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Should Faustmann forecast climate change? 
 
 

Abstract 
 
Climate change is predicted to substantially alter forest growth. Optimally, forest owners should 
take these future changes into account when making rotation decisions today. However, the 
fundamental uncertainty surrounding climate change makes predicting these shifts hard. Hence, 
this paper asks whether forecasting them is necessary for optimal rotation decisions. While 
climate-change uncertainty makes it theoretically impossible to calculate expected profit losses 
of not forecasting, we suggest a method utilizing Monte-Carlo simulations to obtain a credible 
upper bound on these losses. We show that an owner following a rule of thumb - ignoring future 
changes and only observing changes as they come - will closely approximate optimal 
management. If changes are observed without too much delay, profit losses and errors in 
harvesting are negligible. This means that the very complex analytical problem of optimal 
rotation with changing growth dynamics can be simplified to a sequence of stationary problems. 
It also implies the argument that boundedly-rational agents may behave “as if” being fully 
rational has traction in forestry. 
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1 Introduction

Should renewable-resource owners engage in forecasting activities? Or should they ignore

future changes and base their decisions on what they observe today? These questions

arise as the growth dynamics of renewable natural resources most likely will change

over time. In the case of forests this may be due to technical change (e.g., genetic im-

provements) making trees grow both larger and faster, a spreading of disease to new

environments which increases the risk of trees turning commercially worthless or due to

climate change which is predicted to change the growth dynamics. These e�ects may

be substantial. For instance, the negative e�ects of climate change on pro�tability of

forestry in Europe have been predicted to be between 14 and 50 percent of net present

value which corresponds to several hundred billion Euros (Hanewinkel et al., 2013). In-

deed, a rather comprehensive literature (surveyed by Yousefpour et al., 2012) sets out to

analyze how forest owners should adapt their decision making to future climate change.

Analytically, adapting even just the Faustmann (1849) rule of optimal rotation is very

hard.1 This is possibly why the more recent literature has had a mainly computational

and quantitative approach. For instance, Pukkala and Kellomäki (2012) and Schou and

Meilby (2013) numerically evaluate di�erent decision-making strategies under speci�c cli-

mate scenarios.2 Other papers (e.g., Jacobsen and Thorsen, 2003) incorporate decision

making with a risk component (i.e., a probability distribution of future climate scenar-

ios).3 Yet, one of the main problems with climate change (and other future changes) is

precisely that assigning probabilities to di�erent scenarios is di�cult, let alone knowing

which single scenario to use as a base. This is also one of the main conclusions in the

survey by Yousefpour et al. (2012) � the missing piece of the puzzle is how to incorporate

fundamental uncertainty (about the outcome and the probability distribution) into the

decision making. Consequently, the recent literature has focused on how foresters can

1In the original setup (Faustmann, 1849; Pressler, 1860; Ohlin, 1921) the environment is stationary
making it fairly easy to characterize the optimal rotation period analytically (see Newman, 2002, for a
survey on extensions). With technological or environmental changes, the stationarity assumption will
no longer hold. McConnell et al. (1983) and Löfgren (1985) are two early attempts at analytically
addressing problems where the growth characteristics of trees change over time. They �nd that it is
di�cult to even characterize qualitatively how the decision rules should change over time, except for in
some simple cases. See also Van Kooten et al. (1995) and Stollery (2005).

2These studies look not only at the rotation decision, but also other decisions facing forest owners.
See also Susaeta et al. (2014) and Schou et al. (2015) for related studies.

3For management of non-forest resources under uncertainty see, for instance, Sethi et al. (2005), Tsur
and Zemel (1996) and Huang and Loucks (2000).
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improve their knowledge and decision making, for instance, by analyzing the arrival of

information, concluding that decisions should be delayed (Brunette et al., 2014; Schou

et al., 2015), that managers should update their beliefs on what climate scenario will

occur as information arrives (Yousefpour et al., 2014) or that forest owners should di-

versify their portfolio of trees (Yousefpour and Hanewinkel, 2016). However, it remains

an open question whether this e�ort to improve our decision making makes economic

sense. That is, we do not know how much pro�ts would be improved by having detailed

knowledge about the future, to the extent that such knowledge is attainable. The un-

certainty surrounding these issues implies that any forecast of the future growth of trees

will be both costly to make and will most likely be inaccurate ex post.4 Bearing this is

mind our paper aims at 1) answering the question whether forecasting climate change is

worthwhile for forest owners or if a less demanding rule of thumb can be used, while 2)

getting around the problem of fundamental uncertainty regarding the probability distri-

bution of future scenarios. When addressing these questions our focus is on the classic

issue of rotation length.

More precisely, we compare the pro�ts from two di�erent decision rules. On the

one hand, a hypothetical �optimal� rule that includes full information about all future

changes to the trees' growth properties and the change in the risk of �re, storms and

pests. On the other hand a �reactive� rule that, at every point in time, observes the

prevailing growth dynamics and risks and assumes that they will be non-changing from

then onwards.5 Most forest owners have trees of many ages in their possession and hence

it seems reasonable that they could at least assess the current growth properties of the

trees.

Now, the fundamental problem is which climate scenario(s) we should use to evaluate

losses from suboptimal decision making. Naturally, we do not ourselves know how the

dynamics will change in the future. To get around the problem of uncertainty about the

probability distribution the following setup is used. Instead of assessing the costs under

4This has also been noted by Löfgren (1985) who concludes that the assumption that forest owners can
predict such changes is unlikely to hold. Indeed, Heltorp et al. (2017) and Yousefpour and Hanewinkel
(2015) show that forest owners in reality �nd it too hard to forecast climate change and hence refrain
from it.

5The term reactive is borrowed from Jacobsen et al. (2013). A reactive owner makes no attempt
whatsoever to predict future changes � she simply adapts to observed changes. A more sophisticated
owner could, for instance, be trend adaptive by inferring future changes from previous ones. A di�er-
ent approach in the forestry literature has been to analyze agents using Bayesian updating (see, e.g.,
Yousefpour et al., 2014).
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particular scenarios like previous research does (e.g. Jacobsen et al., 2013; Susaeta

et al., 2014; Boulanger et al., 2016; Yousefpour et al., 2017), we use scenarios of climate

e�ects on trees that have a su�ciently broad range to cover changes which are, by far,

more extreme than anything that can possibly happen in the future. Then, we calculate

the pro�t losses from following the reactive rule for each one of a very large number of

scenarios within this range (i.e. a Monte Carlo simulation). This setup enables getting

an upper bound for what the losses may be if an owner is not forecasting the future. This

upper bound is simply the losses of the reactive owner in the scenario with the largest

pro�t losses. It is important to note that the upper bound of losses is not the same

as the expected losses which by de�nition are smaller. The bene�t of this approach is

that if we �nd the upper bound to be of negligible size, which is exactly what we do,

we can draw the conclusion that forecasting long-term forest dynamics is not important

for optimal rotation. The bene�t furthermore is that, to draw this conclusion, it is only

necessary that the range of the scenario distribution is broad enough. That is, whether

the underlying distribution of the scenarios is realistic within this range is of no concern.

The analysis is performed for boreal forests (i.e. those covering the northern part of the

northern hemisphere). For our simulations to credibly cover the actual outcome, which is

unknown to us today, we need to ensure that our parameter variations span over at least

what can possibly happen in reality. With this in mind we include very extreme scenarios

where, for example, the risk of �re changes from happening every thousand years at the

onset to instead happening every third year, trees growing to become four times larger

and growing to 90% of their maximum size twice as fast. These scenarios are, by an

order of magnitude, more extreme than those predicted in forest research. We also vary

the trajectories of climate change to include, for instance, threshold e�ects. Since we use

so extreme scenarios our conclusions are probably on the conservative side. They are

also conservative since we compare the reactive rule of thumb to an optimal rule based

on perfect information. A more realistic benchmark would be a decision maker using

the best available estimate of future changes or using decision making under uncertainty

(Sethi et al., 2005; Tsur and Zemel, 1996; Huang and Loucks, 2000). Our losses will by

construction be larger than if the reactive owner would be compared to such decision

makers.

