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Estimation and inference in spatial models
with dominant units

Abstract

Estimation and inference in the spatial econometrics literature are carried out assuming that the
matrix of spatial or network connections has uniformly bounded absolute column sums in the
number of cross-section units, n. In this paper, we consider spatial models where this restriction
is relaxed. The linear-quadratic central limit theorem of Kelejian and Prucha (2001) is
generalized and then used to establish the asymptotic properties of the GMM estimator due to
Lee (2007) in the presence of dominant units. A new Bias-Corrected Method of Moments
estimator is also proposed that avoids the problem of weak instruments by self-instrumenting
the spatially lagged dependent variable. Both estimators are shown to be consistent and
asymptotically normal, depending on the rate at which the maximum column sum of the weights
matrix rises with n. The small sample properties of the estimators are investigated by Monte
Carlo experiments and shown to be satisfactory. An empirical application to sectoral price
changes in the US over the pre- and post-2008 financial crisis is also provided. It is shown that
the share of capital can be estimated reasonably well from the degree of sectoral
interdependence using the input-output tables, despite the evidence of dominant sectors being
present in the US economy.
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1 Introduction

In spatial econometrics, the interdependence among cross-sectional units is captured via a
spatial weights matrix, W = (w;;), which is usually constructed based on some measures of
geographical, economic or social distance. A critical assumption that has been adopted in
the existing literature is that the maximum absolute row and column sum norms of W are
uniformly bounded in the number of cross section units, n. This assumption, which dates
back to the seminal contributions of Kelejian and Prucha (1998, 1999), essentially imposes
a strong restriction on the degree of cross-sectional dependence amongst the units in the
spatial model or network. For example, the assumption will be satisfied if W is sparse in
the sense that each unit has only a finite number of "neighbors", or if the strength of their
connections decays sufficiently fast with their distance from one another. However, such
sparsity conditions rule out the possibility that some units could be dominant or influential,
in the sense that they might impact a large number of other units in the network. This
could arise, for example, in the case of production or financial networks where a large number
of firms or households could depend on one or more banks or sectors in the economy, as
documented in the recent contributions by Acemoglu, Carvalho, Ozdaglar, and Tahbaz-Salehi
(2012), Dungey and Volkov (2018) and Pesaran and Yang (2019). In such cases the standard
proofs used to justify the consistency and asymptotic normality of the proposed estimators
are no longer applicable.

In this paper we consider estimation and inference in spatial autoregressive (SAR) models
where the maximum column sum norm of the weights matrix, denoted by ||[W|,, is allowed to
rise with the dimension of the network, n. Specifically, we consider situations where |W/||, =
O (n‘;), with § € [0,1]. The exponent § measures the degree to which the most influential
unit in the network impacts all other units. The condition imposed on W in the literature
corresponds to assuming 0 = 0. But, as noted above, in many applications it is likely that
0 > 0, and it is therefore desirable to provide conditions under which standard estimators of
SAR models continue to apply in such cases.

The exponent ¢ also relates to measures of network centrality. In the case of spatial models
with row normalized weights matrices, the degree of centrality of unit j is typically measured
by its (weighted) outdegree, defined by d; = >, w;;. The degree of dominance of unit j
can now be measured by the exponent ¢;, defined by d; = O (n‘sf), where 6; € [0,1]. Unit
J is said to be strongly dominant if §; = 1, weakly dominant if §; > 0, and non-dominant
if §; = 0.! To simplify the exposition we refer to unit j as being dominant if §; > 0, unless
it is important to distinguish between cases of strong and weak dominance. Accordingly,

the overall degree of network centrality is also given by ¢ = max (dy, s, ...,d,).> From this

'For further details see Definition 1 in Pesaran and Yang (2019).
*Note that [[W|; = sup;(d;).



perspective, the assumption that W has bounded column sum norm requires that ; = 0, for
all j. The present paper relaxes this assumption and develops new estimation and inference
theory allowing for the existence of dominant units (6 > 0) in the network.?

We begin by generalizing the central limit theorem for linear-quadratic forms due to Kele-
jian and Prucha (2001), which requires § = 0. For our analysis we need to relax this restriction
and allow the matrix in the quadratic form of their theorem to have column sums that are
unbounded in n (namely allow for ¢ > 0). The generalized central limit theorem is then used
to establish the asymptotic properties of the estimators of the SAR model.

There are two main approaches to the estimation of spatial models, namely the maximum
likelihood (ML) method developed by Cliff and Ord (1973, 1981), Upton and Fingleton (1985),
and developed further by Anselin (1988), Lee (2004), and Lee and Yu (2010), amongst others.
The second approach is the generalized method of moments (GMM) pioneered by Kelejian and
Prucha (1998, 1999), and extended and further studied by Lee (2007), Kapoor et al. (2007),
Lin and Lee (2010), and Lee and Yu (2014), amongst others. In this paper we consider the
GMM approach developed by Lee (2007), which is generally applicable even if the SAR model
does not contain any regressors, and establish conditions under which Lee’s GMM estimator
is consistent and asymptotically normal even if § > 0.

