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Robots and firms 
 
 

Abstract 
 
We study the implications of robot adoption at the level of individual firms using a rich panel 
data-set of Spanish manufacturing firms over a 27-year period (1990-2016). We focus on three 
central questions: (1) Which firms adopt robots? (2) What are the labor market effects of robot 
adoption at the firm level? (3) How does firm heterogeneity in robot adoption affect the industry 
equilibrium? To address these questions, we look at our data through the lens of recent attempts 
in the literature to formalize the implications of robot technology. As for the first question, we 
establish robust evidence that ex-ante larger and more productive firms are more likely to adopt 
robots, while ex-ante more skill-intensive firms are less likely to do so. As for the second 
question, we find that robot adoption generates substantial output gains in the vicinity of 20-
25% within four years, reduces the labor cost share by 5-7%-points, and leads to net job creation 
at a rate of 10%. These results are robust to controlling for non-random selection into robot 
adoption through a difference-in-differences approach combined with a propensity score 
reweighting estimator. Finally, we reveal substantial job losses in firms that do not adopt robots, 
and a productivity-enhancing reallocation of labor across firms, away from non-adopters, and 
toward adopters. 
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1 Introduction

The rise of robot technology has sparked an intense debate about the labor market effects of robot

adoption.1 A key concern in this debate is that robots “steal” jobs from humans. A recent liter-

ature fuels this concern, finding large negative effects of robots on employment and wages across

U.S. commuting zones (Acemoglu and Restrepo, 2017). However, a considerable challenge in this

literature is the lack of micro-level information on actual robot use. The few existing studies all

resort to macro-level information by industry to construct measures of local robot exposure. While

this approach is an important first step in gauging the local labor market effects of robots, it makes

the crucial assumption that all firms in a given industry have the same ability and willingness to

adopt robots. It does not take seriously the possibility that the same set of tasks is performed by

human labor in some firms, while it is performed by robots in others. The literature thus provides

little insight into the following central questions: Which firms adopt robots? What are the labor

market effects of robot adoption at the firm level? And how do differences in robot adoption across

firms affect the industry equilibrium? Addressing these questions and drawing policy lessons clearly

requires an empirical analysis based on micro-level data (Raj and Seamans, 2018).

Our paper is the first attempt in the literature to investigate differences in robot adoption across

firms, and analyze the implications of these differences for the labor market effects of robots. To

do so, we draw upon a unique panel data-set of Spanish manufacturing firms from the Encuesta

Sobre Estrategias Empresariales (ESEE) over a 27-year period (1990-2016).2 In contrast to existing

studies, our paper uses explicit information on robot use in the production process of individual

firms. Figure 1 constructed from the ESEE data-set provides a first indication that firm hetero-

geneity in the adoption of robots matters greatly for the labor market effects of robot technology.

It demonstrates that those firms that adopted robots between 1990 and 1998 (“robot adopters”)

increased the number of jobs by more than 50% between 1998 and 2016, while those firms that did

not adopt robots (“non-adopters”) reduced the number of jobs by more than 20% over the same

period.3,4 From macro-level information on robot use, as employed in the existing literature, it is

1Industrial robots differ from other technologies or capital equipment in that robots are automatically controlled
and capable of doing different tasks (see UNCTAD, 2017, Ch.III p.38). In a broad sense, industrial robots are
defined as “automatically controlled, reprogrammable, multipurpose manipulators, programmable in three or more
axes, which can be either fixed in place or mobile for use in industrial automation applications” (ISO 8373, for details
see https://www.iso.org/obp/ui/#iso:std:iso:8373:ed-2:v1:en accessed on Feb 23, 2019.)

2The Spanish economy is an interesting case to look into, since it is one of the industrialized nations with the
highest robot density within Europe (see UNCTAD, 2017; Jäger et al., 2015).

3To construct the figure, we balance the sample across the entire sample period from 1990 to 2016 and thus abstract
from entry into, and exit from, the sample. Moreover, we only keep those firms in the sample that did not use robots
in 1990, and had either started to use robots by 1998, or never used robots throughout the sample period. The
thus constructed sample consists of almost 100 firms with 675 and 1701 firm-year observations for the group of robot
adopters and the group of non-adopters, respectively. In an alternative approach, we keep all firms in the sample
except for those that already use robots in the first year they appear in our sample. This gives us 644 robot adopters
defined as firms that, at some point in time, start using robots, and 3802 non-adopters defined as firms that never
use robots during our sample period. Using this approach, we find that, consistent with the evidence from Figure 1,
robot adopters exhibit dramatically higher annual employment growth, on average, than non-adopters.

4At the same time, our data reveal that robot adopters were able to reduce their labor cost shares relative to
non-adopters; see Appendix A.1.
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impossible to identify and investigate this striking pattern in the data.

Figure 1: Evolution of firm-level employment (1990-2016)
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Notes: The figure depicts the evolution of average firm employment (measured by the number of workers) in a balanced
sample of firms from 1990-2016, separately for robot adopters (solid black line) and non-adopters (dashed grey line).
Robot adopters are defined as firms that entered the sample in 1990 and had adopted robots by 1998. Non-adopters
are firms that never use robots over the whole sample period.
Source: Authors’ computations based on ESEE data.

To provide a suitable lens through which to interpret our data, we begin our analysis by de-

veloping a theoretical framework of firm-level robot adoption. Following Acemoglu and Restrepo

(2018a), we combine a monopolistic competition framework with a task-based approach in which

robots and labor are perfect substitutes for one another in a specific set of low complexity tasks

(“automatable tasks”).5 To study across-firm differences in the incentives to adopt robots, we aug-

ment the model to allow for firm heterogeneity in terms of productivity, as in Melitz (2003). In its

most basic form, our model generates two connected insights that are, in our view, instrumental

for understanding the labor market effects of robots. First, robot adoption is characterized by pos-

itive selection. This means that firms with higher productivities are more likely to adopt robots.

Secondly, since robots are productivity-enhancing, they raise firm-level output and market shares

of robot adopting firms, and magnify productivity differences between adopters and non-adopters.

5There is a striking similarity between modeling automation and offshoring. In the offshoring literature, foreign
labor is assumed to be a perfect substitute for domestic labor in offshorable tasks (e.g. Grossman and Rossi-Hansberg,
2008; Egger et al., 2015). Offshoring thus “parallels [the] analysis of machines replacing tasks” (see Acemoglu and
Autor, 2011, p.69).
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While this opens up the possibility for net job creation in high-productivity robot adopting firms, it

also implies that the least productive non-adopters are forced to exit the market, and that surviving

non-adopters lose market shares and reduce employment. These insights suggest the existence of

two sources of aggregate productivity gains due to robot technology: (1) direct efficiency gains in

those firms that adopt robots; and (2) indirect gains through labor reallocation that benefits those

workers employed in robot adopting firms, while hurting those in non-adopting firms.6

In our empirical analysis, we demonstrate the importance of this mechanism and quantify the

associated effects. We first focus on the adoption decision, and reveal strong evidence for positive

selection, i.e., we show that those firms that adopt robots in their production process are larger

and more productive than non-adopters already before adopting robots. We also establish robust

evidence that, conditional on productivity, more skill-intensive firms are less likely to adopt robots.

This finding is consistent with a version of our model featuring two skill types of labor as well as firm

heterogeneity in the complexity of the production process. Intuitively, a more complex production

process requires a larger share of high-skilled workers; since these workers are more difficult to

replace, there is a negative relationship between the skill intensity of the firm and the gains from

automation (see also Autor et al., 2003). Finally, our data show that exporters are more likely

to adopt robots than non-exporters, and we provide some evidence that this might reflect internal

scale economies that can be harvested by serving foreign markets in addition to the domestic market

(Bustos, 2011).

We then proceed by investigating the effects of robot adoption at the firm level. Since the

adoption decision is not random, but instead governed by, among other things, the firm’s produc-

tivity and skill intensity, this analysis faces a fundamental endogeneity problem. To tackle this

problem and credibly control for non-random selection into robot adoption, we closely follow the

methodology proposed by Guadalupe et al. (2012) and combine a difference-in-differences approach

with a suitable propensity score reweighting estimator. This allows us to establish the following

robust results. First, we find positive and significant output effects of robot adoption. Our esti-

mates imply that the adoption of robots in the production process raises output by almost 25%

within four years. Secondly, we find that robots raise firm-level employment by around 10 percent.

While positive employment effects turn out to be especially pronounced for high-skilled workers,

they also apply to other types of workers, namely low-skilled workers as well as workers employed

in the firm’s manufacturing establishments. Finally, we estimate a significant decline in the labor

cost share by almost 7 percentage points following robot adoption. These results are consistent with

our theoretical framework, where robot adopters reduce their labor cost shares, while the impact

on employment is ambiguous and depends on the relative strength of the displacement effect and

the productivity effect of robot adoption.7

Our data are rich enough to also investigate the impact of alternative technologies that firms

6There is a resemblance of this mechanism to the model in Melitz (2003) which studies the impact of trade
liberalization on aggregate productivity in the presence of firm heterogeneity.

7The offshoring literature similarly emphasizes the importance of a productivity effect and a displacement effect
on labor demand; see Grossman and Rossi-Hansberg (2008) and Antràs et al. (2006); Egger et al. (2015) in settings
with heterogeneous firms.
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adopt in their production process, and contrast it with the impact of robot technology. We focus

on computer-digital machine tools, computer-assisted design, as well as a combination of some of

the technologies through a central computer. While we find that these alternative technologies raise

firm output and employment, it turns out that the effects are smaller in magnitude than what we

estimate for robots. Moreover, when including all technologies simultaneously in the estimation, we

find that only the effects of robot adoption are fully robust, while the other effects, by and large,

disappear. Another striking difference between robot technology and other technologies we identify

is that only robots lead to a significant reduction in the firm’s labor cost share.

In a final step of our empirical analysis, we investigate how non-adopting firms, i.e., firms that

do not start using robots, are affected by the rise of robot technology. We also shed light on the

contribution of robots to gains in aggregate productivity. We reveal significant job losses in non-

adopting firms. Our estimates imply that 10% of jobs in non-adopting firms are destroyed when the

share of sales attributable to robot-using firms in their industries increases from zero to one-half.

The same logic applies to changes in output, but the implied magnitude is even more pronounced.

Looking at survival probabilities, we document significantly higher exit rates among non-adopters

due to an increase in the industry’s robot density, which is consistent with the predicted increase in

the survival cut-off productivity in our theoretical framework. Importantly, our results are robust

to using different measures of robot density, including the industry-specific stock of robots from the

International Federation of Robotics (IFR). To shed light on the contribution of robots to gains in

aggregate productivity, we distinguish between (1) direct efficiency gains within robot adopters and

(2) indirect gains through reallocation of labor from non-adopters to adopters. We find that without

the availability and adoption of robot technology, aggregate productivity would have doubled over

the period from 1990 to 2016 rather than tripled. Moreover, we see that direct technical efficiency

gains explain about two thirds of the total productivity gains attributable to robots, while the gains

due to labor reallocation explain the remaining one third.

Our paper contributes to a recent literature that investigates the labor market implications

of robot technology. The influential paper by Frey and Osborne (2017) was one of the first to

examine how susceptible jobs are to computerization. They argue that almost 47% of total U.S.

employment can be automated in the nearest future. In their paper, computerization is defined as

a job automation by means of computer-controlled equipment. Three recent contributions focus

specifically on robot adoption by using variation across countries and industries employing data

from the IFR. Focusing on the period from 1993 to 2007 and covering 17 different countries, Graetz

and Michaels (2018) find that the growing intensity of robot use accounted for 15% of aggregate

economy-wide productivity growth, contributed to significant growth in wages, and had virtually

no aggregate employment effects. Acemoglu and Restrepo (2017) and Dauth et al. (2018) use

a local labor market approach to estimate the effects of robots on employment, wages, and the

composition of jobs. Focusing on the U.S. between 1990 and 2007, Acemoglu and Restrepo (2017)

find that one more robot per thousand workers reduces the employment to population ratio by about

0.2 percentage points and wages by 0.37 percent within commuting zones. Looking at Germany
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between 1994 and 2014, Dauth et al. (2018) find no effects on total employment, but identify a

substantial shift in the composition of jobs, away from manufacturing jobs and towards business

service jobs. Moreover, they show how the use of robots increases local labor productivity, but

depresses the labor share in total income.

