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Abstract 
 
Estimation and inference in the spatial econometrics literature are carried out assuming that the 
matrix of spatial or network connections has uniformly bounded absolute column sums in the 
number of cross-section units, n. In this paper, we consider spatial models where this restriction 
is relaxed. The linear-quadratic central limit theorem of Kelejian and Prucha (2001) is 
generalized and then used to establish the asymptotic properties of the GMM estimator due to 
Lee (2007) in the presence of dominant units. A new Bias-Corrected Method of Moments 
estimator is also proposed that avoids the problem of weak instruments by self-instrumenting 
the spatially lagged dependent variable. Both estimators are shown to be consistent and 
asymptotically normal, depending on the rate at which the maximum column sum of the weights 
matrix rises with n. The small sample properties of the estimators are investigated by Monte 
Carlo experiments and shown to be satisfactory. An empirical application to sectoral price 
changes in the US over the pre- and post-2008 financial crisis is also provided. It is shown that 
the share of capital can be estimated reasonably well from the degree of sectoral 
interdependence using the input-output tables, despite the evidence of dominant sectors being 
present in the US economy. 
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1 Introduction

In spatial econometrics, the interdependence among cross-sectional units is captured via a

spatial weights matrix, W = (wij), which is usually constructed based on some measures of

geographical, economic or social distance. A critical assumption that has been adopted in

the existing literature is that the maximum absolute row and column sum norms of W are

uniformly bounded in the number of cross section units, n. This assumption, which dates

back to the seminal contributions of Kelejian and Prucha (1998, 1999), essentially imposes

a strong restriction on the degree of cross-sectional dependence amongst the units in the

spatial model or network. For example, the assumption will be satis�ed if W is sparse in

the sense that each unit has only a �nite number of "neighbors", or if the strength of their

connections decays su¢ ciently fast with their distance from one another. However, such

sparsity conditions rule out the possibility that some units could be dominant or in�uential,

in the sense that they might impact a large number of other units in the network. This

could arise, for example, in the case of production or �nancial networks where a large number

of �rms or households could depend on one or more banks or sectors in the economy, as

documented in the recent contributions by Acemoglu, Carvalho, Ozdaglar, and Tahbaz-Salehi

(2012), Dungey and Volkov (2018) and Pesaran and Yang (2019). In such cases the standard

proofs used to justify the consistency and asymptotic normality of the proposed estimators

are no longer applicable.

In this paper we consider estimation and inference in spatial autoregressive (SAR) models

where the maximum column sum norm of the weights matrix, denoted by kWk1, is allowed to
rise with the dimension of the network, n. Speci�cally, we consider situations where kWk1 =
O
�
n�
�
, with � 2 [0; 1]. The exponent � measures the degree to which the most in�uential

unit in the network impacts all other units. The condition imposed on W in the literature

corresponds to assuming � = 0. But, as noted above, in many applications it is likely that

� > 0, and it is therefore desirable to provide conditions under which standard estimators of

SAR models continue to apply in such cases.

The exponent � also relates to measures of network centrality. In the case of spatial models

with row normalized weights matrices, the degree of centrality of unit j is typically measured

by its (weighted) outdegree, de�ned by dj =
Pn

i=1wij. The degree of dominance of unit j

can now be measured by the exponent �j, de�ned by dj = O
�
n�j
�
, where �j 2 [0; 1]. Unit

j is said to be strongly dominant if �j = 1, weakly dominant if �j > 0, and non-dominant

if �j = 0.1 To simplify the exposition we refer to unit j as being dominant if �j > 0, unless

it is important to distinguish between cases of strong and weak dominance. Accordingly,

the overall degree of network centrality is also given by � = max (�1; �2; : : : ; �n).2 From this

1For further details see De�nition 1 in Pesaran and Yang (2019).
2Note that kWk1 = supj(dj).
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perspective, the assumption thatW has bounded column sum norm requires that �j = 0; for

all j. The present paper relaxes this assumption and develops new estimation and inference

theory allowing for the existence of dominant units (� > 0) in the network.3

We begin by generalizing the central limit theorem for linear-quadratic forms due to Kele-

jian and Prucha (2001), which requires � = 0. For our analysis we need to relax this restriction

and allow the matrix in the quadratic form of their theorem to have column sums that are

unbounded in n (namely allow for � > 0). The generalized central limit theorem is then used

to establish the asymptotic properties of the estimators of the SAR model.

There are two main approaches to the estimation of spatial models, namely the maximum

likelihood (ML) method developed by Cli¤and Ord (1973, 1981), Upton and Fingleton (1985),

and developed further by Anselin (1988), Lee (2004), and Lee and Yu (2010), amongst others.

The second approach is the generalized method of moments (GMM) pioneered by Kelejian and

Prucha (1998, 1999), and extended and further studied by Lee (2007), Kapoor et al. (2007),

Lin and Lee (2010), and Lee and Yu (2014), amongst others. In this paper we consider the

GMM approach developed by Lee (2007), which is generally applicable even if the SAR model

does not contain any regressors, and establish conditions under which Lee�s GMM estimator

is consistent and asymptotically normal even if � > 0.

We also propose a new bias-corrected method of moments (BMM), which is also applicable

generally and is simple to implement. The BMM approach was �rst introduced in a recent

paper by Chudik and Pesaran (2017) for the estimation of dynamic panel data models with

short time-dimension. In the context of the SAR model, the spatial lag variable is endogenous.

Instead of looking for valid instruments, the BMM approach uses the spatial lag variable as

an "instrument" for itself, but corrects the bias due to the non-zero correlation between the

spatial lag variable and the error term. This method has the advantage of avoiding the weak

instrument problem by construction. We show that both GMM and BMM estimators are

consistent if 0 � � < 1, and establish their asymptotic normality for values of � in the range
0 � � < 1=2.
An extensive set of Monte Carlo experiments lend support to the theoretical results and

document that both estimators have satisfactory small sample properties, with the BMM

estimator outperforming the GMM estimator when n is relatively small and � is close to unity.

The estimation techniques are shown to be robust to di¤erent degrees of spatial dependence,

various speci�cations of the spatial weights matrix, and non-Gaussian errors.

3It is worth noting that in the current paper we assume W is known and focus on estimating the spatial
parameters. In cases where information on direct connections of the network is unavailable, there exists a
related literature that uses large panel data sets (with both n and T large) to detect which unit has the largest
� (when � equals or is close to unity) from the pattern of correlation in the data without needing to knowW.
See, for example, Bai and Ng (2006), Parker and Sul (2016), Brownlees and Mesters (2018), and Kapetanios
et al. (2018). In a related literature, Bailey et al. (2016) also consider estimating � using large panel data sets
whenW is not known.
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As an empirical application we consider the sectoral price changes in the US over the pre-

and post-2008 �nancial crisis, using 300 � 300 input-output tables as spatial weights. We
show that the share of capital can be estimated from the degree of sectoral interdependence.

We �rst investigate the presence of dominant sectors in the US economy by computing the

extremum estimator of � (the degree of network centrality) proposed in Pesaran and Yang

(2019), and obtain estimates lying between 0:71 and 0:85, suggesting the existence of at least

one dominant sector in the US economy. We then estimate a SAR model in the rate of sectoral

price changes and provide estimates of the share of capital of around 0:4 during the pre-crisis

period (1998�2006), and 0:3 over the post-crisis period (2007�2015). These estimates compare

reasonably well with the share of capital calibrated in the literature.

The remainder of the paper is organized as follows: Section 2 describes the model and

sets out its assumptions. Section 3 provides a generalization of Kelejian and Prucha�s central

limit theorem. The GMM and BMM estimation methods and their asymptotic properties are

detailed in Sections 4 and 5, respectively. Section 6 presents the �nite sample properties of the

GMM and BMM estimators using Monte Carlo techniques. Section 7 contains an empirical

application to the US sectoral prices, and Section 8 gives some concluding remarks. Proofs

of theorems and propositions, together with statements and proofs of necessary lemmas, are

provided in an online mathematical appendix. Additional empirical and Monte Carlo results

are summarized in a supplement, which is available upon request.

Notations: Generic positive �nite constants are denoted by K when they are large, and

by � when small. They can take di¤erent values at di¤erent instances. Let ffng1n=1 be a
real sequence and fgng1n=1 be a real positive sequence. We write fn = O(gn) if there exists a
positive �nite constant K0 such that jfnj =gn � K0 for all n; we write fn = o(gn) if fn=gn ! 0

as n ! 1. The symbols !p and !d indicate convergence in probability and in distribution

as n!1, respectively. Let fxng be a sequence of random variables. We write xn = op (1) if

xn !p 0 as n!1: E0 (�) denotes expectations taken under the true probability measure. For
an n � n matrix A = (aij), kAk1 = sup1�i�n

Pn
j=1 jaijj denotes the maximum absolute row

sum norm (or row norm, for short) of A; kAk1 = sup1�j�n
Pn

i=1 jaijj denotes the maximum
absolute column sum norm (or column norm, for short); and �max (A) denotes the largest

eigenvalue of A. The symbol diag (A) represents a vector consisting of the diagonal elements

of A, namely, diag (A) = (a11; a22; : : : ; ann)
0; whereas Diag (A) represents a diagonal matrix

formed by the diagonal entries of A. 1n is an n� 1 vector of ones, i.e., 1n = (1; 1; : : : ; 1)0.

2 The model and its assumptions

We consider the following standard SAR model:

yi = �y
�
i + �

0xi + "i; for i = 1; 2; : : : ; n; (1)
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where yi is the outcome variable on unit i, � is a �xed spatial coe¢ cient, xi is a k � 1 vector
of regressors on unit i with the associated vector of �xed coe¢ cients �, "i is a random error,

y�i is the spatial variable, de�ned by

y�i =

nX
j=1

wijyj = w
0
i:y; (2)

y = (y1; y2; : : : ; yn)
0, wi: = (wi1; wi2; : : : ; win)

0 is a vector of known constant weights and

wij � 0 for all i and j. Let y� = (y�1; y
�
2; : : : ; y

�
n)
0. Then (2) implies that y� = Wy, where

W = (wij) = (w1:;w2:; : : : ;wn:)
0 is an n � n known matrix of spatial weights (or network

connections).

We suppose W is row-standardized and assume that the jth column sum of W, dj =Pn
i=1wij; is of order n

�j such that

dj = �jn
�j ; for j = 1; 2; : : : ; n; (3)

where �j is a �xed constant in the range 0 � �j � 1; and �j is a strictly positive random

variable de�ned on 0 < � � �j � �� < K, where � and �� are �xed constants. We also set

� = max
j=1;2;:::;n

(�j) ; 0 � � � 1, (4)

and note that maxj (dj) = jjWjj1 = O(n�). We further assume that the number of dominant
units (with �j 6= 0) is a �nite number denoted by m. Without loss of generality, we presume
that the �rst m units, j = 1; 2; : : : ;m (m is �xed) are �j-dominant (with �j 6= 0), and the

rest of the units, j = m+ 1;m+ 2; : : : ; n, are non-dominant (with �j = 0). In particular, the

spatial weights matrix for the non-dominant units is denoted byW22, which is the (n�m)-
dimensional square submatrix ofW that captures the connections among the non-dominant

units.

In matrix notation, model (1) can be rewritten as

y = �y� +X� + "; (5)

where X = (x1;x2; : : : ;xn)
0 is an n � k matrix of observations on exogenous regressors, and

" = ("1; "2; : : : ; "n)
0. The reduced-form representation of (5) is given by

y = S�1 (�) (X� + ") ; (6)

where S(�) = In � �W. The existence of S�1 (�) is ensured under the assumptions to be

discussed below. It immediately follows from (6) that

y� =Wy =WS�1 (�) (X� + ") = G (�) (X� + ") ; (7)

where G (�) = WS�1 (�). Note that the variables and spatial weights may depend on the

sample size and form triangular arrays, although we suppress subscript n for notational sim-

plicity.
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The parameters of interest are � and �; and their true values are denoted by �0 and �0,

respectively. For ease of exposition, we use S0 to denote the matrix S(�) evaluated at the true

parameter value �0, namely, S0 = S(�0) = In � �0W. Similarly, we set

G0 = G(�0) =W (In � �0W)�1 =WS�10 , (8)

and

�0 = G0X�0: (9)

The following assumptions are made to carry out the asymptotic analysis.

Assumption 1 The idiosyncratic errors, "i, for i = 1; 2; : : : ; n, in the SAR model given

by (1) are independently and identically distributed (IID) with zero means and a constant

variance, �2; such that 0 < �2 < K, and supiE j"ij
4+� < K.

Assumption 2 The (k+2)-dimensional vector of parameters of model ( 1), � = (�;�0;�2)0 2
� = ����� ���2, where ��, ��, and ��2 are compact subsets of (�1; 1), Rk and (0;1),
respectively; the true value of �, denoted by �0 = (�0;�

0
0;�

2
0)
0, lies in the interior of the

parameter space, �.

Assumption 3 Let X = (x1;x2; : : : ;xn)
0 be the n�k matrix of observations on the regressors

in model ( 1), where xi = (xi1; xi2; : : : ; xik)
0. (a) xi; for i = 1; 2; : : : ; n, are distributed inde-

pendently of the errors, "j, for all i and j, and supi;sE
�
jxisj2+�

�
< K, (b) n�1X0X !p �xx

is positive de�nite, and (c) n�1X0G0X !p �xgx and n�1X0G0
0G0X !p �xggx, where G0 is

de�ned by (8).

Assumption 4 The spatial weights matrix, W = (wij), in the SAR model given by (1) is

non-negative, namely, wij � 0 for all i and j; it is row-standardized such thatW1n = 1n.

Assumption 5 The column sums of the spatial weights matrixW = (wij), denoted by dj =Pn
i=1wij, j = 1; 2; : : : ; n, are non-zero and follow the speci�cation given by (3), where �j 6= 0

for j = 1; 2; : : : ;m, and �j = 0 for j = m+1;m+2; : : : ; n, with m being a �xed number. Also,

j�j kW22k1 < 1, whereW22 is the (n�m)-dimensional square submatrix ofW that represents

the connections among the non-dominant units.

Assumption 6 There exists n0 such that for all n � n0 (including n!1), either
(a) n�1Q0

0Q0 is positive de�nite, where Q0 = (�0;X), �0 is de�ned by (9),

and/or

(b) hn > � > 0, where

hn = n
�1Tr

�
G0
0G0 +G

2
0

�
� 2n�2 [Tr (G0)]

2 ; (10)

and G0 is given by (8).
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Remark 1 It is worth noting that under Assumption 4, the matrix S(�) is invertible for all
� satisfying j�j < 1, irrespective of whether the column sums ofW are bounded.4

Remark 2 Under Assumption 5, the �rst m column sums ofW are unbounded and rise with

n; while the remaining (n � m) column sums are bounded in n. Although m is assumed to

be �xed and does not rise with n, it can be shown that this must be true if �j satis�es the

summability condition:
Pn

j=1 �j < K.5 Also, the ordering of the dominant units does not

a¤ect the analysis. The current paper is not concerned with the identities of the dominant

units, but rather it focuses on the estimation of � and � when there are dominant units, such

that � > 0.