Our main �nding is that the reactive decision rule is very close to the optimal. Using
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the reactive rule yields only negligible pro�t losses (the upper bound is 0.2% pro�t losses)

and implies a cutting of trees that is a very close approximation of the optimal. Even

when the optimal rule is changing dramatically (e.g. cutting six times larger trees and

halving the age at which to cut) the reactive rule closely follows it and yields only small

relative losses. So, although the reactive owner will be constantly slightly wrong, since

the actual changes are observed without delay, the owner will not be too far behind in

updating.6 In a robustness check we show that losses in the worst case scenario are

negligible also when using, instead of the most recent information, a moving average of

the last �ve years or when updating the decision rule every third year. Once the delays

are more than this we can no longer, strictly speaking, conclude that losses will be small

as some scenarios give losses of almost 2% when the delay is ten years (related to this

Mäkinen et al., 2012; Pietilä et al., 2010, study optimal updating of forest inventories).

The implications and contributions of the paper can be summarized as follows. 1)

We show how a very di�cult theoretical problem � of optimal rotation with changing

growth properties � can be readily collapsed to a series of stationary problems with only

negligible loss of accuracy. 2) A conceptual contribution of the paper is showing that

non-sophisticated (i.e., boundedly rational) forest owners will behave "as if" being fully

rational. Hence, assuming full rationality when modeling rotation decisions in forestry is

most likely without bias, even if in reality forest owners may or may not be fully able to

predict the future. The issue of rationality is �ercely debated in economics, and ex-ante

our conclusion is non obvious as previous research has shown that rationality assump-

tions sometimes matter for the outcome and sometimes not.7 3) A �nal contribution

is methodological as we present a method for how to evaluate decision making under

fundamental uncertainty that can potentially be applied to a wide range of issues both

within and outside of environmental economics.

The structure of the paper is as follows. We start by presenting the theoretical model

6Our main results are computed for when the growth properties improve over time. A reversed
alternative, for example due to spreading of deserts, where trees' growth falls in the next 200 years has
also been simulated and is presented as a robustness check. Losses are small here too.

7See Conlisk (1996) for a discussion and, for instance, Love (2013) and Winter et al. (2012) who
evaluate welfare losses when following rules of thumb in portfolio choice and private savings decisions
respectively. See also Hong et al. (2007) for an application in �nance, Spiro (2014) and van Veldhuizen
and Sonnemans (2011) for applications and tests in resource economics, Sims (2003) for applications
in macroeconomics and Mirrlees and Stern (1972) for an early theoretical treatment. For treatments
of adaptive expectations in economics see, for instance, Nerlove (1958), Marcet and Sargent (1988),
Hommes (1994), Burchardt (2005), Huang et al. (2009) and Chow et al. (2011).
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and describing the decision rules in Section 2. In Section 3, we present the setup of the

numerical simulations of the model and in Section 4 how the decision rules di�er in

terms of pro�t loss and the sizes of trees to be cut. We present some robustness checks

in Section 5. In Section 6 we analyze why pro�t losses are small. Finally, Section 7

concludes by discussing our results and how they may possibly change if extending the

model. The appendix contains some technical considerations regarding the decision rules

and a description of the numerical algorithm we use.

2 The model

We set up our model in discrete time. The decision rules will be characterized by a

minimum tree size that the decision maker will choose to cut at every point in time.

The change of the growth properties is exogenous and therefore not a�ected by the

endogenous decisions made by the agent.

In addition to changes in the growth properties, we will also assume a risk of for

instance a �re, pests or a storm destroying the wood. We will treat this probability as

exogenous but changing over time. For brevity we will refer to it as �re risk. One could

think of several ways of enriching this by, for example, letting the risk be a function of the

biomass but arguably, the way it is modeled here su�ces for the purpose of comparing

decision rules.8

The intended interpretation of the changes in the growth properties and �re risk

is that it is driven by changes in the surrounding environment � e.g. temperature or

technology. We will, however, treat these changes as exogenous and therefore we can

model the changes as depending on calendar time rather than the actual underlying

driver.

2.1 The basic setup

As in earlier work, the value for the owner of the forest is due to the possibility of

harvesting the trees and selling them. The price of wood is assumed to be constant over

time and given by p. The cost of harvesting is a constant, c, for every harvest.9 It will be

assumed that all trees are of the same age and that they will all be harvested at the same

8For a more thorough treatment of the risk of �re speci�cally, see Stollery (2005).
9We assume constant p and c in order to focus on the e�ect of a changing growth function.
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time. Since we assume that the agent maximizes discounted pro�ts and that there is no

incentive for income smoothing, the assumption of equal tree age makes no di�erence.10

In the standard formulation of the optimal-rotation problem, when the environment

is not changing, the problem facing the forest owner is the same after each time the trees

are cut down. This means that the decision rule is independent of calendar time and

usually expressed as the time that the owner should wait between each cutting. Here

our decision rule will depend on calendar time and it will be described as the minimum

tree size that the owner should cut down. Correspondingly, we chose the state variables

in our optimization problem as calendar time t and current biomass Ft. Generally, we

can then write the evolution of biomass as

Ft+1 = (1−Xt) [Htg(0, t) + (1−Ht) g(Ft, t)] , (1)

where g(F, t) is the biomass law of motion (for short, we will call it the biomass function),

Ht ∈ {0, 1} is the decision variable regarding harvesting and Xt ∈ {0, 1} is a random

variable that is equal to 1 if the forest is destroyed by �re. g(F, t) is assumed to be

continuous and increasing in F . The distribution of Xt is given by

P (Xt = 1) = πt and P (Xt = 0) = (1− πt). (2)

The assumed timing within a period is such that potential harvesting takes place at

the beginning of a period and the trees then grow during the period until the next

harvest opportunity. If the forest is destroyed in period t, the owner starts with biomass

Ft+1 = 0 in period t + 1. We can also de�ne the τ times repeated application of the

biomass function, gτ (F, t), recursively as

g0(F, t) = F and gτ (F, t) = g(gτ−1(F, t), t+ τ − 1) for τ ≥ 1. (3)

The pro�t in period t is given by Ht (pFt − c) . That is, if the trees are cut down, the

pro�t is given by the income from selling the wood minus the harvesting cost, otherwise

there is no pro�t in that period.

The objective of the forest owner is to maximize the expected value of the discounted

10An implicit assumption here is that there are no synergies between harvesting several patches of
forest simultaneously.
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pro�ts, and the maximization problem can therefore be written as

max
Ht∈{0,1}

E

[ ∞∑
t=0

βtHt (pFt − c)

]
s.t. (1) ∀t,

where β is the discount factor.

Using dynamic programming, the solution of the maximization problem results in a

value function V (F, t) and a policy function H(F, t) at each point in time. The value

function satis�es the Bellman equation

V (Ft, t) = max
Ht∈{0,1}

Ht (pFt − c) + βE [V (Ft+1, t+ 1)] (4)

s.t. (1).

Since g is increasing and continuous in F , V will also have these properties for all t.11

The policy function H(F, t) is the pro�t-maximizing choice of cutting or leaving the

trees. The harvesting rules will be of the form

H(F, t) =

 0 if F < F̄t

1 if F ≥ F̄t
(5)

and we will characterize the rules by F̄t. It is not obvious that the decision rules will

always have this form. In Appendix A we describe how we verify that this is in fact the

case.

We assume that the biomass function and risk of �re will change during a �nite

number of years and thereafter be unchanged. Hence, the optimization problem becomes

stationary in some time period T . Once the problem becomes stationary, we can solve the

problem from T onwards as a stationary problem and this will give us the value function

V (F, T ) that serves as an end condition to the non-stationary part of the solution.

