25% in 2006Q2 for all banks in our

sample, the modified model produces a substantial increase over time. In the Merton model, equity

volatility rises only because of the leverage effect: the drop in banks’ asset values leads to higher

bank leverage, moving the bank’s equity call option on the assets further out of the money. In our

modified model there is an additional effect: Since the fall in bank asset values originates from a

fall in borrower asset values, the loan portfolio becomes more risky and hence banks’ asset values

not only fall, but also become riskier. The figure also plots the realized volatility during these

quarters.8 Actual volatilities went up even more than predicted by our calibration of the modified

model. This is not surprising because the house price index shocks are likely to underestimate the

magnitude of true shocks experienced by bank’s assets for reasons mentioned above. In addition,

our modified model does not take into account liquidity problems, runs, systemic risks, fire sales,

and various other factors that may have led to strongly elevated levels of volatility at the peak of

the financial crisis in 2008/09.

Panel (b) in Figure 11 shows the trajectories of model-implied equity volatilities from the two

models when assets are subject to a negative two standard-deviation shock from their pre-crisis level.

Specifically, starting from 2006Q2 we linearly increase the magnitude of shock such that it reaches

a peak value of -40% in 2009Q2, and then gradually reverts back to the original value by 2012Q2.

The modified model based equity volatility dynamics is now remarkably closer to the realized

volatility. The Merton-model implied volatility, on the other hand, considerably underpredicts the

equity volatility even after the full realization of shock in 2009Q2. It is worth emphasizing that by

subjecting the Merton model to same asset value shock as the one implied by the modified model,

8We plot the average predicted volatility based on the regression model discussed earlier. See Appendix C for
details.
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Figure 11: Bank Equity Volatility After a Negative Shock to Borrower Asset Values
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we are giving the Merton model a much better shot at explaining the future volatility dynamics. If

an analyst simply uses the historical distribution of bank asset shocks without regard to the payoff

non-linearity, he will assign a much smaller probability to such shocks to the asset value of banks.

This exercise highlights the usefulness and importance of our modelling approach for stress tests

and related counterfactual exercises.

4 Implications for Reduced-Form Models

The insights gained from our analysis are useful beyond the narrow confines of structural modeling

of default risk. It is clear from the prior literature that reduced form models outperform structural

models in terms of default prediction performance and in matching market pricing of default risk.

As Jarrow and Protter (2004) and Duffie and Lando (2001) argue, part of the reason is that the

structural approach assumes, implausibly, that market participants observe a firm’s asset value

continuously. In many practical applications, a reduced form model is therefore the preferred

approach.

In reduced form models, a firm’s default intensity depends on a vector of state variables. The

model is silent about the nature of these state variables. In applications, modelers typically choose

covariates relating to the state of the economy and various balance sheet variables and other firm-

level predictors of default as elements of the state vector. As Duffie, Saita, and Wang (2007)

demonstrate, distance-to-default estimates obtained from structural models can be a useful default

predictor within a reduced from model [see, also, Bharath and Shumway (2008) Campbell, Hilscher,

and Szilagyi (2008)].

Thus, based on our analysis in this paper, one would expect that default probabilities obtained

from our modified model should be a better predictor of bank default than the distance to default

obtained from the standard Merton model. The extent to which this makes a difference should also

depend on economic conditions. As we showed earlier, the differences in implied RNPD between

our modified model and the Merton model are particularly stark in good times when borrower asset

values are high.

We assess the relative performance the modified model and the standard Merton model by

comparing their ability to predict (pseudo-) bank defaults. For this exercise, it is crucial to properly
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classify banks into “default” and “non-default” groups. We collect all bank failures during the

sample period from the FDIC’s failed bank list dataset. However, this definition of failure misses

several important default events in the sample. It is well known that several banks were in deep

distress during the 2008-09 financial crisis, but they did not default due to government bailouts or

government-assisted mergers. These factors are outside of our model. To ensure that we are able

to exploit the information contained in these events, we include all banks that experienced very low

stock returns during 2008-09 in the “default” category, in addition to those that actually failed.

Specifically, we compute the cumulative stock returns of all banks in our sample in years 2008 and

2009 and classify banks with less than -40% return, i.e., returns below the sample average of bank

returns during this period, as defaulted. Based on this definition, 285 banks, or a little more than

a quarter of all banks, are in the default category. Our results become slightly stronger if we adopt

a more conservative cut-off for defaults such as classifying banks below the 75th or 90th percentile

of the return distribution as defaults.