We also propose a new bias-corrected method of moments (BMM), which is also applicable
generally and is simple to implement. The BMM approach was first introduced in a recent
paper by Chudik and Pesaran (2017) for the estimation of dynamic panel data models with
short time-dimension. In the context of the SAR model, the spatial lag variable is endogenous.
Instead of looking for valid instruments, the BMM approach uses the spatial lag variable as
an "instrument" for itself, but corrects the bias due to the non-zero correlation between the
spatial lag variable and the error term. This method has the advantage of avoiding the weak
instrument problem by construction. We show that both GMM and BMM estimators are
consistent if 0 < § < 1, and establish their asymptotic normality for values of ¢ in the range
0<0d<1/2

An extensive set of Monte Carlo experiments lend support to the theoretical results and
document that both estimators have satisfactory small sample properties, with the BMM
estimator outperforming the GMM estimator when n is relatively small and ¢ is close to unity.
The estimation techniques are shown to be robust to different degrees of spatial dependence,

various specifications of the spatial weights matrix, and non-Gaussian errors.

3Tt is worth noting that in the current paper we assume W is known and focus on estimating the spatial
parameters. In cases where information on direct connections of the network is unavailable, there exists a
related literature that uses large panel data sets (with both n and T large) to detect which unit has the largest
0 (when ¢ equals or is close to unity) from the pattern of correlation in the data without needing to know W.
See, for example, Bai and Ng (2006), Parker and Sul (2016), Brownlees and Mesters (2018), and Kapetanios
et al. (2018). In a related literature, Bailey et al. (2016) also consider estimating § using large panel data sets
when W is not known.



As an empirical application we consider the sectoral price changes in the US over the pre-
and post-2008 financial crisis, using 300 x 300 input-output tables as spatial weights. We
show that the share of capital can be estimated from the degree of sectoral interdependence.
We first investigate the presence of dominant sectors in the US economy by computing the
extremum estimator of § (the degree of network centrality) proposed in Pesaran and Yang
(2019), and obtain estimates lying between 0.71 and 0.85, suggesting the existence of at least
one dominant sector in the US economy. We then estimate a SAR model in the rate of sectoral
price changes and provide estimates of the share of capital of around 0.4 during the pre-crisis
period (1998-2006), and 0.3 over the post-crisis period (2007—2015). These estimates compare
reasonably well with the share of capital calibrated in the literature.

The remainder of the paper is organized as follows: Section 2 describes the model and
sets out its assumptions. Section 3 provides a generalization of Kelejian and Prucha’s central
limit theorem. The GMM and BMM estimation methods and their asymptotic properties are
detailed in Sections 4 and 5, respectively. Section 6 presents the finite sample properties of the
GMM and BMM estimators using Monte Carlo techniques. Section 7 contains an empirical
application to the US sectoral prices, and Section 8 gives some concluding remarks. Proofs
of theorems and propositions, together with statements and proofs of necessary lemmas, are
provided in an online mathematical appendix. Additional empirical and Monte Carlo results
are summarized in a supplement, which is available upon request.

Notations: Generic positive finite constants are denoted by K when they are large, and
by € when small. They can take different values at different instances. Let {f,} -, be a
real sequence and {g,} -, be a real positive sequence. We write f,, = O(g,) if there exists a
positive finite constant Ky such that |f,| /g, < K, for all n; we write f,, = o(g,) if f./g, — 0
as n — oo. The symbols —, and — indicate convergence in probability and in distribution
as n — 00, respectively. Let {z,} be a sequence of random variables. We write z,, = o, (1) if
Tn, —p 0 asn — 00. Ey (-) denotes expectations taken under the true probability measure. For
an n x n matrix A = (a;;), |All,, = supi<;<, Y_;—; |ai;| denotes the maximum absolute row
sum norm (or row norm, for short) of A; ||All; = sup,;<, > |a;;| denotes the maximum
absolute column sum norm (or column norm, for short); and Ap.x (A) denotes the largest
eigenvalue of A. The symbol diag (A) represents a vector consisting of the diagonal elements
of A, namely, diag (A) = (ay1,ass, . ..,an) ; Whereas Diag (A) represents a diagonal matriz

formed by the diagonal entries of A. 1, is an n x 1 vector of ones, i.e., 1, = (1,1,...,1)".

2 The model and its assumptions

We consider the following standard SAR model:

vi = pyi + Bx;+¢e;, fori=1,2,... n, (1)



where y; is the outcome variable on unit ¢, p is a fixed spatial coefficient, x; is a & x 1 vector
of regressors on unit ¢ with the associated vector of fixed coefficients 3, ¢; is a random error,

y; is the spatial variable, defined by

i =Y wyy; =wiy, (2)
j=1
y=1,y2, -, Un), Wi, = (Wi, Wse,...,w;y) is a vector of known constant weights and
w;j > 0 for all ¢ and j. Let y* = (y},v3,...,vy;). Then (2) implies that y* = Wy, where
W = (w;j) = (W1, Wa,... ,W,.)" is an n x n known matrix of spatial weights (or network
connections).

We suppose W is row-standardized and assume that the j** column sum of W, d; =

S wy, is of order n% such that
dj = kn, for j =1,2,...,n, (3)

where ¢; is a fixed constant in the range 0 < ¢; < 1, and k; is a strictly positive random
variable defined on 0 < kK < k; <k < K, where £ and k are fixed constants. We also set

d= max (J;), 0<6<1, (4)

j=1,2,.m

and note that max; (d;) = ||[W||; = O(n’). We further assume that the number of dominant
units (with ¢; # 0) is a finite number denoted by m. Without loss of generality, we presume
that the first m units, j = 1,2,...,m (m is fixed) are §;-dominant (with J; # 0), and the
rest of the units, j = m+ 1,m +2,...,n, are non-dominant (with §; = 0). In particular, the
spatial weights matrix for the non-dominant units is denoted by Wy, which is the (n — m)-
dimensional square submatrix of W that captures the connections among the non-dominant
units.