Remark 3 The non-negativity assumption, wij � 0, is imposed only for ease of exposition

and is not restrictive. When it fails to hold, one can decomposeW into two weights matrices

with non-negative elements, namely, W =W+ �W� = (w+ij)� (w�ij), with w+ij and w�ij � 0.
Then model (1) can be written as y = �1W+y + �2W

�y +X� + ". See Bailey et al. (2016)

for an empirical application employing this strategy.

3 A generalization of the central limit theorem for linear-
quadratic forms of Kelejian and Prucha (2001)

To allow for the presence of dominant units in the SARmodel, we need to generalize the central

limit theorem established in Theorem 1 of Kelejian and Prucha (2001) for linear-quadratic

forms. First we consider the quadratic term which helps clarify the role played by the rate at

which the column sum norm of the n�n weights matrix,W, varies with n. We then consider

the extension of this theorem to linear-quadratic forms needed for the analysis of SAR models

with exogenous regressors. In what follows we state the theorems and relegate their proofs to

Section A.2 of the online mathematical appendix.6

Theorem 1 Let " = ("1; "2; : : : ; "n)0 denote the n�1 vector of IID (0; �2) random variables,
where 0 < �2 < K. Suppose that supiE j"ij

4+� < K, and denote the excess kurtosis of f"ig
by ke = (�4=�4)� 3, where �4 = E ("4i ). Let P = (pij) be an array of n� n constant matrices
that satisfy the following conditions

kPk1 = sup
i

nX
j=1

jpijj < K; (11)

4See Lemma A.1 in Appendix A of Pesaran and Yang (2019).
5See Proposition 2 of Pesaran and Yang (2019).
6Note that the elements of the weights matrix, W, and the error vector, ", typically depend on n, the

sample size. But, unless required for clarity, we suppress subscript n to simplify the notations.
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kPk1 = sup
j

nX
i=1

jpijj = O
�
n�
�
; 0 � � < 1; (12)

and P has a �nite number of unbounded columns. De�ne A = (aij) = (P+P0) =2. Also

n�1Tr (A2) is such that

n�1Tr
�
A2
�
+
1

2
ke

 
n�1

nX
i=1

a2ii

!
> � > 0, for all n (including n!1). (13)

Then if � lies in the range 0 � � < 1=2, we have

Q =
"0A"� �2Tr (A)p

n!n
!d N(0; 1); as n!1; (14)

where

!2n = 2�
4n�1Tr

�
A2
�
+ ke�

4

 
n�1

nX
i=1

a2ii

!
: (15)

In application of the above theorem to GMM and BMM estimators of �, the column norm

properties of the weights matrix,W, carry over to matrixP in the above theorem, and allow us

to establish asymptotic normality of the estimators even ifW has unbounded column norms.

It is also worth noting that matrix P in the above theorem need not be row-standardized, and

our results hold as long as P is uniformly bounded in row norms, as stated in (11).

Remark 4 It is straightforward to see that (13) implies !2n > � > 0, for all n (including

n ! 1). If the errors are normally distributed, then ke = 0, and condition (13) reduces

to n�1Tr (A2) > � > 0, which always holds true for �nite n (except for the trivial case of

A = 0). Therefore in the case of ke = 0, to ensure !2n > � > 0; it is su¢ cient to assume that

n�1Tr (A2) tends to a strictly positive limit as n!1:

The next theorem extends Theorem 1 to the linear-quadratic forms, which is required for

establishing the asymptotic properties of the GMM and BMM estimators of SAR models with

exogenous regressors.

Theorem 2 Let " = ("1; "2; : : : ; "n)0 denote the n�1 vector of IID (0; �2) random variables,
where 0 < �2 < K. Suppose that supiE j"ij

4+� < K, and denote the excess kurtosis of f"ig by
ke = (�4=�

4)� 3, where �4 = E ("4i ). Let � = (�1; �2; : : : ; �n)
0 be a vector of random variables

with means ��;i and variances �2�;i, distributed independently of "j, for all i and j; where

�2�;i > 0; for all i, and supiE
�
j�ij2+�

�
< K. Let P = (pij) be an array of n� n constant ma-

trices that satisfy conditions (11) and (12), and P has a �nite number of unbounded columns,

with � � 0. De�ne A = (aij) = (P+P
0)=2. Suppose n�1Tr (A2) is such that

n�1Tr
�
A2
�
+
1

2
ke

 
n�1

nX
i=1

a2ii

!
+

1

2�2

 
n�1

nX
i=1

�2�;i

!
+
�3
�4

 
n�1

nX
i=1

aii��;i

!
> � > 0 (16)
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for all n (including n!1). Then if � lies in the range 0 � � < 1=2, we have7

~Q =
"0A"+ "0� � �2Tr (A)p

n~!n
!d N(0; 1); as n!1; (17)

where

~!2n = 2�
4n�1Tr

�
A2
�
+ke�

4

 
n�1

nX
i=1

a2ii

!
+�2

 
n�1

nX
i=1

�2�;i

!
+2�3

 
n�1

nX
i=1

aii��;i

!
: (18)

Remark 5 Condition (16) ensures that ~!2n > � > 0, for all n (including n ! 1). If the
errors are symmetrically distributed, then �3 = 0. Since �2�;i > 0 for all i, condition (16) in

this case would reduce to (13) in Theorem 1.

Remark 6 Following a similar line of argument as in Kelejian and Prucha (2001), it can
be shown that Theorems 1 and 2 can be extended to allow for heteroskedastic errors without

a¤ecting the conclusions.

4 GMM estimation

We begin by extending the GMM method proposed by Lee (2007) for standard SAR models

to the case where the column sums of the spatial weights matrix are not necessarily bounded

in n. Lee (2007) suggests using both linear moment conditions formed with instruments and

additional quadratic moments that are based on the properties of the idiosyncratic errors.

Speci�cally, consider model (1) and let  denote the (k + 1)-dimensional vector of parameters,

 = (�;�0)
0 2 	 = �����. The true value of  is denoted by  0 = (�0;�

0
0)
0. Suppose that

Z = (z1; z2; : : : ; zn)
0 is an n � r (r � k + 1) matrix of instruments for the regressors (y�;X).

Formally, Z satis�es the following assumption.

Assumption 7 Let Z = (z1; z2; : : : ; zn)
0 be the n � r matrix of observations on the r in-

strumental variables, zi = (zi1; zi2; : : : ; zir)
0. (a) zi is distributed independently of the errors,

"j, for all i and j = 1; 2; : : : ; n, and supi;sE
�
jzisj2+�

�
< K, (b) n�1Z0Z !p �zz, a positive

de�nite matrix, and (c) n�1Z0Q0 !p �zq is a full column rank matrix, where Q0 = (�0;X)

and �0 is de�ned by (9).

The r linear moment conditions are given by:

E0 [Z
0" ( )] = 0; (19)

where

" ( ) = y��y� �X�: (20)

7Recall that � is de�ned by (12).
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Since X is strictly exogenous under Assumption 3, a possible candidate for Z consists of

linearly independent columns of (X;WX;W2X; : : :). This choice of instruments was �rst

proposed by Kelejian and Prucha (1998). To see why Z could take this form, note from (7)

that E (y�jX) = G (�)X�. This term is clearly correlated with y� but uncorrelated with ".

Since j�j kWk1 < 1 under Assumptions 2 and 4, G (�) can be expanded as

G (�) =W (In � �W)�1 =W + �W2 + �2W3 + : : : ; (21)

and then G (�)X� =
P1

j=1 �
j�1WjX�. This implies that the instruments for y� can be

chosen from the columns of (WX;W2X; : : :). Furthermore, Lee (2003) has shown that the

asymptotically best IV matrix within the 2SLS framework is given by Z� = Q0 = (�0;X).

Since Z� depends on the unknown parameters �0 and �0, a feasible best IV can be constructed

using some initial consistent estimates of the parameters.

Turning to the quadratic moment condition, we recall that the idiosyncratic errors are

assumed to be cross-sectionally uncorrelated and homoskedastic. Using these properties, we

have the following moment condition:

E0 ["
0 ( )C" ( )] = 0; (22)

where " ( ) is de�ned by (20),

C = (cij) = (B+B
0) =2; (23)

and B is a matrix that satis�es the following assumption.

Assumption 8 The matrix B = (bij) is an n � n matrix of �xed constants such that (a)
Tr(B) = 0, (b) jjBjj1 < K; (c) jjBjj1 = O

�
n�b
�
, where �b is a �xed constant in the range

0 � �b < 1, (d) n�1X0CX !p �xcx, n�1�00C�0 !p c0, and n�1�00CX !p d
0
0, where �0 is

given by (9), C = (B+B0) =2, and X is the n� k matrix of observations on the regressors in
model ( 1).

Equation (22) is a valid moment condition since at the true value  0 we have

E0 ["
0 ( 0)C" ( 0)] = E0 ("

0C") = n�20Tr (C) = n�
2
0Tr (B) = 0:

Here we consider a single quadratic moment for ease of exposition. In practice, one could use

multiple quadratic moment conditions, namely E0 ("0C`") = 0, for ` = 1; 2; : : : ; L, where L

is a �nite number, C` = (B` +B
0
`) =2, and B` satis�es the conditions of Assumption 8. Lee

(2007) assumes that B is uniformly bounded in both row and column sums in absolute value

and suggests using B` =W` � n�1Tr (W`) In, for ` = 1; 2; : : : ; L, in the quadratic moments,

whereW` denotes the `th power ofW. However, in our set up where columns ofW need not

be bounded (see Assumptions 4 and 5), in part (a) of Assumption 8 we have relaxed Lee�s

boundedness condition on B, and allow the column norm of B to rise with n at the rate of �b.

9



Remark 7 If the idiosyncratic errors are heteroskedastic, condition (a) of Assumption 8,
Tr(B) = 0, needs to be replaced by the stronger condition: bii = 0; for i = 1; 2; : : : ; n.

Practical choices of B in this case can be B
`
=W` �Diag (W`), for ` = 1; 2; : : : ; L:

We are now ready to de�ne the GMM estimator of 0 of model (1), denoted by ~ = (~�; ~�
0
)0,

using both quadratic and linear moment conditions:

~ = arg min
 2	

g0n( ) (A
0
nAn) gn ( ) ; (24)

where gn( ) is a (k + 1)� 1 vector given by

gn( ) =

�
n�1"0 ( )C" ( )
n�1Z0" ( )

�
; (25)

and An is a �xed (k + 1)� (r + 1) matrix of full row rank, assumed to converge to a constant
full row rank matrix A.

Before proceeding to examine the asymptotic properties of ~ , we �rst focus on the problem

of identi�cation in the case of pure SAR models without exogenous regressors. In this case

(1) simpli�es to,

y = �y� + ", (26)

with Assumption 2 replaced by

Assumption 9 The parameter � of model (26) satis�es � 2 ��, where �� is a compact

subset of (�1; 1) : The true value of �, denoted by �0, lies in the interior of the parameter
space, ��.

The GMM estimator of �0 in model (26) can be obtained by

~� = arg min
�2��

g2n (�) ; (27)

where

gn (�) = n
�1"0 (�)C" (�) ; (28)

and

" (�) = y��y�: (29)

Proposition 1 below shows that in order to uniquely identify �0 in the pure SAR model

(26), at least two moment conditions are required. Speci�cally, the GMM estimator of �0
based on L quadratic moments (L is a �nite number) is given by

~� = arg min
�2��

[a0ngn (�)]
2
; (30)

where

gn (�) = [g1;n (�) ; g2;n (�) ; : : : ; gL;n (�)]
0 ;

10



g`;n (�) = n
�1"0 (�)C`" (�) , for ` = 1; 2; : : : ; L;

and an is a �xed L� 1 non-zero non-negative vector.

Proposition 1 Consider the SAR model given by (26), and suppose that Assumptions 1, 4,
5, 8(a)�(c), and 9 hold. Then to uniquely identify �0 it is required that the GMM estimator,

de�ned by (30), is based on at least two independent quadratic moment conditions, in the

sense that the ratios b`0=a`0, are not all the same across ` = 1; 2; : : : ; L � 2; where a`0 =

limn!1 Tr (n
�1G0

0C`G0) and b`0 = limn!1 Tr (n
�1G0

0C`).

See Section A.2 of the online mathematical appendix for a proof.

Remark 8 When the GMM estimator is based on a single quadratic moment condition, the

parameter �0 of model (26) in not uniquely identi�ed and the GMM estimator of � computed

by minimizing g2n (�) de�ned by (28), converges in probability to �0 or �0 + 2b0=a0, where

a0 = limn!1 Tr (n
�1G0

0CG0) and b0 = limn!1 Tr (n
�1G0

0C). In practice, we recommend

using at least two quadratic moments if the SAR model does not contain exogenous regressors.

Consider now the SAR model given by (1) that includes exogenous regressors. For ease of

exposition, in what follows we set �b = �, that is, jjBjj1 rises with n at the same rate as that
of jjWjj1, since in practiceW is commonly adopted as the B matrix. The following theorem

shows that  0 = (�0;�
0
0) of model (1) can be globally identi�ed if we have enough instru-

ments such that the rank condition in Assumption 7(c) holds. The theorem also establishes

consistency and asymptotic normality of the GMM estimator de�ned by (24).

Theorem 3 Consider the SAR model given by (1). Suppose that Assumptions 1�5, 7 and 8
hold, and �b = �. Then

(a)  0 = (�0;�
0
0) is globally identi�ed,

(b) the GMM estimator of  0, denoted by ~ and de�ned in (24), is consistent for  0 if �

(the degree of network centrality) de�ned by (4) lies in the range 0 � � < 1,
(c)

p
n
�
~ � 0

�
is asymptotically normally distributed as n ! 1; if � lies in the range

0 � � < 1=2; namely,
p
n
�
~ � 0

�
!d N

h
0; (D0A0AD)

�1
D0A0AVgA

0AD (D0A0AD)
�1
i
;

where

D =
h�
2�20b0;01�k

�0
;�0

zq

i0
; Vg =

�
v1 �30�

0

�30� �20�zz

�
; (31)

v1 = lim
n!1

"
20n

�1
nX
i=1

c2ii + 2�
4
0Tr

�
n�1C2

�#
;
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b0 = limn!1 Tr (n
�1G0

0C),G0 is de�ned by (8), �zq = p limn!1 n
�1Z0Q0; �zz = p limn!1 n

�1Z0Z;

� = p limn!1 n
�1Z0 [diag (C)], �30 = E("3i ), 20 = E("4i ) � 3�40, and cii is the ith diagonal

element of C:

See Section A.2 of the online mathematical appendix for a proof.

Remark 9 It is worth emphasizing that  0 is globally identi�ed if we have enough instruments
such that the rank condition in Assumption 7(c) is satis�ed, irrespective of the number of

quadratic moments included. Using quadratic moments in addition to linear moments improves

e¢ ciency.

Remark 10 Consistent estimators of �30 and 20 are given by ~�3 = n�1
Pn

i=1 ~"
3
i , ~2 =

n�1
Pn

i=1 ~"
4
i � 3 (~�2)

2, respectively, where ~�2 = n�1
Pn

j=1 ~"
2
j ; and ~"i = yi � ~�y�i � ~�

0
xi.