We estimate the following Cox-proportional hazard rate model for this test:

h(t|rnpdi,t) = h0(t) exp(rnpdi,t × βrnpd) (21)

h(t|rnpdi,t) is the hazard rate at time t conditional on the measure of RNPD estimated at the

beginning of the period. We estimate the model at annual frequency with RNPD expressed in

percent. As of January 1 of every year, we obtain the measures of RNPD using the standard and

modified model, and use these measures to predict default that occurs during the year. Table 6

presents the estimation results. For ease of interpretation, we report one minus the hazard-ratio

(i.e., 1 − exp(βrnpd)) in the table. Thus, the reported coefficient provides the percentage increase

in the odds of default (i.e., the ratio of the probability of default to the probability of no default)

for a bank that has one percentage point higher RNPD.

Panel A of Table 6 shows that both measures provide meaningful information about the default

likelihood. We find that a one percentage point (pp) increase in the estimated Merton RNPD

results in an increase of 3.37 pp in the odds ratio for actual default probability, which is highly

significant in statistical terms. However, with 4.40 pp, the corresponding effect for the modified

model in column (ii) is higher. In column (iii) we include both measures of default, and find that
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the modified RNPD is more important in predicting the eventual failure than the Merton RNPD.

In this specification, the effect of the modified model RNPD remains statistically significant and

economically large, whereas the Merton-model RNPD now has an insignificant coefficient of 0.98 pp,

which means that, holding the modified model’s RNPD constant, it does not have much incremental

ability to predict actual default.

We also provide the Area Under Curve (AUC) for the Receiver Operating Characteristic (ROC)

analysis. The ROC curve gives a measure of the accuracy of any predictor by plotting the true

positive rate (i.e., defaults in our context) against false positives for all possible cut-off points of

a predictor. The larger the AUC, the better the predictor in distinguishing defaulters from non-

defaulters: an uninformative predictor has a 50% AUC, whereas a perfect predictor has an AUC

of 100%. The modified model has an AUC of 67.62% compared to 64.97% for the Merton model.

The difference in AUC of 2.65 pp is statistically significant: A χ2 test for the equality of the two

areas has a p-value of 0.02.

The hazard rate model exploits default information from the entire sample period, but the

overwhelming majority of defaults in the sample is clustered during the financial crisis of 2008-09.

To a large extent, the explanatory power of the two models in the hazard rate regression reflects the

extent to which they were successful in predicting the huge increase in defaults during the financial

crisis. Since it is quite clear that the financial crisis represented a large unanticipated aggregate

shock, a more interesting exercise is to ask which of the models did better, based on pre-crisis

information, in predicting which banks would be affected most by this shock.

In Panel B of Table 6, we therefore present results from a single cross-sectional logistic regression

focused on explaining (pseudo)-defaults during 2008 using the RNPDs estimated as of the beginning

of the year as the explanatory variable. A one pp increase in the Merton RNPD is associated with

an increase of 1.13 pp in the odds of default, but the coefficient is insignificant. In contrast, the

modified RNPD has a statistically significant and economically strong effect with a coefficient of

3.52 pp. In line with our results based on the hazard rate model, when we include both these

RNPDs as explanatory variables for default, it is only the modified RNPD that remains a strong

predictor of actual defaults. Based on the cross-sectional test, we find a remarkable improvement

in the area under the ROC for the modified model (62.74%) compared with that for the Merton

model (54.89%). This indicates that our model is considerably better in extracting cross-sectional
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Table 6: Default Prediction: Hazards Model

Panel A of the table presents estimates from a Cox-proportional hazard model. The dependent variable

is a binary variable that indicates whether the bank has defaulted in the following year or not. The set

of defaulted banks includes actual bank failures from 1987-2016 as well as pseudo-defaults, which include

any bank with a cumulative stock return below -40% in 2008-09. The table shows one minus hazard ratios

(i.e., one minus exponentiated coefficients eβ) and associated z-statistics in parentheses. # Banks and #

(Pseudo-)defaults represent the number of unique banks and (pseudo-) defaults in our sample. Panel B

presents estimation results from a cross-sectional logistic regression model estimated for year 2008.