In matrix notation, model (1) can be rewritten as

y =py" +XB+e, (5)
where X = (x,Xs,...,X,) is an n x k matrix of observations on exogenous regressors, and
e = (e1,€2,...,,)". The reduced-form representation of (5) is given by

y=8""(p)(XB+e), (6)

where S(p) = I, — pW. The existence of S7!(p) is ensured under the assumptions to be

discussed below. It immediately follows from (6) that
y =Wy =WS"(p)(XB+e) =G (p) (XB+e), (7)

where G (p) = WS~ (p). Note that the variables and spatial weights may depend on the
sample size and form triangular arrays, although we suppress subscript n for notational sim-

plicity.



The parameters of interest are p and 3, and their true values are denoted by py and 3,
respectively. For ease of exposition, we use Sy to denote the matrix S(p) evaluated at the true

parameter value po, namely, Sg = S(pg) = L, — poW. Similarly, we set
Go = G(po) = W (I, — pyW) ' = WS, (8)
and

1o = GoX0,. (9)

The following assumptions are made to carry out the asymptotic analysis.

Assumption 1 The idiosyncratic errors, €;, for i = 1,2,... n, in the SAR model given
by (1) are independently and identically distributed (IID) with zero means and a constant
variance, 02, such that 0 < 0% < K, and sup, F |&;|"7 < K.

Assumption 2 The (k+ 2)-dimensional vector of parameters of model (1), 8 = (p, 3',0%)" €
© = O, x O x O,2, where ©,, O, and O, are compact subsets of (—1,1), R¥ and (0, 00),
respectively; the true value of 6, denoted by 0y = (po,By,08), lies in the interior of the

parameter space, ©.

Assumption 3 Let X = (x1,Xs,...,X,) be the nx k matriz of observations on the regressors
in model (1), where x; = (i1, Tiz, ..., ) . (a) X;, fori = 1,2,...,n, are distributed inde-
pendently of the errors, €;, for all i and j, and sup, E (|xis|2+e) <K, (b)) n'X'X —, X,
is positive definite, and (¢) n'X'GoX —), Xpge and n ' X'GiGoX —, Xygge, where Gy is
defined by (8).

Assumption 4 The spatial weights matriz, W = (w;;), in the SAR model given by (1) is

non-negative, namely, w;; > 0 for all i and j; it is row-standardized such that W1, = 1,,.

Assumption 5 The column sums of the spatial weights matric W = (Wij), denoted by d; =
Yo wiy, g =1,2,...,n, are non-zero and follow the specification given by (3), where 0; # 0
forj=1,2,....m, and d; =0 for j =m+1,m+2,...,n, withm being a fixred number. Also,
lp| [Wazl|; < 1, where Wy is the (n—m)-dimensional square submatriz of W that represents

the connections among the non-dominant units.

Assumption 6 There exists ng such that for all n > ny (including n — o), either

(a) n~'QLQq is positive definite, where Qo = (1,,X), 1y is defined by (9),
and/or
(b) h, > € >0, where

hy =1 'Tr (GyGo + GE) — 2072 [T7 (Go))?, (10)

and Gy is given by (8).



Remark 1 It is worth noting that under Assumption 4, the matriz S(p) is invertible for all

p satisfying |p| < 1, irrespective of whether the column sums of W are bounded.*

Remark 2 Under Assumption 5, the first m column sums of W are unbounded and rise with
n, while the remaining (n —m) column sums are bounded in n. Although m is assumed to
be fized and does not rise with n, it can be shown that this must be true if 0; satisfies the
summability condition: Z?:l 6; < K5 Also, the ordering of the dominant units does not
affect the analysis. The current paper is not concerned with the identities of the dominant
units, but rather it focuses on the estimation of p and 3 when there are dominant units, such
that 6 > 0.

Remark 3 The non-negativity assumption, w;; > 0, is imposed only for ease of exposition
and s not restrictive. When it fails to hold, one can decompose W into two weights matrices
with non-negative elements, namely, W = W — W~ = (wg) — (wy;), with wg and w;; > 0.
Then model (1) can be written asy = ppWTy + poW~y + X3 + €. See Bailey et al. (2016)

for an empirical application employing this strategy.

3 A generalization of the central limit theorem for linear-
quadratic forms of Kelejian and Prucha (2001)

To allow for the presence of dominant units in the SAR model, we need to generalize the central
limit theorem established in Theorem 1 of Kelejian and Prucha (2001) for linear-quadratic
forms. First we consider the quadratic term which helps clarify the role played by the rate at
which the column sum norm of the n x n weights matrix, W, varies with n. We then consider
the extension of this theorem to linear-quadratic forms needed for the analysis of SAR models
with exogenous regressors. In what follows we state the theorems and relegate their proofs to

Section A.2 of the online mathematical appendix.°

Theorem 1 Let e = (g1,¢9,...,6,)" denote the n x 1 vector of 11D (0,0?%) random variables,
where 0 < 02 < K. Suppose that sup; E |5Z-|4+E < K, and denote the excess kurtosis of {e;}
by ke = (pua/o*) — 3, where py = E (¢}). Let P = (p;;) be an array of n X n constant matrices
that satisfy the following conditions

Pl = sup > _ |piyl < K, (11)

) j=].