As is well known, the optimal moments weighting matrix is given by V�1
g , where Vg is

de�ned in (31). A feasible optimal GMM (OGMM) estimator of  0, denoted by ~ opt, can be

obtained by using a consistent estimator of V�1
g for A0

nAn, that is,

~ opt = arg min
 2	

g0n( )
~V�1
g g

0
n( ); (32)

where gn ( ) is given by (25) and ~Vg is a consistent estimator of Vg. Then ~ opt is consistent

for  0 when � is in the range 0 � � < 1, and it has the following asymptotic distribution as
n!1 when � is in the range 0 � � < 1=2;

p
n
�
~ opt � 0

�
!d N

h
0;
�
D0V�1

g D
��1i

;

where D is given by (31).

The best choice of B exists under certain conditions. Lee (2007) shows that if the idiosyn-

cratic errors are normally distributed, the OGMM estimator using B� = G0�n�1Tr (G0) In in

the quadratic moment condition and Z� = Q0 = (�0;X) in the linear moment conditions, has

the smallest asymptotic variance among the set of GMM estimators derived with quadratic

matrices, B`, having zero trace. This estimator is referred as the best GMM estimator, and

B� is referred to as the best quadratic matrix.8 By a similar argument and applying Lemma

A.6 of the online mathematical appendix, it is straightforward to show that the asymptotic

properties of the best GMM estimator can be extended to the case where the column sums

of W rise with n, under the same conditions on � as in Theorem 3. Since both B� and Z�

depend on unknown parameters, a feasible best GMM estimator can be implemented in two

steps: In the �rst step, we obtain a preliminary consistent estimate of  0. Then in the second

8Among the group of GMM estimators derived with the class of matrices having zero diagonal, the OGMM
estimator using B� = G0 �Diag (G0) and Z� = Q0 = (�0;X) in the moments has the smallest asymptotic
variance. This result does not require the condition that the idiosyncratic errors are normally distributed. See
Lee (2007) Proposition 3 for details.
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step, we perform the optimal GMM estimation using the best IV and best quadratic matrices

evaluated at the �rst-stage estimates. In the rest of this paper we focus on the feasible best

GMM estimator and refer to it simply as the GMM estimator, for brevity.9

5 BMM estimation

In this section we develop the bias-corrected method of moments (BMM) estimator of �0 =

( 00;�
2
0)
0 = (�0;�

0
0;�

2
0)
0 for the SARmodel given by (1). The BMMprocedure uses least squares

but corrects the bias due to the endogeneity of the spatial variable, y�. The application of

BMM to the SAR model is straightforward. Using y� andX as instruments, the bias-corrected

population moments are given by

E [y�0 (y��y� �X�)] = E (y�0") ; (33)

E [X0 (y��y� �X�)] = 0; (34)

E
�
(y��y� �X�)0 (y��y� �X�)

�
= n�2: (35)

Using (7), we have

E (y�0") = E [(�0X0 + "0)G0 (�) "] ;

and under Assumptions 1 and 3, we obtain E (y�0") = �2Tr [G (�)]. The sample version of

the moment conditions (33)�(35) can now be written as

n�1y�0
�
y��̂y� �X�̂

�
= �̂2Tr

�
n�1G (�̂)

�
; (36)

n�1X0
�
y��̂y� �X�̂

�
= 0; (37)

n�1
�
y��̂y� �X�̂

�0 �
y��̂y� �X�̂

�
= �̂2: (38)

Let �̂ = (�̂; �̂
0
; �̂2)0 denote the BMM estimator of �0, which is the true value of � = (�;�

0;�2)0.

The system of equations (36)�(38) can now be used to solve for �̂ as follows:

�̂ = argmin
�2�

m0
n (�)mn (�) ; (39)

where

mn (�) =
�
m1;n (�) ;m

0
2;n (�) ;m3;n (�)

�0
;

m1;n (�) = n
�1y�0" ( )� �2Tr

�
n�1G (�)

�
;

m2;n (�) = n
�1X0" ( ) ; m3;n (�) = n

�1"0 ( ) " ( )� �2;

and " ( ) is given by (20).

Unlike least squares, the BMM procedure is non-linear in �̂, and its asymptotic properties

9We also examined the �nite sample properties of other GMM estimators that do not use the best IV and
best quadratic matrix. The results are available upon request.
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critically depends on the assumptions regarding the rate at which the column sums ofW rise

with n. As we shall see, the BMM estimators are consistent and do not su¤er from the weak

instrument problem since y� is instrumented with its own values. However, in small samples it

might be bene�cial to augment the system of estimating equations, (36)�(38), with additional

moment conditions. See, for example, Lee (2007).

The following theorem summarizes the asymptotic distribution of the BMM estimator. Its

proof is given in Section A.2 of the online mathematical appendix.

Theorem 4 Consider the SAR model given by (1), and suppose that Assumptions 1�6 hold.
Then

(a) the bias-corrected method of moments (BMM) estimator of  0 = (�0;�
0
0)
0, denoted by

 ̂ = (�̂; �̂
0
)0 and de�ned by (39), is consistent for  0 when � is in the range 0 � � < 1, where

� is a measure of network centrality, de�ned by (4).

(b)
p
n
�
 ̂ � 0

�
is asymptotically normally distributed as n!1 when � is in the range

0 � � < 1=2; namely
p
n
�
 ̂ � 0

�
!d N

�
0;
�
H�1VH�1�� ;

where

H =

�
�00�xggx�0 + �

2
0h0 �00�xgx

�xgx�0 �xx

�
; V =

�
q2 �20�

0
0�xgx

�20�xgx�0 �20�xx

�
; (40)

q2 = �20�
0
0�xggx�0 + 20 p lim

n!1
n�1

nX
i=1

�2ii;0 + 2�30 p lim
n!1

n�1 [diag (�0)]
0 �0 (41)

+ �40p lim
n!1

�
Tr
�
n�1�0

0�0

�
+ Tr

�
n�1�2

0

��
;

�0 = G0 �MxTr
�
n�1G0

�
, Mx = In �X (X0X)

�1
X0, (42)

where h0 = limn!1 hn; G0, �0 and hn are de�ned by (8), (9) and (10), respectively, �ii;0 is

the ith diagonal element of �0, and as before �30 = E("3i ) and 20 = E("
4
i )� 3�40.

Remark 11 It can be seen from (41) that the variance formula will not involve the third and

fourth moments of the error term if (i) "i is Gaussian, since under Gaussianity 20 = 0 and

�30 = 0; or (ii) the diagonal elements of �0 are zero, which occurs if G0 has zero diagonal

entries. Furthermore, the variances of both BMM and GMM estimators will not involve the

third moment of the error term if the model does not contain X. In general, �30 can be

estimated by �̂3 = n�1
Pn

i=1 "̂
3
i , where "̂i = yi � �̂y�i � �̂

0
xi, and 20 can be estimated by

̂2 = n
�1Pn

i=1 "̂
4
i � 3 (�̂2)

2.

Remark 12 It is clear that  0 is identi�ed if H, de�ned in (40), is positive de�nite. Note
that H = H1 +H2, where H1 = p limn!1 n

�1Q0
0Q0, and

H2 =

�
�20h0 01�k
0k�1 0k�k

�
:
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Since H1 is positive semi-de�nite and h0 � 0, it follows that H is positive de�nite if either

h0 > 0 and/or if H1 is positive de�nite. Therefore, Assumption 6 ensures that  0 is identi�ed.

Remark 13 It is meaningful to relate the identi�cation condition given by Assumption 6(b)
to the literature on social interactions. Let us �rst consider a simple example where there

is only one social group in which everyone is connected with each other and self-in�uence is

excluded. In this case, the matrix of the network is represented by

W =
1

n� 1 (1n1
0
n � In) : (43)

Yang (2018) has shown that a necessary condition for Assumption 6(b) is given by n�1Tr (W0W) >

� > 0 for all n (including n!1). Given (43), it is easily veri�ed that

W2 =

�
1

n� 1

�2
[n (1n1

0
n)� 21n10n + In] ;

and then n�1Tr (W2) = 1= (n� 1), which tends to zero, as n ! 1. Therefore, the identi�-
cation condition is violated and we conclude that the endogenous social e¤ect is unidenti�able

without exogenous regressors. Now suppose that there are R groups and nr units in the rth

group, for r = 1; 2; : : : ; R. Clearly,
PR

r=1 nr = n. The standard linear-in-means social in-

teraction model assumes that individuals within a group have the same pairwise dependence,

whereas individuals across di¤erent groups are not dependent. See Case (1991, 1992) for ex-

amples of empirical studies employing such a network structure. Then the matrix of group

interactions,W, can be represented by the following block diagonal matrix:

W = Diag (W1;W2; : : : ;WR) ; Wr =
1

nr � 1
(1n1

0
n � Inr) ; r = 1; 2; : : : ; R:

Since we have shown that Tr (W2
r) = nr= (nr � 1), it follows that

n�1Tr
�
W2
�
= n�1

RX
r=1

Tr
�
W2

r

�
=

RX
r=1

�
1

nr � 1

�
�r;

where �r = nr=n is the fraction of population in the rth group. Suppose that nr rises with

n such that �r � 0; as n ! 1: If R is �xed, then limn!1 n
�1Tr (W2) = 0 and the group

interaction e¤ect is unidenti�ed in the absence of exogenous explanatory variables.

Interestingly, it turns out that the BMM estimator is related to the best GMM estimator

under IID normal errors. The following proposition summarizes this relationship. Its proof is

given in Section A.2 of the online mathematical appendix.

Proposition 2 Consider the SAR model given by (1), and assume that the errors are inde-
pendently and normally distributed as "i � IIDN (0; �2), for i = 1; 2; : : : ; n, and 0 < �2 < K.
Suppose that Assumptions 2�8 hold and the network centrality, �, de�ned by (4), lies in the

range 0 � � < 1=2. Then the BMM estimator of  0 = (�0;�
0
0)
0, de�ned by (39), has
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the same asymptotic distribution as the best GMM estimator of  0, de�ned by (32) using

B� = G0 � n�1Tr (G0) In in the quadratic moment condition, and Z� = (�0;X) in the linear

moment conditions, where G0 and �0 are de�ned by (8) and (9), respectively.

6 Monte Carlo experiments

We now examine the small sample properties of the GMM and BMM estimators for SAR

models with dominant units using Monte Carlo techniques. The Data Generating Process

(DGP) is speci�ed as follows:

yi = �+ �y
�
i + �xi + �""i; i = 1; 2; : : : ; n; (44)

where y�i = w
0
i:;yy, y = (y1; y2; : : : ; yn)

0, and w
0
i:;y is the i

th row of Wy. The exogenous

regressor, xi, is generated to be spatially correlated as

xi = �x
�
i + ���i; i = 1; 2; : : : ; n; (45)

where x�i = w
0
i:xx, x = (x1; x2; : : : ; xn)

0, and w
0
i:;x is the i

th row ofWx. Note that the spatial

coe¢ cients and weights matrices could be di¤erent for the y and x processes.

In matrix form, (44) can be rewritten as

y = S�1y (�) (�x+�1n) + u;

where Sy (�) = In � �Wy, u = �"S
�1
y (�) ", " = ("1; "2; : : : ; "n)

0, and u = (u1; u2; : : : ; un)
0.

Similarly, (45) can be rewritten as x = ��S
�1
x (�)�; where Sx (�) = In � �Wx and � =

(�1; �2; : : : ; �n)
0. For the idiosyncratic errors, we consider both Gaussian and non-Gaussian

processes:

� Gaussian errors: "i � IIDN (0; 1) and �i � IIDN (0; 1) :

� Non-Gaussian errors: "i � IID [�2(2)� 2] =2 and �i � IID [�2(2)� 2] =2, where �2(2)
denotes a chi-square random variable with two degrees of freedom.

When � = 0, the �t of the SAR model is given by

R20 = 1�
n�2"

Tr [V ar(y)]
= 1� n

Tr
�
S�1y (�)S0�1y (�)

� ; (46)

which does not depend on �2" , and is determined by the choice of � andW. To control the �t

of the SAR model when � 6= 0, we note that

R2� = 1�
n�2"

Tr [V ar(y)]
; (47)

where

Tr [V ar(y)] = �2�2vTr
�
S�1y (�)S�1x (�)S0�1x (�)S0�1y (�)

�
+ �2"Tr

�
S�1y (�)S0�1y (�)

�
:
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It is also easily seen that

R2� �R20 =
ans

2 (1�R20)
1 + ans2

� 0;

where

an =
Tr
�
S�1y (�)S�1x (�)S0�1x (�)S0�1y (�)

�
Tr
�
S�1y (�)S0�1y (�)

� > 0, s2 =
�2�2v
�2"

� 0;

and note that s2 is the signal-to-noise ratio. Since ans2 � 0, we have R2� � R20, with equality
holding if and only if � = 0. Therefore, given the values of Wy and � we can only control

the value of R2� � R20. Since we are interested in the e¤ects of changes in � and � on the
property of GMM and BMM estimators, without loss of generality we set the true parameter

values to �2";0 = 1, �0 = 0:75, �0 = 1 and �0 = 1. The value of �
2
v is chosen to ensure that

R2� = R
2
0 + 0:1. This is achieved by setting �

2
v such that

�2�2v
�2"

Tr
�
S�1y (�)S�1x (�)S0�1x (�)S0�1y (�)

�
Tr
�
S�1y (�)S0�1y (�)

� =
0:1

0:9�R20
;

or equivalently,

�2v =

�
0:1

0:9�R20

�
�2"
�2an

; (48)

with the value of � chosen so that R20 < 0:9.

Turning to the speci�cations of the spatial weights matrices, we consider the case where

Wx = Wy = W in the main text and relegate the results for Wx 6= Wy to a Monte Carlo

supplement which is available on request. The spatial weights matrixW,

W = (wij)n�n =

�
0 w0

12

w21 W22

�
;

is generated as follows: We assume, without loss of generality, that the �rst unit of the

network is �-dominant and the rest are non-dominant. Speci�cally, the �rst
�
n�
�
elements of

the (n�1)�1 column vectorw21 are drawn from IIDU(0; 1) and the rest are set to zero, where

b:c is the integer part operator. In this way, the sum of the �rst column ofW expands with n

at the rate of �, i.e.,
Pn

i=1wi1 = O
�
n�
�
. The �rst 8 elements of the 1� (n�1) row vector w0

12

are set to one and the remaining elements to zero. W22 is a standard (n� 1)� (n� 1) spatial
matrix with 8 connections (4-ahead-and-4-behind with equal weights), namely, wi;j = 0:125 for

j = i� 4,: : :, i� 1, i+1,: : :, i+4, and wi;j = 0 otherwise. By construction,W22 is uniformly

bounded in both row and column norms, namely, kW22k1 = O(1) and kW22k1 = O(1).

Finally,W is standardized so that each row sums to one.

We consider a number of di¤erent values of � and �0: � = 0, 0:25, 0:50, 0:75, 0:95, 1,

and �0 = 0:2, 0:5, 0:75;10 and experiment with four sample sizes: n = 100, 300, 500, and

10The values of R20 for di¤erent � and � are reported in Table 46 in the Monte Carlo supplement (available
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1; 000. We include � = 1 in our experiments in order to see if the GMM and BMM estimators

break down when � = 1, as predicted by the theory, and to see how the two estimators

perform as � approaches unity. The number of replications is set to 2; 000, per experiment.