We will now describe the decision rules that we analyze and how to solve for them.

11That it is increasing follows since for any combination of future harvesting times, the �rst harvest
will be larger the larger the initial biomass implying that you could always do better when starting
from a larger initial biomass. The continuity follows since for any combination of future harvesting
times the continuity of g implies that the resulting value is continuous in initial biomass. The optimal
value function is then, for each F , the maximizing choice over a set of continuous functions making it
continuous.
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This will give us everything we need to numerically solve the problem. We consider three

decision rules: optimal, reactive and non-reactive.

2.2 The optimal decision rule

The optimal decision rule yields optimal harvesting decisions in all time periods. In

order to �nd this rule the entire optimization problem must be solved from time zero

incorporating all changes to the biomass function and �re risk. We solve this problem

backwards by �rst solving the problem facing the forest owner after period T , when

the problem becomes stationary, and thereafter working backwards through the non-

stationary problem.

2.2.1 The stationary problem

After period T , the problem becomes stationary and calendar time no longer plays a role

(we can therefore drop time from our notation when considering the stationary problem).

We will here describe how to �nd the decision rule and value function of a stationary

problem. This is the standard optimal-rotation problem with a risk of �re and we can

utilize that the problem is �reset� after each harvest. The value of having biomass zero,

given that the owner waits for τ periods before cutting down the trees (provided that

there has not been a �re in between) ful�lls the equation

Vτ (0) =

τ∑
t=1

βt(1− π)t−1πVτ (0) + βτ (1− π)τ [pgτ (0)− c+ Vτ (0)]

where gτ (F ) is the τ times application of g. Solving this expression for Vτ (0) gives us

Vτ (0) =
(1− β(1− π))βττ(1− π)τ

(1− β) (1− βτ (1− π)τ )
(pgτ (0)− c) .

We can now �nd the maximized value V (0) that is obtained when following the optimal

decision rule. It must be given by Vτ (0) maximized over τ . Let

V (0) = max
τ

(1− β(1− π))βτ (1− π)τ

(1− β) (1− βτ (1− π)τ )
(pgτ (0)− c) (6)
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and let τ∗ be the maximizing choice of τ . We also want to �nd F̄ in (5). From the

maximization we know that

F̄ ∈ (gτ∗−1(0), gτ∗(0)]. (7)

In Appendix A.3 we show that F̄ can be found by solving the equation

pF̄ − c+ V (0) = πβV (0) + (1− π)β
(
pg(F̄ )− c+ V (0)

)
. (8)

Given V (0) and F̄ we can evaluate the value function for an arbitrary biomass F . If

F ≥ F̄ (i.e., if the owner immediately cuts the trees) then V (F ) = pF − c + V (0). For

F < F̄ , i.e. the trees are not large enough to be cut immediately, then we have that

V (F ) =

τ(F )∑
t=1

βtπ(1− π)t−1V (0) + βτ(F )(1− π)T (F )
(
pgτ(F ) − c− V (0)

)
, (9)

where

τ(F ) = min
τ≥1

gτ (F ) ≥ F̄

is the number of time periods before the �rst harvest.

We now have formulas for both �nding the optimal decision rule and for computing

the value function for an arbitrary biomass F in a stationary setting.

2.2.2 The non-stationary problem

Above we solved the problem in the stationary phase that begins in period T . We now

move backwards into the non-stationary phase of the problem where the biomass function

g(F, t) and the probability of �re πt changes over time. This also implies that the value

function changes over time. The solution of the problem in the stationary phase gives

us the value function in period T , V (F, T ), that serves as an end condition on V in the

non-stationary phase. We can therefore solve the problem in period T − 1 by using this

end value. When considering the solution in any period t < T we can thus assume that

we have solved the problem in t + 1 and know the value function in that period. This

way we can work backward until t = 0. We can then formulate the Bellman equation

in period t as a function of the biomass F and the continuation value of leaving either

10



g(F, t) or g(0, t) for the next period.

V (F, t) = max
H∈{0,1}

 H [pF − c+ β (πtV (0, t+ 1) + (1− πt)V (g(0, t), t+ 1))]

+(1−H)β [πtV (0, t+ 1) + (1− πt)V (g(F, t), t+ 1)]

 .

The solution to this equation gives us the value function and harvesting rule for any F

since the right-hand side only depends on known entities when we get to period t. We

want to �nd F̄t in (5). Since the value function is continuous in F for all t, F̄t must ful�ll

pF̄t − c+ β [πtV (0, t+ 1) + (1− πt)V (g(0, t), t+ 1)]

=

β
[
πtV (0, t+ 1) + (1− πt)V (g(F̄t, t), t+ 1)

]
.

or

pF̄t − c = β(1− πt)
[
V (g(F̄t, t), t+ 1)− V (g(0, t), t+ 1)

]
. (10)

This equation gives the decision rule (as characterized by F̄t). We can also compute the

value function of an arbitrary biomass F as

V (F, t) =

 pF − c+ β [πtV (0, t+ 1) + (1− πt)V (g(0, t), t+ 1)] if F ≥ F̄t

β [πtV (0, t+ 1) + (1− πt)V (g(F, t), t+ 1)] if F < F̄t
.

Summing up, we now have what we need to solve for the optimal decision rule and

the associated value function. We �rst solve the stationary problem that is relevant for

t ≥ T . We then solve backwards for the decision rule and value function associated with

the optimal decision rule for all t < T . In total this gives a sequence {F̄t}Tt=0. We now

turn to describing the �reactive� and �non-reactive� decision rules.

2.3 The reactive decision rule

The �reactive� decision rule observes the current biomass function and probability of �re.

It does not take the future changes of the environment into account. In each period the

decision maker solves the optimization problem that would arise if the current biomass

function and risk of �re prevailed forever. Decisions are then made based on what would

be optimal if the environment would not change over time. The owner is reactive in the
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sense that (s)he uses a rule of thumb as if noting that things have changed historically

but believing that no more changes will come.

In each period t the reactive decision maker thus solves a stationary problem, as that

described in Section 2.2.1, using the biomass function g(F, t) and risk of �re πt. Solving

this sequence of stationary problems gives a sequence of decision rules characterized by{
F̄Rt
}T
t=0

.

The reactive decision maker, by construction, has incorrect expectations. This means

that (s)he also has incorrect expected pro�ts. When deriving the value of following the

reactive decision rule we therefore want to compute the actual value of following this

rule rather than the, incorrect, value that this person expects. To do this we need to

calculate the value of following the reactive rule in the actual circumstances. That is,

we have to calculate the value of an arbitrary biomass in period t when following the

reactive decision rule, V R(F, t), as12

V R(F, t) =

τR(F,t)∑
s=1

βsΠ0,s−1πsV
R(0, t+ s) (11)

+βτ
R(F,t)Π0,τR(F,t)

[
pgτR(F,t)(F, t)− c+ V R

(
0, τR(F, t)

)]
,

where

τR(F, t) = min
τ≥0

gτ (F, t) ≥ F̄Rt+T

is the number of periods before the next harvest in the absence of �re and

Πs1,s2 =


∏s2−1
s′=s1

(1− π′s) if s1 < s2

1 if s1 = s2

(12)

is the probability that there is no �re in periods s1, . . . , s2 − 1.

Since the value in period t depends on the value function in future periods we must

compute the reactive value function backwards from period T where the reactive and

optimal value functions coincide.

12We use the convention that a sum where the lower summation bound is larger than the upper is
zero.
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2.4 The non-reactive decision rule

For comparison we also include a �non-reactive� decision rule. This rule does not observe

the current biomass function and risk of �re and instead makes decisions based on the

initial biomass function and �re risk at time zero. The purpose of including such a,

clearly suboptimal, decision rule is to verify that it is indeed possible to make large

pro�t losses if ignoring changes that have already happened.