4See Lemma A.1 in Appendix A of Pesaran and Yang (2019).

5See Proposition 2 of Pesaran and Yang (2019).

6Note that the elements of the weights matrix, W, and the error vector, €, typically depend on n, the
sample size. But, unless required for clarity, we suppress subscript n to simplify the notations.



IPll, =sup ) |py| = O (n°), 0<d<1, (12)
Ji=1

and P has a finite number of unbounded columns. Define A = (a;;) = (P+P’) /2. Also
n~YTr (A?) is such that

1 n
n~'Tr (A?) + §k‘e (n_l Z a?i) > € >0, for all n (including n — o). (13)

i=1
Then if ¢ lies in the range 0 < 6 < 1/2, we have
e'Ae — oTr (A)

Q = \/ﬁwn

—q4 N(0,1), as n — oo, (14)

where
w2 = 20'n'Tr (A?) + keo* (nl Z ai) : (15)
i=1

In application of the above theorem to GMM and BMM estimators of p, the column norm
properties of the weights matrix, W, carry over to matrix P in the above theorem, and allow us
to establish asymptotic normality of the estimators even if W has unbounded column norms.
It is also worth noting that matrix P in the above theorem need not be row-standardized, and

our results hold as long as P is uniformly bounded in row norms, as stated in (11).

Remark 4 [t is straightforward to see that (13) implies w?

> e > 0, for all n (including
n — oo). If the errors are normally distributed, then k. = 0, and condition (13) reduces
to n~'Tr (A%) > € > 0, which always holds true for finite n (except for the trivial case of
A =0). Therefore in the case of k. = 0, to ensure w> > € > 0, it is sufficient to assume that

n~YTr (A?) tends to a strictly positive limit as n — oo.

The next theorem extends Theorem 1 to the linear-quadratic forms, which is required for
establishing the asymptotic properties of the GMM and BMM estimators of SAR models with

€XO0genous regressors.

Theorem 2 Let € = (g1,¢€9,...,5,) denote the n x 1 vector of IID (0,0?) random variables,

where 0 < 0% < K. Suppose that sup; ¥ |5i]4+€

< K, and denote the excess kurtosis of {e;} by
ke = (pa/0*) — 3, where py = E (}). Let n = (n1,m2,...,m.) be a vector of random variables
with means pi,; and variances fia,;, distributed independently of €;, for all i and j, where
foni > 0, for all i, and sup, £ (|77,~|2+E) < K. Let P = (p;;) be an array of n X n constant ma-
trices that satisfy conditions (11) and (12), and P has a finite number of unbounded columns,

with § > 0. Define A = (a;;) = (P + P’)/2. Suppose n*Tr (A?) is such that

n'Tr (A% + = k ( 1Zau> + = ( Z“?m) + = (nliaiium> >e>0 (16)

=1

7



for all n (including n — oo). Then if § lies in the range 0 < § < 1/2, we have’
e'Ae +e'n—oc*Tr(A)

Q= NG —4 N(0,1), as n — oo, (17)

where

@) =20'n""Tr (A?) + k.o (n_l Z ai) +0? (n_l Z ,u%i) +2u3 <n_1 Z aiiumi) . (18)
i=1 i=1 i=1
Remark 5 Condition (16) ensures that @ > ¢ > 0, for all n (including n — oo). If the

errors are symmetrically distributed, then ps = 0. Since pa,; > 0 for all i, condition (16) in

this case would reduce to (13) in Theorem 1.

Remark 6 Following a similar line of argument as in Kelejian and Prucha (2001), it can
be shown that Theorems 1 and 2 can be extended to allow for heteroskedastic errors without

affecting the conclusions.

4 GMM estimation

We begin by extending the GMM method proposed by Lee (2007) for standard SAR models
to the case where the column sums of the spatial weights matrix are not necessarily bounded
in n. Lee (2007) suggests using both linear moment conditions formed with instruments and
additional quadratic moments that are based on the properties of the idiosyncratic errors.
Specifically, consider model (1) and let ¥ denote the (k + 1)-dimensional vector of parameters,
¥ = (p,B) € ¥ = @, x Os. The true value of 1 is denoted by ¥, = (po, B;)’. Suppose that
Z = (21,20,...,2,) isan n x r (r > k + 1) matrix of instruments for the regressors (y*, X).

»r e n

Formally, Z satisfies the following assumption.

Assumption 7 Let Z = (zy,2o,...,2,) be the n x v matriz of observations on the r in-
strumental variables, z; = (21, zi2, - - -, zir) - () Z; is distributed independently of the errors,
gj, for alli and j = 1,2,...,n, and sup, ; (|zis|2+€) < K, (b) n'Z'Z —, .., a positive
definite matriz, and (c) n"*Z'Qy —, X., is a full column rank matriz, where Qo = (14, X)
and my is defined by (9).

The 7 linear moment conditions are given by:
Ey[Z'e ()] =0, (19)

where

e(p) =y—py" —XB. (20)

"Recall that § is defined by (12).