While these studies provide important and novel evidence on robot adoption, using statistics

at the industry level precludes an in-depth analysis within and between firms. In our study, we

document selection based on observable firm characteristics (size, productivity, skill intensity, and

exporting) and reveal positive employment and output effects in those firms that start to use

robots, while negative employment (and output) effects arise from lower market shares for non-

adopting firms. Furthermore, we demonstrate that the productivity gains documented in Graetz

and Michaels (2018) or Dauth et al. (2018) might be partly explained by a reallocation of work-

ers from low-productivity non-adopting firms to high-productivity robot adopters. In other words,

with selection of more productive firms into robot adoption, increased exposure to robots reduces

market shares of non-adopters and forces the least productive firms to exit. This across-firm real-

location affects aggregate industry productivity and speaks to “enormous and persistent measured

productivity differences across producers, even within narrowly defined industries” (Syverson, 2011,

p.326). Taking stock, by using detailed firm-level panel data from Spain for an extensive period of

time, our paper allows to fill an important gap in recent attempts to investigate how automation

affects productivity and labor markets.8

The remainder of our paper is organized as follows. In Section 2 we describe the ESEE data-set

and provide first descriptive evidence on the use of robots across firms, industries, and time. In

Section 3, we provide a theoretical perspective on firm-level robot adoption that guides us in our

subsequent empirical analysis. In Section 4, we analyze the robot adoption decision of firms, and in

Section 5 we investigate the firm-level effects of robot adoption. In Section 6 we bring our results

together by shedding light on the aggregate implications of robot adoption. Section 7 concludes.

2 Data

Our empirical analysis is based on data collected by the Encuesta Sobre Estrategias Empresariales

(ESEE) and supplied by the SEPI foundation in Madrid. The ESEE is an annual survey covering

around 1,900 Spanish manufacturing firms each year with rich and very detailed information about

firms’ manufacturing processes, costs and prices, technological activities, employment, and so forth.

For the purposes of our research, the key aspect that sets the ESEE data-set apart from other

8By documenting a positive link between robot adoption and globalization, our paper also speaks to a large
literature on technology upgrading in the global economy. Bustos (2011) provides evidence that exporters intensify
their investments in technology after a trade liberalization process. Lileeva and Trefler (2010) similarly document
how improved foreign market access prompted plants in Canada to adopt more advanced technologies. Our study
complements these findings by looking at a specific type of technology upgrading, viz. the adoption of robot technology
in the production process. Even though we do not claim to establish a causal effect of exporting on robot adoption,
we document that exporting is an important determinant of a firm’s decision to adopt robots. This finding speaks
to the view that serving more consumers allows firms to scale up their production generating incentives to install
cost-saving robots.
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data-sets is that it contains firm-level information on the use of robots in production. Hence, it

provides a unique opportunity for studying the incentives for, as well as the consequences of, robot

adoption at the firm level. In the following, we provide details on the specific data we exploit in

our analysis and we document novel facts, drawn from out data, about robot diffusion and robot

adoption in Spanish manufacturing.

Our study exploits data across 27 years spanning the years from 1990 to 2016. This is the

complete sample period currently available from the ESEE. It provides a unique opportunity to

investigate the drivers and consequences of profound changes in robot diffusion over roughly the

last three decades. The initial sampling of the data in 1990 had a two-tier structure, combining

exhaustive sampling of firms with more than 200 employees and stratified sampling of firms with

10-200 employees. In the years after 1990, special efforts have been devoted to minimizing the

incidences of panel exit as well as to including new firms through refreshment samples aimed at

preserving a high degree of representativeness for the manufacturing sector at large.9 In total,

our data-set represents an unbalanced sample of some 5,500 different firms. In the data, we can

distinguish between 20 different industries at the 2-digit level of the NACE Rev. 2 classification

and six different size groups defined by the average number of workers employed during the year

(10-20; 21-50; 51-100; 101-200; 201-500; >500); combinations of industries and size groups serve as

stratas in the stratification. We express all value variables in constant 2006 prices using firm-level

price indices derived from the survey data or, where necessary, industry-level price indices derived

from the Spanish Instituto Nacional de Estadistica (INE).

Figure 2: Evolution of robot diffusion in Spain (1990-2014)
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Notes: The left panel depicts the share of firms using robots in their production process. The right panel depicts
the share of total employment in firms using robots. The solid black lines consider all firms in the sample, while the
dashed grey lines consider, respectively, large firms (those with more than 200 employees) and small firms (those
with up to 200 employees).

Most importantly for our analysis, we exploit information on whether a firm uses robots in the

production process. The survey asks firms: “State whether the production process uses any of the

9For details see https://www.fundacionsepi.es/investigacion/esee/en/spresentacion.asp (accessed on Feb
19, 2019).
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following systems: 1. Computer-digital machine tools; 2. Robotics; 3. Computer-assisted design; 4.

Combination of some of the above systems through a central computer (CAM, flexible manufacturing

systems, etc.); 5. Local Area Network (LAN) in manufacturing activity”.10 Based on this question,

we construct a 0/1 robot indicator variable equal to one if the firm uses robots and zero otherwise.

We also use information on the other systems and generate indicators for CAM, CAD, and FLEX,

respectively (more on this below).11 The robot information is available every four years, starting in

1990. In addition, firms report the use of robots in the year 1991, as well as in the first year they

enter the sample.12 Before describing other variables we use in our empirical analysis, we document

some patterns of robot use across time and industries.

Figure 2 depicts the evolution of robot diffusion in the Spanish manufacturing sector over the

period 1990-2014. The left panel shows that, among all firms, just about 8% were using robots in

1990. This share has grown considerably over time, to more than 20% in 2014. The figure also

reveals very significant differences in robot use between small firms (those with up to 200 employees)

and large firms (those with more than 200 employees). For example, in 1990 already one third of

large firms had adopted robots, while the same number for small firms was just 6%. The difference

between these shares has grown over time, such that in 2014 about 60% among large firms use robots

vs. 20% among small firms. The right panel of the figure shows the evolution of employment shares

corresponding to robot firms. In 2014, almost 50% of all workers were employed in firms using

robots, while the same number was more than 70% (37%) when only considering employment in

large (small) firms. Taking stock, robot firms represent a highly significant part of modern Spanish

manufacturing, especially among large businesses.

Our data also reveal a high degree of heterogeneity in robot diffusion and robot adoption rates

across industries. Figure 3 depicts the share of firms using robots for 20 different industries, sepa-

rately for the years 1990 and 2014. In 1990, the top-3 robot-using industries were Ferrous & Non-

Ferrous Metals (18%), Machinery & Electrical Equipment (18%), and Motorized Vehicles (16%). By

2014, this ranking had changed and the top-3 industries were then Motorized Vehicles (57%), Fur-

niture (31%), and Plastic & Rubber Products (30%). Thus, we see huge cross-industry differences

in the share of firms using robots at a given point in time, as well as in the adoption rates between

1990 and 2014. Robot adoption at the industry level occurs with varying pace and magnitude.

We now continue by describing in more detail our data-set and the variables we employ in our

10The original questionnaire is distributed in Spanish. The question in Spanish is: “Indique si el proceso productivo
utiliza cada uno de los siguientes sistemas: 1. Máquinas herramientas de control numérico por ordenador; 2. Robótica;
3. Diseño asistido por ordenador (CAD); 4. Combinación de algunos de los sistemas anteriores mediante ordenador
central (CAM; sistemas flexibles de fabricación, etc.); 5. Red de Área Local (LAN) en actividaded de fabricación”. In
1990, the possible answers were slightly different: “1. CAD/CAM; 2. Robótica; 3. Sistemas flexibles de fabricación;
4. Máquinas herramientas de control numérico”.

11CAM, CAD, and FLEX are 0/1 indicator variables equal to one if the firm uses, respectively, computer-digital
machine tools (CAM), computer-assisted design (CAD), and a combination of systems through a central computer
(FLEX). We do not use information on Local Area Network adoption since it is only available from 2002 onwards.

12This means that we have robot information available in 1990, 1991, 1994, 1998, 2002, 2006, 2010, and 2014 for all
firms included in the sample in the respective years. Moreover, we have robot information available in the remaining
years (i.e., 1992, 1993, 1995,...) for those firms that appear in the sample for the first time in the respective years.
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Figure 3: Share of robot firms by industry (1990 vs. 2014)
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Notes: The figure shows the share of robot firms by industry. Black bars show data for 1990 and gray bars for 2014.

empirical analysis. Since we are interested in the effects of robot adoption (i.e., firms switching

from non-robot use to first-time robot use), we restrict our sample to firms that do not use robots

in the first year they appear in our data.13 Moreover, we drop sample observations after a firm

undergoes a major restructuring due to changes in corporate structure (e.g. following a merger

with another firm). This allows us to eliminate from the analysis situations connected with huge

employment or output changes that are unrelated to robot adoption. In total, we have 4,446 different

firms in the thus restricted sample. 646 (15%) of these firms adopt robots at some point in time

within our sample period (“robot adopters”) and 3,800 (85%) never adopt robots (“non-adopters”).

Furthermore, 62% among robot adopters keep on using robots throughout, while 30% report the

use of robots for a certain period of time and abandon them afterwards. Finally, less than 10% of

robot adopters switch back and forth several times. For our purposes, it is unclear how to interpret

these multiple switches and we therefore drop this last group of firms from our analysis.

In our empirical analysis, we employ a rich array of firm-specific variables. These include output,

labor productivity, employment, average wage, labor cost share, capital intensity, R&D intensity,

skill intensity, export status, import status, and firm’s ownership structure (foreign vs. domestic).

Output is given by the market value of the firm’s total annual production.14 Labor productivity

is defined as value added per worker. Employment measures are total employment, given by the

average number of workers during the year, and manufacturing employment, given by the number of

workers in the firm’s manufacturing as opposed to non-manufacturing establishments. The average

wage is constructed as total labor costs (gross salaries and wages, compensations, social security

contributions paid by the company) divided by total employment. The labor cost share is calculated

13Recall that firms always report whether or not they use robots in the year of sample entry.
14This variable as well as all other value variables are expressed in constant 2006 prices using firm-level price indices.

Thus, changes in our output measure over time within a firm reflect changes in physical output rather than changes
in prices (see Ornaghi, 2006).
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as labor costs divided by output. Moreover, we use direct firm-level information on the workforce

composition by education to compute measures of the firm’s skill intensity, defined as the share of

workers with a five-year university degree. Capital intensity is the value of the firm’s capital stock

divided by effective work-hours. R&D intensity is the ratio of total expenses in R&D over total

sales. Exporter and importer status dummies are equal to one if the firm reports positive export or

import values, respectively. Foreign ownership indicates whether the firm is in foreign or domestic

ownership (applying a threshold for foreign-owned capital of 50%). All variables are available on a

yearly basis, except for the information on workers’ education levels, which are available every four

years.

Table 1 presents descriptive statistics on the various variables we employ in our empirical anal-

ysis. We pool the data across all years and then sort observations into groups of firms that adopt

robots at some point in time and those that never use robots within our sample period. The table

reveals some suggestive differences between the two types of firms. Robot adopters turn out to be

superior firms in many dimensions. They produce more output, they are more productive, and they

employ more workers, even when focusing on just workers in manufacturing jobs or just low-skilled

workers. Moreover, while robot adopters pay a higher average wage, they have a lower average

labor cost share than non-adopters. In addition, robot adopters are more “globalized”, in the sense

that they are more likely to export, import, and be in foreign rather than domestic ownership.

Of course, these differences may be caused by factors unrelated to the adoption of robots. In the

empirical analysis that follows later on, we will try to sort out which of the differences between

robot adopters and non-adopters already existed before firms started to adopt robots, and which

are causally associated with robot adoption.

3 A theoretical perspective on firm-level robot adoption

This section provides a theoretical framework for our empirical analysis. It draws from recent

attempts in the literature to formalize the implications of robot technology, and serves to reveal the

main economic trade-offs that we can expect to be at play at the firm level. We use our theoretical

framework to derive hypotheses about the decision of firms to adopt robots, as well as about the

implications of robot adoption for output, labor costs, labor demand, and aggregate productivity.