Here, in each period t the decision rule is characterized by the F̄ that results from

solving the stationary problem of Section 2.2.1 for biomass function g(F, 0) and risk of �re

π0. This implies that the non-reactive decision rule will be characterized by F̄NRt = F̄R0

for all t.

As with the reactive decision rule we can calculate the value function of an arbi-

trary biomass F in period t, when following the non-reactive decision rule, V NR(F, t)

backwards as

V NR(F, t) =

τNR(F,t)∑
s=1

βsΠ0,s−1πsV
NR(0, t+ s) (13)

+βτ
NR(F,t)Π0,τNR(F,t)

[
pgτNR(F,t)(F, t)− c+ V NR

(
0, τNR(F, t)

)]
,

where

τNR(F, t) = min
τ≥0

gτ (F, t) ≥ F̄NRt+T

is the number of periods before the next harvest in the absence of �re and where Πs1,s2

is de�ned in (12). The value function at T , V NR(F, T ) is now not equal to the optimal

value function and it must be computed separately.

2.5 Comparing decision rules

When evaluating the decisions rules we look at two measures. The �rst measure is the

relative pro�t loss, which is

LR ≡ EF
[
V (F, 0)− V R(F, 0)

V (F, 0)

]
, with F ∼ U

[
0,max

{
F̄R0 , F̄0

}]
(14)

in the reactive case. That is, when calculating the pro�t loss we do it as an average over a

range of initial biomasses. The reason for doing so is twofold. Firstly, most forest owners

13



will have trees of di�erent ages on their lands and indeed the reactive owner does not

know when the changes to the growth function will start happening � the owner should

thus be interested in expected losses over many initial conditions. Secondly, we do not

want our results to be driven by discounting of events that happen far into the future. If

we would have looked only at an initial biomass of zero, the actual mistakes would not

have occurred until far into the future and the corresponding pro�t losses would have

been discounted away. By taking the average over many initial sizes of trees (ranging all

the way to a size that will be cut right away) we take into account situations where the

forest owner is making actual mistakes already in the �rst few periods. The pro�t losses

following such mistakes will not be discounted away.

For the non-reactive case we equivalently have

LNR ≡ EF
[
V (F, 0)− V NR(F, 0)

V (F, 0)

]
, with F ∼ U

[
0,max

{
F̄R0 , F̄0

}]
(15)

Our second measure is the relative errors in which size of tree to cut in each period,

which are

DR
t ≡

F̄t − F̄Rt
F̄t

in the reactive case and

DNR
t ≡ F̄t − F̄NRt

F̄t

in the non-reactive case. For the cutting errors we compute one value for each rule and

each time period t = 0, 1, . . . , T within each scenario. By looking at the cutting errors

in all periods, we capture mistakes both early and late in the transition process.

3 Numerical simulation

The problem de�ned in the previous section is very hard to solve analytically. It is

even hard to characterize the optimal decision rule under any sort of general conditions.

We therefore use a numerical approach that allows us to put an upper bound on the

errors made by a reactive decision maker. As discussed earlier, it is di�cult to assign

probabilities to potential future climate scenarios. We address this problem by running

a set of simulations (i.e., Monte Carlo) that cover a very broad range of possible future

scenarios. If the errors made in all these simulations are small, which is what we �nd,
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this implies that the errors made in reality will very likely be small too. To draw such

a conclusion the only requirement is that the parameters cover a wide enough range of

future possibilities so that the actual realization will lie within the covered range of the

parameter space. Further assumptions regarding the probability distribution within the

range of scenarios covered are thus unnecessary. Note that if the resulting errors would

not be small in all the simulations, that would still not allow us to conclude that errors

would be large in reality since such a conclusion would require determining that some

simulations that give large errors are in fact potentially realistic scenarios. Hence, this

method allows for the following two alternative conclusions: �losses will necessarily be

small� or �losses may not be small but we do not know if they will be large�.

In our main simulation we focus on a forest that changes so that it grows faster over

time, where the maximum size of trees is increasing over time and where the risk of �re

is increasing over time. This is meant to represent the case of climate change in boreal

forests which cover the northern part of the northern hemisphere. As a robustness check

we also simulate the case where growth conditions deteriorate over time. The results are

no di�erent. If anything, our main result that pro�t losses from following the reactive

decision rule are small is strengthened.

In all simulations, we use β = 0.95 for discounting, which is a commonly used value

for yearly discounting and real interest rate. Furthermore, we assume that it takes 200

years for the biomass function to become stationary.13

For the numerical simulation, a particular function g(F, t) must be chosen. We

derive our biomass function from a Bertalan�y growth function that has been converted

to growth being a function of tree height rather than the age of the tree (for derivation,

see Rammig et al., 2007). The resulting function for tree height h is

ht+1 = hmax,t

(
1−

(
1−

(
ht

hmax,t

) 1
Dt

)
e−At

)Dt

.

Here hmax,t represents the maximum height a tree can reach under the climate prevailing

at time t. We interpret At as the initial growth of a tree and Dt as a general growth

parameter, both of which prevail at time t. In the stationary phase, these parameters

are constant. We calibrate the model to boreal forests (present in the northern parts

13One could think of the forest continuing to evolve also beyond this point. However, as β200 ≈ 0.00004
it matters little for the discounted pro�ts.
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Figure 1: The typical time path of tree biomass following a Bertalan�y growth function.

of Europe, Asia and North America) and hence use the estimation of the parameters

by Rammig et al. (2007) for Norway Spruce (Picea Abies) in the Swiss alps to approx-

imately A = 0.03, D = 3 and hmax = 30. Following Vanclay (1994, see page 70), we

assume a quadratic relationship between tree height h and biomass F (implying a linear

relationship between height and basal area). The biomass function is then

g(Ft, t) = Fmax,t

(
1−

(
1−

(
Ft

Fmax,t

) 1
2Dt

)
e−At

)2Dt

(16)

where Fmax,t = h2
max,t. A typical time path of the tree biomass following this biomass

function with the baseline parameters (from Rammig et al., 2007) is shown in Figure 1.

Another calibration that needs to be performed is that of price p and cost c. We

assume their values to be �xed over time.14 While the relative proportions of these might

be of importance for how often to harvest, their absolute values are not since they then

only constitute a scaling of the absolute pro�ts which is of no relevance here. The price is

therefore normalized to one. Being interested in boreal forests we calibrate c to Swedish

14Solving for a general equilibrium of biomass, timber prices and harvesting costs is a very complicated
endeavor, especially if it is to be done for a future under climate change, involving having estimates
of the price of fossil fuels, technological change, population growth etc. Although interesting, it falls
outside the scope of this paper.
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forestry in 2010 (see Swedish Forest Authority, 2012, p. 283) so that c
pF̄0

= 30%.15

We here assume that the risk of the trees being destroyed by a �re, pests or a storm,

πt, is increasing over time. This is a reasonable assumption in northern countries when

the underlying driver is increased temperature. As a robustness check we also consider

a case without any such risks.

In our simulations, we �rst set the initial parameter values (at time zero). We

set Fmax,0 = h2
max,0 = 302 and randomly draw values of the remaining parameters

from uniform distributions over the intervals A0 ∈ [0.025, 0.035], D0 ∈ [2.5, 3.5] and

π0 ∈ [0.001, 0.3].16 Second, we vary the parameter values when the biomass func-

tion stabilizes at t = 200. They are randomly drawn from the uniform distributions

A200 ∈ [A0, 3A0], D200 ∈ [0.8D0, D0], Fmax,200 ∈ [Fmax,0, 4Fmax,0], π200 ∈ [π0, 0.3].