We report results for both GMM and BMM estimates. The BMM estimator is computed by

(39), and the GMM estimator is obtained with the optimal weight matrices for the linear and

the quadratic moment conditions.11 More speci�cally, the GMM estimator is computed in two

steps: In the �rst step, the GMM estimates are computed with equal weights using B1 =W,

B2 =W
2 � n�1Tr (W2) In, and Z =

�
1n;x;Wx;W2x

�
. In the second step, we re-estimate

with the optimal GMM weights using the best IV and best quadratic matrices evaluated at

the �rst-step estimates, namely using ~Z� =
�
~Gx~�; ~Gx~�;1n;x

�
and ~B� = ~G�n�1Tr

�
~G
�
In,

where ~G = G (~�), and ~ =
�
~�; ~�; ~�

�0
denote the �rst-step GMM estimates.

Tables 1a�2b summarize the results of the GMM and BMM estimators for the experiments

with Gaussian errors, and Tables 3a�4b give the results for non-Gaussian errors. For each

experiment, we report bias, root mean square error (RMSE), size, and power of both estimators

for � and �. The estimates of the intercept term are omitted in order to save space. In addition,

Figures 1a�2b plot the empirical power functions for � and � in the case of �0 = 0:5 and �0 = 1

for � = 0; 0:25; 0:75; 0:95; and n = 100 and 300, when the errors are non-Gaussian.12

Let us begin by examining the bias and RMSE results. We �rst observe that both GMM

and BMM estimators display declining bias and RMSE as the sample size increases. On the

whole, the bias and RMSE are very small even when n = 100, irrespective of the magnitude

of the spatial autoregressive parameter, �. This result is in line with our theoretical �nding

that both estimators are consistent if � < 1. However, as the value of � approaches one, we

see a substantial increase in RMSE for both estimators. The two estimators perform similarly

in terms of RMSE when n > 300, although the BMM estimator of � has smaller RMSE than

the GMM estimator when n = 100, despite being more biased. The performance of the two

estimators are even closer when we consider �, giving a very similar RMSEs for all sample

sizes under consideration. Finally, the bias and RMSE of both methods are quite robust to

non-Gaussian errors, as can be seen from Tables 3a to 4a.

We now turn to size and power properties of the BMM and GMM estimators. As can be

seen from Table 1b, overall the tests of � have empirical size close to the nominal size of 5%

when � � 0:75. This is true for both estimators. When the sample size is small (n = 100), the
GMM estimator slightly over-rejects the null if the degree of spatial autocorrelation is high

(�0 = 0:75), and the size distortion becomes more severe as �0 is increased towards unity. In

upon request). Note that R20 < 0:9 holds when � � 0:75. When � 6= 0, we set R2� = R20 + 0:1. We have also
examined the estimation of SAR models without exogenous regressors (� = 0). The results are also presented
in the Monte Carlo supplement.
11We also consider GMM estimators using other instruments and quadratic matrices. The results are

presented in the Monte Carlo supplement.
12More power function plots for other values of �0, � and n are documented in the Monte Carlo supplement.

18



comparison, the BMM estimator has the correct empirical size even when the sample size is

small and �0 is close to unity when � � 0:75. As the sample size becomes larger (n � 300), both
estimators have the correct size and reasonable power for all values of �0 if � � 0:75. These
results suggest that the condition � < 1=2 assumed in this paper might be too conservative,

and whilst su¢ cient it might not be necessary. Turning to size and power of the tests for �,

summarized in Table 2b, we note that both estimators perform well, yielding the correct size

and high power, and their performance is overall better as compared the results we obtain for

�. Finally, these �ndings seem to be quite robust to non-Gaussian errors.

Figures 1a and 1b display the power functions for � when �0 = 0:5 for n = 100 and 300,

respectively. Overall, the tests of � = �0 based on GMM and BMM estimators have similarly

good power when � � 0:5. As � moves towards one, the tests based on both estimators

tend to over-reject the null. The over-rejection is more severe for the GMM estimator than

the BMM estimator. For example, as shown in Figure 1a, when � = 0:95 and n = 100 the

rejection frequency of the GMM estimator under the null is 25.8% as compared to 14.6% for

the BMM estimator. A comparison of Figures 1a and 1b reveals that when � � 0:75 the size
distortion is reduced as n expands from 100 to 300, but the over-rejection does not disappear

with increasing sample size when � = 0:95. These �ndings are in line with our theoretical

results.13 We proceed with Figures 2a and 2b, which show the power functions for � when

�0 = 1 for n = 100 and 300, respectively. We see at once that the power curves for both

estimators are very close. We also note that the over-rejection is less of a problem for the

estimators of � than for �. The power is relatively low when n = 100 but rises notably as n

increases to 300.

7 Empirical application to US sectoral prices

In earlier studies Acemoglu et al. (2012) and Pesaran and Yang (2019), using US input-output

tables, �nd that � for the US production network lies between 0:72 and 0:82, and accordingly

the standard assumption in the spatial econometrics literature that presumes all units are

non-dominant is violated. In what follows we �rst extend the closed economy multi-sectoral

model in Pesaran and Yang (2019) to a small open economy in which production also requires

imported intermediate inputs (raw materials). We then apply the GMM and BMM estimation

techniques to investigate the degree of interdependence in sectoral price changes in the US

economy.

For simplicity, we assume that there is only one type of imported intermediate good, whose

quantity demanded for production by sector i at time t is denoted by mit: Each sector i at

13Similar �ndings hold for di¤erent values of �0 whether the errors are Gaussian or non-Gaussian, as can
be seen from the power plots in the Monte Carlo supplement (available upon request).
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time t produces output, qit, by the following Cobb-Douglas production technology:

qit = e
�uitl�itm

#
it

nY
j=1

q
(1���#)wij
ij;t ; for i = 1; 2; : : : ; n; (49)

where lit is the labor input, qij;t is the amount of output of sector j used by sector i, uit
is the productivity shock that consists of two components: uit = ift + vit; where vit is a

sector-speci�c shock, and ft is a common factor with heterogeneous factor loadings, i, for

i = 1; 2; : : : ; n, The parameter � represents the share of labor, # represents the share of

imported intermediate goods, and wij is the share of sector j�s output in the total domestic

intermediate input use by sector i.

The representative household is assumed to have Cobb-Douglas preferences over n goods:

u (c1t;c2t; : : : ; cnt) = A

nY
i=1

c
1=n
it , A > 0: (50)

where cit is the quantity consumed of good i. Furthermore, the household is endowed with

lt unit of labor, supplied inelastically at wage rate Waget. In equilibrium, the commodity

markets clear,

cit = qit �
nX
j=1

qji;t � qx;it; for i = 1; 2; : : : ; n;

where qx;it is the quantity exported of good i; the labor market clears, lt =
Pn

i=1 lit; and trade

is balanced, Pm;t
Pn

i=1mit =
Pn

i=1 Pitqx;it, where Pit denotes the price of good i, and Pm;t
denotes the exogenous world price of the imported intermediate good.

Given prices fP1t; P2t; : : : ; Pnt; Pm;t;Wagetg, the pro�t-maximization problem of sector i,

for i = 1; 2; : : : ; n, is given by

max
qij;t;lit;mit

Pite
�uitl�itm

#
it

nY
j=1

q
(1���#)wij
ij;t �Waget � lit � Pm;tmit �

nX
j=1

Pjtqij;t:

The �rst-order conditions with respect to qij;t, lit; and mit imply that

qij;t =
(1� �� #)wijPitqit

Pjt
; lit =

�Pitqit
Waget

; mit =
#Pitqit
Pm;t

: (51)

Substituting (51) into (49) and after some simpli�cations yields

pit = �

nX
j=1

wijpjt + �!t + #pm;t � bi � � (ift + vit) ; for i = 1; 2; :::; n; (52)

where � = (1� �� #), pit = log (Pit), !t = log (Waget), pm;t = log (Pm;t), and bi = � log (�)+
# log (#) + � log (1� �� #) + �

nP
j=1

wij log(wij).

The system of price equations in (52) is in the form of a panel SAR model with �xed e¤ects,

observed (!t and pm;t) and unobserved common factor (ft). To transform these equations into
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a SAR model in observables we take �rst di¤erences14

�pit = �
nX
j=1

wij�pjt + ��!t + #�pm;t � � (i�ft +�vit) ; for t = 1; 2; : : : ; T; (53)

and consider time averages computed over the sample period t = 1; 2; : : : ; T to obtain

�pi = �
nX
j=1

wij�pj + ��! + #�pm � �
�
i�f +�vi

�
; (54)

where �pi =
1
T

PT
t=1�pit, �! =

1
T

PT
t=1�!t, �pm =

1
T

PT
t=1�pm;t, �f =

1
T

PT
t=1�ft, and

�vi =
1
T

PT
t=1�vit. For a given sample period �!, �pm, and �f are �xed, and only cross

section variations are relevant for estimation of �. We also assume that the factor loadings

follow the random coe¢ cient model i = 0 + �i; where �i s IID(0; �2�); for i = 1; 2; :::; n.

Using this result in (54), we now have

�pi = a+ �
nX
j=1

wij�pj + "i; (55)

where

a = ��! + #�pm � �0�f , and "i = ��
�
�vi +�f�i

�
.

The SAR model in the rate of price changes, (55), can now be estimated by the methods

of GMM and BMM. The parameter of interest is the spatial coe¢ cient, �; which can be

interpreted as capital�s share of output. The n � n matrix W = (wij) that summarizes the

input-output relations corresponds to the spatial weights matrix.

The spatial weights matrix, W, is constructed from the input-output tables at the most

disaggregated level obtained from the website of the Bureau of Economic Analysis (BEA).

These tables cover around 400 industries and are compiled by the BEA every �ve years.

Speci�cally,W is a commodity-by-commodity direct requirements matrix, of which the (i; j)th

entry represents the expense on commodity j per dollar of production of commodity i.15 The

commodity-by-commodity direct requirements (DR) tables are derived from the commodity-

by-commodity total requirements (TR) tables by the following formula: DR = (TR� I) (TR)�1 ;
where I is the identity matrix of conformable dimension. TheW matrix is taken as the trans-

pose of DR and standardized so that the sum of intermediate input shares (the row sum of

W) equals unity for every sector. Since the vast majority of the elements in W are rather

small numbers, in order to reduce noise in the system we construct a robust weights matrix

by setting each element ofW to one if it is greater than or equal to a given threshold value

�w (0 < �w < 1), and to zero otherwise. Then the sectors with zero row sums are dropped and

14This paper focuses on cross section SAR models. The estimation of the panel data model given by (52) is
beyond the scope of the current paper.
15The words commodity and sector are used interchangeably to convey the same meaning throughout this

paper.
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the matrix is row-standardized so that each row sums to one. The resulting matrix is denoted

by ~W (�w). The sector-speci�c price index at annual frequency are obtained from the BEA�s

gross domestic product by industry accounts. The annual rates of price changes are computed

over the period 1998�2015, and they are matched to the sectors in the input-output tables

using the BEA industry codes.

Given the time range of the price data, we consider two versions of ~W constructed from the

input-output tables for the years 2002 and 2007; denoted by ~W2002 and ~W2007; respectively.

In particular, we consider a cut-o¤ value �w = 10%, which means that for any given sector

only important suppliers that contribute at least 10% of the total input purchases are taken

into account.16

We begin by examining the �-dominance of the production networks for the years 2002

and 2007 by applying the extremum estimator developed by Pesaran and Yang (2019) to the

outdegrees of the �ltered input-output matrices ~W2002 (0:1) and ~W2007 (0:1). Table 5 reports

the estimates of � for the top �ve most important sectors for these weight matrices. The

results show that the highest degree of dominance, b�(1), lies between 0:71 and 0:85, and are
not close to unity. Therefore, our proof of consistency of the GMM and BMM estimators

of the spatial parameter applies to this empirical application. But for valid inference our

proofs require � < 1=2, and special care must be exercised when carrying out inference on �

in the present empirical application. Although, as noted above, our Monte Carlo experiments

suggest that the degree of over-rejection of tests based on the BMM estimator of � is relatively

low so long as � is not too close to unity, and inference based on the BMM estimators seems

to be acceptable for values of � around 0:75.

Turning to the sectoral price changes, to allow for the possibility of structural breaks due

to the 2007�2008 �nancial crisis, we consider two sub-samples: the pre-�nancial crises (1998�

2006) and the post-�nancial crises (2007�2015) periods. The weights matrix ~W2002 (0:1) is

used for the �rst sub-sample, while ~W2007 (0:1) is used for the second sub-sample. The BMM

estimates are computed by (39). The GMM estimates are obtained in two steps: In the �rst

step, we compute initial consistent estimate, ~�; by (30) using two equally weighted quadratic

moments with B1 = ~W and B2 = ~W2�n�1Tr
�
~W2
�
In.17 In the second step, we re-estimate

the model using the best quadratic matrix, ~B� = ~G � n�1Tr
�
~G
�
In, where ~G = G (~�) is

evaluated at the �rst-step estimate. Table 6 presents the estimation results of model (55). It

can be seen that the BMM and GMM estimates are very close and highly signi�cant. The

estimated share of capital is around 0:4 for the �rst sub-sample and 0:3 for the second sub-

16Our choice of the 10% threshold for non-zero elements of the weight matrix is in line with the US Regulation
SFAS No. 131 that requires public �rms to report customers representing more than 10% of their total yearly
sales (see Cohen and Frazzini, 2008, p. 1978). The results for other cut-o¤ values of �w = 5% and 7:5%.
are provided in the empirical supplement available upon request. Using lower threshold values tend to yield
higher estimates of �:
17Here we denote ~W2002 (0:1) and ~W2007 (0:1) simply as ~W to simplify the notations.
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Table 5: Estimates of the degree of dominance, �, of the top �ve pervasive sectors using US
input-output tables

Input-output table for 2002 Input-output table for 2007

W2002
~W2002 (0:1) W2007

~W2007 (0:1)b�(1) 0.778 0.851 0.724 0.705b�(2) 0.759 0.796 0.651 0.703b�(3) 0.597 0.642 0.608 0.695b�(4) 0.550 0.422 0.592 0.565b�(5) 0.546 0.402 0.553 0.491

n 313 [301] 286 [114] 384 [364] 350 [140]

n� 69,268 (70.70%) 581 (0.71%) 107,619 (72.98%) 616 (0.50%)

Notes: ~W (�w = 0:1) denotes a �ltered version ofW = (wij); de�ned by ~W (�w) = ( ~wij (�w)), where ~wij (�w)
is a row-standardized version of w�ij (�w) de�ned by w

�
ij (�w) = wijI (wij � �w), where I(A) is an indicator

variable which takes the value of unity if A holds and zero otherwise. We set �w = 10%; and report
�̂(1) > �̂(2) > : : : > �̂(5); the �ve largest estimates of � corresponding to the outdegrees ofW and ~W (0:1), for
the years 2002 and 2007. n is the total number of sectors with non-zero total demands (indegrees). The
numbers in square brackets are the numbers of sectors with non-zero outdegrees. Note that a few sectors
were dropped when constructing ~W fromW, since their total demands become zero. n� is the number of
non-zero elements. The percentages of non-zero elements are in parentheses.

sample. Although these estimates are not very precise, they match reasonably well with the

commonly documented values of share of capital in the literature.18

8 Concluding remarks

A crucial assumption in the spatial econometrics literature requires that the weights (connec-

tions) matrix is uniformly bounded in both row and column sums. This assumption excludes

the existence of dominant units in the network and is too restrictive for many applications.