3.1 Basic set-up

Consider an industry in which a large number of monopolistically competitive firms produce hor-

izontally differentiated goods. A firm ω is selling its unique variety at price p(ω) to consumers,

facing an iso-elastic demand q(ω) of the form

q(ω) = Ap(ω)
− 1

1−β , (1)
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Table 1: Descriptive statistics

Robot adopters
(1)

Non-adopters
(2)

Observations
(1)/(2)

Output (in logs) 15.973 14.407 7,547/25,169
(2.482) (3.049)

Labor productivity (in logs) 10.552 10.316 7,382/24,010
(0.650) (0.673)

Total employment (in logs) 4.475 3.510 7,501/24,578
(1.368) (1.187)

Manufacturing employment (in logs) 4.421 3.461 7,361/24,138
(1.344) (1.163)

Share of manufacturing employment 0.961 0.964 7,367/24,151
(0.129) (0.118)

# low-skilled workers (in logs) 4.410 3.508 2,371/9,266
(1.316) (1.121)

# high-skilled workers (in logs) 1.570 0.857 2,371/9,266
(1.345) (1.101)

Average wage (in logs) 10.136 9.967 7,420/24,187
(0.447) (0.488)

Labor cost share 0.285 0.342 7,447/24,127
(0.214) (0.476)

Capital intensity (in logs) 3.432 2.852 7,081/23,176
(0.987) (1.147)

Skill intensity (in logs) 0.051 0.043 2,392/9,371
(0.069) (0.069)

R&D intensity (in logs) 0.343 0.189 7,444/24,564
(0.618) (0.495)

Exporter status 0.704 0.484 7,487/24,614
(0.456) (0.500)

Importer status 0.692 0.473 7,470/24,358
(0.462) (0.499)

Foreign owned 0.155 0.081 7,523/24,697
(0.362) (0.272)

Notes: The table reports means and standard deviations (in parentheses) of firm-specific variables for robot
adopters (i.e. firms that start using robots at some point in time; column (1)) vs. non-adopters (i.e. firms that
never use robots; column (2)). The numbers of observations reported in the final column correspond to the firm-year
observations in columns (1) and (2). The sample spans the years 1990-2016 and is restricted to firms that do not
use robots in the first year they enter the sample. Output is a firm’s total production value. Labor productivity
is value added per worker. Total employment is the average number of workers during the year. Manufacturing
employment is the workforce employed at manufacturing as opposed to non-manufacturing establishments. Share
of manufacturing employment is the number of workers employed at manufacturing establishments divided by the
total number of workers employed by the firm. High-skilled workers are defined as workers with a five-year university
degree, while low-skilled workers are all other workers. Average wage is computed as labor costs divided by the
total number of workers. Labor cost share is labor costs divided by the total production value. Capital intensity
is the value of the firm’s capital stock divided by effective work-hours. Skill intensity is the share of high-skilled
workers. R&D intensity is the ratio of total expenses in R&D over total sales volume. We add one to all factor
intensity variables as well as the number of high- and low-skilled workers before taking logs in order to keep zero
observations. Exporter (importer) status is a dummy variable equal to one if the firm reports positive exports
(imports). Foreign ownership indicates whether a firm is foreign owned by more than 50%.

where β controls the (constant) elasticity of substitution 1/(1− β) > 1 between any two varieties,

and A is a demand shifter.15 As for the production side, we follow Acemoglu and Restrepo (2018b)

15As is well known, the demand function in Eq. (1) with A ≡ EP
β

1−β and P =
[∫
ω∈Ω

p(ω)
−β
1−β dω

]− 1−β
β

is implied

by a standard utility maximization problem where consumers have a CES utility function U =
[∫
ω∈Ω

q(ω)βdω
] 1

β
and
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in writing output as a composite of different tasks combined in a constant elasticity of substitution

(CES) aggregate. However, we depart from Acemoglu and Restrepo (2018b) by introducing two

types of firm heterogeneity into their framework. The first type is the standard Melitz (2003)

heterogeneity meaning that firms differ in their exogenous (baseline) productivity denoted by φ(ω).

We index tasks by i and assume that they can be ordered according to their complexity where a

higher index i reflects higher complexity. Specifically, output of firm ω is given by

x(ω) = φ(ω)

(∫ N(ω)

N(ω)−1
x(ω, i)

σ−1
σ di

) σ
σ−1

, (2)

where σ denotes the elasticity of substitution between any two tasks and x(ω, i) is the output of

task i in firm ω. The parameter N(ω) generates a second type of firm heterogeneity in the model.

It is given exogenously and governs the set of tasks the firm has to perform, with the task range

normalized to one and with the limits of integration given by N(ω) − 1 and N(ω).16 An increase

in N(ω) reflects quality upgrading, in the sense that new and more complex tasks appear and

replace old tasks in the production process (the least complex ones). Crucially, we assume that

the simpler tasks with index numbers i ≤ I can be performed by robots or human labor, while the

more complex tasks with index numbers i > I are bound to be performed by human labor. The

parameter I ∈ [N(ω)−1, N(ω)] thus reflects the ability level of robots in performing complex tasks.

This parameter is likely to vary across industries and through time as technology advances. Output

at the task level is given by

x(ω, i) = 1 [i ≤ I] η(i)k(ω, i) + γ(i)l(ω, i), (3)

where 1[i ≤ I] is a 0/1 indicator equal to one if i ≤ I and zero otherwise, and γ(i) and η(i) denote,

respectively, the productivity of labor l and robot capital k in task i. Crucially, robot capital and

labor are perfect substitutes for one another in all tasks i ≤ I. This view highlights an important

aspect of automation, namely that machines are used to substitute for human labor (Acemoglu and

Restrepo, 2018a, p.2).17

As in Acemoglu and Restrepo (2018a), we assume that the ratio of η(i)/γ(i) is strictly decreasing

in i, which formalizes a comparative advantage of labor in more complex tasks. Moreover, we assume

that the effective robot capital costs (at rental rate r) are strictly below the effective labor costs (at

wage rate w) for all automatable tasks. Formally, we have r/η(I) < w/γ(I). These assumptions

reflect the view that human labor is more valuable in performing complex tasks than robot capital.

face a budget constraint E =
∫
ω∈Ω

p(ω)q(ω)dω with E being the total expenditure on the set of available varieties Ω.
16Capuano et al. (2017) provide evidence for substantial heterogeneity in the type of tasks performed by German

plants even if they are operating in the same industry. Most of the results we derive in our theoretical analysis do
not depend on differences in N(ω). However, allowing for this heterogeneity in a simple extension of our model will
generate differences in the skill intensity of firms that are consistent with our data, as will become evident below.

17Notice the striking similarity to the offshoring literature, where foreign labor is often assumed to be a perfect
substitute for domestic labor in offshorable tasks (e.g. Grossman and Rossi-Hansberg, 2008; Egger et al., 2015). This
is also true for Groizard et al. (2014), who consider, as we do, the case of a CES production technology.
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Accordingly, we can write the unit production costs of a firm using robots to perform all tasks i ≤ I
as

ca(φ(ω), N(ω), I) =
1

φ(ω)

[
η(N(ω), I)r1−σ + γ(N(ω), I)w1−σ] 1

1−σ , (4)

where η(N(ω), I) ≡
(∫ I

N(ω)−1 η(i)σ−1di
) 1
σ

and γ(N(ω), I) ≡
(∫ N(ω)

I γ(i)σ−1di
) 1
σ

summarize the

productivity over all tasks performed by robots and labor, respectively.18 The superscript a indicates

that the production process has been automated. However, this decision is endogenous and requires

incurring a fixed cost, denoted by F a > 0. Not paying the fixed cost means that the firm has to

perform all tasks using human labor with corresponding unit cost of c(φ(ω), N(ω), N(ω) − 1) =
1

φ(ω)

[
γ(N(ω), N(ω)− 1)w1−σ] 1

1−σ .

Using constant mark-up pricing, we can write a firm’s profit gain from robot adoption, defined

as ∆π(ω) ≡ πa(ω)− π(ω), as follows:19

∆π(ω) = (1− β)A

{
1

β

1

φ(ω)

[
γ (N(ω), N(ω)− 1)w1−σ] 1

1−σ

}− β
1−β

[κ (N(ω), I)− 1]− F a, (5)

where κ(·) is defined as

κ (N(ω), I) ≡


(∫ I

N(ω)−1 η(i)σ−1di
)1/σ

r1−σ +
(∫ N(ω)

I γ(i)σ−1di
)1/σ

w1−σ(∫ I
N(ω)−1 γ(i)σ−1di

)1/σ
w1−σ +

(∫ N(ω)
I γ(i)σ−1di

)1/σ
w1−σ


1

σ−1
β

1−β

. (6)

This expression is (weakly) larger than one and reflects the marginal cost savings from robot adop-

tion. Given that labor has a comparative advantage in performing more complex tasks and the fact

that r/η(I) < w/γ(I), we find that κ(·) is, ceteris paribus, increasing in the level of robot technology

I and decreasing in the complexity of tasks N(ω). If firms face a highly complex production process

such that I = N(ω)− 1, then all tasks must be performed by labor and there are consequently no

cost savings from robot adoption, κ(N(ω), N(ω)− 1) = 1.

3.2 The robot adoption decision

We are now ready to investigate explicitly the decision of firms to adopt robots, and derive hypothe-

ses on the selection of firms into robot adoption that we can confront with our Spanish firm-level

18As shown in Acemoglu and Restrepo (2018b), we can write output as x(ω) =

[η(N(ω), I)K(ω)ρ + γ(N(ω), I)L(ω)ρ]
1
ρ , with ρ = (σ − 1)/σ, where

∫ I
N(ω)−1

k(ω, i)di = K(ω) and∫ N(ω)

I
l(ω, i)di = L(ω). The corresponding unit-cost function is thus given by (4).

19Note that profits of firm ω using robots can be written as πa(ω) = (1 − β)A
[

1
β
ca(φ(ω), N(ω), I)

]− β
1−β −

F a − F while profits for the same firm using human labor instead of robots are π(ω) = (1 −

β)A
[

1
β
c(φ(ω), N(ω), N(ω) − 1)

]− β
1−β − F , where F denotes overall fixed costs of production. Computing the differ-

ence between the two gives Eq. (5).
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data. In the interest of space and readability, we confine ourselves to an intuitive discussion in

the main text. Where necessary, we support this discussion with detailed analytical derivations

corresponding to this section as well as the following section in Appendix A.2.

3.2.1 Productivity

First note that for κ(·) > 1 the profit gain from robot adoption in Eq. (5) is increasing in a firm’s

baseline productivity φ(ω). As is standard in the literature, we can define a cut-off productivity

level φr(ω) at which a firm is exactly indifferent between adopting and not adopting robots (for

a given level of complexity N(ω)). This cut-off productivity level is implicitly defined through

∆π(ω)|φ(ω)=φr(ω) = 0. Hence, comparing two firms with an equally complex production process,

ex-ante more productive firms are more likely to adopt robots in production.

3.2.2 Exporting

Suppose firms can choose to serve consumers not only in the domestic but also in the foreign

economy. While the foreign economy is fully symmetric to the domestic economy, exporting requires

the payment of a fixed export cost and per-unit iceberg type transport costs, denoted by F x and τ ,

respectively. As is well-known, the introduction of a fixed export cost generates (sharp) selection

of ex-ante more productive firms into exporting. Due to symmetry of the two countries, operating

profits of exporting firms are now scaled by a constant factor 1+τ−β/(1−β). This is similar to Bustos

(2011), and we can conclude that exporters have stronger incentives to adopt robots as the gains

from doing so—the reduction in variable production costs—can be scaled up to a larger customer

base in home and foreign.

3.2.3 Skill intensity

Suppose there are two types of human labor, low-skilled and high-skilled workers, referenced by

subscripts l and h, respectively. Following Acemoglu and Autor (2011), we assume that high-

skilled workers have a comparative advantage over their low-skilled coworkers in the performance

of more complex tasks. Specifically, we assume that the relative efficiency of high- to low-skilled

labor, γh(i)/γl(i), is strictly increasing in i. In such an environment, firms will not only compare

the production costs of robots and human labor across tasks, but also consider the skill-specific

effective labor costs in each task, i.e., the firm will benchmark wl/γl(i) against wh/γh(i). Given

that high-skilled workers have a relative advantage in performing more complex tasks, this results

in a cut-off task at which firms are exactly indifferent between hiring high-skilled and low-skilled

workers for the performance of that task. Comparing two otherwise identical firms that differ only

in the complexity of their production process, we find that the firm with higher N(ω) employs a

higher share of high-skilled workers. Since firms with higher N(ω) are less likely to adopt robots,

as discussed above, we have established a negative link between the skill intensity of firms and their
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propensity to adopt robots.20

3.3 The effects of robot adoption

Having discussed the decision of firms to adopt robots, we now focus attention to the effects of

robot adoption, both at the firm and the industry level.

3.3.1 Firm-level effects

First of all, since robots have a comparative advantage in the production of automatable tasks, it

is straightforward that robot adoption raises firm output. Moreover, due to our assumptions on the

task production function in Eq. (3), it follows immediately that robot adoption reduces the labor cost

share, as robots substitute human labor in automated tasks. The overall impact of automation on

labor demand within firms is, however, ambiguous. It depends on two opposing effects: on the one

hand, the displacement effect reduces demand for labor since part of the workforce is substituted

by robots. On the other hand, the productivity effect entails that robots raise the efficiency in

production, and thus output and employment. Similar to the offshoring literature (see Grossman

and Rossi-Hansberg, 2008), the productivity gains may be strong enough to outweigh the losses, so

that total firm-level employment increases. Clearly, the strength of the displacement effect depends

on the share of automatable tasks, and thus the parameter I along with N(ω), while the magnitude

of the productivity effect depends on the variable cost savings from robot adoption, determined

by the efficiency parameters for robots and workers, η(i) and γ(i), respectively, as well as factor

prices. A final question is which skills (and thus workers) are specifically affected by automation.

Using the model with two skill types of labor from above, it is clear that low-skilled workers are

more likely to be affected by automation, since they perform the less complex tasks which are the

ones being automated. However, as long as the low-skilled workers are not fully replaced by robots,

the productivity effect is also working in their favor. This is the case as long as the level of robot

technology, I, is below the cut-off task at which firms are indifferent between employing high- and

low-skilled labor.