(i) (ii) (iii)

Panel A: Cox Regression Model

Merton EDF 0.0337 0.0098
(9.20) (1.73)

Modified EDF 0.0440 0.0323
(10.39) (5.17)

Observations 9,809 9,809 9,809
# Banks 1,194 1,194 1,194
# (Pseudo-)defaults 285 285 285
Area under ROC curve 0.6497 0.6762

Panel B: Logistic Regression Model

Merton EDF 0.0113 -0.0235
(1.26) (-1.89)

Modified EDF 0.0352 0.0517
(3.40) (4.09)

Observations 500 500 500
# (Pseudo-)defaults 226 226
Area under ROC curve 0.5489 0.6274

differences in default likelihood information. It is worth emphasizing that the cross-sectional results

do not show out-of-sample predictions, since ex-ante one would not have known the coefficient on

the explanatory variables. Instead the results show how the different models fare in discriminating

between failed and surviving banks conditional on a crisis hitting.

In our next test, we modify the definition of failure to include banks that experienced a large fall

in their market equity ratio during the financial crisis of 2008/09. A bank with large equity capital

at the beginning of the crisis is less likely to get into distress for the same level of negative shock

to its stock returns compared to a bank with lower levels of equity capital. Our earlier definition,

based on stock returns below -40% during the crisis, misses out this feature. Haldane (2011) points
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Table 7: Default Prediction with Equity-Based Classification of Distress

Panel A of the table presents estimates from a Cox-proportional hazard model. The dependent variable is

a binary variable that indicates whether the bank has defaulted in the following year or not. The set of

defaulted banks includes actual bank failures from 1987-2016 as well as pseudo-defaults, which include any

bank with market-equity-to-book-debt ratio falling below 5% anytime during 2008-09. The table shows one

minus hazard ratios (i.e., one minus exponentiated coefficients eβ) and associated z-statistics in parentheses.

# Banks and # (Pseudo-)defaults represent the number of unique banks and (pseudo-) defaults in our

sample. Panel B presents estimation results from a cross-sectional logistic regression model estimated for

year 2008.

(i) (ii) (iii)

Panel A: Cox Regression Model

Merton EDF 0.0372 -0.0136
(16.24) (-2.72)

Modified EDF 0.0542 0.0723
(19.58) (10.60)

Observations 10,076 10,076 10,076
# Banks 1,194 1,194 1,194
# (Pseudo-)defaults 259 259 259
Area under ROC curve 0.8766 0.9010

Panel B: Logistic Regression Model

Merton EDF 0.0448 -0.0719
(3.57) (-3.71)

Modified EDF 0.1374 0.2025
(5.22) (8.49)

Observations 500 500 500
# (Pseudo-)defaults 66 66 66
Area under ROC curve 0.6729 0.8639

out that banks with lower than 5% market equity (as a ratio of the book value of debt) were much

more likely to get into distress during the crisis period. Following this approach, we now classify

banks in the “default” category if its market equity to book debt ratio falls below the 5% threshold

anytime during the crisis. We now get slightly lower, 259, defaults in our sample. Estimation results

from the Cox regression model are provided in Panel A of Table 7. With the refined definition of

default, the point estimate on both Merton model RNPD and the modified model RNPD increases.

More important, in a horse-race between the two models, the modified model RNPD explains all

the variation in default. In fact, conditional on this measure, the Merton model RNPD has just

the opposite sign, through the effect is economically small. As we can see from the AUC of ROC
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curve, the models have better accuracy with this refined definition of default, consistent with the

argument in Haldane (2011).

Panel B presents the estimation result of cross-sectional logistic regression model.9 Again our

results become stronger for the cross-sectional model. The coefficient estimates are 13.74 pp and

4.48 pp for the modified and Merton RNPDs, respectively. Similarly, the area under the ROC is

considerably higher for the modified RNPD (86.39%) as compared to the Merton RNPD (67.29%).

In practice, accurate prediction of actual defaults would also need to require taking into ac-

count the presence of explicit and implicit government guarantees, including too-big-to-fail (TBTF)

subsidies. But even without this extension, the modified model could be useful in reduced-form

analyses of the government’s role. For example, Acharya, Anginer, and Warburton (2014) use dis-

tance to default within a reduced form model to predict counterfactual no-TBTF credit spreads of

large banks by extrapolating, based on the estimated model, from smaller banks. The value of the

subsidy then follows from the difference between this counterfactual and the actual credit spread.