This encompasses very signi�cant changes in the biomass function since it allows for a

quadrupling of the maximum biomass (corresponding to a doubling of the maximum

height) and trees growing to 90% of their maximum twice as fast as before, all happen-

ing within 200 years. To illustrate that these scenarios are indeed very extreme, we can

compare them to some calibrated predictions in forest biology for boreal forests. For

instance, Ge et al. (2011, table 2) have an increase in what corresponds to our Fmax of

at most 20% while we allow for a 300% increase. Another example is Kellomäki et al.

(2008, table 4) who estimate an increase of the tree growing to be 100% bigger within

one rotation while we have several scenarios where the tree grows to be more than 500%

bigger within a rotation. Furthermore, we allow for the risk of forest �re to increase

from once in a millennium to every third year. Third, we vary the trajectory for the

changes during the 200 years to be either linearly increasing, concavely increasing or

stepwise increasing, as illustrated in Figure 2 (all the parameters follow the same type of

trajectory in each simulation). The concave and linear case represent smooth transitions

with di�erent modes of convergence. The stepwise increasing case is meant to catch

climate thresholds which lead to abrupt changes. This �nal case is also a reduced form

for abrupt technical change.

The complete Monte Carlo simulation draws 60 initial sets of parameters and 240

sets of parameter values at T = 200 per initial set. For each of these combinations of

15Andersson et al. (2013) show that this ratio has been very stable for the last 70 years. In our setting
it may change in later time periods as one cuts larger or smaller trees.

16We do not vary the value of Fmax,0 since it is essentially a scaling of the whole problem.

17



0

500

1000

1500

2000

2500

3000

3500

0 20 40 60 80 100 120 140 160 180 200 220

M
ax

im
u

m
 b

io
m

as
s

Year

Linear

Concave

Stepwise

Figure 2: Example of trajectories for the maximum biomass parameter.

initial and �nal values it then uses all the three described trajectory shapes. In each

separate simulation it calculates the optimal, reactive and non-reactive decision rules

and the associated discounted pro�ts of having a forest of any possible initial biomass,

that is, for any F0 ∈
[
0,max

{
F̄R0 , F̄0

}]
.17 We then compute the expected values of

LR and LNR from equations (14) and (15), that is, for a uniform distribution of initial

biomass F0 ∼ U
[
0,max

{
F̄R0 , F̄0

}]
. An algorithm for the numerical simulations can be

found in Appendix B. The code and other materials are available upon request. In total

the Monte Carlo procedure involved 43200 simulations.

4 Numerical results

The optimal and reactive decision rules of the simulation that yield the maximum ex-

pected losses (that is, our worst-case scenario) are depicted in Figure 3. The graph on

the left-hand side shows how the F̄ values that characterize the reactive and optimal

decision rules change over time. As can be seen, the reactive policy is very similar to

the optimal one throughout the transition period. On the right-hand side of Figure 3 we

see how the minimum ages of trees that the reactive and optimal decision rules would

prescribe cutting.

17We could instead have used initial values up to Fmax,0 but since both decision rules would prescribe
immediate harvesting for F > max

{
F̄0, F̄

R
0

}
that would most likely result in small pro�t losses.
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Figure 3: Decision rules of the worst case scenario. The graph on the left-hand side shows
the decision rules in terms of biomass F̄ while the right-hand side of the graphs show
them in terms of the minimum age of trees that the respective decision rules prescribe
harvesting. The ages are the actual ages of trees cut in each time period. For the
reactive decision rule this will not be the same as the planned rotation time at planting.
The initial parameters of this scenario are A0 = 0.0027, Fmax,0 = 900, D0 = 3.4975 and
π0 = 0.0017; the parameter values after stabilization are A200 = 0.0619, Fmax,200 = 3453,
D200 = 3.1368 and π200 = 0.0055 and the trajectory is concave.
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Figure 4: Histograms of the relative errors in the reactive and non-reactive decision rules.

The similarity between the optimal and reactive decision rules is representative. This

can be seen in Figure 4 which shows a histogram over the relative errors in the reactive

decision rule (in that �gure we also present the harvesting errors of following the non-

reactive rule). Each simulated case (initial parameters, �nal parameters and trajectory)

results in T + 1 values of F̄ for each decision rule. Each such value of F̄ constitutes an

observation in this histogram. With the exception of a few outliers (the most extreme

being 37%), the harvesting errors when following the reactive decision rule are small.

While these outliers imply that we cannot discard the possibility that errors in harvesting

rules can, in some cases, be large, the central question is whether they yield large pro�t

losses.

Histograms over the relative pro�t losses made can be found in Figure 5. In these

histograms we have one observation per simulated case for each decision rule. The pro�t

losses are calculated using (14) and (15). That is, for each scenario we calculate the pro�t

losses as discounted from period 0 for any given initial biomass F0 ∈
[
0,max

{
F̄R0 , F̄0

}]
.

We then calculate the mean pro�t loss for F0 uniformly distributed in that range. It

means that in each scenario we incoporate the possibility that the forest will be harvested

right away. From the histogram for the reactive decision rule we can see that the expected
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Figure 5: Histograms of the mean relative pro�t losses resulting from following the
reactive and non-reactive rather than the optimal decision rules.

pro�t losses are small for all scenarios. The worst case scenario (the harvesting decisions

of which are depicted in Figure 3) gives a loss of 0.2% and hence we treat this as our

upper bound for losses following the reactive rule.

A forest owner following the non-reactive rule would make signi�cant losses in many

cases. We can see that many scenarios yield losses of 2-30% which, of course, makes

them economically signi�cant. This also shows that the climate scenarios we consider,

indeed, can give non-negligible losses if decision making is very uninformed.

5 Robustness checks

To check the robustness of the results we have performed simulations for some extensions

of the model. Firstly, our main formulation of the reactive rule implies that the owner

observes the actual changes to the forest dynamics without delay. This is motivated by

most forest owners having trees of various ages from which they could infer the entire

biomass function of the trees. Now, while this may be reasonable, a practical problem

facing an owner trying to perform such an exercise is that there is variability in the

actual growth of trees from year to year depending on the weather and other temporary
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Figure 6: Cumulative distribution of mean pro�t losses when following lagged versions
of the reactive decision rule. The vertical lines indicate the point at which the respective
cumulative distributions become equal to one. That is, the largest expected pro�t loss
in our simulations.

factors. This implies that the owner may need more than one year to infer what the

changes are and hence that there will be a delay. A very extreme form of delay is

obviously the non-reactive rule, which altogether does not notice the changes. We have

seen that with the non-reactive rule the pro�t losses can be substantial so the question

is what kind of delay can be allowed while keeping pro�t losses small. To address this

issue we have computed the relative pro�t losses of the reactive rule when the owner

observes the actual conditions with two forms of delay. In the �rst form, the lagged

decision rules are computed as a moving average of the reactive decision rule without

delay. That is, in a given period, the n years lagged decision rule is characterized by

an F̄Delay that is the average of the reactive decision rules (F̄R) over the n most recent

periods. The results are presented in the left part of Figure 6. There we have included

the pro�t losses following the reactive decision rule, the decision rule using the moving

average of the reactive rule of the last �ve years and of the last ten years. Each graph

represents the cumulative distribution function (CDF) for a certain number of years of

delay with pro�t losses on the x-axis. What is of interest for us is how fast each CDF

converges to one. At the point where it does, we obtain the least favorable scenario and

hence the upper bound for reactive losses given a certain delay. As can be seen, as long
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as the delay is �ve years or less the maximum loss is well below one percent. However,

for delays of ten years the losses are close to two percent in the least favorable scenario.

In the second form of delay the decision rule is updated not every year (like in the

reactive rule) but more infrequently. So, for instance, with an updating every third year

the decision rule follows the reactive rule of year one during years one to three, the

reactive rule of year four during years four to six and so on. The results are presented in

the right part of Figure 6. There we have included the CDF of relative losses following

decision rules with updating frequency of one year (i.e., the reactive rule), three years

and �ve years.18 As can be seen, an updating frequency of three years yields losses of

around 0.55 percent in the worst case scenario. But if the updating frequency is only

every �ve years, losses in the worst case scenario are above 2 percent.