3.3.2 Industry-level effects

We can use the model to study the industry-level effects of changes in the fixed cost of adopting

robots, F a, or changes in the level of robot technology, I. A decrease in F a or an increase in I,

as we can expect to occur over time, both decrease the cut-off productivity that separates robot

adopters from non-adopters (for given N) and thus raise industry-level robot exposure. Similar

to Melitz (2003), this has important implications for the industry equilibrium. As ex-ante more

productive firms gain market shares by reducing marginal costs due to robot adoption, it raises the

cut-off productivity at which firms are able to survive in the market. Put differently, increasing

20The motivation for this extension is given by the fact that we do not observe tasks, and thus task complexity in
the ESEE data-set. However, following the extension, we can proxy task-complexity by the skill composition of firms
in the subsequent empirical analysis.
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robot exposure at the industry level prompts the least productive firms to exit, and the surviving

non-robot firms to reduce their output and employment. This mechanism, along with the direct

firm-level efficiency gains due to the use of robots, raises the industry’s aggregate productivity.

4 Which firms adopt robots?

We now turn to our empirical analysis and begin by investigating which firm-specific characteristics

influence the decision to adopt robots. Our theoretical framework generates several predictions

that we now bring to our Spanish firm-level data. The most important prediction concerns the

relationship between the likelihood of robot adoption and the productivity and size of the firm.

The prediction is consistent with arguments in the literature that more efficient firms benefit more

from the adoption of higher levels of technology so that we should expect to find more productive

firms to be more likely to adopt robots in their production (positive selection). Identifying whether

positive selection is indeed at work in the data can help in understanding the large and persistent

productivity differences across firms within industries (Syverson, 2011). In fact, if we find evidence

for negative selection in the data, then this would point towards an alternative scenario with a

potential catching-up of low-productivity firms through the use of robot technology.21

Figure 4: Distribution of base year output and productivity for robot adopters vs. non-adopters
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Notes: In the left panel, the dashed red line shows the empirical probability density function of base year output of
firms that do not use robots when they first appear in the sample at time t and will not have adopted robots four
years later, i.e. at time t + 4. The solid blue line shows the same function of base year output of firms that do not
use robots when they first appear in the sample at time t but will have adopted robots four years later (i.e. at time
t + 4). The base year output is given in logs, deflated, and demeaned by industry. The right panel shows the same
as the left panel but for labor productivity instead of output. The base year labor productivity is given by the log of
(deflated) value added per worker demeaned by industry.

Before analyzing robot adoption more formally, we use our data to provide graphical evidence

on the relationship between firm size/productivity and robot adoption. The left panel of Figure 4

plots the distribution of base year output (deflated and in logs) for robot adopters vs. non-adopters,

i.e., for firms that have adopted robots four years after they first appear in the sample vs. firms

that have not adopted robots. The figure reveals that the distribution of robot adopters (solid blue

21One argument implying negative selection is that more efficient firms are larger and thus require a more complex
degree of bureaucracy that can hamper decision making about new technology and skills.
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line) clearly dominates the distribution of non-adopters (dashed red line). Since we compute our

measure of output relative to the industry mean, differences in firm size across industries are not

driving this observation. Moreover, firms using robots already in the base year are not included

in the figure, so the differences that we see are not explained by the effects of adopting robots.

Importantly, we get a similar picture when using base year labor productivity instead of output,

i.e., the productivity distribution of robot adopters clearly dominates the one of non-adopters; see

the right panel of Figure 4.

We now proceed by investigating the adoption decision through the use of regression analysis.

Specifically, we adopt the following basic empirical framework to describe the decision of firms to

adopt robots:

Robotsit = βφit−1 + γFit−1 + δGit−1 + µst + εit, (7)

where the dependent variable is a 0/1 indicator variable for robot use in the production process of

firm i at time t, and where we focus on different sets of explanatory variables: (1) a firm-specific

productivity variable φit−1; (2) a vector of factor intensity variables Fit−1; and (3) a vector of

globalization variables Git−1 (with corresponding parameters to be estimated collected in β, γ, and

δ, respectively). We also include industry-year fixed effects given by µst. These account for the

increase in the supply and quality of robots, as well as the evolution of wages and adoption costs

that can change the incentives to adopt robots over time. Finally, εit is the error term. The firm’s

productivity is measured as the log of labor productivity given by the firm’s value added per worker

(deflated). The factor intensity variables we use are the firm’s capital intensity, skill intensity,

and R&D intensity (all in logs). The globalization variables we use are 0/1 indicator variables for

whether the firm is an exporter, an importer, and a foreign-owned firm, respectively.

In addition to applying this empirical framework to our panel data-set, we consider a simplified

version of Eq. (7) and collapse the data into a single cross-section measuring all explanatory variables

in the base year (i.e., in the first year the firm appears in the sample). The dependent variable is

equal to one if the firm adopts robots at some point in time during our sample period, and zero

otherwise. Note that firms using robots already in the year of sample entry are excluded from the

analysis. In Panel A of Table 2 we present OLS estimates of the simplified (cross-sectional) version

of Eq. (7).22 Standard errors are robust to arbitrary forms of heteroskedasticity. In column (1a)

we use the most parsimonious specification including productivity as the only explanatory variable

alongside industry-year fixed effects. Our estimates provide evidence that the more productive firms

are significantly more likely to adopt robots. This is in line with our previous observation that the

output and productivity distributions of robot adopters dominate those of non-adopters already

before first-time adoption. The estimated coefficient is equal to +0.038 in the cross-section and

implies that an increase by one standard deviation in the firm’s base year labor productivity raises

its probability of subsequently adopting robots by 2.5 percentage points.

22In the interest of space we restrict our attention to OLS estimates in the text. In the appendix, we report estimates
obtained with the non-linear Probit model. The results we obtain with this alternative estimator are very similar to
the OLS estimates; see Table A.1 in Appendix A.3.
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Table 2: Robot adoption I: Productivity-based selection

Robot adoption (0/1 indicator)
PANEL A: Cross-sectional specification (1a) (2a) (3a) (4a)
Base year labor productivity 0.0384*** 0.0147 0.0150 0.00285

(0.00907) (0.0107) (0.00950) (0.0110)
Base year skill intensity -0.330*** -0.398***

(0.0973) (0.100)
Base year exporter status 0.0716*** 0.0580***

(0.0144) (0.0161)
Observations 4053 3488 3986 3443
R-squared 0.110 0.151 0.130 0.161

Robot adoption (0/1 indicator)
PANEL B: Panel specification (1b) (2b) (3b) (4b)
Lagged labor productivity 0.0392*** 0.0173*** 0.0209*** 0.00856

(0.00546) (0.00576) (0.00550) (0.00578)
Lagged skill intensity -0.103* -0.148**

(0.0617) (0.0631)
Lagged exporter status 0.0345*** 0.0253***

(0.00795) (0.00819)
Observations 7368 6934 7300 6879
R-squared 0.039 0.053 0.052 0.059
Industry(-base)-year fixed effects Yes Yes Yes Yes
Factor intensity controls No Yes No Yes
Globalization controls No No Yes Yes

Notes: In Panel A the dependent variable in all columns is a 0/1 indicator variable equal to one if the firm adopts robots
during our sample period and zero otherwise, while in Panel B it is equal to one if the firm uses robots in a specific
year and zero otherwise. Labor productivity is the firm’s deflated value added per worker (in logs). Skill intensity
is the firm’s share of workers with a five-year university degree (in logs). Exporter status is a dummy variable for
positive exports. All estimates in Panel A (B) include industry-base-year (industry-year) fixed effects. Factor intensity
controls are a firm’s capital intensity, defined as the firm’s deflated capital stock per worker, and R&D intensity as the
firm’s deflated R&D expenditures relative to its deflated total sales (both in logs). Globalization controls are importer
status, defined as a dummy variable for positive imports, and a dummy variable for foreign ownership (equal to one
if the firm is foreign owned by more than 50 percent and zero otherwise). We add one to all factor intensity variables
before taking logs in order to keep zero observations. In Panel A all explanatory variables are measured in the base
year defined as the first year the firm appears in the sample. In Panel B all explanatory variables are lagged by one
year. The sample is restricted to firms that do not use robots in the first year they appear in the sample. Moreover,
in Panel B we condition on the firm not using robots in the previous year (or the most recent year for which robot
data are available for that firm). Robust standard errors are given in parentheses and clustered by firm in Panel B.
*,**,*** denote significance at the 10%, 5%, 1% levels, respectively.

In columns (2a) and (3a) we augment the specification to include factor intensity and globaliza-

tion variables, respectively. In order to focus on the central predictors suggested by our theoretical

framework, we report coefficient estimates for the firm’s skill intensity and its export status (along

with productivity), while including capital intensity and R&D intensity in column (2a) and import

status and a foreign ownership dummy in column (3a) as control variables. Doing so renders the

effect of labor productivity insignificant, which reflects significant pairwise correlations among the

different variables. Skill intensity enters negatively and significantly. This finding is consistent with

the idea that higher skill requirements in the production process reduce the scope for economic

benefits through robotization. The coefficient of the firm’s export status is positive and significant.

These results are upheld in column (4a) where we include all variables simultaneously. The esti-

mated coefficients in this specification imply that exporting makes firms 6 percentage points more

likely to adopt robots later on (controlling for productivity, factor intensities, and other global-

ization variables). These results provide compelling evidence for a fundamental complementarity
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between exporting and robot adoption at the firm level. Those firms active on international markets

through exporting are considerably more likely to adopt advanced technology in the form of robots.

By extending the analysis to estimate the panel version of Eq. (7), we find a picture that

largely resembles our cross-sectional estimates; see Panel B of Table 2. As before, the sample

we use includes only firms that do not use robots in the first year they appear in our data-set.

We restrict attention to observations of those firms that never adopt robots as well as those that

adopt robots for the first time during the sample period. Since we are interested in first time

robot adoption, once a firm decides to use robots in the production process, we exclude subsequent

observations from the estimation sample. Robust standard errors are clustered by firm. As in the

cross-sectional specification, we find that more productive firms are more likely to become first time

robot adopters. A firm’s skill intensity contributes negatively, while the firm’s export status enters

the equation positively and significantly.

Table 3: Robot adoption II: Output-based selection

Robot adoption (0/1 indicator)
PANEL A: Cross-sectional specification (1a) (2a) (3a) (4a)
Base year output 0.0483*** 0.0408*** 0.0405*** 0.0346***

(0.00405) (0.00511) (0.00504) (0.00599)
Base year skill intensity -0.408*** -0.419***

(0.0996) (0.101)
Base year exporter status 0.0374*** 0.0349**

(0.0143) (0.0161)
Observations 4221 3599 4149 3551
R-squared 0.139 0.165 0.142 0.167

Robot adoption (0/1 indicator)
PANEL B: Panel specification (1b) (2b) (3b) (4b)
Lagged output 0.0362*** 0.0335*** 0.0360*** 0.0328***

(0.00229) (0.00277) (0.00296) (0.00331)
Lagged skill intensity -0.195*** -0.190***

(0.0635) (0.0638)
Lagged exporter status 0.00363 0.00150

(0.00800) (0.00833)
Observations 7535 7057 7461 6997
R-squared 0.071 0.074 0.071 0.073
Industry(-base)-year fixed effects Yes Yes Yes Yes
Factor intensity controls No Yes No Yes
Globalization controls No No Yes Yes

Notes: In Panel A the dependent variable in all columns is a 0/1 indicator variable equal to one if the firm adopts
robots during our sample period and zero otherwise, while in Panel B it is equal to one if the firm uses robots in a
specific year and zero otherwise. Output is the firm’s deflated output value (in logs). Skill intensity is the firm’s share
of workers with a five-year university degree (in logs). Exporter status is a dummy variable for positive exports. All
estimates in Panel A (B) include industry-base-year (industry-year) fixed effects. Factor intensity controls are a firm’s
capital intensity, defined as the firm’s deflated capital stock per worker, and R&D intensity as the firm’s deflated R&D
expenditures relative to its deflated total sales (both in logs). Globalization controls are importer status, defined as a
dummy variable for positive imports, and a dummy variable for foreign ownership (equal to one if the firm is foreign
owned by more than 50 percent and zero otherwise). We add one to all factor intensity variables before taking logs
in order to keep zero observations. In Panel A all explanatory variables are measured in the base year defined as the
first year the firm appears in the sample. In Panel B all explanatory variables are lagged by one year. The sample
is restricted to firms that do not use robots in the first year they appear in the sample. Moreover, in Panel B we
condition on the firm not using robots in the previous year (or the most recent year for which robot data are available
for that firm). Robust standard errors are given in parentheses and clustered by firm in Panel B. *,**,*** denote
significance at the 10%, 5%, 1% levels, respectively.
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To further understand what motivates firms to install robots in the production process, we

also use firm output instead of labor productivity in estimates of Eq. (7). The results we report

in Table 3 provide evidence that output is a strong and significant predictor of subsequent robot

adoption. The estimated coefficient of +0.048 in the cross-sectional specification without controls

(see column 1a) implies that an increase by one standard deviation in the firm’s base year output

raises its probability of adopting robots later on by as much as 8 percentage points. The effect

remains economically meaningful, standing at 6 percentage points, after controlling for the firm’s

factor intensities and globalization variables. What is interesting is that the globalization variables

are rendered insignificant (at least in the panel specification in columns 3b and 4b) when using firm

output instead of labor productivity. Since exporting firms serve a larger market than non-exporting

firms, this is evidence that the scale of operations is a critical channel through which globalization

supports robot adoption.23

Finally, in another set of estimates we allow for non-linearity and non-monotonicity in the effects

of productivity and output on robot adoption. We do this by replacing the productivity/output

variable with dummy variables for each productivity/output quartile; see Tables A.3 and A.4 in

Appendix A.3. The results are striking and indicate that firms in the top quartile of the productiv-

ity/output distribution have the highest probability of adopting robots. For example, firms in the

top quartile of the output distribution are 15 percentage points more likely than firms in the bottom

quartile to subsequently adopt robots even after controlling for factor intensity and globalization

variables; see column (4) in Table A.3.