One of the state variables in their reduced form model is the Merton model distance to default. Our

analysis here suggests that using the default probabilities from our modified model should deliver

a more accurate assessment of the counterfactual default risk.

4.1 Comparison with Nonlinear Transformations of the Merton Model RNPD

It is well known that a literal implementation of Merton-model implied RNPD does not match very

well with empirical default data. Models such as those of Moody’s KMV c© typically use a non-

parametrically estimated nonlinear transformation of the Merton-model RNPD to obtain default

probabilities that better match the real world default frequencies. Is our modified model simply

capturing such a nonlinear transformation of the Merton model RNPD? Or, does our model have

additional predictive power in explaining future default that is not captured by such transformation

of the Merton model? As we show in Appendix D, the modified model RNPD is not a simple

monotonic transformation of the Merton model RNPD. Even so, one may still wonder how close

a nonparametrically estimated nonlinear transformation of the Merton model RNPD would get to

9Based on this definition of default, we have relatively fewer number of defaults in 2008 compared to the market
equity returns based definition. For equity-to-book debt ratio based definition, the majority of defaults occurred in
2009. Our results remain similar if we estimate the cross-sectional regression for 2009. We report results for 2008 to
be consistent with the earlier table.
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matching the predictive power of our modified model’s RNPD.

To examine this, we use a non-parametric regression estimate (see Appendix D for details on

the estimation) to break the modified model’s RNPD into two parts: the predicted value of the

modified RNPD and a residual. The predicted values from this regression model (R̂NPD) gives us

a transformation of the Merton-model RNPD that best matches the modified model RNPD. The

residual (RNPDres) is the part of modified RNPD that cannot be attributed to a Merton-model

transformation, and hence contains additional information about the riskiness of the bank.

Using these two parts separately, we estimate the default prediction regression using the R̂NPD

and RNPDres as the explanatory variables. As shown in Table 8, both R̂NPD (model (i)) and

RNPDres (model (ii)) predict future defaults. Furthermore, conditional on the level of R̂NPD,

the marginal effect of the residual is even higher (model (iii)). This is reasonable since the residual

variable by itself does not control for the base level of default risk. These results are stronger for

cross-sectional estimations in Panel B. Overall the results show that the information contained in

the modified model RNPD cannot not simply be captured by a non-linear transformation of the

Merton model RNPD. Since key economic features of our model such as non-linearity in asset payoffs

and replenishment of borrowers’ collateral are simply missing from the Merton model, statistical

transformations are unable to produce default estimates with same accuracy as those from our

modified model.

4.2 Simplified Approximations of the Modified Model

As we showed in Section 2.2, simplified versions, such as single-cohort or single-borrower models,

do not fully reproduce the predictions of our modified model. But are the additional features of the

full model that go beyond these simplified versions also empirically relevant for default prediction?

To shed light on this question, we estimate RNPDs using these simpler models and compare their

default prediction performance with our full model’s RNPD.

Results are provided in the Appendix Table A.II: hazard rate regression estimates in Panel

A and cross-sectional logistics regression in Panel B. In both of these panels, simplified versions

have positive and significant coefficient when used alone as the explanatory variable (Columns (ii)

and (iii)). These results show that non-linearity of bank asset payoffs that remains preserved in

the simplified models is important. However, when we include the RNPD from the full model,
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Table 8: Default Prediction with Non-linear transformation of Merton Model

Panel A of the table presents estimates from a Cox-proportional hazards model. The dependent variable

is a binary variable that indicates whether the bank has defaulted in the following year or not. The set of

defaulted banks includes actual bank failures from 1987-2016 as well as pseudo-defaults, which include any

bank with market-equity-to-book-debt ratio falling below 5% anytime during 2008-09. The table shows one

minus hazard ratios (i.e., one minus exponentiated coefficients eβ) and associated z-statistics in parentheses.

# Banks and # (Pseudo-)defaults represent the number of unique banks and (pseudo-) defaults in our

sample. Panel B presents estimation results from a cross-sectional logistic regression model estimated for

year 2008.