Our interpretation of the results following the two forms of delay is that for short

enough delays (up to �ve year moving average or three years updating frequency) the

reactive owner will still only make marginal losses while if the delay is su�ciently long

we can no longer draw the conclusion that the upper bound is small. Recall, however,

that this does not imply that we can draw the conclusion that pro�t losses will be large

� we simply cannot say anything conclusive in such a case.

Secondly, we have also performed the simulations for the case where trees are growing

slower over time to represent cases where the climate becomes, for instance, drier.19 In

these simulations we use the same starting values and simply use a mirror image of the

end values in the basic case of trees growing faster so that trees now grow slower and to

smaller sizes. The evolution of the �re risk is however not reversed � it increases over

time here too. The results of such an exercise look very much the same as in our main

simulation. If anything, the pro�t losses are now smaller.

Finally, although the case of trees growing faster and an increasing �re risk is probably

the most relevant scenario for boreal forests, these two e�ects tend to cancel each other

out. While a faster growing tree may imply cutting larger trees, the increasing �re risk

implies cutting smaller trees. To see whether this is what causes the reactive rule pro�t

18This investigation is related to that of Mäkinen et al. (2012). However, while we look at updating
frequency for learning about the growth function, they study the updating frequency for learning about
the current biomass.

19For both the case where trees grow more slowly over time and the case, below, without risk of �re,
the simulations draw 20 sets of initial parameters, then for each initial parameter set draws 80 sets of
parameters at time T and performs the computations for each of the three possible trajectories. This
gives a total of 4800 simulations.
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losses to be small we have also done the simulations while shutting down the �re risk.

We simply assume that there is no risk of �re in any year. Again, the pro�t losses of the

reactive rule remain small with an upper bound of 0.35%.

While the magnitudes of the errors vary somewhat between the main simulation

and the robustness checks of trees growing slower and no �re, in all cases the pro�t

losses associated with the reactive rule are negligible and the losses associated with the

non-reactive rule are about 100 times larger.

6 Why are pro�t losses small?

In this section we will explore and explain the intuition behind our result that reactive

decision making yields negligible pro�t losses. Since the model with optimal decision

making cannot be solved analytically, the discussion will by necessity be in the form of

conjectures.

It should �rst be noted that the small pro�t losses are not due to discounting since

we calculate the pro�t losses including situations where the initial biomass is large so the

forest should be harvested right away (see equations (14) and (15)). In such situations

the brunt of the pro�t losses are indeed materialized right away.

For there to be non-negligible pro�t losses when using a rule of thumb, two conditions

have to be satis�ed. First, the rule of thumb has to imply that mistakes are being

made, mistakes which are by themselves non-negligible. Second, the pro�ts have to be

su�ciently sensitive to mistakes. Do reactive decision makers make mistakes? Figure 4

shows that the answer is that, for the most part, the cutting rule of what size of tree

to harvest will imply virtually no error at all, but that there exist some exceptions. In

particular, Figure 3 shows that, in the worst-pro�t-loss scenario, the reactive owner will

be very close behind in updating the cutting rule. This implies that pro�t losses will

be substantially attenuated. To see why, consider the following thought experiment.

Suppose an owner follows an incorrect cutting rule in period 0 but that from period 1

and onwards this owner uses the same cutting rule as the fully forward looking one.20

This is illustrated in Figure 7 using the parameters from the worst case scenario (those

used in Figure 3). On the horizontal axis we have what size of tree the owner owns in

20For the sake of simplicity in illustrating our point, we consider the case of a one-time error unlike
in the full simulations where the reactive owner may be wrong also later.
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Figure 7: The relative pro�t loss for di�erent initial biomasses from following the reactive
decision rule in period 0 and then following the optimal rule.

period 0. The reactive and optimal cutting rules are indicated here too. As can be seen,

the cutting error is about 10%. The graph shows the pro�t losses (in percent) using the

reactive instead of the optimal rule in period 0. As can be seen, as long as the tree is

smaller than both rules, the pro�t loss will be zero. The reason, of course, is that none of

the rules prescribes cutting, hence the tree is left to grow to period 1, and from then on

the owner follows the optimal rule. Likewise if the tree is very large, the pro�t loss will

be zero since then both the reactive owner and the optimal owner will cut the tree. It is

only in the range where the cutting rules do not overlap (in this case between 243 and

267) that the reactive owner will actually make a mistake. Hence, in order to make an

actual mistake, the reactive owner has to have a tree precisely in this range. While this

may of course happen, in particular if the error in the cutting rule is large, the expected

pro�t losses will be attenuated by the fact that in many cases the error in the cutting

rule will not have any actual consequences.

The next aspect to note in Figure 7 is that, even when the owner has a tree size that

will lead to an actual mistake, the pro�t loss is still rather small. The reason for this can

be understood by considering the original Faustmann-Pressler-Ohlin result. The optimal

cutting rule trades o�, on the one hand, cutting the tree when it is small in order to get

the pro�t more quickly and on the other to wait for later in order to reap the bene�ts

of the tree's growth, that is, to cut a large tree. This means that, while mistakes will
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obviously imply a cost, they will also have some bene�ts. In the scenario illustrated in

Figure 7, where the reactive owner cuts too early, the cost is that the reactive owner

misses out on the relatively high growth in the next period but the bene�t is that pro�ts

arrive earlier. As long as the tree is not too far in size from optimal, the bene�t will

largely compensate for the cost and, as can be seen in Figure 7, in the region just to

the left of the optimal cutting rule, the pro�t losses are very close to zero. In fact,

this result follows from basic optimization theory: if the objective (pro�t) function is

concave, then small deviations from the optimal choice have very small e�ects. Hence,

large mistakes are necessary for there to be non-negligible pro�t losses. In summary

there are two attenuating e�ects: 1) the erroneous cutting rule will often not lead to

an actual mistake; and 2) pro�t losses are small as long as the actual mistake is small.

Considering both of them jointly the question is how wrong the cutting rule has to be in

order for pro�t losses to be non-negligible. This is illustrated (again for the parameters

of the worst-case scenario in Figure 3) in Figure 8. On the horizontal axis we have

di�erent cutting rules with an indication of the optimal cutting rule. The graph depicts

the expected relative pro�t losses when using an incorrect rule in period 0 and then

using the optimal in period 1 and onwards. As can be seen, the pro�t losses are U-

shaped around the optimal rule and losses are negligible for a quite broad range of rules.

In particular, the reactive rule (indicated on the horizontal axis) implies a pro�t loss of

around 0.11 percent only.21

7 Conclusions and discussion of the results

Our results clearly show that a forest owner who is able to gradually observe, rather

than foresee, changes in the growth dynamics and in the risk of, for instance, �re will

be very close to making optimal decisions of when to harvest. The worst-case reactive

policy implies pro�t losses below 0.2% and the cutting rule does not di�er much from the

optimal despite considering very extreme scenarios. Even if these changes are observed

with a delay of �ve years the pro�t losses of not being perfectly forward looking are only

marginal. However, not noticing changes at all, like the non-reactive owner, may imply

21Despite using the worst-case scenario the pro�t losses are smaller here than what we get in the full
simulation in the upper part of Figure 5. The reason is that here, for the purpose of illustration, we
consider only a one-time cutting error while in the full simulation the reactive owner will make mistakes
also later.
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Figure 8: The expected relative pro�t loss from following a di�erent harvesting rule than
the optimal in the �rst period and then following the optimal rule. The reactive and
optimal rules are indicated on the horizontal axis.

substantial pro�t losses and mistakes in cutting. Therefore, we conclude that observing

the forest's change as it happens is important, but su�cient, for �nding the optimal

rotation rule. The reason is that observing the changes as they come ensures that the

harvesting rule does not diverge from the optimal. For deciding how often to harvest a

forest in practical forest management, it is therefore questionable whether investing in

high accuracy climate and technology forecasts is worthwhile. It is hard to assess the

cost of credibly forecasting climate change on a particular forest patch, but realistically

it would be at least one order of magnitude larger than the maximum of 0.2% of pro�t

losses of not forecasting we get in our simulation.22 This, however, does not imply that

foreseeing a catastrophic event next year, or short-run price changes, is not worthwhile.