The current paper relaxes this assumption and allows the centrality of the connections matrix

to rise at the rate of � with n, as compared to the value of � = 0 assumed in the spatial

literature. We also establish the asymptotic distribution of the GMM estimator due to Lee

(2007) for this more general settings, and propose a new BMM estimator which is simple to

compute and has better small sample properties as compared to the best GMM estimator

when the degree of centrality of the weights matrix, �, is relatively large. Both estimators

are shown to be consistent and normally distributed if the maximum absolute column sum of

18The most commonly used value in calibration exercises is 0:36 (Hansen and Wright, 1998; Danthine et al.,
2008). Other frequently used calibration values fall in the range 0.3�0.4. For example, Cooley and Prescott
(1995) suggest 0.4; Gollin (2002) recommends a range of 0.23�0.34; Danthine et al. (2008) uses 0.3.
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Table 6: Estimation results of the cross-section model (55)

Sub-sample Sub-sample

Year 1998�2006 2007�2015

BMM GMM BMM GMM

�̂ [Share of capital] 0:397y 0:395y 0:287y 0:274y

(0.106) (0.107) (0.072) (0.073)

�̂2� [Error variance] 7.728 7.815 2.564 2.599

R2 0.219 0.217 0.159 0.148

Weights matrix ~W2002 (0:1) ~W2007 (0:1)

n [Number of sectors] 286 350

T [Number of time periods] 9 9

Notes: All estimations include an intercept (not shown here). The BMM estimates are computed by (39).
The GMM estimates are computed by a two-step procedure following (30) using the best quadratic moment
evaluated at the �rst-step estimate. R2 is computed by (46). The spatial weights matrices are constructed
with a threshold value of �w = 10%. ~W2002 (0:1) is used in the estimation over the period 1998�2006;
~W2007 (0:1) is used in the estimation over the period 2007�2015. Standard errors are in parentheses. y

indicates signi�cance at 1% level.

the interaction matrix does not increase too fast as n grows. For consistent estimation it is

required that � < 1, and for the validity of the asymptotic distribution we need � < 1=2. But

the extensive Monte Carlo experiments reported in the paper and in the supplement suggest

that GMM and BMM estimators could perform reasonably well if � � 0:75. Thus, it might
be conjectured that the su¢ cient condition of � < 1=2 might not be necessary for the validity

of the asymptotic distribution of GMM and BMM estimators. Further analysis is required if

� > 1=2. Such an analysis is beyond the scope of the present paper.
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Figure 1a: Empirical power functions for � in the case of �0 = 0:5, n = 100, and non-Gaussian
errors for di¤erent values of �
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Figure 1b: Empirical power functions for � in the case of �0 = 0:5, n = 300, and non-Gaussian
errors for di¤erent values of �
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Figure 2a: Empirical power functions for � in the case of �0 = 1, n = 100, and non-Gaussian
errors for di¤erent values of �
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Figure 2b: Empirical power functions for � in the case of �0 = 1, n = 300, and non-Gaussian
errors for di¤erent values of �
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This online mathematical appendix is organized into two sections. Section A.1 contains

statements and proofs of necessary lemmas used in establishing the main theoretical results

of the paper. Section A.2 provides proofs of the theorems and propositions in Sections 3�5

of the paper. Throughout this appendix, Assumptions 1�8 refer to the Assumptions made in

the paper.

A.1 Lemmas

Lemma A.1 Let A = (aij) and B = (bij) be n�n matrices, and suppose that supi;j jaijj < K.
(i) Let C = (cij) = AB: If jjBjj1 < K, then supi;j jcijj < K and Tr (C) = O (n).

(ii) Let D = (dij) = BA. If jjBjj1 < K, then supi;j jdijj < K and Tr (D) = O (n).

Proof. This lemma is a special case of Lemma A.8 of Lee (2004).

Lemma A.2 Suppose that A and B are n�n matrices that satisfy jjAjj1 < K and jjBjj1 <
K, then jjABjj1 < K.

Proof. This result can be readily established by the submultiplicativity of the maximum row
sum matrix norm, that is, jjABjj1 � jjAjj1jjBjj1. A proof can be found in, for example,
Horn and Johnson (2012, Example 5.6.5).

Lemma A.3 Let A be an n� n matrix and b be an n� 1 vector.
(i) If jjAjj1 < K, and jjbjj1 = O(n�), 0 � � � 1, then jjAbjj1 = O(n�).
(ii) If jjAjj1 = O(n�), 0 � � � 1, and jjbjj1 < K, then jjAbjj1 = O(n�).

A1



Proof. (i) Let c = Ab and its ith element is denoted by ci. Then
nX
i=1

jcij =
nX
i=1

j
nX
j=1

aijbjj �
nX
j=1

jbjj
nX
i=1

jaijj �
nX
j=1

jbjj
 
sup
1�j�n

nX
i=1

jaijj
!
= O(n�);

The result in (ii) follows from similar reasoning.

Lemma A.4 Let A = (aij) and B = (bij) be n� n matrices such that jjAjj1 < K; jjBjj1 <
K, and jjBjj1 = O

�
n�
�
, where 0 � � � 1: Then

(i) Tr (A0BB0A) = O
�
n�+1

�
;

(ii) Tr
�
(A0B)2

�
= O

�
n�+1

�
,

(iii) Tr (AB0C) = O
�
n�+1

�
, where C = (cij) is an n�n matrix such that supi;j jcijj < K.

Proof. (i) From jjAjj1 < K, it follows that supi;j jaijj < K and
Pn

i=1

Pn
j=1 jajij < Kn. Then

jTr (A0BB0A) j = j
nX
i=1

nX
j=1

nX
k=1

nX
l=1

ajibjkblkalij �
nX
i=1

nX
j=1

jajij
nX
l=1

jalij
nX
k=1

jbjkjjblkj

�
nX
i=1

nX
j=1

jajij
 
sup
1�i�n

nX
l=1

jalij
!

nX
k=1

jbjkj
�
sup

1�l;k�n
jblkj

�

� Kn�
nX
i=1

nX
j=1

jajij � Kn�+1;

which establishes the claim.

(ii) Since Tr
�
(A0B)2

�
� Tr (A0BB0A) by Schur�s inequality, the result immediately fol-

lows from (i).

(iii) Note that

jTr (AB0C)j =
�����
nX
i=1

nX
j=1

nX
k=1

aijbkjcki

����� �
nX
i=1

nX
j=1

jaijj
nX
k=1

jbkjj jckij

�
nX
i=1

nX
j=1

jaijj
 
sup
1�j�n

nX
k=1

jbkjj
!�

sup
1�i;k�n

jckij
�
� Kn�+1;

and the result follows.

Lemma A.5 Suppose that " = ("1; "2; : : : ; "n)0 is a vector of random variables, where "i �IID(0; �2)
for all i = 1; 2; : : : ; n, and its fourth moment, �4 = E("4i ), exists. Let 2 = �4 � 3�4. Then
for any n� n constant matrix (need not be symmetric) A = (aij), we have

(i) E("0A") = �2Tr(A),

(ii) E("0A")2 = 2
Pn

i=1 a
2
ii + �

4 [Tr2(A) + Tr(AA0) + Tr(A2)],

(iii) V ar("0A") = 2
Pn

i=1 a
2
ii + �

4 [Tr(AA0) + Tr(A2)] � KTr (AA0).

Proof. See Lemma A.11 of Lee (2004). The inequality in (iii) follows from
Pn

i=1 a
2
ii �

Tr(AA0), Tr (A2) � Tr(AA0) (Schur�s inequality), 2 < K and �2 < K:
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Lemma A.6 Suppose that Assumptions 4 and 5 in the paper hold. Let S = S (�) = In��W,

G = G (�) =WS�1 (�) =W (In � �W)�1, where j�j < 1. Then
(i) jjS�1jj1 < K; and jjS�1jj1 = O(n�).
(ii) kGk1 < K; and jjGjj1 = O(n�):

Proof. (i) By assumption we have jj�Wjj1 < 1, and hence S�1 =
P1

k=0 (�W)k.A1 It follows

that

jjS�1jj1 � 1 + j�jjjWjj1 + j�j2jjWjj21 + : : : =
1

1� j�jjjWjj1
< K:

We next prove that jjS�1jj1 = O(n�). The matrixW can be partitioned as follows:

W
n�n

=

0@ W11
m�m

W12
m�(n�m)

W21
(n�m)�m

W22
(n�m)�(n�m)

1A :
Applying the formula for the inverse of a partitioned matrix gives

S�1 =

�
��1
1 ���11 W12S

�1
22

�S�122W21�
�1
1 S�122 + �

2S�122W21�
�1
1 W12S

�1
22

�
;

where

�1 = Im � �W11 � �2W12S
�1
22W21;

and S22 = In�m��W22. Since under Assumptions 4 and 5 j� kW22k1 < 1; and j�j kW22k1 <
1, then

S�122 1 < K and
S�122 1 < K. Also, since m is �xed and does not rise with n, it is

su¢ cient to examine jjS�122W21�
�1
1 jj1 and jjS�122 + �2S�122W21�

�1
1 W12S

�1
22 jj1. Let w�j;21 denote

the jth column of W21. By Lemma A.3, jjS�122w�j;21jj1 = O(n�j), for j = 1; 2; : : : ;m, which

yields jjS�122W21jj1 = O
�
n�
�
, where � = maxj(�j). Therefore,

jjS�122W21�
�1
1 jj1 � jjS�122W21jj1jj��11 jj1 = O(n�); (A.1)

noting that the norm of the m � mmatrix ��1
1 is bounded since m is �xed. Similarly,

jjW12S
�1
22 jj1 � jjW12jj1jjS�122 jj1 < K, and then

jjS�122W21�
�1
1 W12S

�1
22 jj1 � jjS�122W21jj1jj��11 jj1jjW12S

�1
22 jj1 = O(n�): (A.2)

Combining (A.1) and (A.2), it follows that jjS�1jj1 = O(n�).
(ii) The boundedness of the row norm of G is an immediate result of Assumption 4,

Lemma A.2 and Lemma A.6(i). Let G = (gij)n�n and S
�1 =

�
s�ij
�
n�n. For the j

th column of

G, j = 1; 2; : : : ; n, we have
nX
i=1

jgijj =
nX
i=1

j
nX
l=1

wils
�
ljj =

nX
i=1

j
mX
l=1

wils
�
ljj+

nX
i=1

j
nX

l=m+1

wils
�
ljj

A1See, for example, Horn and Johnson (2012, Corollary 5.6.16).
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�
 
sup
1�l�m

nX
i=1

jwilj
!

mX
l=1

js�ljj+
 

sup
m+1�l�n

nX
i=1

jwilj
!

nX
l=m+1

js�ljj

� Kn�m+Kn�:

Since m is �xed, we obtain
Pn

i=1 jgijj � Kn�; for all j, and this completes the proof.

Lemma A.7 Suppose that Assumptions 1�5 and 8 in the paper hold, and �b = � < 1. Let

G = G (�) =W (In � �W)�1 ; and � = GX�. Then

(i) n�1"0C" = op (1) ;

(ii) n�1"0G0C" = �2Tr (n�1G0C) + op (1) ;

(iii) n�1"0G0CG" = �2Tr (n�1G0CG) + op (1) ;

(iv) n�1�0X0C" = op (1) ;

(v) n�1�0C" = op (1) ;

(vi) n�1�0X0CG" = op (1) ;

(vii) n�1"0G0C� = op (1) :

Proof. (i) Under Assumption 8, C = (B+B0)=2, and Tr (B) = 0. Then E (n�1"0C") =

n�1�2Tr (C) = 0, noting that Tr (C) = Tr (B) = 0. Also, by Lemma A.5,

V ar
�
n�1"0C"

�
= n�22

nX
i=1

c2ii + 2n
�2�4Tr(C2) � Kn�2Tr

�
C2
�
,

where 2 = E("4i ) � 3�4. Under Assumption 8, kBk1 < K, which implies that supi:j jbijj <
K. By Lemma A.3 we obtain Tr (B2) = O (n) and Tr (BB0) = O (n). Then Tr (C2) =
1
2
[Tr (B2) + Tr (B0B)] = O (n) ; and limn!1V ar (n

�1"0C") = 0. Hence, noting thatE (n�1"0C") =

0, then n�1"0C "!p 0, for all values of �.

(ii) First note that E (n�1"0G0C") = �2Tr (n�1CG0). Since kG0k1 < K by Lemma A.6,

and supi:j jcijj � supi:j jbijj < K, applying Lemma A.1, then Tr (n�1CG0) = O (1) which

establishes that E (n�1"0G0C") = O (1). Now, using Lemma A.5(iii) we have

V ar
�
n�1"0G0C"

�
� Kn�2Tr

�
G0C2G

�
� Kn�2

�
2Tr

�
B2GG0�+ Tr (G0BB0G) + Tr (BGG0B0)

�
:

Since kBk1 < K under Assumption 8, and kG0k1 < K by Lemma A.6, applying Lemma A.2

yields kBGk1 < K and kB2Gk1 < K. Then by Lemma A.1 we have Tr [(B2G)G0] = O (n)

and Tr
�
BG (BG)0

�
= O (n). Since kBk1 = O

�
n�
�
under Assumption 8, by Lemma A.4 we

obtain Tr (G0BB0G) = O
�
n�+1

�
. Hence, V ar (n�1"0G0C") = O

�
n��1

�
, and it follows that

n�1"0G0C "!p �
2Tr (n�1CG0) if � < 1:

(iii) By Lemma A.5,

E
�
n�1"0G0CG"

�
= �2Tr

�
n�1G0CG

�
= �2Tr

�
n�1G0BG

�
;
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and

V ar
�
n�1"0G0CG"

�
� Kn�2Tr

h
(G0CG)

2
i
=
1

2
Kn�2

n
Tr
h
(G0BG)

2
i
+ Tr (G0BGG0B0G)

o
:

Since kBk1 < K under Assumption 8, and kG0k1 < K by Lemma A.6, applying Lemma A.2

yields kBGk1 < K. Then by Lemma A.1, Tr (G0BG) = O (n) and hence E (n�1"0G0CG") =

O (1). Since kGk1 = O
�
n�
�
by Lemma A.6, applying Lemma A.4 gives Tr

�
(G0BG)2

�
=

O
�
n�+1

�
and Tr (G0BGG0B0G) = O

�
n�+1

�
. Therefore, V ar (n�1"0G0CG") = O

�
n��1

�
, and

it follows that n�1"0G0CG "!p �
2Tr (n�1G0BG), if � < 1.