Since X is strictly exogenous under Assumption 3, a possible candidate for Z consists of
linearly independent columns of (X, WX, W2X_...). This choice of instruments was first
proposed by Kelejian and Prucha (1998). To see why Z could take this form, note from (7)
that £ (y*|X) = G (p) X3. This term is clearly correlated with y* but uncorrelated with e.
Since [p| ||[W]|, < 1 under Assumptions 2 and 4, G (p) can be expanded as

G(p) =W (I, — pW) ' =W+ pW> + p"W* | (21)

and then G (p) X8 = > 22, p/ '"WIXB. This implies that the instruments for y* can be
chosen from the columns of (WX, W2X...). Furthermore, Lee (2003) has shown that the
asymptotically best IV matrix within the 2SLS framework is given by Z* = Qg = (n,, X).
Since Z* depends on the unknown parameters py and 3, a feasible best IV can be constructed
using some initial consistent estimates of the parameters.

Turning to the quadratic moment condition, we recall that the idiosyncratic errors are
assumed to be cross-sectionally uncorrelated and homoskedastic. Using these properties, we

have the following moment condition:

Ey [ (¢) Ce ()] =0, (22)
where € (1) is defined by (20),

C = (¢;) = (B+B') /2, (23)

and B is a matrix that satisfies the following assumption.

Assumption 8 The matriz B = (b;;) is an n x n matriz of fixred constants such that (a)
Tr(B) =0, (b) [|Bllw < K, (¢) [|B||s = O (n®), where &, is a fived constant in the range
0<d <1, (d n'X'CX —, Zyer, n'mpCny —p co, and n~'n,CX —, di, where 1, is
given by (9), C = (B + B') /2, and X is the n X k matrixz of observations on the regressors in
model (1).

Equation (22) is a valid moment condition since at the true value 1, we have
Ey [ () Ce (v)] = Eq (€'Ce) = nogTr (C) = nogTr (B) = 0.

Here we consider a single quadratic moment for ease of exposition. In practice, one could use
multiple quadratic moment conditions, namely FEy (¢'Cpe) = 0, for £ = 1,2,..., L, where L
is a finite number, C, = (B, + B)}) /2, and By satisfies the conditions of Assumption 8. Lee
(2007) assumes that B is uniformly bounded in both row and column sums in absolute value
and suggests using B, = W — n~'Tr (W) 1, for £ =1,2,..., L, in the quadratic moments,
where W* denotes the /" power of W. However, in our set up where columns of W need not
be bounded (see Assumptions 4 and 5), in part (a) of Assumption 8 we have relaxed Lee’s

boundedness condition on B, and allow the column norm of B to rise with n at the rate of .



Remark 7 If the idiosyncratic errors are heteroskedastic, condition (a) of Assumption 8,
Tr(B) = 0, needs to be replaced by the stronger condition: b; = 0, for i = 1,2,... n.
Practical choices of B in this case can be B, = W* — Diag (W*), for { =1,2,..., L.

~/

We are now ready to define the GMM estimator of 1, of model (1), denoted by = (pB),

using both quadratic and linear moment conditions:

% = arg min g,(¥) (ALAL) g, (¥), (24)

where g, (%) is a (k+ 1) x 1 vector given by
n~'e’ (1) Ce ()

s = ("I ). (2)
and A,, is a fixed (k + 1) x (r + 1) matrix of full row rank, assumed to converge to a constant
full row rank matrix A.

Before proceeding to examine the asymptotic properties of 1, we first focus on the problem
of identification in the case of pure SAR models without exogenous regressors. In this case

(1) simplifies to,
y=py +e, (26)
with Assumption 2 replaced by

Assumption 9 The parameter p of model (26) satisfies p € ©,, where ©, is a compact
subset of (—1,1). The true value of p, denoted by po, lies in the interior of the parameter

space, ©,,.

The GMM estimator of pg in model (26) can be obtained by

p = arg min 9n (p) (27)
where
gn(p) =n""€ (p) Ce (p), (28)
and
e(p) =y—py" (29)

Proposition 1 below shows that in order to uniquely identify py in the pure SAR model
(26), at least two moment conditions are required. Specifically, the GMM estimator of pg

based on L quadratic moments (L is a finite number) is given by
. . 2
p = arg min [a},g, (p)]", (30)
PEB®,
where

9, () = (910 (P) G20 (P) s -, 9.0 (P)]'
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Jen (10) = n—1€’ (p) C[Ef (p)7 for = 1727 teey La

and a, is a fixed L x 1 non-zero non-negative vector.

Proposition 1 Consider the SAR model given by (26), and suppose that Assumptions 1, /,
5, 8(a)-(c), and 9 hold. Then to uniquely identify po it is required that the GMM estimator,
defined by (30), is based on at least two independent quadratic moment conditions, in the

sense that the ratios by /aw, are not all the same across ¢ = 1,2,..., L > 2, where ap =
lim,, .o, T (n7'G{C(Gy) and by = lim,, .. Tr (n'G{Cy).

See Section A.2 of the online mathematical appendix for a proof.

Remark 8 When the GMM estimator is based on a single quadratic moment condition, the
parameter py of model (26) in not uniquely identified and the GMM estimator of p computed
by minimizing g2 (p) defined by (28), converges in probability to py or po + 2bg/ag, where
ag = lim, .o, Tr (n"'G{CGy) and by = lim, .., Tr (n"'G{C). In practice, we recommend

using at least two quadratic moments if the SAR model does not contain exogenous regressors.

Consider now the SAR model given by (1) that includes exogenous regressors. For ease of
exposition, in what follows we set 0, = 0, that is, ||B||; rises with n at the same rate as that
of ||[W]|, since in practice W is commonly adopted as the B matrix. The following theorem
shows that ¥, = (po, 3y) of model (1) can be globally identified if we have enough instru-
ments such that the rank condition in Assumption 7(c) holds. The theorem also establishes

consistency and asymptotic normality of the GMM estimator defined by (24).