It is of course of great value for a forest owner to know whether, for instance, the forest

will burn down next year � if such knowledge is at all possible. But this is not the same

as it being valuable to know how the probability of a �re will change, which is what this

paper is about.

The focus of our analysis has been on the basic rotation decision � the Faustmann rule

22See, for instance, Mäkinen et al. (2012) who estimate the costs of just keeping up-to-date with
changes that have already happened to around 50 Euros per hectare with medium accuracy (see their
Figure 2). They furthermore conclude that an owner should optimally do six inventories for every 30
year rotation. This would imply costs of roughly 3% of the revenues for a typical hectare of Scandinavian
forest.
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� and assessing whether it is a�ected by future changes. We show it is not. Naturally,

our model is far more simple than the complex reality facing an actual forest owner.

Our results are therefore, strictly speaking, con�ned to the aspects covered in the model.

Whether our simpli�cations are of any consequence to the results crucially depend on

two things. Firstly, it is not enough that an additional piece of complexity would change

the harvesting rules. Since we are only interested in how wrong the reactive owner is

compared to an owner with perfect foresight, what is important is whether the added

component would a�ect one of them disproportionately more than the other and how

this translates into expected pro�ts. Secondly, as was explained in Section 6, adding

a degree of complexity to the model is only of importance if it will a�ect losses under

many of the initial conditions, rather than under only one or a few.

One possible alteration of the model would be to allow for the choice of changing

the kind of tree one plants instead of having one tree species whose growth pattern

changes over time. This would require a di�erent kind of modeling where, possibly, the

biomass function is constant for the currently standing tree but where planting a new

tree type changes the biomass function. In this sense our way of modeling may be more

representative of climate change whereas R&D may be better modeled in the alternative

way. Although we see no immediate reason why this would be more of a problem for a

reactive decision maker and why this would not be averaged out over the possible initial

conditions, our model and simulations do not reveal whether the alternative problem

makes forecasting worthwhile. As has been shown by Yousefpour et al. (2014), when

making decisions about which trees to plant the losses of acting according to the wrong

scenario can be severe. We can only speculate whether this di�erence compared to our

results comes from the choice being made (when to cut compared to what species to plant)

or whether it is due to that making inaccurate predictions is more problematic than not

making any predictions at all. However, Jacobsen et al. (2013) show that following the

wrong climate scenario when deciding on thinning and clear-felling (a decision similar to

what we analyze) may imply substantial pro�t losses. This, together with our results,

suggests that it is better to change the decision rule based on observed changes rather

than wrongly predicting the change.

Another constraint that is highly relevant within forestry is that the price of timber

may fall if the tree diameter becomes too large. We are fairly sure that, if anything, this
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should decrease the di�erence between the reactive and the optimal rule since it puts a

cap on which size of tree to cut for both types of decision makers.

What is more uncertain is how the results would change if incorporating a decision of

when to altogether stop growing trees on a certain land area. Our model only considers

the direct costs and pro�ts of growing and harvesting trees. But in reality there is also

an opportunity cost since the land area may be used for other purposes. Obviously,

the fact that forestry is currently taking place strongly suggests that these alternative

usages should not be more pro�table today. When the trees are growing faster and

faster (as in our main simulations) a �rst guess would be that this should make forestry

a relatively pro�table endeavor also in the future. But in the opposite case, when trees

are growing slower and slower, it might be that the alternative usages become relatively

more pro�table at some point. In that case losses may be incurred if one plants trees to

be harvested in, say, two decades when an alternative usage is preferable already after

a few years' time. A perfectly forward looking agent may be able to foresee this while

a reactive agent may not. A related issue is the calculation of the present value of the

forest before buying or selling it. If the e�ect of climate change on the growth of trees

is extreme then this may a�ect the present value substantially. So to arrive at a correct

price in such an important single decision it seems essential to at least roughly be able to

foresee how climate change will a�ect growth. Likewise we cannot disregard that other

long-lasting decisions, such as changing tree type, may a�ect the results. Especially in

the case of stepwise climatic changes. Ultimately, our method can be used to study also

such other decisions facing a forest owner.

These potential caveats aside, it is worth noting that the conclusions we draw regard-

ing the Faustmann rule under climate change are probably on the conservative side. First

of all our decision maker with perfect foresight is indeed a utopian agent. In practice

no one is able to foresee climate change and its consequences and economic agents are

left to either believing in a speci�c scenario or weighting di�erent scenarios and letting

expected pro�t maximization determine the harvesting rule. Secondly, the scenarios we

have included are very extreme. Since this paper is about dealing with uncertainty rather

than quanti�able risk, and since we do not ourselves know what probability distribution

to use, we have chosen to include these extreme scenarios as to be sure that the future

possibilities all fall within our simulations.
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A Monotonicity of the harvesting rule

We will here derive su�cient conditions for the harvesting rule to have the form (5). We

will start by verifying that our biomass function is increasing and concave. We will then

draw some implications from this and show how it can be used to verify the form of the

harvesting rule.

A.1 Concavity of the biomass function

Regarding the biomass function g we will assume that it is continuous, increasing and

concave for all F ≥ 0 in all time periods. This will hold for our biomass function as can

be seen by di�erentiating it. Starting from (16), we rewrite the biomass function as23

g(F ) = Fmax

(
1− e−A + e−A

(
F

Fmax

) 1
2D

)2D

.

Di�erentiating it once we get

g′(F ) = Fmax2D

(
1− e−A + e−A

(
F

Fmax

) 1
2D

)2D−1

e−A
1

2D

1

F

(
F

Fmax

) 1
2D

= e−A
(
g(F )

Fmax

) 2D−1
2D

(
F

Fmax

) 1−2D
2D

= e−A
(
g(F )

F

) 2D−1
2D

> 0.

Di�erentiating again we get

g′′(F ) =
2D − 1

2D
g′(F )

(
g′(F )

g(F )
− 1

F

)
=

2D − 1

2D

g′(F )

F

(
F

g(F )
e−A

(
g(F )

F

) 2D−1
2D

− 1

)

=
2D − 1

2D

g′(F )

F

(
e−A

(
g(F )

F

)− 1
2D

− 1

)
.

23For practical purposes it does not matter much what we assume about the biomass function for
F > Fmax but for completeness we need to assume something. Assuming that the biomass function
is given by the same expression from there as well implies that the biomass can become smaller over
time g(F ) < F . While it is not obvious what the right assumption is, this assumptions implies that the
biomass function will always be increasing and strictly concave.
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Assuming 2D > 1 this is negative since g′(F ) > 0 and

e−A
(
g(F )

F

)− 1
2D

=
e−A(

Fmax
F

) 1
2D

(
1− e−A + e−A

(
F

Fmax

) 1
2D

)
=

e−A

(1− e−A)
(
Fmax
F

) 1
2D + e−A

< 1

This shows that g is increasing and concave.