(iv) E (n�1�0X0C") = 0 readily follows from the independence of X and ". Also,

V ar
�
n�1�0X0C"jX

�
= n�2�0X0CE (""0)C0X� = n�2�2�0X0C2X�;

and then

V ar
�
n�1�0X0C"

�
= E

�
V ar

�
n�1�0X0C"jX

��
+ V ar

�
E
�
n�1�0X0C"jX

��
= E

�
V ar

�
n�1�0X0C"jX

��
= n�2�2E

�
�0X0C2X�

�
= n�2�2Tr

�
C2M

�
=
�2

2n2
�
Tr
�
B2M

�
+ Tr (BB0M)

�
;

where

M = (mij) = E (X��
0X0) : (A.3)

Let �l denote the lth element of �, for l = 1; 2; : : : ; k. Then, for any 1 � i; j � n,

mij = E

 
kX
l=1

kX
l0=1

xilxjl0�l�l0

!
=

kX
l=1

kX
l0=1

�l�l0E (xilxjl0) :

Since

jE (xilxjl0)j � E jxilxjl0j �
�
E
�
x2il
�
E
�
x2jl0
��1=2 � sup

1�i�n;1�l�k
E
�
x2il
�
< K;

and sup1�l�k j�lj < K, we have

sup
1�i:j�n

jmijj � sup
1�i:j�n

�����
kX
l=1

kX
l0=1

�l�l0E (xilxjl0)

����� �
�
sup
1�l�k

j�lj
�2

sup
1�i:j�n

kX
l=1

kX
l0=1

jE (xilxjl0)j

� k2
�
sup
1�l�k

j�lj
�2

sup
1�i�n;1�l�k

E
�
x2il
�
< K: (A.4)

Also under Assumption 8 kBk1 < K, and by Lemma A.2 kB2k1 < K. Then applying Lemma
A.1(ii) we obtain Tr (B2M) = O (n) : Moreover, as kBk1 = O

�
n�
�
, applying Lemma A.4(iii)

gives Tr (BB0M) = O
�
n�+1

�
: Therefore, Tr (C2M) = O

�
n�+1

�
and V ar (n�1�0X0C") =

O
�
n��1

�
. It follows that n�1�0X0C"!p 0; if � < 1:
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(v) The proof is similar to that of (iv). The mean of n�1�0C" is zero and its variance is

given by

V ar
�
n�1�0C"

�
= n�2�2E

�
�0X0G0C2GX�

�
= n�2�2Tr

�
C2 (GMG)

�
;

where M is de�ned in (A.3). Let ~M = ( ~mij) = GMG0. We have shown in (A.4) that

sup1�i:j�n jmijj < K: Using kG0k1 < K by Lemma A.6, and Lemma A.2(i) and (ii) yields

sup1�i:j�n j ~mijj < K. Repeating the arguments for Tr (C2M) in (iv) leads to Tr
�
C2 ~M

�
=

O
�
n�+1

�
. Therefore, V ar (n�1�0C") = O

�
n��1

�
and it follows that n�1�0C"!p 0 if � < 1:

(vi) Similar to proving the results in (iv) and (v), it can be shown that the mean of

n�1�0X0CG" is zero and its variance is

V ar
�
n�1�0X0CG"

�
= n�2�2Tr (CGG0CM)

� Kn�2 [Tr (BGG0BM) + Tr (B0GG0BM)

+ Tr (BGG0B0M) + Tr (B0GG0B0M)]; (A.5)

where M is de�ned in (A.3). Let P = (pij) = BM. Then sup1�i:j�n jpijj < K follows from

Lemma A.1, due to kBk1 < K by Assumption 8 and sup1�i:j�n jmijj < K, which is proved
in (A.4). Since we have also shown in the proof of (iii) that kBGk1 < K, applying Lemma

A.6(ii) and Lemma A.4(iii) leads to Tr [(BG)G0P] = O
�
n�+1

�
. Similarly, the remaining

three traces in (A.5) can be shown to be O
�
n�+1

�
by applying Lemmas A.1, A.2 and A.4.

Consequently, V ar (n�1�0X0CG") = O
�
n��1

�
, and we obtain n�1�0X0CG"!p 0; if � < 1:

(vii) It is easily seen thatE (n�1"0G0C�) = 0 and V ar (n�1"0G0C�) = n�2�2Tr
�
CGG0C ~M

�
,

where as before ~M = ( ~mij) = GMG
0 andM is de�ned by (A.3). We have shown in the proof

of (v) that sup1�i:j�n j ~mijj < K: Then by similar line of reasoning applied to (A.5), it follows
that V ar (n�1"0G0C�) = O

�
n��1

�
. Therefore, n�1"0G0C� !p 0; if � < 1:

Lemma A.8 Suppose that Assumptions 4 and 5 in the paper hold. Consider G = G (�) =

W (In � �W)�1, where j�j < 1. Then

10nG
01n = 1

0
nG1n =

n

1� �; (A.6)

10nG
0G1n =

n

(1� �)2
; (A.7)

Tr
�
n�1Gs

�
� K, for s = 1; 2; : : : ; (A.8)

Tr
�
n�1G0G

�
� K: (A.9)

Proof. First note that sinceW is a row-standardized stochastic matrix and j�j < 1, then

G1n =
�
W+�W2 + �2W3 + : : : :

�
1n =

�
1

1� �

�
1n; (A.10)
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and (A.6) and (A.7) follow. Denote the diagonal elements of Gs by gs;ii and note that

Tr
�
n�1Gs

�
�
��Tr �n�1Gs

��� � n�1 nX
i=1

jgs;iij :

Also by Lemma A.6, kGk1 < K, and since kGsk1 � (kGk1)
s, then kGsk1 < K. Hence, all

elements of Gs must be bounded, speci�cally jgs;iij < K and result (A.8) follows. Finally,

Tr (G0G) =

nX
i=1

nX
j=1

g2ij �
nX
i=1

 
nX
j=1

jgijj
!2
;

but by Lemma A.6, supi
Pn

j=1 jgijj � K, and hence Tr (G0G) � nK, and the result (A.9)

follows.

Lemma A.9 Suppose that Assumptions 1�5 in the paper hold. Let G = G (�) =W (In � �W)�1 ;

� = GX�, and Mx = In �X (X0X)�1X0. Then

E
�
n�1�0Mx�

�
= O(1); (A.11)

E
�
n�1"0G0Mx"

�
= n�1�2Tr (G0Mx) = O(1); (A.12)

V ar
�
n�1"0G

0
Mx�

�
= O

�
n�1
�
; (A.13)

V ar
�
n�1�0Mx"

�
= O

�
n�1
�
; (A.14)

V ar
�
n�1"0G0Mx"

�
= O

�
n�1
�
; (A.15)

Proof. Let G = (gij) and � = (�1; �2; : : : ; �n)
0 = X�. Note that � = G� and under the

assumptions jE(�i�j)j = j��(i; j)j < K, for all i and j. SinceMx is an idempotent matrix, we

have

n�1�0Mx� � n�1�0G0G� = n�1
nX
i=1

nX
j=1

�i�j

nX
s=1

gsigsj = n
�1

nX
s=1

nX
i=1

nX
j=1

�i�jgsigsj;

and n�1E (�0Mx�) � n�1
P

s

P
i

P
j gsigsj��(i; j). Now noting that j��(i; j)j < K, then

n�1E (�0Mx�) � Kn�1
P

s (
P

i jgsij)
2, and noting from Lemma A.6 that

P
i jgsij � K, we

obtain (A.11). To establish (A.12) note that

E
�
n�1"0G0Mx"

�
= n�1E [Tr (G0Mx""

0)] = n�1�2Tr (MxG) :

Applying Cauchy-Schwarz inequality to Tr (MxG) we have

E
�
n�1"0G0Mx"

�
= n�1�2Tr (MxG) � n�1�2

p
Tr (M0

xMx)Tr (G0G) = n�1�2
p
(n� k)Tr (G0G);

and in view of (A.9) we haveE (n�1"0G0Mx") = n
�1�2Tr (MxG) < K:Also sinceE

�
n�1"0G0Mx�

�
=

0, then

V ar
�
n�1"0G

0
Mx�

�
= n�2�2E

h
�0 (G0MxG)

2
�
i
= O(n�1);
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which establishes (A.13), and similarly (A.14). Consider now V ar (n�1"0GMx") = n
�2V ar ("0A") ;

where A = GMx. Using Lemma A.5 we have

V ar("0A") = 2

NX
i=1

a2ii + �
4
�
Tr(AA0) + Tr(A2)

�
� KTr (AA0) ;

where 2 = �4 � 3�4. But using result (12) in Lütkepohl (1996, p.44) yields

Tr(AA0) = Tr (G0MxG) � �max (Mx)Tr (G
0G) = Tr (G0G) ;

and using (A.9) we have Tr(AA0) � Tr (G0G) � nK: Then the result (A.15) follows.

Lemma A.10 Let fXin, 1 � i � kn, n � 1g be a martingale di¤erence array with respect to
the �ltration Fxi�1;n = �

h
(Xjn)

i�1
j=1

i
. Suppose that (a)Xin is square integrable, (b)

Pkn
i=1E jXinj2+� !

0; and (c)
Pkn

i=1E(X
2
injFxi�1;n)!p 1. Then

Pkn
i=1Xin !d N(0; 1).

Proof. See Corollary 3.1 of Hall and Heyde (1980).A2

A.2 Proofs of theorems and propositions

The following proofs make use of the lemmas in Section A.1 of this online mathematical

appendix. Note that the elements of the matrix and variables in the theorems and propositions

may depend on sample size n and form triangular arrays, but we suppress subscript n in the

proofs for notational simplicity.

Proof of Theorem 1. We �rst consider !2n given by (15) in the paper and show that !
2
n is

bounded. Note that (11) in the paper implies that pij (or pji) must all be bounded in n. By

de�nition, aij = (pij + pji) =2, and hence supi;j jaijj �
�
supi;j jpijj+ supi;j jpjij

�
=2 < K. Using

(15) given in the paper we now have

!2n � K sup
n

���4 � 3�4��+ 2�sup
n
�4
��
Tr
�
n�1A2

��
:

Furthermore,

Tr
�
n�1A2

�
=
1

4n

�
Tr
�
P2
�
+ Tr

�
P02
�
+ 2Tr (P0P)

�
=
1

2

�
Tr
�
n�1P2

�
+ Tr

�
n�1P0P

��
;

and

Tr (P0P) =

nX
i=1

nX
j=1

p2ij �
nX
i=1

 
nX
j=1

jpijj
!2
�

nX
i=1

 
sup
i

nX
j=1

jpijj
!2
:

A2Condition (b) in Theorem A.10 is a su¢ cient condition for the conditional Lindeberg condition (3.7) in
Corollary 3.1 (see Davidson, 1994, Theorem 23.11).
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But under (11) of the paper, supi
Pn

j=1 jpijj < K, and we have Tr (n�1P0P) � K, which also
implies that Tr (n�1P2) < K. Hence, !2n is bounded in n for all values of 0 � � � 1. Also

note that condition (13) in the paper ensures that !2n > 0; for all n (including n!1).
Consider Q de�ned by (14) in the paper and following Kelejian and Prucha (2001) write

it as Q =
Pn

i=1Xi; where

Xi = !
�1
n n

�1=2aii
�
"2i � �2

�
+ 2!�1n n

�1=2"i�i�1; (A.16)

and

�i�1 =

i�1X
j=1

aij"j: (A.17)

Clearly, E (Xi) = 0 and

E
�
X2
i

�
= !�2n n

�1E
�
aii
�
"2i � �2

�
+ 2"i�i�1

�2
= !�2n n

�1E
�
a2ii
�
"4i + �

4 � 2"2i�2
�
+ 4"2i �

2
i�1 + 4aii

�
"2i � �2

�
"i�i�1

�
= !�2n n

�1

"
a2ii
�
�4 � �4

�
+ 4�4

i�1X
j=1

a2ij

#
: (A.18)

Notice that (15) in the paper can be written equivalently as

!2n =
�
�4 � �4

�
n�1

nX
i=1

a2ii + 4n
�1�4

nX
i=1

i�1X
j=1

a2ij > 0 (A.19)

Using (A.18) and (A.19) leads to
Pn

i=1E (X
2
i ) = 1. Note that fXi; 1 � i � ng forms a mar-

tingale di¤erence array with respect to the �ltration F"i�1 = �
h
("j)

i�1
j=1

i
(with F"0 = f;;
g).

Since Xi�1 depends on f"jgi�1j=1, it is readily seen that fXig is a martingale di¤erence array
with respect to the �ltration Fxi�1 = �

h
(Xj)

i�1
j=1

i
: Hence, the central limit theorem given in

Lemma A.10 is applicable to Q if the three conditions on
�
Xi;F

x
i�1
	
can be established. Since

we have shown that
Pn

i=1E (X
2
i ) = 1, and E (X

2
i ) � 0 for all i, it follows that E (X2

i ) � 1,
and hence X2

i is square integrable for all values of 0 � � � 1. In what follows, we only need
to show that conditions (b) and (c) of Lemma A.10 hold under 0 � � < 1=2.
We now consider condition (b) of Lemma A.10. Let q = 2 + �, where 0 < � � �=2. Then

by Minkowski�s inequality,

EjXijq = !�qn n�
q
2E
��aii �"2i � �2�+ 2"i�i�1��q

� !�qn n�
q
2

h
jaiij

�
E
��"2i � �2��q�1=q + 2 (Ej"ijqE j�i�1jq)1=qiq

� !�qn n�
q
2

"
jaiij

�
E
��"2i � �2��q�1=q + 2

 
i�1X
j=1

jaijj
!
(Ej"ijqE j"jjq)1=q

#q
:

Since supiE j"ij
4+� < K, we have E j"2i � �2j

2+� � K and Ej"ij2+� � K for all i, and it follows

A9



that

EjXij2+� � !�(2+�)n n�
2+�
2 K

"
jaiij+ 2

 
i�1X
j=1

jaijj
!#2+�

� !�(2+�)n n�
2+�
2 K

 
nX
j=1

jaijj
!2+�

;

and
nX
i=1

E jXij2+� � !�(2+�)n n�
2+�
2 K

nX
i=1

 
nX
j=1

jaijj
!2+�

:

Using the de�nition,

nX
i=1

 
nX
j=1

jaijj
!2+�

=

nX
i=1

 
nX
j=1

jpij + pjij
2

!2+�

� 2�(2+�)
nX
i=1

 
nX
j=1

jpijj+
nX
j=1

jpjij
!2+�

;

and applying Loeve�s cr�inequality,A3 
nX
j=1

jpijj+
nX
j=1

jpjij
!2+�

� 2(2+�)�1
24 nX

j=1

jpijj
!2+�

+

 
nX
j=1

jpjij
!2+�35 ;

therefore we have

nX
i=1

 
nX
j=1

jaijj
!2+�

� 1

2

24 nX
i=1

 
nX
j=1

jpijj
!2+�

+
nX
i=1

 
nX
j=1

jpjij
!2+�

35 :
But under assumption (11) in the paper,

Pn
i=1

�Pn
j=1 jpijj

�2+�
= O (n). Also, letting m

denote the number of unbounded columns of Pn and noting that m is �nite by assumption,

we obtain from (12) in the paper that

nX
i=1

 
nX
j=1

jpjij
!2+�

� Kmn�(2+�) +K (n�m) = O
�
nmax[�(2+�);1]

	
:

Hence,
Pn

i=1

�Pn
j=1 jaijj

�2+�
= O

�
nmaxf[�(2+�);1]

	
, and then

nX
i=1

E jXij2+� � !�(2+�)n n�
2+�
2 K

nX
i=1

 
nX
j=1

jaijj
!2+�

= O
n
n�

2+�
2
+max[�(2+�);1]

o
;

A3See, for example, Davidson (1994), p. 140.
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or equivalently,
nX
i=1

E jXij2+� =
(
O
�
n�

�
2

�
; if � � 1

2+�
;

O
h
n(��

1
2
)(2+�)

i
; if � > 1

2+�
:

Therefore,
Pn

i=1E jXij2+� converges to zero if 0 � � < 1=2, and this completes the proof of
condition (b).