5 Firm-level effects of robot adoption

Heaving established novel facts on the selection of firms into robot adoption, we now aim to identify

the consequences of robot adoption at the firm level. Our focus is on the effects on output, as well

as on employment, labor costs, and average wages.

5.1 Output effects

We first present graphical evidence on the output distribution of robot adopters before and after the

adoption, and benchmark it against changes in the output distribution of non-adopters. Figure 5

provides a first indication that, in contrast to non-adopters, robot adopters were able to significantly

expand the scale of their operations. The left panel makes a before-after comparison among robot

adopters. It reveals that the distribution of output (deflated and in logs) when firms enter the

sample in t (dashed red line) is clearly dominated by the distribution of output four years later

at t + 4 (solid blue line) when the same firms have adopted robots. The right panel makes the

same comparison for firms that do not adopt robots and reveals almost no differences in the output

distribution.

23We report estimates obtained with the non-linear Probit model in Table A.2 in Appendix A.3.
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Figure 5: Before-after comparison of the output distribution for robot adopters (left panel) vs.
non-adopters (right panel)
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Notes: The left panel makes a before-after comparison of the output distribution of robot adopters, i.e., firms that do
not use robots when they first appear in the sample at time t, but will have adopted robots four years later (i.e. at
time t+ 4). The red dashed line and the solid blue line show the empirical probability density function of output at
time t and at time t + 4, respectively. The right panel makes the same comparison for non-adopters, i.e., firms that
do not use robots when they first appear in the sample at time t and will not have adopted robots four years later
(i.e. at time t+ 4). Output is given in logs, deflated, and demeaned by industry.

To identify the effect of robot adoption on firm-level output more formally, we estimate the

following equation:

Outputit = γ1Robotsit + γ2Robotsit−4 + βXit−4 + µi + µst + εit, (8)

where the dependent variable is deflated output of firm i in year t (in logs), Xit−4 is a vector of

time-varying firm-level controls lagged by four years, with a corresponding vector of parameters β

to be estimated, µi and µst are firm and industry-year fixed effects, respectively, and εit is an error

term with zero conditional mean. The parameter µst captures general time trends and industry

shocks affecting firms equally within industries. The parameters of interest in (8) are γ1 and γ2,

both capturing the impact of robot adoption on firm-level output. These parameters indicate the

percentage change in output after firms start using robots in their production process.

By including fixed effects for individual firms, we identify the output effects of robot adoption

only through within-firm variation, i.e., firms switching from non-robot use to robot use over time.

The firm fixed effects control for robot adoption based on time-invariant factors, like the firm’s

baseline productivity φ(ω) in our theoretical framework. To control for robot adoption based on not

just time-invariant but also time-varying firm-level variables, we include labor productivity, capital

intensity, skill intensity, R&D intensity (all in logs), as well as indicator variables for exporting,

importing, and foreign ownership in Xit−4.
24 We also estimate specifications including the four-

year forward of our robot indicator variable (Robotsit+4). This allows us to see whether our model

is reasonably successful at controlling for positive selection into robot adoption as identified in the

24We let the firm-level control variables enter with a four-year lag in order to control for selection into robot adoption
in t − 4 and t. However, we have also used a one-year lag instead of a four-year lag, to find that this does not alter
our estimates in any significant way.
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previous section.

To make further progress in establishing a causal effect of robot adoption on output, we closely

follow the empirical methodology proposed by Guadalupe et al. (2012) and combine the firm fixed

effects approach with a propensity score reweighting estimator in the spirit of DiNardo et al. (1996).

Specifically, we construct propensity scores and reweigh each firm in order to generate a similar dis-

tribution of key observable characteristics across robot adopters and non-adopters. By matching

along observable firm characteristics, we hope to also match the distribution of important unob-

servable characteristics. To estimate the propensity scores, we consider the years 1991, 1994, 1998,

..., 2014 in our panel and sort those firms that adopt robots in that year into the treatment group

and those that never use robots into the control group. We then pool observations in the treatment

and in the control group across all these years and obtain the propensity scores for all firms by

running industry-specific probit regressions for robot adoption (the treatment) on one-year lags of

sales, sales growth, labor productivity, labor productivity growth, capital-, skill- and R&D-intensity,

indicators for exporter, importer and foreign ownership, and year dummies. The growth rates of

both labor productivity and sales control for recent performance differences among firms. We then

use the estimated propensity scores and reweigh each treated firm by 1/p̂ and each control firm by

1/(1− p̂), where p̂ is the estimated propensity score.25

Table 4: Output effects of robot adoption

Output (in logs)
(1) (2) (3) (4) (5) (6)

Robotst 0.157*** 0.106*** 0.162*** 0.120*** 0.126*** 0.119**
(0.0289) (0.0344) (0.0315) (0.0370) (0.0385) (0.0495)

Robotst−4 0.121*** 0.126*** 0.119*** 0.111** 0.121*** 0.0815
(0.0325) (0.0446) (0.0337) (0.0468) (0.0415) (0.0545)

Robotst+4 0.0743** 0.0471 0.0724
(0.0348) (0.0383) (0.0478)

Observations 4977 2813 4570 2574 4633 2634
R-squared 0.240 0.295 0.249 0.294 0.264 0.284
Selection controls No No Yes Yes No No
Propensity scores No No No No Yes Yes
Firm fixed effects Yes Yes Yes Yes Yes Yes
Industry-year fixed effects Yes Yes Yes Yes Yes Yes

Notes: Robots is a 0/1 indicator variable equal to one if the firm uses robots in the specified period. The dependent
variable in all columns is the log of the firm’s deflated output value. Selection controls (in t−4) are the firm’s deflated
labor productivity (in logs), deflated capital intensity (in logs), skill intensity (in logs), deflated R&D intensity (in
logs), as well as exporter, importer, and foreign ownership dummies. We add one to all factor intensity variables
before taking logs in order to keep zero observations. For details on the propensity score reweighting estimator see
the text. The sample is restricted to firms that do not use robots in the first year they appear in the sample. Robust
standard errors clustered by firm are given in parentheses. *,**,*** denote significance at the 10%, 5%, 1% levels,
respectively.

Table 4 shows our estimates of Eq. (8). We first estimate the equation with firm fixed effects, but

without selection controls (columns (1) and (2)); we then add time-varying firm-specific variables

25We only keep those observations in the analysis that are in the region of common support, and we have checked
that the balancing property is supported by the data in all industries, i.e., all observed characteristics of robot adopters
and non-adopters are balanced. More output corresponding to the propensity score estimation can be found in Table
A.5 in Appendix A.4.
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as selection controls (columns (3) and (4)); and we finally use the propensity score reweighting

estimator as described above (columns (5) and (6)). We estimate each of the three variants with

and without the four-year forward of the robot indicator variable. Throughout all specifications

employed, we find positive and significant output effects of robot adoption. We also see that, once

we include selection control variables or use the propensity score reweighting estimator to control

for positive selection into robot adoption, the four-year forward of the robot indicator variable is not

significantly different from zero. This makes us confident that, for our purposes, we are modelling

the selection decision reasonably well. To get a sense of the magnitude of the effects, consider the

estimates of γ1 and γ2 in column (5), which are equal to +0.126 and +0.121, respectively. These

estimates imply that the adoption of robots in the production process raise output by almost 25%

within four years.26,27,28

5.2 Labor market effects

We now turn to the labor market effects of robot adoption at the firm level. Specifically, we

consider the effects on the firm’s employment (for specific groups of workers and overall), the labor

cost share, and the average wage. Our theoretical considerations in the previous section imply that

robot adopters will reduce their labor cost share, while the impact on total employment is ambiguous

and depends on the relative strength of the displacement effect and the productivity effect. The

employment effects might also be specific to certain groups of workers, especially to those performing

automatable tasks (low-skilled workers as well as workers in the firm’s manufacturing rather than

service-oriented establishments). As for the wage effects, our theoretical framework implies that the

average wage in firms adopting robots increases if the firm changes the composition of its workforce

by hiring relatively more high-skilled workers (and given a positive exogenous skill premium). To

shed light on these effects, we estimate an equation akin to Eq. (8), where we use a variety of

different labor market variables as dependent variables. Table 5 reports the results. In Panel A

we control for selection into robot adoption by including the same set of time-varying selection

controls as before. In Panel B we combine the firm fixed effects estimator with our propensity score

weighting approach. All models include firm and industry-year fixed effects.

26Since we have robot information available in our data, not every year, but every four years, there is some
uncertainty regarding the precise timing of first time robot adoption. A firm that reports robot use in t − 4, but no
robot use in t − 8, can have adopted robots for the first time in either t − 4, t − 5, t − 6, or t − 7. Hence, the most
conservative interpretation is that the adoption of robots raises output by almost 25% within seven years.

27Since we use labor productivity in t − 4 as a selection control and the level and growth of labor productivity in
the propensity score estimates, we restrict our attention here to the effects of robots on physical output of firms. In
the next section, we will also analyze the productivity effects of robot adoption.

28In an additional set of estimates, we investigate whether the output gains from robot adoption are more pronounced
in firms that are more integrated into the global economy. We do not find robust evidence that exporters (or importers
or foreign-owned firms) experience stronger output gains from adopting robots.
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Table 5: Labor market effects of robot adoption

Employment Labor cost Low-skilled High-skilled Manufacturing Share of manuf. Average wage
share employment employment

PANEL A: Selection Controls (1a) (2a) (3a) (4a) (5a) (6a) (7a)
Robotst 0.0582** -0.0362*** 0.0595** 0.0820** 0.0410 -0.00668 -0.00259

(0.0252) (0.00883) (0.0261) (0.0384) (0.0280) (0.00569) (0.0118)
Robotst−4 0.0532** -0.0317*** 0.0413 0.106*** 0.0499* -0.00484 -0.0151

(0.0246) (0.0109) (0.0252) (0.0379) (0.0260) (0.00516) (0.0161)
Observations 4572 4541 4549 4549 4565 4565 4532
R-squared 0.201 0.158 0.209 0.140 0.203 0.062 0.615
Firm fixed effects Yes Yes Yes Yes Yes Yes Yes
Industry-year fixed effects Yes Yes Yes Yes Yes Yes Yes

PANEL B: Propensity Score (1b) (2b) (3b) (4b) (5b) (6b) (7b)
Robotst 0.0594** -0.0253** 0.0703** 0.0571 0.0512* -0.00333 0.0103

(0.0271) (0.0114) (0.0279) (0.0437) (0.0285) (0.00478) (0.0166)
Robotst−4 0.0646* -0.0289** 0.0637* 0.0562 0.0633* -0.00467 -0.0144

(0.0350) (0.0138) (0.0347) (0.0485) (0.0347) (0.00503) (0.0183)
Observations 4632 4595 4611 4611 4624 4624 4585
R-squared 0.208 0.202 0.222 0.156 0.237 0.121 0.662
Firm fixed effects Yes Yes Yes Yes Yes Yes Yes
Industry-year fixed effects Yes Yes Yes Yes Yes Yes Yes

Notes: All dependent variables are expressed in logs except for the labor cost share and the share of manufacturing employment. Robots is a 0/1 indicator variable
equal to one if the firm uses robots in the specified period. Selection controls (in t−4) are the firm’s deflated labor productivity (in logs), deflated capital intensity
(in logs), skill intensity (in logs), deflated R&D intensity (in logs), as well as exporter, importer, and foreign ownership dummies. We add one to all factor intensity
variables before taking logs in order to keep zero observations. For details on the propensity score reweighting estimator see the text. The sample is restricted
to firms that do not use robots in the first year they appear in the sample. Robust standard errors clustered by firm are given in parentheses. *,**,*** denote
significance at the 10%, 5%, 1% levels, respectively.
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A striking result in Panel A in Table 5 is that within four years robot adopters raise overall

employment by around 10 percent. Importantly, while positive employment effects turn out to be

especially pronounced for high-skilled workers, they also apply to other types of workers, namely low-

skilled workers as well as workers employed in the firm’s manufacturing establishments. Moreover,

while the labor cost share decreases significantly due to robot adoption, by almost 7 percentage

points, we find no significant effect on the firm’s average wage, although the coefficient is estimated

with a negative sign. The results based on the propensity score estimates in Panel B, by and large,

confirm these results, although the positive employment effects for the group of high-skilled workers

are smaller in magnitude and lose significance.