A.2 The value of waiting a prescribed number of periods

In order to verify the monotonicity of the harvesting rule for both stationary and non-

stationary problems, we will utilize the shape, as a function of F , of the value of waiting

a prescribed number of time periods before harvest. We assume now that we are in

period t and that the value of having biomass zero is known for all future time periods

including period t (the value V (0, t) can easily be computed given the decision rule and

the value of zero biomass in all future time periods). We can then de�ne the value of

waiting for τ time periods before harvesting as

V0(F, t) = pF − c+ V (0, t)

and, for τ ≥ 1

Vτ (F, t) =
τ∑
s=1

βsΠ0,s−1πsV (0, t+ s)

+βτΠ0,τ [pgτ (F, t)− c+ V (0, τ)] (17)

with Πs1,s2 de�ned in (12). We also de�ne

wτ (F, t) = Vτ (F, t)− V0(F, t)

the net value of waiting for τ periods before harvesting rather than harvesting directly.

From the concavity of g it follows that wτ (F, t) is concave in F if τ ≥ 1. The concavity

implies that it can change sign at most twice, once from negative to positive and once,

for a larger F , from positive to negative. In particular we have that if τ ≥ 1, F2 > F1 ≥ 0
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then

wτ (F1, t) > 0 & wτ (F2, t) < 0⇒ wτ (F, t) < 0 ∀ F > F2 (18)

and

wτ (F1, t) ≥ 0 & wτ (F2, t) ≥ 0⇒ wτ (F, t) ≥ 0 ∀ F ∈ [F1, F2]. (19)

Suppose now that we have found a biomass F̃ and waiting time τ̃ such that

wτ̃ (F̃ , t) = 0 and w′τ̃ (F̃ , t) < 0.

Assume, furthermore, that we can �nd sequences of biomass {Fi}Ii=0 and waiting times

{τi}Ii=1 such that

F0 = F̃ , Fi+1 < Fi, & FI = 0; τ1 = τ̃ & τi+1 > τi (20)

and that these sequences ful�ll

wτ1(F1, t) > 0 and for i > 1 wτi(Fi, t) > 0 & wτi(Fi−1, t) > 0. (21)

Then (19) implies that for each F < F̃ there is a τ such that wτ (F, t) > 0 and conse-

quently that the harvesting rule will not prescribe harvest for any F < F̃ .

A.3 The stationary problem

We will start by deriving su�cient conditions for the harvesting rule to have the form

(5) in a stationary problem. We do not need to keep track of the calender time and the

biomass, harvesting and value functions will be functions of only biomass.

We start by noting that in a stationary problem we will always want to harvest

immediately if F > Fmax since otherwise the biomass would decrease. We therefore need

only analyze the case where we start from a biomass F < Fmax which will also imply that

the biomass will remain below Fmax and we can assume that g(F ) > F always holds.

Assume now that we have found an F̃ such that w1(F̃ ) = 0 and w′1(F̃ ) < 0. This is

what our numerical algorithm will give us as a candidate for the F̄ of the decision rule

(5). The concavity of w1 implies that we then will have w(F ) < 0 for all F > F̃ . This,

in turn, tells us that the decision rule will always prescribe harvest for F > F̃ (note that
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this includes g(F ) for any F ∈ (F̃ , Fmax)). What remains in order to verify that the

decision rule has the form (5) with F̄ = F̃ is that the decision rule does not prescribe

harvest for any F < F̃ . We can do this by �nding sequences {Fi}Ii=0 and {τi}Ii=1 that

ful�ll conditions (20) and (21) with τ̃ = 1.

A.4 The non-stationary problem

For the non-stationary problem, the biomass, harvest and value functions all depend on

calendar time t. We assume that we are in period t and we know that the harvesting

rules in all future periods are monotone and we also know their F̄ . We will here derive

su�cient conditions for the harvesting rule to be monotone in period t as well. Since,

in our simulations, the stationary situation follows the non-stationary, we can use the

conditions derived above to verify that the harvesting rule is monotone in the �rst period

of the stationary problem and we can work backwards from that.

Assume that we have found an F̃ such that

pF̃ − c = β(1− πt)
[
V (g(F̃ , t), t+ 1)− V (g(0, t), t+ 1)

]
and

p > β(1− πt)V ′(F̃t, t)

where prime denotes derivative with respect to F . This is what our numerical algorithm

will give us. Let

τ̃ = min
τ≥1

gτ (F̃ , t) ≥ F̄t+τ

be the number of time periods before harvest if the trees are not cut down in the current

period.

We now want to derive su�cient conditions for F̃ to be the F̄ of the harvesting rule

(5). An alternative way to characterize F̃ is to say that

wτ̃ (F̃ , t) = 0 and w′τ̃ (F̃ , t) < 0.

We now want to derive conditions under which for all F > F̃ , wτ (F, t) ≤ 0 for all τ ≥ 1

and under which for each F < F̃ there is a τ ≥ 1 such that wτ (F, t) > 0.

The monotonicity of the harvesting rule in all future time periods (and in particular
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in period t+ τ̃) implies that wτ (F, t) < 0 for all τ > τ̃ and F > F̃ . A su�cient condition

for wτ (F, t) < 0 for all τ ∈ [1, τ̃ − 1] (assuming that there are such τ -values) is that for

each such τ , there is an F < F̃ such that wτ (F, t) > 0. This follows from (18) since

wτ (F̃ , t) < 0 for such τ . Numerically, we can verify this by simply testing values until

we have found such an F for each τ .

Finally, we want to �nd conditions that guarantee that for each F < F̃ there is a

τ ≥ 1 such that wτ (F, t) > 0. As for the stationary problem, we can do this by �nding

sequences {Fi}Ii=0 and {τi}Ii=1 that ful�ll conditions (20) and (21).

B Numerical algorithm

We start by drawing initial values of A, Fmax, D and π. Based on these we calibrate the

harvesting cost c. We do this by iteratively solving (6) and updating c until it is 30% of

the revenues in a stationary problem based on the initial parameters.

We then draw parameter values at time T and generate the parameter trajectories

from 0 to T . Based on the parameters for each t ∈ [0, T ] we solve a stationary problem

based on these parameters. We do this by �rst �nding V (0) from the solution to (6)

and then by �nding the F̄ in the interval from (7) that ful�lls the condition (8) using a

search algorithm. We now have the reactive and non-reactive decision rules. Using (9)

we can also get V (F, T ), which is the value function of both the reactive and optimal

decision rules, for an arbitrary F . We also check the su�cient condition for the decision

rule to be monotone in each of the stationary problems using the method described in

Section A.3.

We then �nd the optimal decision rule by moving backwards from t = T to t = 0

and in each step �nding the F̄t that ful�lls (10). When computing the value function

we, rather than storing the value function, use the formula

V (F, t) =

τ(F,t)∑
s=1

βsΠ0,s−1πsV (0, t+ s) (22)

+βτ(F,t)Π0,τ(F,t)

[
pgτ(F,t)(F, t)− c+ V (0, τ(F, t))

]
,

where

τ(F, t) = min
τ≥0

gτ (F, t) ≥ F̄t+T
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is the number of periods before the next harvest and where Π is de�ned in (12). We also

store V (0, t) for each t. When we get to t = 0 we have the optimal decision rule and we

check the monotonicity assumption as described in A.4.

The next step is to compute the value function associated with each decision rule at

t = 0 and for biomasses F ∈ [0,max{F̄R0 , F̄0}]. To do this we need the value of biomass

0, V (0, t), for all decision rules. For the optimal decision rule we already have V (0, t) for

all t. For the reactive decision rule we have V R(0, T ) (which, at t = T , is equal to the

optimal value function) and for the non-reactive decision rule we compute V NR(0, T )

using (13). We then move backwards from t = T − 1 to t = 0 computing the reactive

and non-reactive value functions V R(0, t) and V NR(0, t) using (11) and (13) respectively.

We can now compute the value functions at t = 0 for di�erent biomasses for the optimal,

reactive and non-reactive decision rules using (22), (11) and (13) respectively.

The last thing we do is to compute the value of following lagged reactive decision

rules the same way as we computed the reactive decision rules but using a shifted version

of the reactive decision rule.
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