We now turn to establishing condition (c) of Lemma A.10. Note that

E
�
X2
i jFxi�1

�
=
a2ii (�4 � �4)

n!2n
+
4�2�2i�1
n!2n

+
4aii�3�i�1
n!2n

;

and it follows that
nX
i=1

E
�
X2
i jFxi�1

�
� 1 = (

Pn
i=1 a

2
ii) (�4 � �4)
n!2n

+
4�2

Pn
i=1 �

2
i�1

n!2n

+
4�3

Pn
i=1 aii�i�1
n!2n

�
(�4 � �4)

Pn
i=1 a

2
ii + 4�

4
n

Pn
i=1

Pi�1
j=1 a

2
ij

n!2n

=
4�2

hPn
i=1 �

2
i�1 � �2

Pn
i=1

Pi�1
j=1 a

2
ij

i
n!2n

+
4�3

Pn
i=1 aii�i�1
n!2n

= !�2n (8H1 + 4H2 + 4H3) ;

where

H1 = n
�1�2

nX
i=1

i�1X
j=1

j�1X
k=1

aijaik"j"k; (A.20)

H2 = n
�1�2

nX
i=1

i�1X
j=1

a2ij
�
"2j � �2

�
; (A.21)

H3 = n
�1�3

nX
i=1

i�1X
j=1

aiiaij"j: (A.22)

We need to show that Hs, for s = 1; 2; 3, tend to zero in probability as n ! 1. For H1, we
have

H2
1 = n

�2�4
nX
i=1

i�1X
j=1

j�1X
k=1

nX
l=1

l�1X
r=1

r�1X
s=1

aijaikalrals"j"k"r"s:

Note that E ("j"k"r"s) 6= 0 only if (j = r) 6= (k = s) or (j = s) 6= (k = r), since k 6= j, s 6= r.
Therefore,

E
�
H2
1

�
= 2n�2�8

nX
l=1

lX
i=1

i�1X
j=1

j�1X
k=1

aijaikaljalk

� 2n�2�8
nX
l=1

nX
i=1

nX
j=1

nX
k=1

jaijj jaikj jaljj jalkj
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� n�2�8
nX
i=1

nX
j=1

jaijj
nX
l=1

jaljj
 

nX
k=1

jaikjjplkj+
nX
k=1

jaikjjpklj
!

� n�2�8
nX
i=1

nX
j=1

jaijj
nX
l=1

jaljj
 
sup
1�l�n

nX
k=1

jplkj
!�

sup
1�i;k�n

jaikj
�

+ n�2�8
nX
i=1

nX
j=1

jaijj
nX
k=1

jaikj
 
sup
1�k�n

nX
l=1

jpklj
!�

sup
1�l;j�n

jaljj
�

� Kn�2
nX
i=1

nX
j=1

jaijj
 
sup
1�j�n

nX
l=1

jaljj+ sup
1�i�n

nX
k=1

jaikj
!
� Kn��1:

Noting also that E(H1) = 0, by Markov�s inequality we conclude that H1 = op(1) if � < 1.

Turning next to H2. We have E(H2) = 0 and

H2
2 = n

�2�4
nX
i=1

i�1X
j=1

a2ij
�
"2j � �2

� nX
k=1

k�1X
l=1

a2kl
�
"2l � �2

�
= n�2�4

nX
i=1

i�1X
j=1

nX
k=1

k�1X
l=1

a2ija
2
kl"

2
j"
2
l + n

�2�8
nX
i=1

i�1X
j=1

nX
k=1

k�1X
l=1

a2ija
2
kl

� n�2�6
nX
i=1

i�1X
j=1

nX
k=1

k�1X
l=1

a2ija
2
kl"

2
j � n�2�6

nX
i=1

i�1X
j=1

nX
k=1

k�1X
l=1

a2ija
2
kl"

2
l ;

which leads to

E
�
H2
2

�
= n�2�4

 
nX
i=1

i�1X
j=1

nX
k=1

a2ija
2
kj�4 + �

4

nX
i=1

i�1X
j=1

nX
k=1

k�1X
l=1;l 6=j

a2ija
2
kl

!

� n�2�8
nX
i=1

i�1X
j=1

nX
k=1

k�1X
l=1

a2ija
2
kl

= n�2�4
�
�4 � �4

� nX
i=1

i�1X
j=1

nX
k=1

a2ija
2
kj

� n�2�4
�
�4 � �4

� nX
i=1

nX
j=1

a2ij

 
sup
1�j�n

nX
k=1

jakjj
!�

sup
1�k;j�n

jakjj
�

� Kn��1;

where in the last line we used n�1
Pn

i=1

Pn
j=1 a

2
ij = Tr (n

�1A0A) < K. Thus, we obtain that

H2 = op(1) if � < 1. Lastly, E(H3) = 0, and

H2
3 = n

�2�23�
2

nX
i=1

i�1X
j=1

aij"j

nX
k=1

k�1X
l=1

akkakl"l;
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and it follows that

E
�
H2
3

�
= n�2�23�

2

nX
i=1

i�1X
j=1

nX
k=1

aiiaijakkakj

� n�2�23�2
nX
i=1

nX
j=1

nX
k=1

jaiij jaijj jakkj jakjj

� Kn�2
nX
i=1

nX
j=1

jaiij jaijj
 
sup
1�j�n

nX
k=1

jakjj
!�

sup
1�k�n

jakkj
�
� Kn��1:

Hence, H3 = op(1) if � < 1. Overall, we conclude that
Pn

i=1E(X
2
i jFxi�1) !p 1 if 0 � � < 1,

which proves condition (c) of Lemma A.10. Combining our �ndings for (a)�(c) establishes the

result in (14) of the paper under 0 � � < 1=2.

Proof of Theorem 2. We begin by showing that ~!2n, which is de�ned in (18) of the paper,
is bounded in n for all 0 � � � 1. Note that

~!2n = !
2
n + �

2n�1
nX
i=1

�2�;i + 2�3n
�1

nX
i=1

aii��;i;

where !2n is de�ned by (15) in the paper. We have shown in the above proof of Theorem

1 that !2n is bounded in n for all 0 � � � 1, and since �2�;i < K; ��;i < K; �3 < K, and

jaiij � jpiij < K for all i, it is immediate that ~!2n is bounded in n for 0 � � � 1. Also note
that condition (16) in the paper implies that ~!2n > 0; for all n (including n!1).
Consider ~Q de�ned by (17) in the paper and write it as ~Q =

Pn
i=1 Yi, where

Yi = ~!
�1
n n

�1=2aii
�
"2i � �2

�
+ 2~!�1n n

�1=2"i�i�1 + ~!
�1
n n

�1=2�i"i;

and �i�1 is de�ned in (A.17). It is easy to check that fYi; 1 � i � ng forms a martingale
di¤erence array with respect to the �ltration F�;"i�1 = �

h
(�j)

i�1
j=1 ; ("j)

i�1
j=1

i
(with F�;"0 = f;;
g),

and therefore fYig is also a martingale di¤erence array with respect to the �ltration Fyi�1 =
�
h
(Yj)

i�1
j=1

i
: To apply the central limit theorem given by Lemma A.10, we need to show in

turn that the three conditions (a)�(c) are satis�ed for
�
Yi;F

y
i�1
	
.

First, we see that

E
�
Y 2i
�
= ~!�2n n

�1

"
a2ii
�
�4 � �4

�
+ 4�4

i�1X
j=1

a2ij + �
2�2�;i + 2�3aii��;i

#
:

Using (18) in the paper we obtain
Pn

i=1E (Y
2
i ) = 1. Since E (Y 2i ) � 0 for all i, we readily

have E (Y 2i ) � 1 and hence Yi is square integrable.
Turning to condition (b). Notice that Yi can be rewritten as Yi = ~!�1n n

�1=2 (Y1;i + Y2;i),

A13



where Y1;i = aii ("2i � �2) + 2"i�i�1; and Y2;i = �i"i. Applying the cr�inequality, we have
nX
i=1

EjYij2+� = ~!�(2+�)n n�
2+�
2

nX
i=1

E jY1;i + Y2;ij2+�

� 21+�~!�(2+�)n n�
2+�
2

nX
i=1

�
E jY1;ij2+� + E jY2;ij2+�

�
:

Since
nX
i=1

E jY2;ij2+� =
nX
i=1

E j�i"ij2+� � n sup
i
E
�
j"ij2+�

�
sup
j
E
�
j�jj2+�

�
� Kn;

it follows that n�
2+�
2

Pn
i=1E jY2;ij

2+� = O
�
n�

�
2

�
, which converges to zero for all values of

0 � � � 1. In addition, note that Y1;i = Xin
1=2!n, where Xi is de�ned in (A.16). As

we have shown in the proof of Theorem 1 that
Pn

i=1E jXij2+� ! 0 if 0 � � < 1=2, we

immediately obtain that n�
2+�
2

Pn
i=1EjY1;ij2+� ! 0 if 0 � � < 1=2. Thus, overall we havePn

i=1EjYij2+� ! 0 if 0 � � < 1=2; and this completes the proof of condition (b).
Now it remains to establish condition (c):

Pn
i=1E

�
Y 2i jF

y
i�1
�
!p 1. Note that

nX
i=1

E
�
Y 2i jF

y
i�1
�
� 1 = ~!�2n (8H1 + 4H2 + 4H3 + 4H4) ;

where Hs, s = 1; 2; 3; are given by (A.20)�(A.22), respectively, and H4 = n�1�2
Pn

i=1 �i�i�1:

Since E (H4) = 0 and

V ar (H4) = n
�2�4

nX
i=1

E
�
�2i
�
E
�
�2i�1

�
� �4 sup

i
E
�
�2i
� "
n�2

nX
i=1

E
�
�2i�1

�#
� Kn�1;

we have H4 !p 0. As it has been shown in the proof of Theorem 1 that Hs !p 0, for

s = 1; 2; 3; if 0 � � < 1, overall we conclude that
Pn

i=1E
�
Y 2i jF

y
i�1
�
!p 1 if 0 � � < 1.

Combining conditions (a)�(c), Lemma A.10 is applicable and the result in (17) of the paper

is established under 0 � � < 1=2.

Proof of Proposition 1. Let us �rst consider the estimator de�ned by (27) in the paper
using a single quadratic moment. We can rewrite " (�), given by (29) in the paper, as

" (�) = "� (�� �0)G0": (A.23)

Substituting (A.23) into gn (�), which is given by (28) in the paper, yields

gn (�) = n
�1 ["� (�� �0)G0"]

0C ["� (�� �0)G0"]

=
"0C"

n
+ (�� �0)2 "0

�
G0
0CG0

n

�
"� 2 (�� �0) "0

�
G0
0C

n

�
". (A.24)

Since Tr (C) = Tr (B) = 0 under Assumption 8, we have E0 ("0C") = �20Tr (C) = 0. Using
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the results in Lemma A.7(i)�(iii), we obtain

gn (�) = (�� �0)2 �20a0 � 2 (�� �0)�20b0 + op (1) ;

where a0 = limn!1 Tr (n
�1G0

0CG0) and b0 = limn!1 Tr (n
�1G0

0C) : Note that gn (�0) =

n�1"0C". Using (A.24), it follows that

gn (�)� gn (�0) = (�� �0)2 �20a0 � 2 (�� �0)�20b0 + op (1) :

Since ~� is such that gn (~�) � gn (�0), or equivalently (�� �0)2 �20a0 � 2 (�� �0)�20b0 � 0, then
we will have global identi�cation if b0 = 0 and a0 6= 0. In this case, (~�� �0)2 a0 � 0; which
is satis�ed if and only if ~� = �0. However, in general where b0 6= 0, and we must have either
~� = �0+op (1), or ~� = �0+2b0=a0+op (1). It is clear that �0 is not globally identi�ed if b0 6= 0.
Now suppose that we use at least two quadratic moments to obtain the GMM estimator.

Formally, consider the estimator de�ned by (30) in the paper using L (L � 2) quadratic

moments. The above arguments for a single quadratic moment readily extends to the case of

multiple quadratic moments. Each (population) moment condition will have two solutions:

~�1;` = �0 and ~�2;` = �0 + 2b`0=a`0, for ` = 1; 2; : : : ; L, where a`0 = limn!1 Tr (n
�1G0

0C`G0)

and b`0 = limn!1 Tr (n
�1G0

0C`). Then it is clear that �0 is uniquely identi�ed as long as the

ratios, b`0=a`0, are not all the same across ` = 1; 2; : : : ; L:

Proof of Theorem 3. Consider " ( ) given by (20) in the paper. It can be rewritten as

" ( ) = "� (�� �0)G0"�Q0 ( � 0) ; (A.25)

where Q0 = (�0;X) and �0 = G0X�0, which is de�ned by (9) in the paper. Substituting

(A.25) into the quadratic term in (25) of the paper and reorganizing yields

n�1"0 ( )C" ( ) =
"0C"

n
� 2(�� �0)

"0G0
0C"

n
� 2(�� �0)

�00C"

n
� 2 (� � �0)

0 X
0C"

n

+ (�� �0)2
"0G0

0CG0"

n
+ (�� �0)2

�00C�0
n

+ (� � �0)
0 X

0CX

n
(� � �0)

+ 2(�� �0)2
"0G0

0C�0
n

+ 2 (�� �0)
"0G0

0CX

n
(� � �0) + 2 (�� �0)

�00CX

n
(� � �0) :

Using the results in Lemma A.7 and Assumption 7(d), the above equation becomes

n�1"0 ( )C" ( ) = (�� �0)2
�
�20a0 + c0

�
� 2 (�� �0)�20b0 + 2 (�� �0)d00 (� � �0)

+ (� � �0)
0�xcx (� � �0) + op (1) ; (A.26)

if � < 1, where a0 = limn!1 Tr (n
�1G0

0CG0), b0 = limn!1 Tr (n
�1G0

0C), c0 = p limn!1 n
�1�00C�0,

d00 = p limn!1 n
�1�00CX, and�xcx = p limn!1 n

�1X0CX. Substituting (A.25) into the linear

term in (25) in the paper yields

n�1Z0" ( ) = n�1Z0"� (�� �0)n�1Z0G0"� n�1Z0Q0 ( � 0)
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= �zq ( � 0) + op (1) ; (A.27)

where �zq = p limn!1 n
�1Z0Q0 and n�1Z0" = op (1) readily follow Assumption 7. To see that

n�1Z0G0" = op (1), �rst note that its mean is zero due to independence of Z and ", and we

only need to show that its variance is o (1). Let z:l = (z1l; z2l;:::;znl)
0 denote the lth column of

Z, for l = 1; 2; : : : ; r. Then

V ar
�
n�1z0:lG0"

�
= E

�
V ar

�
n�1z0:lG0"jZ

��
= n�2�20Tr (G0G

0
0M) ;

where M = (mij) = E (z:lz
0
:l). Since supi:j jmijj = supi:j jE (zilzjl)j < K under Assump-

tion 7, using Lemma A.4(iii) and Lemma A.6(ii) yields Tr (G0G
0
0M) = O

�
n�+1

�
and then

V ar (n�1z0:lG0") = O
�
n��1

�
for l = 1; 2; : : : ; r. Consequently, by Chebyshev�s inequality

n�1Z0G0" converges in mean square and therefore also in probability to zero if � < 1.