5.3 Effects of alternative systems in the production process

As detailed in Section 2, firms are not only asked whether they use robots in their production

process, but they also report alternative systems they use, namely computer-digital machine tools

(CAM), computer-assisted design (CAD), and a combination of some of the systems through a

central computer (FLEX).29 We use this information to investigate differences between the effects

of robots and those of alternative technologies in the production process. Moreover, we want

to see whether the estimated output and labor market effects of robot adoption are robust to

controlling for alternative technologies in production. To save on space, we briefly summarize the

main findings from this analysis here and relegate detailed regression output and discussion to the

online supplement of this paper.

The main findings are as follows. First and foremost, the output and labor market effects of robot

adoption reported above are fully robust to controlling for alternative systems in the production pro-

cess. Secondly, both the adoption of computer-digital machine tools and of flexible manufacturing

systems through a central computer raise firm output. However, the effects are smaller in magnitude

than in the case of robot adoption, and they are not robust to including all technologies (including

robots) simultaneously in the estimation. Adopting computer-assisted designs has no statistically

significant effect on output. Thirdly, there is evidence for positive employment effects across all

three technologies (CAD, CAM, and FLEX) and in all skill groups. In addition, we find robust

evidence that the use of computer-digital machine tools disproportionately benefits high-skilled and

non-manufacturing workers. Finally, we identify a striking difference between robot technology and

other technologies used in the firm’s production process: only robots lead to a significant reduction

in the firm’s labor cost share.

6 Robot adoption and intra-industry reallocations

In the previous sections we have documented that robot adoption is much more likely in ex-ante

larger and more productive firms and that firms experience substantial output and employment

29Descriptive analyses show that robots are used less frequently in the production process than these other system,
and that there is a slight positive correlation between the use of robots and these other systems.
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gains following robot adoption. In this section we investigate how non-adopting firms are affected

by the use of robot technology within their industries. We also shed light on the contribution of

robots to gains in aggregate productivity, and we decompose this contribution into two components:

(1) direct efficiency gains within robot adopters and (2) indirect gains through reallocation of labor

from non-adopters to adopters.

6.1 Robot density and its impact on non-adopting firms

We first estimate the effects of robot diffusion within industries on non-adopting firms. To do so,

we estimate variants of the following equation:

Outcomeit = γ1Robot-densityst + γ2Robot-densityst × Robot-usei + β1Xit−4 + µi + µt + εit, (9)

where we use firm-level employment, output, and market exit as different outcomes of firm i at

time t, and where we interact a time-varying industry-specific measure of robot density with a

time-constant firm-level dummy variable for the use of robots. The variable Robot-densityst is

constructed in two different ways using two different data-sets. First, we use our ESEE data-set

and define the variable as the share of sales attributable to robot-using firms in total industry

sales.30,31 This measure is only available in those years in which we have information on robot use

in the survey (i.e. every four years). In an alternative approach, we use data from the International

Federation of Robotics (IFR) and more specifically the industry-specific stock of robots over the

period 1993 to 2016.32 This measure of robot density is available on an annual basis and features

yearly variation. The variable Robot-usei in Eq. (9) is a 0/1 indicator variable equal to one if the

firm uses robots at least once during our sample period, and zero otherwise.

The coefficients of interest are γ1 and γ2. The first coefficient tells us the effect of rising robot

density in an industry on non-adopting firms, while the second coefficient tells us the difference in

the effect of robot density on robot adopters vs. non-adopters. We report the two coefficients in

Table 6, where Panel A, B, and C focus on the effects on employment, output, and market exit,

respectively. In columns (1) to (3) and columns (4) to (6), we use our robot density measure from

the ESEE data and the IFR data, respectively. All specifications include both firm fixed effects (µi)

and year fixed effects (µt). In columns (2), (3), (5), and (6), we include our selection controls for

robot adoption in the vector Xit−4 (see Section 4). To make sure that our results are indeed due

to differences in robot density across industries, and not other important industry-specific factors,

we also augment the model by including time-varying industry-specific factor intensity variables

30We have verified that our results are robust to alternative definitions of this variable using the ESEE data, viz.
the share of robot-using firms in the total number of firms, the share of output attributable to robot-using firms in
industry output, and the share of employment in robot-using firms in total industry employment.

31To construct meaningful measures of robot density, when computing this variable, we do not restrict the sample
to firms that do not use robots in the first year they appear in the sample. We also use the full sample of firms in the
estimation. However, our results do no change when restricting the estimation sample to firms that do not use robots
in the first year they appear in the sample.

32Table A.6 in Appendix A.5 describes the concordance between the different industry classifications in the ESEE
and the IFR data-sets.
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(namely annual industry averages of capital, skill, and R&D intensity), and we also interact these

variables with our firm-level indicator variable for robot use; see columns (3) and (6).33

Table 6: Robot adoption and intra-industry reallocations

ESEE IFR
PANEL A: Employment in t (1a) (2a) (3a) (4a) (5a) (6a)
Robot-densityt -0.193*** -0.222*** -0.210*** -0.00630 -0.00389 -0.00288

(0.0488) (0.0716) (0.0737) (0.00963) (0.0130) (0.0133)
Robot-densityt × Robot-use 0.190*** 0.313*** 0.255*** 0.0266** 0.0380** 0.0360**

(0.0732) (0.0968) (0.0988) (0.0122) (0.0150) (0.0163)
Observations 13372 6104 6104 34426 21590 21590
R-squared 0.080 0.125 0.128 0.114 0.142 0.143

PANEL B: Output in t (1b) (2b) (3b) (4b) (5b) (6b)
Robot-densityt -0.356*** -0.401*** -0.333*** -0.0354*** -0.0312* -0.0257

(0.0645) (0.0896) (0.0957) (0.0122) (0.0160) (0.0160)
Robot-densityt × Robot-use 0.463*** 0.601*** 0.401*** 0.0807*** 0.0970*** 0.0846***

(0.0911) (0.123) (0.131) (0.0150) (0.0185) (0.0197)
Observations 13417 6103 6103 34358 21557 21557
R-squared 0.145 0.163 0.170 0.143 0.139 0.140

PANEL C: Exit in t+ 1 (1c) (2c) (3c) (4c) (5c) (6c)
Robot-densityt 0.0475** 0.0581* 0.0417 0.00468* 0.00938** 0.00726*

(0.0215) (0.0330) (0.0329) (0.00260) (0.00366) (0.00384)
Robot-densityt × Robot-use -0.0872*** -0.0816** -0.0565 -0.0143*** -0.0128*** -0.00831**

(0.0274) (0.0406) (0.0404) (0.00261) (0.00367) (0.00419)
Observations 12958 5558 5558 33643 19223 19223
R-squared 0.027 0.033 0.035 0.033 0.034 0.035
Firm fixed effects Yes Yes Yes Yes Yes Yes
Year fixed effects Yes Yes Yes Yes Yes Yes
Selection controls No Yes Yes No Yes Yes
Industry controls + interact. No No Yes No No Yes

Notes: In columns (1) to (3) we define robot density as the share of sales attributable to robot-using firms in total
industry sales constructed from the ESEE data. In columns (4) to (6) we use the stock of robots in an industry (in
logs) constructed from the IFR data. The variable robot-use is a 0/1 indicator variable equal to one if the firm uses
robots (at least once) during our sample period, and zero otherwise. In Panels A and B we use employment and
deflated output (both in logs) as the dependent variables, respectively. In Panel C, we use a 0/1 indicator variable
as the dependent variable; this variable is equal to one if the firm exits the market in the next period, and zero if it
continues its operations. Selection controls include the firm’s deflated labor productivity (in logs), deflated capital
intensity (in logs), skill intensity (in logs), deflated R&D intensity (in logs), exporter status, importer status, and
foreign ownership status (all in t-4 ). We add one to all factor intensity variables before taking logs in order to keep
zero observations. Industry controls are annual industry averages of capital, skill, and R&D intensity; these variable
are also interacted with the time-constant firm-specific robot-use dummy variable. Robust standard errors clustered
by firm are given in parentheses. *,**,*** denote significance at the 10%, 5%, 1% levels, respectively.

The negative estimates of γ1 in Panel A of Table 6 show that an increase in robot density

has a significant negative impact on employment in firms that do not adopt robot technology. The

estimates in the first three columns imply that 10% of jobs in non-adopting firms are destroyed when

the share of sales attributable to robot-using firms increases from zero to one-half. Importantly,

the positive and significant estimates of γ2 indicate that these effects are exclusive to non-adopters.

33Following the analysis in Section 5.3, we have also run an additional robustness analysis (not reported), where
we augment the model to include density measures for the use of computer-digital machine tools (CAM), computer-
assisted design (CAD), or a combination of some of the systems through a central computer (FLEX). The results
reported here are robust to this augmented specification.
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Looking at Panel B, we see the same pattern of effects in terms of output, but the implied magnitude

is even more pronounced. In Panel C, we document higher exit rates among non-adopters due to

an increase in robot density, which is consistent with the predicted increase in the survival cut-off

productivity in our theoretical framework. Importantly, we find similar results on employment,

output, and exit rates when using the stock of robots within industries from the IFR data. This

is remarkable because the IFR measure captures the intensive margin of robot diffusion, regardless

of how many firms use this technology, whereas the ESEE measure reflects the share of firms using

robots and thus the extensive margin of robot use.

Taking stock, we provide strong support for the idea that robot adopters expand their scale of

operations and create jobs, while non-adopters experience negative output and employment effects

in the face of tougher competition with high-technology firms. Our results thus imply substantial

intra-industry reallocation of market shares and resources as a result of more widespread diffusion of

robot technology and a polarization between high-productivity robot adopters and low-productivity

non-adopters.

6.2 Decomposing productivity gains

We now investigate how the diffusion of robot technology affected aggregate productivity from

1990 to 2016. To do so, we first estimate time-varying and firm-specific total factor productivity

(TFP) using a standard production function approach as described in Olley and Pakes (1996). To

obtain a measure of aggregate TFP, we compute the weighted average of all firm-specific TFPs

using employment shares as weights. The solid black line in Figure 6 depicts the thus constructed

measure of aggregate TFP. To simplify the analysis, we restrict the analysis to a balanced sample

of firms between 1990 to 2016. We see a steady rise in TFP with a stagnation during the crisis

in the early 1990s and a strong negative shock around the time of the global financial crisis. TFP

tripled over the 27-year period of our sample (we normalize the value of TFP in 1990 to 100), which

corresponds to a plausible annual growth rate of about 4%.

To evaluate the extent to which the diffusion of robot technology contributed to this develop-

ment, we consider two factors: (1) direct technical efficiency gains arising from robot adoption at

the firm level, and (2) indirect gains arising from the reallocation of labor towards robot adopters

and away from non-adopters. To quantify the first component, we estimate the effect of robot

adoption on firm-level TFP following our analysis described in Section 5.1. Specifically, adopting

the specification with selection controls, we obtain estimated coefficients of Robotst and Robotst−4

equal to 0.135 and 0.084, respectively.34 Both coefficients are statistically significant at the 1 percent

level. These estimates are used to correct the TFP growth in robot adopters, which allows us to

construct a counterfactual evolution of aggregate TFP eliminating firm-specific TFP gains due to

robot adoption. This is represented by the long-dashed dark grey line in Figure 6. To quantify the

second component, the gains stemming from labor reallocation, we use our estimates in column (1a)

34These are estimates based on a specification without the forward variable Robotst+4. When including this forward
variable, its coefficient is not significantly different from zero.
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Figure 6: Actual vs. counterfactual evolution of aggregate TFP (1990-2016)
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Notes: The figure depicts the evolution of aggregate TFP (constructed as the weighted average of firm-level TFP using
employment shares as weights) in a balanced sample of firms from 1990-2016. The solid black line depicts the actual
evolution; the long-dashed dark grey line depicts the counterfactual evolution eliminating firm-specific TFP gains due
to robot adoption; the short-dashed light grey line depicts the counterfactual evolution eliminating firm-specific TFP
gains due to robot adoption, as well as labor reallocations caused by firm-level robot adoption and rising robot density
at the industry level.
Source: Authors’ computations based on ESEE data.

of Table 5 and column (3a) of Table 6 to adjust the employment weights for both robot adopters and

non-adopters. This allows us to construct a counterfactual evolution of aggregate TFP eliminating

not just firm-specific TFP gains due to robot adoption, but also changes in aggregate productivity

due to labor reallocations caused by robot adoption of individual firms as well as rising robot density

at the industry level. This is represented by the short-dashed light grey line in Figure 6.