(i) (ii) (iii)
Panel A: Cox Regression Model

R̂NPD 0.0494 0.0524
(16.32) (19.12)

RNPDres 0.0549 0.0852
(9.69) (12.89)

Observations 10,076 10,076 10,076
# Banks 1,194 1,194 1,194
# (Pseudo-)defaults 259 259 259
Area under ROC curve 0.8765 0.5783

Panel B: Logistic Regression Model

R̂NPD 0.0622 0.0925
(3.70) (3.29)

RNPDres 0.1699 0.1919
(8.36) (8.29)

Observations 500 500 500
# (Pseudo-)defaults 66 66 66
Area under ROC curve 0.6729 0.8060
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the simplified models’ RNPD is no longer significant in predicting future defaults. The results are

especially strong for the cross-sectional model, both in terms of marginal effect of the RNPDs and

the fit of the Model. The area under the ROC is 86.39% for the full model, compared with 73-74%

for the simplified versions of the model. These results confirm the usefulness of all the rich features

of our full model, such as collateral resetting, in obtaining the RNPD for banks.

5 Conclusion

The standard assumption that firms have a log-normally distributed asset value is not appropriate

when applying structural models of default risk to banks. Banks’ assets are risky debt claims

with capped upside and hence the asset payoff is nonlinear, with embedded optionality. As a

consequence, bad shocks to borrower asset values lead to a rise in bank’s asset volatility, unlike

in the standard model where asset volatility is constant. A bad shock to asset values therefore

reduces the distance to default much more than it would in the standard model. Our modification

of the standard model takes this effect into account and leads to substantially different assessment

of distance to default and bank risk dynamics. In good times, when asset values are high, the

standard model substantially understates risk-neutral default probabilities because it ignores the

options-on-options nature of bank equity and debt. For the same reasons, the standard model

understates the value of implicit or explicit government guarantees in good times. Furthermore,

the standard model also understates the degree to which banks’ equity risk rises in response to

an adverse shock to asset values. These shortcomings of the standard model can lead to wrong

conclusions in stress tests conduct by regulators, and inaccurate assessment of deposit insurance

premium charged by the deposit insurer.

Our results have a number of implications for regulation and policy. The results are directly

relevant for pricing of deposit insurance premia and for valuation of explicit or implicit government

subsidies to the banking sector. Models used for these purposes are often based on the Merton

model. For example, Marcus and Shaked (1984) use the Merton model to estimate the fair pricing

of deposit insurance, and Acharya, Anginer, and Warburton (2014) use the Merton model distance

to default in an estimation of the credit-spread effects of implicit government guarantees. Our

approach provides a more accurate assessment of bank credit risk and hence should help obtain
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improved estimates in these applications. Bank capital adequacy assessment is another relevant

area of application. A key goal of bank capital requirements is to limit bad tail outcomes and

realistic modeling of nonlinearities in banks’ asset payoffs is important to arrive at an accurate

assessment of the likelihood of such tail outcomes.

Our focus in this paper is on the fundamental issue that a bank’s asset value cannot be log-

normally distributed. As we have shown, this issue has first-order consequences for default risk

evaluation. Our modified structural model is useful for understanding the economic drivers of bank

default risk. Of course, a simple structural model of the kind we use here still omits many additional

features that would be necessary to realistically describe banks’ default risks. Extensions of the

model could explore jumps in asset values, default due to liquidity problems, complex maturity and

seniority structures of banks’ debt, and various forms of explicit and implicit government support.
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Appendix

A Inverting the Models in Empirical Applications

In empirical applications of Merton-style structural models, we require estimates of the unobservable
asset value and asset volatility (of the borrower in our model, of the firm in the standard Merton
model). These estimates can be obtained by combining observable equity value and volatility with
the model to back out implied asset value and asset volatility. Here we briefly describe the approach.
We also discuss issues regarding the invertibility of the mapping from asset value and volatility to
equity value and volatility.

A.1 Inverting the standard Merton model

The firm’s zero-coupon debt has face value D and matures at T . The asset value V evolves according
to

dVt
Vt

= (r − γ)dt+ σvdBt (22)

where γ is the cash payout rate. The value of the firm’s equity, including the claim to the dividends
until T , is

St = C(Vt, D, r, γ, T − t, σv) + (1− exp[−γ(T − t)])Vt (23)

where C(.) is the Black-Scholes call option price,

C(Vt, D, r, γ, T − t, σv) = Vt exp[−γ(T − t)]N(d1)−D exp[−r(T − t)]N(d2) (24)

and

d1 =
log Vt − logD + (r − γ + σ2v/2)(T − t)

σv
√
T − t

d2 = d1 − σv
√
T − t.