Now combining (A.26) and (A.27), we obtain

Angn ( ) = A

24 (�� �0)2 (�20a0 + c0)� 2 (�� �0)�20b0 + 2 (�� �0)d00 (� � �0)+ (� � �0)
0�xcx (� � �0)

�zq ( � 0)

35+ op (1) ;
or alternatively,

Angn ( )�AE0 [gn ( )] = op (1) :

Under Assumption 7, �zq has full column rank, then �zq ( � 0) = 0 if and only if  =  0.
Hence, global identi�cation is ensured without the quadratic moment. Moreover, it is readily

seen that gn ( ) converges in probability uniformly in  2 	 since 	 is compact and gn ( )

is a continuous function. Thus, consistency of ~ can be established.

Consider now to the asymptotic distribution of ~ . By a mean-value expansion of @g
0
n(
~ )

@ 
A0
nAngn( ~ ) =

0 around  0, we obtain

p
n( ~ � 0) = �

 
@g0n(

~ )

@ 
A0
nAn

@g( � )

@ 0

!�1
@g0n(

~ )

@ 
A0
n

p
nAngn( 0);

where � lies element by element between  0 and  ̂. Note that

@gn( )

@ 0
= �n�1 [2C" ( ) ;Z]0 (y�;X) ;

and y� = �0 +G0"; we have

n�1"0 ( )Cy� = n�1"0 ( )C�0 + n
�1"0 ( )CG0":

Using (A.25), Lemma A.7, and Assumption 7(d) yields

n�1"0 ( )C�0 = n
�1"0C�0 � n�1(�� �0)"0G0

0C�0 � n�1 ( � 0)
0Q0

0C�0

= �n�1 ( � 0)
0Q0

0C�0 + op (1) ;
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n�1"0 ( )CG0" = n
�1"0CG0"� n�1(�� �0)"0G0

0CG0"� n�1 ( � 0)
0Q0

0CG0"

= n�1�20Tr (CG0)� n�1�20(�� �0)Tr (G0
0CG0) + op(1);

if � < 1, and consequently

n�1"0 ( )Cy� = �n�1 ( � 0)
0Q0

0C�0+n
�1�20Tr (CG0)�n�1�20(���0)Tr (G0

0CG0)+op(1);

uniformly in  2 	. At  =  0, we have " ( 0) = ", and it follows that n�1"0Cy� =

n�1�20Tr (CG0) + op(1), and

n�1Z0y� = n�1Z0�0 + n
�1Z0G0" = n

�1Z0�0 + op (1) ;

if � < 1. Thus, @gn( � )=@ 
0 = �D+ op (1), where D is given by (31) in the paper. Moreover,

by Theorem 2 in the paper we have V�1=2
g

p
ngn( 0) !d N (0; Ik+1) if � < 1=2, where Vg is

given by (31). Hence, the asymptotic distribution of
p
n( ~ �  0) is as stated in Theorem 3.

Proof of Theorem 4. To establish consistency and asymptotic distribution of the BMM
estimators, we �rst note that under model (5) in the paper with � = �0 we have

y��̂y� = � (�̂� �0)y� +X�0 + ";

and hence

Mx (y��̂y�) = � (�̂� �0)Mxy
� +Mx",

whereMx is given by (42) in the paper. Also note that

n�1
�
y��̂y� �X�̂

�0 �
y��̂y� �X�̂

�
= n�1 (y��̂y�)0Mx (y��̂y�) = �̂2:

Using the above results, the estimating equations (36)�(38) in the paper can now be written

as �
n�1y�0X

� �
�̂ � �0

�
+
�
n�1y�0y�

�
(�̂� �0) = n�1y�0"� �̂2Tr

�
n�1G (�̂)

�
; (A.28)�

n�1X0X
� �
�̂ � �0

�
+
�
n�1X0y�

�
(�̂� �0) = n�1X0"; (A.29)

and

�̂2 � �20 =
��
n�1"0Mx"

�
� �20

�
� 2 (�̂� �0)

�
n�1y�0Mx"

�
+ (�̂� �0)2

�
n�1y�

0
Mxy

�
�
: (A.30)

Noting that y� = �0 +G0"; where �0 is given by (9) in the paper, we obtain

n�1y�0X = n�1�00X+ n
�1"0G0

0X; n
�1y�0" = n�1�00"+ n

�1"0G0
0";

n�1y�0y� = n�1�00�0 + n
�1"0G0

0G0"+ 2n
�1"0G0

0�0;

n�1y�
0
Mxy

� = n�1�00Mx�0 + n
�1"0G0

0MxG0"+ 2n
�1"0G0

0Mx�0;

n�1y�0Mx" = n
�1�00Mx"+ n

�1"0G0
0Mx":
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Also, denoting G (�̂) by Ĝ, we have

�̂2Tr
�
n�1Ĝ

�
� �20Tr

�
n�1G0

�
=
�
�̂2 � �20

�
Tr
�
n�1G0

�
+ �20

h
Tr
�
n�1Ĝ

�
� Tr

�
n�1G0

�i
+
�
�̂2 � �20

� h
Tr
�
n�1Ĝ

�
� Tr

�
n�1G0

�i
: (A.31)

But

Ĝ�G0 =W (In � �̂W)�1�W (In � �0W)�1

=W (In � �̂W)�1 [(In � �0W)� (In � �̂W)] (In � �0W)�1

= (�̂� �0)W (In � �̂W)�1W (In � �0W)�1 = (�̂� �0) ĜG0: (A.32)

Hence, Ĝ = G0 + (�̂� �0) ĜG0, and using this result back in (A.32) now yields

Ĝ�G0 = (�̂� �0)
h
G0 + (�̂� �0) ĜG0

i
G0 = (�̂� �0)G2

0 +Rn (�̂; �0) ;

where Rn (�̂; �0) = (�̂� �0)2G (�̂)G2 (�0). But by Lemma A.6, kG(�)k1 < K, and only con-
sidering estimates of � that satisfy the condition j�̂j < 1, we have kRn (�̂; �0)k1 � K j�̂� �0j

2 ;

and hence E jn�1Tr [Rn (�̂; �0)]j � KE j�̂� �0j2, which establishes that

n�1Tr
�
Ĝ�G0

�
= (�̂� �0)Tr

�
n�1G2

0

�
+Op

�
(�̂� �0)2

�
: (A.33)

Using results in Lemmas A.8 and A.9, it is now readily established that

n�1"0G0
0X = Op

�
n�1=2

�
; n�1"0G0

0�0 = Op
�
n�1=2

�
; n�1"0G0

0Mx�0 = Op
�
n�1=2

�
;

n�1"0G0
0" = �

2
0Tr

�
n�1G0

�
+Op

�
n�1=2

�
; n�1"0G0

0MxG0" = �
2
0Tr

�
n�1G0

0MxG0

�
+Op

�
n�1=2

�
;

n�1"0G0
0G0" = �

2
0Tr

�
n�1G0

0G0

�
+Op

�
n�1=2

�
; n�1"0G0

0Mx" = �
2
0Tr

�
n�1G0Mx

�
+Op

�
n�1=2

�
;

and hence

n�1"0Mx" = �
2
0 +Op

�
n�1=2

�
; n�1y�0" = �20Tr

�
n�1G0

�
+Op

�
n�1=2

�
;

n�1y�0Mx" = �
2
0Tr

�
n�1G0Mx

�
+Op

�
n�1=2

�
;

n�1y�
0
Mxy

� = n�1�00Mx�0 + �
2
0Tr

�
n�1G0

0MxG0

�
+Op

�
n�1=2

�
:

Using these results in (A.30) now yields

�̂2 � �20 =
��
n�1"0Mx"

�
� �20

�
� 2 (�̂� �0)�20Tr

�
n�1G0Mx

�
+Op

�
(�̂� �0)n�1=2

�
+Op

�
(�̂� �0)2

�
: (A.34)

Substituting (A.33) and (A.34) in (A.31) we have (noting that Tr (n�1G0) < K)

�̂2Tr
�
n�1Ĝ

�
� �20Tr

�
n�1G0

�
=Tr

�
n�1G0

� ��
n�1"0Mx"

�
� �20

�
� 2�20 (�̂� �0)Tr

�
n�1G0Mx

�
Tr
�
n�1G0

�
+ �20 (�̂� �0)Tr

�
n�1G2

0

�
+Op

�
(�̂� �0)2

�
+Op

�
(�̂� �0)n�1=2

�
: (A.35)
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Using (A.35) in (A.28) and rearranging gives�
n�1y�0X

� �
�̂ � �0

�
+ hn;�� (�̂� �0) = hn;�" +Op

�
(�̂� �0)2

�
+Op

�
(�̂� �0)n�1=2

�
; (A.36)

where

hn;�" = n
�1�00"+ n

�1"0
�
G0
0 �MxTr

�
n�1G0

��
";

hn;�� = n
�1y�0y� + �20Tr

�
n�1G2

0

�
� 2�20Tr

�
n�1G0Mx

�
Tr
�
n�1G0

�
:

Combining (A.36) and (A.29) we have�
hn;��

y�0X
n

X0y�

n
X0X
n

��
�̂� �0
�̂ � �0

�
=

�
hn;�"
X0"
n

�
+

�
Op
�
(�̂� �0)2

�
+Op

�
(�̂� �0)n�1=2

�
0

�
:

It is also easily seen that

hn;�� = n
�1�00�0 + n

�1"0G0
0G0"+ 2n

�1"0G0
0�0

+ �20Tr
�
n�1G2

0

�
� 2�20Tr

�
n�1G0Mx

�
Tr
�
n�1G0

�
= n�1�00�0 + �

2
0Tr

�
n�1G0

0G0

�
+ �20Tr

�
n�1G2

0

�
� 2�20Tr

�
n�1G0Mx

�
Tr
�
n�1G0

�
+Op

�
n�1=2

�
:

Notice that

Tr
�
n�1G0Mx

�
= n�1Tr (G0)� n�1Tr

h
G0X (X

0X)
�1
X0
i

= n�1Tr (G0)� n�1Tr
h�
n�1X0X

��1 �
n�1X0G0X

�i
:

Under Assumption 3, we have

p lim
n!1

n�1Tr (G0Mx) = lim
n!1

n�1Tr (G0)� lim
n!1

n�1Tr (�xx�xgx) = lim
n!1

n�1Tr (G0) .

Hence, using results in Lemmas A.8 and A.9 we have

p lim
n!1

hn;�� = �
0
0�xggx�0 + �

2
0h0;

where h0 = limn!1 hn, and hn is given by (10); p limn!1 hn;�" = 0; p limn!1
X0"
n
= 0;

p limn!1
y�0X
n
= �00�xgx; and p limn!1

X0X
n
= �xx: Therefore, the BMM estimators are con-

sistent if H; de�ned in (40) in the paper, is a non-singular matrix. In particular, under this

condition �̂� �0 = Op(n�1=2).
To derive the asymptotic distribution of the BMM estimators, we �rst note that�
hn;��

y�0X
n

X0y�

n
X0X
n

� p
n (�̂� �0)p
n
�
�̂ � �0

� !
=

� p
nhn;�"
X0"p
n

�
+

�
Op
�p
n (�̂� �0)2

�
+Op [(�̂� �0)]

0

�
;

and

H
p
n
�
 ̂ � 0

�
=

� p
nhn;�" +Op

�
n�1=2

�
X0"p
n

�
:
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Consider now
p
nhn;�" =

�00"p
n
+
"0�"p
n
; (A.37)

where � is given by (42) in the paper. Since X is strictly exogenous under Assumption 3,

we carry on the analysis of (A.37) conditional on X. By Lemma A.6(ii), G0 satis�es the

conditions in (11) and (12) in the paper. Since Mx is an idempotent matrix, � also satis�es

(11) and (12). Therefore, applying Theorem 2 in the paper leads to

1p
n

�
�00"+ "

0�"� �20Tr (�)
�
!d N(0; !

2
n);

where !2n is given by (41) in the paper. Notice that

Tr (�) = Tr (G0)� Tr (Mx)Tr
�
n�1G0

�
= Tr (G0)�

n� k
n

Tr (G0) =
k

n
Tr (G0) < K;

and it follows that p limn!1
�
n�1=2�20Tr (�)

�
= 0. Hence, by Slutsky�s theorem we obtain

�00"p
n
+
"0�"p
n
!d N(0; !

2
n):

In addition, it is readily seen that X
0"p
n
!d N (0; �

2
0�xx). Thus, the asymptotic distribution of

 ̂ as stated in Theorem 4 in the paper is established.

Proof of Proposition 2. We will show that under the stated conditions the limiting distrib-
ution of the BMM estimator given by Theorem 4 in the paper is equivalent to the distribution

of the best GMM estimator given by (4.5) of Proposition 3 in Lee (2007). Note that the last

term of (41) in the paper can be rewritten as

Tr
�
n�1�0�

�
+ Tr

�
n�1�2

�
= Tr

�
n�1G0

0G0 + n
�1G2

0

�
� 4Tr

�
n�1MxG0

�
Tr
�
n�1G0

�
+ 2Tr

�
n�1Mx

� �
Tr
�
n�1G0

��2
= n�1Tr

�
G0
0G0 +G

2
0

�
� 2

�
Tr
�
n�1G0

��2
� 4Tr

h
n�1X (X0X)

�1
X0G0

i
Tr
�
n�1G0

�
+ 2n�1k

�
Tr
�
n�1G0

��2
= hn � 4n�1Tr

h
(X0X)

�1
(X0G0X)

i
Tr
�
n�1G0

�
+ 2n�1k

�
Tr
�
n�1G0

��2
;

where hn is given by (10) in the paper. Since�xx = p limn!1 n
�1X0X and�xgx = p limn!1 n

�1X0G0X

exist and they are k-dimensional square matrices (k is �nite), it follows that

p lim
n!1

�
Tr
�
n�1�0�

�
+ Tr

�
n�1�2

��
(A.38)

= h� 4 lim
n!1

n�1Tr (�xx�xgx) + 2 lim
n!1

n�1k
�
Tr
�
n�1G0

��2
= h;

where h = limn!1 hn. In addition, the assumption of normally distributed errors imply that

2 = 0 and �3 = 0. Finally, combining (40) and (41) in the paper with (A.38) leads to
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V = �20H and hence 
b = �
2
0H

�1; which is identical to the asymptotic variance of the best

GMM estimator given by (4.5) of Lee (2007).
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