Theorem 3 Consider the SAR model given by (1). Suppose that Assumptions 1-5, 7 and 8
hold, and 0, = 6. Then

(a) ¥y = (po, 35) is globally identified,

(b) the GMM estimator of 1, denoted by v and defined in (24), is consistent for b, if &
(the degree of network centrality) defined by (4) lies in the range 0 < 6 < 1,

(c) \/n ({b — 1/)0> is asymptotically normally distributed as n — oo, if § lies in the range
0 < 4§ < 1/2, namely,

NG ({b — '1/)0> N [0, (D'A’AD) ' D’A’AV,A’AD (D’A’AD)*} ,
where

- , Y B U1 [3oV’
D= |:(20'0b0,01><k) 7Ezq} ) Vg o ( M3V 08222 ) 7 (31)

?

vy = lim ["}/20711 Z 2 4 205Tr (n’lC2)

n—00 -
=1
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bo = lim,, oo T (n"1G{C), Gy is defined by (8), X, = plim, o n ' Z'Qq, 2., = plim, o n 'Z'Z,
v = plim, . n 12 [diag (C)], puso = E(e}), y20 = E(e}) — 305, and c;; is the it diagonal
element of C.

See Section A.2 of the online mathematical appendix for a proof.

Remark 9 It is worth emphasizing that 1 is globally identified if we have enough instruments
such that the rank condition in Assumption 7(c) is satisfied, irrespective of the number of

quadratic moments included. Using quadratic moments in addition to linear moments improves

efficiency.

Remark 10 Consistent estimators of pso and 7y are given by fis = n~ty 1 £, o =

nty " &l —3(52)?, respectively, where 5% = n >y &3 and & = y; — pyf — [3 X;.

As is well known, the optimal moments weighting matrix is given by V , where V, is

defined in (31). A feasible optimal GMM (OGMM) estimator of 1,, denoted by ¢opt7 can be
obtained by using a consistent estimator of V;l for Al A, that is,

- . -

Yo = a8 1IN g, () Vg, (), (32)

where g, (1) is given by (25) and V, is a consistent estimator of V,. Then zbopt is consistent
for 1p, when ¢ is in the range 0 < ¢ < 1, and it has the following asymptotic distribution as
n — oo when 0 is in the range 0 < 6 < 1/2,

Vi (o = %0) —a N |0, (D'V,'D)
where D is given by (31).

The best choice of B exists under certain conditions. Lee (2007) shows that if the idiosyn-
cratic errors are normally distributed, the OGMM estimator using B* = Go—n"'Tr (Gy) I, in
the quadratic moment condition and Z* = Qg = (7, X) in the linear moment conditions, has
the smallest asymptotic variance among the set of GMM estimators derived with quadratic
matrices, By, having zero trace. This estimator is referred as the best GMM estimator, and
B* is referred to as the best quadratic matrix.® By a similar argument and applying Lemma
A.6 of the online mathematical appendix, it is straightforward to show that the asymptotic
properties of the best GMM estimator can be extended to the case where the column sums
of W rise with n, under the same conditions on 0 as in Theorem 3. Since both B* and Z*
depend on unknown parameters, a feasible best GMM estimator can be implemented in two

steps: In the first step, we obtain a preliminary consistent estimate of 1,. Then in the second

8 Among the group of GMM estimators derived with the class of matrices having zero diagonal, the OGMM
estimator using B* = G — Diag (Go) and Z* = Qg = (1, X) in the moments has the smallest asymptotic
variance. This result does not require the condition that the idiosyncratic errors are normally distributed. See
Lee (2007) Proposition 3 for details.
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step, we perform the optimal GMM estimation using the best IV and best quadratic matrices
evaluated at the first-stage estimates. In the rest of this paper we focus on the feasible best

GMM estimator and refer to it simply as the GMM estimator, for brevity.’

5 BMM estimation

In this section we develop the bias-corrected method of moments (BMM) estimator of 6y =
(v5,02) = (po, B5,02) for the SAR model given by (1). The BMM procedure uses least squares
but corrects the bias due to the endogeneity of the spatial variable, y*. The application of
BMM to the SAR model is straightforward. Using y* and X as instruments, the bias-corrected

population moments are given by

Ely" (y—py" —XB)] = E (y"e), (33)
E[X'(y—py" —XB)] =0, (34)
E[(y—py* —XB) (y—py* — XB)] = no’. (35)

Using (7), we have
E(y'e) = E[(BX +€)G (p)e],

and under Assumptions 1 and 3, we obtain E (y*e) = o?Tr [G (p)]. The sample version of

the moment conditions (33)—(35) can now be written as

nty” (y—ﬁy* — XB) =6°Tr [n'G(p)], (36)
X! (y-py* - XB8) =0, (37)
w7 (y—py' ~XB) (y-py" — XB) =5 (38)

Let 6 = (D, Bl, 62)" denote the BMM estimator of 8y, which is the true value of 8 = (p, 3',0?)".

The system of equations (36)—(38) can now be used to solve for 8 as follows:

6 = argminm’, (0) m,, (), (39)
6cO

where
(6) = [m1(6),m}, (8),ms, (0)],
miy, (0) =n"y" (%)—02T7’ [n'G (p)]
( ) _1X/ (7#), m3n(0) n 16 (Qp)é‘('ll[)) _0.2’

m,, (0

l’l’lgjn 0

and € () is given by (20).