Our analysis reveals that, without the availability and adoption of robot technology, TFP would

have doubled over the period from 1990 to 2016 rather than tripled. Moreover, we see that the

first component, direct technical efficiency gains, explains about two thirds of the total TFP gains

attributable to robots, while the second component, the gains due to labor reallocation, explains

the remaining one third. However, note that our analysis here is based on a balanced sample of

firms and thus abstracts from market exit of low-productivity non-adopters. Hence, we provide a

lower bound for the total TFP gains due to robots, as well as for the contribution of the second

component to these gains.
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7 Conclusion

This paper provides novel evidence on how automation in the form of robot adoption affects firm-

level outcomes. We use detailed firm level information from a survey conducted on Spanish manu-

facturing firms over a 27-year period (1990-2016). We focus on three central questions: (1) Which

firms adopt robots? (2) What are the labor market effects of robot adoption at the firm level? (3)

How does firm heterogeneity in robot adoption affect the industry equilibrium? As for the first

question, we establish robust evidence that ex-ante larger and more productive firms and exporters

are more likely to adopt robots, while ex-ante more skill-intensive firms are less likely to do so.

As for the second question, we find that robot adoption generates substantial output gains in the

vicinity of 20-25% within four years, reduces the labor cost share by 5-7%-points, and leads to net

job creation at a rate of 10%. Finally, we reveal substantial job losses in firms that do not adopt

robots, and a productivity-enhancing reallocation of labor across firms, away from non-adopters,

and toward adopters.

By focusing attention on heterogeneity in robot adoption within narrowly defined industries,

our results provide novel evidence how robots affect industry heterogeneity. Importantly, we do not

find any negative employment effects in those firms that start to adopt robots, even if we focus on

specific skills or groups of workers. On the contrary, our results robustly show that robot adopters

create jobs in the subsequent years, relative to the control group, i.e., their competitors that do

not adopt robots. In other words, negative employment effects materialize where they are ex-ante

the least expected, namely in those firms that do not automate their production process. Hence,

our study points to the importance of reallocation of resources across firms within industries, as

robots are creating new opportunities for some firms, while simultaneously leading to job losses in

non-adopting firms.
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A Appendix

A.1 Labor cost share for robot adopters vs. non-adopters

Figure A.1: Evolution of firm-level labor cost share (1990-2016)
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Notes: The figure depicts the evolution of average firm labor cost share (defined as labor costs divided by the total
production) in a balanced sample of firms from 1990-2016, separately for robot adopters (solid black line) and non-
adopters (dashed grey line). Robot adopters are defined as firms that entered the sample in 1990 and had adopted
robots by 1998. Non-adopters are firms that never use robots over the whole sample period.
Source: Authors’ computations based on ESEE data.
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A.2 Detailed derivations corresponding to the theory in Section 3

We use this section to provide analytical details corresponding to the results presented in Sections 3.2

and 3.3 in the main text of the paper. We proceed as follows. First, we discuss the main results of

the basic model with one source of firm heterogeneity, viz. across-firm differences in φ(ω) but no

differences in the degree of complexity, N(ω) = N . These results form the basis of our discussion in

Section 3.3. Secondly, we introduce the possibility of exporting and discuss its implications. This

corresponds to Section 3.2.2. Finally, we allow for firm heterogeneity in N(ω) and consider two skill

types of labor, low- and high-skilled workers. This is relevant for Section 3.2.3.

Basic model. In the model, firms differ in their baseline productivity φ(ω) and the complexity of

their production process N(ω). In a first step, we focus on just one-dimensional heterogeneity by

assuming that all firms have to perform the same set of tasks, given by N(ω) = N . Hence, firms

are fully described by their productivity φ and we can omit the firm index ω to save on notation.

We can write firm profits for robot adopters and non-adopters, respectively, as

π(φ) = (1− β)A

{
1

β

[
γ(N,N − 1)w1−σ] 1

1−σ

}− β
1−β
− F and (A.1)

πa(φ) = (1− β)A

{
1

β

[
η(N, I)r1−σ + γ(N, I)w1−σ] 1

1−σ

}− β
1−β
− F − F a. (A.2)

Given that robots have a comparative advantage in all tasks i ≤ I, we know that
[
γ(N,N − 1)w1−σ] <[

η(N, I)r1−σ + γ(N, I)w1−σ]. Without loss of generality, we normalize the left-hand side by set-

ting
[
γ(N,N − 1)w1−σ] 1

1−σ = 1 and we define
[
η(N, I)r1−σ + γ(N, I)w1−σ] 1

1−σ = 1/η̄ with η̄ > 1.

Furthermore, we choose F a = (α− 1)F with α > 1. We can thus rewrite profits as

π(φ) = (1− β)A

(
1

β

1

φ

)− β
1−β
− F, (A.3)

πa(φ) = (1− β)A

(
1

β

1

φη̄

)− β
1−β
− αF. (A.4)

To determine the domestic cut-off productivity, denoted by φ∗, we can use π(φ∗) = 0. The cut-off

productivity for robot adoption φr can be determined by using the indifference condition π(φr) =

πa(φr) along with π(φ∗) = 0 to compute

φr = φ∗

(
α− 1

η̄
β

1−β − 1

) 1−β
β

. (A.5)

Using these cut-off productivities, we can define the share of firms that use robots as

sr ≡
1−G(φr)

1−G(φ∗)
, (A.6)
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where G(·) denotes the cumulative distribution function of productivity. From inspection of Equa-

tion (A.5) we can conclude that a lower fixed cost for robot adoption or a higher share of automatable

tasks (and thus η̄) raises the share of robot adopters, i.e. ∂sr/∂α < 0 and ∂sr/∂I > 0.

Discussing the implications for the composition of firms within industries requires to also specify

the details on the entry (and exit) process of firms. As this is standard in the literature on hetero-

geneous firms, we refer the interested reader for details to Melitz (2003). Here, we briefly outline

how the endogenous cut-off productivity φ∗ can be determined. Specifically, it is determined by two

conditions. The first condition uses the relation between the average profit per firm and the cut-off

productivity level, the so-called zero-cutoff productivity. It can be computed as the average profits

over all active firms, that is

π̄ = (1− β)A

(
1

β

1

φ̃

)− β
1−β
− F − F (α− 1)

1−G(φr)

1−G(φ∗)
, (A.7)

where π̄ denotes the average profits over all active firms and φ̃ is the average (expected) productivity

level, defined as

φ̃ ≡
(∫ φr

φ∗
φ

β
1−β

g(φ)

1−G(φ∗)
dφ+

∫ ∞
φr

(ηφ)
β

1−β
g(φ)

1−G(φ∗)
dφ

) 1−β
β

. (A.8)

The second condition, called the free entry condition, requires that the net value of entry is zero,

i.e. the sunk market entry costs (fe) are equal to the expected profits (discounted by δ). Formally,

this condition reads as:

π̄ =
δfe

1−G(φ∗)
. (A.9)

Both equations can be used to determine a unique cut-off productivity level and show that a lower

fixed cost of robot adoption or a higher level of robot technology affects the composition of firms

within industries. Following Melitz (2003), we know that ex-ante more productive firms gain market

share by reducing marginal costs due to robot adoption. This raises the cut-off productivity at which

firms are able to survive in the market. Put differently, increasing robot exposure raises the exit

rate among non-robot firms and reduces their output and employment. This proves the results

described in Section 3.3.

Exporting. When allowing for trade with a symmetric partner country, we can sort firms into

four groups, namely combinations of robot adopters vs. non-adopters (indicating robot adopters

by a superscript a) and exporters vs. non-exporters (indicated by subscripts x and d, respectively).

Specifically, we can write firm profits for the different types as

πd(φ) = (1− β)A

{
1

β

[
γ(N,N − 1)w1−σ] 1

1−σ

}− β
1−β
− F, (A.10)
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πad(φ) = (1− β)A

{
1

β

[
η(N, I)r1−σ + γ(N, I)w1−σ] 1

1−σ

}− β
1−β
− F − F a, (A.11)

πx(φ) =
(

1 + τ
− β

1−β
)

(1− β)A

{
1

β

[
γ(N,N − 1)w1−σ] 1

1−σ

}− β
1−β
− F − F x, (A.12)

πax(φ) =
(

1 + τ
− β

1−β
)

(1− β)A

{
1

β

[
η(N, I)r1−σ + γ(N, I)w1−σ] 1

1−σ

}− β
1−β
− F − F a − F x.

(A.13)

Again, setting
[
γ(N,N − 1)w1−σ] 1

1−σ = 1, defining
[
η(N, I)r1−σ + γ(N, I)w1−σ] 1

1−σ = 1/η̄ with

η̄ > 1, and setting F a = (α− 1)F , we can rewrite profits as

πd(φ) = (1− β)A

(
1

β

1

φ

)− β
1−β
− F, (A.14)

πad(φ) = (1− β)A

(
1

β

1

φη̄

)− β
1−β
− αF, (A.15)

πx(φ) =
(

1 + τ
− β

1−β
)

(1− β)A

(
1

β

1

φ

)− β
1−β
− F − F x, (A.16)

πrx(φ) =
(

1 + τ
− β

1−β
)

(1− β)A

(
1

β

1

φη̄

)− β
1−β
− αF − F x. (A.17)

Except for different variable labels, this system is identical to the one described in Bustos (2011)

(on page 310). We can thus build on her insights and follow the same steps. Accordingly, we

focus on cost and parameter conditions that guarantee that the least productive firms serve only

the domestic market and do not adopt robots, while more productive firms export and only the

most productive exporters find it attractive to adopt robots. Importantly, the descriptive statistics

obtained from our data and described in the main text reveal that the share of robot adopters

is considerably lower than the share of exporting firms. It is therefore plausible to assume that

the marginal exporter is a non-adopter, i.e., a firm that does not use robots. As shown in Bustos

(2011), this is the case with a sufficiently high fixed cost of robot adoption relative to exporting.

The exporter cut-off φx is determined by the indifference condition πd(φ
x) = πx(φx). Combining

this condition with πd(φ
∗) = 0 entails

φx = φ∗τ

(
F x

F

) 1−β
β

. (A.18)

To determine the cut-off productivity for robot adoption in the open economy φr, we use πx(φr) =

πax(φr). Using the zero cut-off profit condition for the least productive firm, this allows us to
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compute:

φr = φ∗
1(

1 + τ
− β

1−β
) β

1−β

(
α− 1

η̄
β

1−β − 1

) 1−β
β

. (A.19)

Using Equation (A.19), we can conclude that a reduction in variable trade costs τ raises the share

of robot adopters, i.e. ∂sr/∂τ < 0. As discussed in detail in Bustos (2011), we know that the

incentives for adopting robots are higher for exporting firms, as the gains from doing so—the

reduction in variable production costs—can be scaled up to a larger customer base in home and

foreign. This completes the discussion corresponding to Section 3.2.2.

Skill heterogeneity. In the main text we briefly discuss an extension with two types of workers,

namely low-skilled and high-skilled workers, indexed by subscripts l and h, respectively. Accordingly,

we have

x(ω, i) = 1 [i ≤ I] η(i)k(ω, i) + γl(i)ll(ω, i) + γh(i)lh(ω, i). (A.20)

In such an environment, firms will not only compare the production costs of robots and human

labor across tasks, but also consider the skill-specific effective labor costs in each task, i.e., the firm

will benchmark wl/γl(i) against wh/γh(i). The task-level production function in (A.20) implies that

low-skilled and high-skilled workers are substitutes in the performance of tasks. Following Acemoglu

and Autor (2011), we impose a comparative advantage of high-skilled workers over their low-skilled

coworkers that is increasing in the complexity of tasks. As discussed in detailed in Koch (2016), we

can define a unique threshold task z ∈ (0, 1) for which the firm is exactly indifferent between hiring

low-skilled and hiring high-skilled workers, at prevailing skill premium s ≡ wh/wl. Put differently,

the unit costs of performing task z are the same irrespective of the assigned skill type k = l, h. This

establishes

wl/γl(z) = wh/γh(z). (A.21)

Koch (2016) discusses parameter constraints (on the comparative advantage schedule, factor en-

dowments, etc.) within a general equilibrium framework that guarantee the existence of an interior

solution, z ∈ (N − 1, N). Intuitively, we need a skill premium that exceeds the productivity advan-

tage of high-skilled workers in some tasks. Under this constraint, we can establish that low-skilled

workers will be assigned to all tasks i < z, while high-skilled workers will be assigned to all tasks

i ≥ z. Under the additional constraint that robots cannot automate all tasks performed by low-

skilled workers, I < z, we obtain for the unit production costs

ca(φ,N, I) =
1

φ

[
η(N, I)r1−σ + γl(I, z)w

1−σ + γh(N, z)w1−σ] 1
1−σ , (A.22)
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where η(N, I) ≡
(∫ I

N−1 η(i)σ−1di
) 1
σ

, γl(I, z) ≡
(∫ z
I γl(i)

σ−1di
) 1
σ and γh(N, z) ≡

(∫ N
z γh(i)σ−1di

) 1
σ

.