Equity volatility follows from the leverage ratio of the call option replicating portfolio, modified by
including the claim to the dividends until T , as

σs,t =
Vt{exp[−γ(T − t)]N(d1) + (1− exp[−γ(T − t)])}

St
σv. (25)

In our simulations in Section 2.1 where we apply the Merton model (as a misspecified model) to
data generated from our modified model, we use the simulated values of St and the instantaneous
equity volatility σs,t to solve equations (23) and (25) for Vt and σv. Based on Vt and σv we can
then compute the risk-neutral (RN) distance-to-default as

DDBSM =
log Vt − logD + (r − γ − σ2v/2)(T − t)

σv
√
T − t
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Figure A.1: Equity values and equity volatility for borrower asset value/loan book size combinations

The corresponding implied RN default probability, also called the expected default frequency
(EDF), can be computed as follows:

EDFBSM = Φ

(
− log Vt + logD − (r − γ − σ2v/2)(T − t)

σv
√
T − t

)
where Φ(.) is the standard normal CDF.

We take empirically observed equity values and equity volatility (based on predicted values of
equity volatility using an AR(1) model; see Appendix C) estimates to solve equations (23) and (25)
simultaneously. (The alternative approach of iterating between asset value and asset volatility as in
Crosbie and Bohn (2001) and Bharath and Shumway (2008) delivers similar results. An alternative
estimation approach that provides similar estimates is proposed by Duan, Gauthier, and Simonato
(2004).)

A.2 Inverting our modified model

For our modified model, we use essentially the same approach. The only difference is that instead
of inverting the model to back out the bank’s asset value and volatility, we back out the borrowers’
aggregate asset value and the size of the bank’s loan book, i.e., we look for values for dW0 shocks
and for the loan face value parameter F1 that allow us to match empirically observed equity value
and volatility of the bank.

It is not immediately obvious, however, that our model implies an invertible relationship. How-
ever, based on our numerical computations of the function mapping F1 and dW0 to equity value
and volatility, we can confirm that the function is invertible in the empirically relevant region. Each
(F1, dW0) pair is mapped to exactly one combination of equity value and volatility.

Figure A.1 illustrates this. Every scatter point shows a particular equity value-volatility pair.
Points with the same symbol have the same F1 but different dW0. Different symbols mean different
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F1 (always with the same range of borrower asset value shocks), with F1 ranging from 0.7 to 1.1.
The other parameters are set to the same values as in our simulations in the main part of the
paper. (In our simulations, we use a much denser grid, the relatively coarse grid in this plot is only
for illustration.) Going to lower dW0 for fixed F1 results in a move in northwest direction (higher
equity volatility, lower equity value), but unless F1 is very high, it’s mostly a volatility effect (i.e.,
north). In contrast, going to higher F1, keeping dW0 fixed, results in a move in southeast direction
(lower equity volatility, higher equity value), but unless dW0 is very low, it’s mostly an equity
value effect (i.e., east). Overall, each equity value-volatility pair in a roughly triangular region is
associated with one (dW0, F1) pair.

B Data construction

Table A.I: Variable Definition & Construction

Variable Description Source Construction

E Market Equity Value of Bank CRSP shrcc x shrout
sE Stock Return Volatility CRSP Predicted Stock return volatility
r Risk-free rate FRB log 10-year risk-free rate
D Book Value of Bank Debt Compustat short-term debt + long-term debt + deposits + pref. equity

(dlcq+dlttq+dptcq+pstkq)

Notes:
All book values are obtained from Quarterly Compustat Files for Banks.

C Computation of Conditional Equity Volatility

We first compute the annualized realized volatility of each bank on every estimation date based on
past one year’s daily stock returns (called σi,t) assuming an AR(1) process for daily returns. To
minimize the influence of large outliers in the computation of realized equity volatility using daily
data, we winsorize these observations at 2.5% from both tails.