Unlike least squares, the BMM procedure is non-linear in p, and its asymptotic properties

9We also examined the finite sample properties of other GMM estimators that do not use the best IV and
best quadratic matrix. The results are available upon request.
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critically depends on the assumptions regarding the rate at which the column sums of W rise
with n. As we shall see, the BMM estimators are consistent and do not suffer from the weak
instrument problem since y* is instrumented with its own values. However, in small samples it
might be beneficial to augment the system of estimating equations, (36)—(38), with additional
moment conditions. See, for example, Lee (2007).

The following theorem summarizes the asymptotic distribution of the BMM estimator. Its

proof is given in Section A.2 of the online mathematical appendix.

Theorem 4 Consider the SAR model given by (1), and suppose that Assumptions 1-6 hold.
Then

(a) the bias-corrected method of moments (BMM) estimator of 1 = (po, B4) , denoted by
P = (,6,,[;’ ) and defined by (39), is consistent for 1, when ¢ is in the range 0 < § < 1, where
d is a measure of network centrality, defined by (4).

(b) /n (1,@ — 1,00) is asymptotically normally distributed as n — oo when § is in the range

0 < 4§ <1/2, namely
Vi (% = 90) —a N [0, (H'VH )]

where
ﬁgzm 1/3 + U2h0 /6/ ELB T ) < q2 02/6/ 290 T )
H = 99x~0 0 0~zg , V = 0/~0~xg , 40
( SHCY S 03 SuBy 03T (40)
0" = 0808 ngqelBo + 720 P lim 0ty 7 + 2ps0 p lim 0~ [diag (Thy)] mg (41)
=1

+ ogp lim [Tr (n™ ') + T (n'IL5) ]

I, = Go — M, Tr (n7'Gy), M, =1, - X(X'X)"' X, (42)

where hy = lim,,_.o hy, Go, My and h, are defined by (8), (9) and (10), respectively, m;; o is

the it" diagonal element of Iy, and as before psg = E(£3) and vy = E(c}) — 304.

Remark 11 It can be seen from (41) that the variance formula will not involve the third and
fourth moments of the error term if (i) ; is Gaussian, since under Gaussianity vy = 0 and
uso = 0; or (ii) the diagonal elements of Iy are zero, which occurs if Gy has zero diagonal
entries. Furthermore, the variances of both BMM and GMM estimators will not involve the
third moment of the error term if the model does not contain X. In general, psg can be
estimated by fi3 = n~tY " &3

. _ A ~2\2
Jo=n"t L, & —3(6%).

Remark 12 It is clear that v, is identified if H, defined in (40), is positive definite. Note
that H = H; + Hy, where Hy; = plim,,_.., n'Q{Qo, and

olhy O
H — 0/t0 1xk )
? ( Okx1 Opxi
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Since Hy s positive semi-definite and hg > 0, it follows that H s positive definite if either
ho > 0 and/or if Hy is positive definite. Therefore, Assumption 6 ensures that 1, is identified.

Remark 13 It is meaningful to relate the identification condition given by Assumption 6(b)
to the literature on social interactions. Let us first consider a simple example where there
18 only one social group in which everyone is connected with each other and self-influence is
excluded. In this case, the matrix of the network is represented by

1

W:n—l

(1,1, —1L,). (43)

Yang (2018) has shown that a necessary condition for Assumption 6(b) is given by n=*Tr (W'W) >
e >0 for all n (including n — o0). Given (43), it is easily verified that

1 2
W? = ( ) n(1,1)) —21,1, + 1],

n—1
and then n~'Tr (W?) = 1/ (n — 1), which tends to zero, as n — oo. Therefore, the identifi-
cation condition is violated and we conclude that the endogenous social effect is unidentifiable
without exogenous regressors. Now suppose that there are R groups and n, units in the r'
group, forr = 1,2,..., R. Clearly, Zle n, = n. The standard linear-in-means social in-
teraction model assumes that individuals within a group have the same pairwise dependence,
whereas individuals across different groups are not dependent. See Case (1991, 1992) for ex-
amples of empirical studies employing such a network structure. Then the matriz of group
interactions, W, can be represented by the following block diagonal matrix:
1

W = Diag (W, Wo,...,Wg), W, = S(1L,1,-1,), r=12.. R
n, —

Since we have shown that Tr (W?) =n,/ (n, — 1), it follows that

n'Tr (W?) =n"" ZR:TT (W2) = ER: ( ! > T,

-1
r=1 r=1 oy

where T, = n,/n is the fraction of population in the r'" group. Suppose that n, rises with
n such that m, > 0, as n — oo. If R is fived, then lim, ..o n 'Tr (W?) = 0 and the group

interaction effect is unidentified in the absence of exogenous explanatory variables.

Interestingly, it turns out that the BMM estimator is related to the best GMM estimator
under IID normal errors. The following proposition summarizes this relationship. Its proof is

given in Section A.2 of the online mathematical appendix.

Proposition 2 Consider the SAR model given by (1), and assume that the errors are inde-
pendently and normally distributed as €; ~ IIDN (0,0%), fori=1,2,...,n, and 0 < 0% < K.
Suppose that Assumptions 2-8 hold and the network centrality, 0, defined by (4), lies in the
range 0 < & < 1/2. Then the BMM estimator of 1, = (po,3}), defined by (89), has

15



the same asymptotic distribution as the best GMM estimator of v, defined by (32) using
B* = Go — n 'Tr (Go) L, in the quadratic moment condition, and Z* = (1o, X) in the linear

moment conditions, where Go and 1y are defined by (8) and (9), respectively.