In the main text, we use this extension with two skill types to conclude that firms with a higher

skill intensity are less likely to adopt robots. Therefore, we now also consider heterogeneity of firms

in the complexity of the production process, N(ω). For ease of exposition, we assume that some

firms operate with a complexity equal to N , while others operate with N c > N .35 Suppose that

I > N c − 1, so that there is always some tasks that are automatable. Figure A.2 illustrates this

situation. It is evident that more complex firms have (i) a higher share of tasks that are performed

by high-skilled workers and (ii) that in these firms only a smaller fraction of tasks can be performed

by robots. It follows that firms with a lower skill intensity are more likely to adopt robots. This

completes the discussion corresponding to Section 3.2.3.

Figure A.2: Skill allocation and automatable tasks for different complexities of the production
process
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|
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|
z
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35Different studies in the field of international economics have extended the Melitz (2003) framework to allow for
heterogeneity in more than one dimension. Prominent examples include Davis and Harrigan (2011), Eaton et al.
(2011), Hallak and Sivadasan (2013), Armenter and Koren (2015), Harrigan and Reshef (2015), and Helpman et al.
(2017). For instance, Harrigan and Reshef (2015) also consider two types of labor with firms differing in both the
baseline productivity ϕ and the Cobb-Douglas share parameter α which governs the skill intensity of the firm. They
characterize firms by their “competitiveness”, determined by both ϕ and α, and they apply the theory of copulas
from mathematical statistics to determine the distribution of firms’ competitiveness allowing for flexible correlations
between ϕ and α. Another example is Capuano et al. (2017), who allow for two-dimensional heterogeneity in the
context of offshoring. In their framework, firms differ in the range of tasks to be performed as well as the share of
offshorable tasks.
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A.3 Further results on robot adoption

Table A.1: Robot adoption A.I: Probit cross-sectional and panel specification

Robot adoption (0/1 indicator)
PANEL A: Cross-sectional specification (1a) (2a) (3a) (4a)
Base year labor productivity 0.197*** 0.0863* 0.0931** 0.0356

(0.0425) (0.0499) (0.0448) (0.0516)
Base year skill intensity -2.373*** -2.838***

(0.718) (0.793)
Base year exporter status 0.350*** 0.289***

(0.0646) (0.0726)
Observations 3272 2732 3208 2689
Pseudo R-squared 0.061 0.100 0.089 0.114

Robot adoption (0/1 indicator)
PANEL B: Panel specification (1b) (2b) (3b) (4b)
Lagged labor productivity 0.270*** 0.116*** 0.147*** 0.0564

(0.0390) (0.0404) (0.0394) (0.0403)
Lagged skill intensity -0.890** -1.213**

(0.442) (0.485)
Lagged exporter status 0.231*** 0.178***

(0.0537) (0.0570)
Observations 7225 6738 7157 6683
R-squared 0.060 0.082 0.080 0.093
Industry(-base)-year fixed effects Yes Yes Yes Yes
Factor intensity controls No Yes No Yes
Globalization controls No No Yes Yes

Notes: In Panel A the dependent variable in all columns is a 0/1 indicator variable equal to one if the firm adopts robots
during our sample period and zero otherwise, while in Panel B it is equal to one if the firm uses robots in a specific
year and zero otherwise. Labor productivity is the firm’s deflated value added per worker (in logs). Skill intensity
is the firm’s share of workers with a five-year university degree (in logs). Exporter status is a dummy variable for
positive exports. All estimates in Panel A (B) include industry-base-year (industry-year) fixed effects. Factor intensity
controls are a firm’s capital intensity, defined as the firm’s deflated capital stock per worker, and R&D intensity as the
firm’s deflated R&D expenditures relative to its deflated total sales (both in logs). Globalization controls are importer
status, defined as a dummy variable for positive imports, and a dummy variable for foreign ownership (equal to one
if the firm is foreign owned by more than 50 percent and zero otherwise). We add one to all factor intensity variables
before taking logs in order to keep zero observations. In Panel A all explanatory variables are measured in the base
year defined as the first year the firm appears in the sample. In Panel B all explanatory variables are lagged by one
year. The sample is restricted to firms that do not use robots in the first year they appear in the sample. Moreover,
in Panel B we condition on the firm not using robots in the previous year (or the most recent year for which robot
data are available for that firm). Robust standard errors are given in parentheses and clustered by firm in Panel B.
*,**,*** denote significance at the 10%, 5%, 1% levels, respectively.
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Table A.2: Robot adoption A.II: Probit cross-sectional and panel specification

Robot adoption (0/1 indicator)
PANEL A: Cross-sectional specification (1a) (2a) (3a) (4a)
Base year output 0.219*** 0.184*** 0.185*** 0.153***

(0.0171) (0.0220) (0.0220) (0.0267)
Base year skill intensity -2.596*** -2.658***

(0.693) (0.726)
Base year exporter status 0.190*** 0.180**

(0.0661) (0.0739)
Observations 3436 2839 3368 2793
Pseudo R-squared 0.105 0.123 0.111 0.127

Robot adoption (0/1 indicator)
PANEL B: Panel specification (1b) (2b) (3b) (4b)
Lagged output 0.231*** 0.211*** 0.227*** 0.204***

(0.0141) (0.0171) (0.0179) (0.0203)
Lagged skill intensity -1.498*** -1.454***

(0.486) (0.491)
Lagged exporter status 0.0356 0.0244

(0.0562) (0.0595)
Observations 7424 6891 7350 6831
Pseudo R-squared 0.112 0.115 0.113 0.115
Industry(-base)-year fixed effects Yes Yes Yes Yes
Factor intensity controls No Yes No Yes
Globalization controls No No Yes Yes

Notes: In Panel A the dependent variable in all columns is a 0/1 indicator variable equal to one if the firm adopts
robots during our sample period and zero otherwise, while in Panel B it is equal to one if the firm uses robots in a
specific year and zero otherwise. Output is the firm’s deflated output value (in logs). Skill intensity is the firm’s share
of workers with a five-year university degree (in logs). Exporter status is a dummy variable for positive exports. All
estimates in Panel A (B) include industry-base-year (industry-year) fixed effects. Factor intensity controls are a firm’s
capital intensity, defined as the firm’s deflated capital stock per worker, and R&D intensity as the firm’s deflated R&D
expenditures relative to its deflated total sales (both in logs). Globalization controls are importer status, defined as a
dummy variable for positive imports, and a dummy variable for foreign ownership (equal to one if the firm is foreign
owned by more than 50 percent and zero otherwise). We add one to all factor intensity variables before taking logs
in order to keep zero observations. In Panel A all explanatory variables are measured in the base year defined as the
first year the firm appears in the sample. In Panel B all explanatory variables are lagged by one year. The sample
is restricted to firms that do not use robots in the first year they appear in the sample. Moreover, in Panel B we
condition on the firm not using robots in the previous year (or the most recent year for which robot data are available
for that firm). Robust standard errors are given in parentheses and clustered by firm in Panel B. *,**,*** denote
significance at the 10%, 5%, 1% levels, respectively.
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Table A.3: Robot adoption based on productivity quartiles: linear cross-sectional specification

Robot adoption (0/1 indicator)
—Labor productivity— —Output—
(1) (2) (3) (4)

Productivity
Base year 2nd quartile 0.0443*** 0.0185 0.0378*** 0.0205

(0.0167) (0.0184) (0.0139) (0.0164)
Base year 3rd quartile 0.0531*** 0.0213 0.0792*** 0.0507***

(0.0166) (0.0189) (0.0148) (0.0186)
Base year 4th quartile 0.0780*** 0.0179 0.205*** 0.146***

(0.0170) (0.0207) (0.0173) (0.0245)
Base year skill intensity -0.400*** -0.407***

(0.100) (0.101)
Base year exporter status 0.0573*** 0.0346**

(0.0161) (0.0160)
Observations 4053 3443 4221 3551
R-squared 0.111 0.161 0.141 0.170
Industry-base-year fixed effects Yes Yes Yes Yes
Factor intensity controls No Yes No Yes
Globalization controls No Yes No Yes

Notes: The dependent variable in all columns is a 0/1 indicator variable equal to one if the firm adopts robots during
our sample period and zero otherwise. The regressions include a full set of dummy variables indicating the firm’s
(quartile) position in the productivity distribution of the industry in which it is active. Columns (1) and (2) do this
based on labor productivity, i.e., the firm’s deflated value added per worker, while columns (3) and (4) use output,
i.e., the firm’s deflated output value. Skill intensity is the firm’s share of workers with a five-year university degree (in
logs). Exporter status is a dummy variable for positive exports. Factor intensity controls are a firm’s capital intensity,
defined as the firm’s deflated capital stock per worker, and R&D intensity as the firm’s deflated R&D expenditures
relative to its deflated total sales (both in logs). Globalization controls are importer status, defined as a dummy
variable for positive imports, and a dummy variable for foreign ownership (equal to one if the firm is foreign owned
by more than 50 percent and zero otherwise). We add one to all factor intensity variables before taking logs in order
to keep zero observations. All explanatory variables are measured in the base year defined as the first year the firm
appears in the sample. The sample is restricted to firms that do not use robots in the first year they appear in the
sample. Robust standard errors are given in parentheses. *,**,*** denote significance at the 10%, 5%, 1% levels,
respectively.
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Table A.4: Robot adoption based on productivity quartiles: linear panel specification

Robot adoption (0/1 indicator)
—Labor productivity— —Output—
(1) (2) (3) (4)

Productivity
Lagged 2nd quartile 0.0166** 0.00126 0.0242*** 0.0161**

(0.00827) (0.00855) (0.00725) (0.00800)
Lagged 3rd quartile 0.0464*** 0.0121 0.0615*** 0.0410***

(0.00915) (0.00972) (0.00862) (0.0102)
Lagged 4th quartile 0.0719*** 0.0169 0.149*** 0.121***

(0.00983) (0.0110) (0.0102) (0.0137)
Lagged skill intensity -0.151** -0.161**

(0.0633) (0.0636)
Lagged exporter status 0.0250*** 0.00612

(0.00820) (0.00826)
Observations 7368 6879 7535 6997
R-squared 0.041 0.059 0.068 0.072
Industry-year fixed effects Yes Yes Yes Yes
Factor intensity controls No Yes No Yes
Globalization controls No Yes No Yes

Notes: The dependent variable in all columns is a 0/1 indicator variable equal to one if the firm uses robots and
zero otherwise. The regressions include a full set of dummy variables indicating the firm’s (quartile) position in the
productivity distribution of the industry in which it is active. Capital intensity is the firm’s deflated capital stock
per worker. Skill intensity is the firm’s share of workers with a five-year university degree (in logs). Exporter status
is a dummy variable for positive exports. Factor intensity controls are a firm’s capital intensity, defined as the firm’s
deflated capital stock per worker, and R&D intensity as the firm’s deflated R&D expenditures relative to its deflated
total sales (both in logs). Globalization controls are importer status, defined as a dummy variable for positive imports,
and a dummy variable for foreign ownership (equal to one if the firm is foreign owned by more than 50 percent and
zero otherwise). We add one to all factor intensity variables before taking logs in order to keep zero observations. All
explanatory variables are lagged by one year. The sample is restricted to firms that do not use robots in the first year
they appear in the sample. Moreover, we condition on the firm not using robots in the previous year (or the most
recent year for which robot data are available for that firm). Robust standard errors (clustered by firm) are given in
parentheses. *,**,*** denote significance at the 10%, 5%, 1% levels, respectively.
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A.4 Propensity score estimates

In column (1) of Table A.5 we present univariate probit regressions where we regress the robot

indicator variable on a set of lagged variables we use in the propensity score estimation. In column

(2) we present the multivariate probit regression using the same variables. To construct the table

we pool across all industries, while for the results shown in the paper, we estimate the propensity

score by industry. All regressions include industry dummies.

Table A.5: Propensity scores estimation equation (probit specification)

Robots multivariate Robots univariate
(1) (2)

Sales 0.284*** 0.304***
(0.0311) (0.0209)

Sales growth -0.0145 0.221**
(0.126) (0.101)

Labor productivity -0.114* 0.361***
(0.0684) (0.0545)

Labor productivity growth 0.0226 -0.0144
(0.0664) (0.0458)

Capital intensity 0.127*** 0.320***
(0.0381) (0.0323)

Skill intensity -1.806*** 1.014**
(0.649) (0.459)

R&D intensity 0.165*** 0.359***
(0.0613) (0.0556)

Exporter status 0.0567 0.554***
(0.0780) (0.0615)

Importer status 0.0331 0.579***
(0.0803) (0.0619)

Foreign ownership status -0.0529 0.475***
(0.109) (0.0984)

Observations 4053 4053
Pseudo R-squared 0.157

Standard errors in parentheses

* p < 0.1, ** p < 0.05, *** p < 0.01

A.5 Details to data from the International Federation of Robotics (IFR)
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