We regress realized volatility on 12-month lagged volatility to estimate of conditional equity
volatility:

σi,t+1 = α+ βσi,t + εi,t. (26)

We obtain the following best-fit line:

σi,t+1 = 0.1178 + 0.6438σi,t + εi,t, (27)

and we use the fitted values from this regression model as conditional volatility in our estimation.

D Empirical Approximation of Modified Model RNPD by Non-
linear Transformation of Merton Model

To gain further insight into the relationship between the RNPD of the modified model and the
Merton model, we estimate a non-parametric regression model linking the two RNPDs. We do so
by estimating the conditional mean of the modified model’s RNPD for every value of the Merton
model’s RNPD in our sample: E(RNPDModified

i |RNPDMerton
i = x) using the following local-linear
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Figure A.2: Modified Risk-neutral default probabilities as a non-parametric function of Merton
model default probability

regression model at each x.

minγ
n∑
i=1

{RNPDModified
i − γ0 − γ1(RNPDMerton

i − x)}2K(RNPDMerton
i , x, h) (28)

The model minimizes the sum of squared error at each value x of the Merton model’s RNPD,
where different observations are assigned weights as per the Epanechnikov kernel density function
K and an optimally chosen bandwidth parameter h. We obtain the conditional mean γ0 along with
the slope parameter γ1 for every value of the Merton model RNPD. The slope parameter gives an
estimate of the marginal change in the modified model’s RNPD for a unit change in the Merton
model’s RNPD at the specific point. This model allows the parameter values to change at each
estimation point, and thus provides us with a flexible non-parametric mapping from the Merton
model RNPD to the modified model’s RNPD.

Figure A.2 plots the conditional mean of the modified model’s RNPD for each value of the
Merton model RNPD based on these estimates. As expected, there is a positive relationship
between the two measures. However, as is evident from the scatter plot, the relationship is not a
monotonic one. Further, the non-parametric regression model also provides us the marginal effect
of the Merton model’s RNPD on the modified model’s RNPD at each estimation point (i.e., γ1
above). While these effects vary at each estimation point, the average value of the marginal effects
is 0.74, i.e., a slope of less than one. At very low values of the Merton model RNPD, the modified
model’s RNPD is significantly higher. On the other extreme, during bad times and for banks with
high leverage the situation reverses. We make use of these estimates later in the paper to further
explore the relationship between these risk measures and actual default of banks.
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Table A.II: Default Predictions with Simpler Versions of Modified Model

Panel A of the table presents estimates from a Cox-proportional hazards model for some simpler versions of

the modified model. The dependent variable is a binary variable that indicates whether the bank has de-

faulted in the following year or not. The set of defaulted banks includes actual bank failures from 1987-2016 as

well as pseudo-defaults, which include any bank with market-equity-to-book-debt ratio falling below 5% any-

time during 2008-09. Modified EDF is the RNPD from our full model with multiple cohorts of borrowers and

multiple borrowers in each cohort. Single Cohort EDF is the RNPD estimated from a model with only one

cohort. Single Borrower EDF is the corresponding estimate for a single borrower model. The table shows one

minus hazard ratios (i.e., one minus exponentiated coefficients eβ) and associated z-statistics in parentheses.

# Banks and # (Pseudo-)defaults represent the number of unique banks and (pseudo-) defaults in our sample.

Panel B presents estimation results from a cross-sectional logistic regression model estimated for year 2008.

(i) (ii) (iii) (iv) (v)
Panel A: Cox Regression Model

Modified EDF 0.0542 0.0630 0.0514
(19.58) (7.47) (5.52)

Single Cohort EDF 0.0456 -0.0077
(17.01) (-1.05)

Single Borrower EDF 0.0512 0.0028
(17.47) (0.30)

Observations 10,076 10,076 10,076 10,076 10,076
# Banks 1,194 1,194 1,194 1,194 1,194
# (Pseudo-)defaults 259 259 259 259 259
Area under ROC curve 0.9010 0.8908 0.8961

Panel B: Logistic Regression Model

Modified EDF 0.1374 0.2033 0.1888
(5.22) (8.11) (7.46)

Single Cohort EDF 0.0642 -0.0707
(4.46) (-3.24)

Single Borrower EDF 0.0795 -0.0585
(4.75) (-2.57)

Observations 500 500 500 500 500
# (Pseudo-)defaults 66 66 66 66 66
Area under ROC curve 0.8639 0.7303 0.7483
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