6 Monte Carlo experiments

We now examine the small sample properties of the GMM and BMM estimators for SAR
models with dominant units using Monte Carlo techniques. The Data Generating Process
(DGP) is specified as follows:

yi =a+py + Pr;+o0.8, 1=1,2,...,n, (44)

where y = W;.’yy, y = (yi,%2,-..,9n), and W;.,y is the i"" row of W,. The exogenous

regressor, x;, is generated to be spatially correlated as
=Ml + oy, i=1,2,....n, (45)

where ¥ = W, X, X = (21,73, ...,1,), and w;$ is the i row of W,. Note that the spatial
coefficients and weights matrices could be different for the y and x processes.

In matrix form, (44) can be rewritten as
y = S;l (p) (Bx+al,) + u,

where S, (p) = I, — pW,, u = UESy_1 (p)e, € = (e1,62,...,6n), and u = (up, us, ..., u,)"
Similarly, (45) can be rewritten as x = 0,S,' (\)v, where S, (\) = I, — AW, and v =
(v1, 19, ... ,yn)/. For the idiosyncratic errors, we consider both Gaussian and non-Gaussian

processes:
e Gaussian errors: ¢; ~ [IDN (0,1) and v; ~ IIDN (0,1).

e Non-Gaussian errors: &; ~ ITD [x*(2) — 2] /2 and v; ~ I1D [x*(2) — 2] /2, where x*(2)

denotes a chi-square random variable with two degrees of freedom.

When = 0, the fit of the SAR model is given by

7’LO’2 n

B A Vaw) T T S S ()] (46)

which does not depend on o2, and is determined by the choice of p and W. To control the fit
of the SAR model when 5 # 0, we note that

Ri=1— e _ (47)



It is also easily seen that
an,s® (1 — R2)

>0
1+a,s2 — 7

R} — R} =

where

S )

TS 0SS NS 0] b B
Tr (S, () S, (p)] ’ %

and note that s* is the signal-to-noise ratio. Since a,s* > 0, we have R} > Rj, with equality

0,

Qn

holding if and only if 3 = 0. Therefore, given the values of W, and p we can only control
the value of R?j — R2. Since we are interested in the effects of changes in p and § on the
property of GMM and BMM estimators, without loss of generality we set the true parameter
values to 62y = 1, \g = 0.75, ag = 1 and fy = 1. The value of o7 is chosen to ensure that
R% = R§ + 0.1. This is achieved by setting o7 such that

322 Tr[S,' (p)S;' (VST (NS, (p)] 01
02 Tr[S;' (p) S (p)] 0.9 — R’
or equivalently,
0.1 o2
S = - 48
v (0.9—33) Ba,’ (48)

with the value of p chosen so that RZ < 0.9.
Turning to the specifications of the spatial weights matrices, we consider the case where
W, = W, = W in the main text and relegate the results for W, # W, to a Monte Carlo

supplement which is available on request. The spatial weights matrix W,

0 w
W = (wij)nxn = ( Wou W1222 > s

is generated as follows: We assume, without loss of generality, that the first unit of the
network is d-dominant and the rest are non-dominant. Specifically, the first Ln‘sj elements of
the (n—1) x 1 column vector wo; are drawn from /7 DU (0, 1) and the rest are set to zero, where
|.] is the integer part operator. In this way, the sum of the first column of W expands with n
at the rate of 4, i.e., > i, wy = O (n°). The first 8 elements of the 1 x (n— 1) row vector w/,
are set to one and the remaining elements to zero. Was is a standard (n — 1) x (n — 1) spatial
matrix with 8 connections (4-ahead-and-4-behind with equal weights), namely, w; ; = 0.125 for
j=t—4,.,i—1,i+1,...,1+4, and w; ; = 0 otherwise. By construction, W, is uniformly
bounded in both row and column norms, namely, |[Wa||;, = O(1) and [|[Wal|, = O(1).
Finally, W is standardized so that each row sums to one.

We consider a number of different values of § and py: 0 = 0, 0.25, 0.50, 0.75, 0.95, 1,
and pyp = 0.2, 0.5, 0.75;'° and experiment with four sample sizes: n = 100, 300, 500, and

0The values of R? for different p and § are reported in Table 46 in the Monte Carlo supplement (available
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1,000. We include § = 1 in our experiments in order to see if the GMM and BMM estimators
break down when § = 1, as predicted by the theory, and to see how the two estimators
perform as § approaches unity. The number of replications is set to 2,000, per experiment.
We report results for both GMM and BMM estimates. The BMM estimator is computed by
(39), and the GMM estimator is obtained with the optimal weight matrices for the linear and
the quadratic moment conditions.!! More specifically, the GMM estimator is computed in two
steps: In the first step, the GMM estimates are computed with equal weights using B; = W,
B, = W2 —n~'Tr (W?)1,, and Z = (1,,x, Wx, W’x). In the second step, we re-estimate
with the optimal GMM weights using the best IV and best quadratic matrices evaluated at
the first-step estimates, namely using 7 = (Gx&, GX,B, 1,, X> and B* = G —n"'Tr (G) |

where G = G (), and P = (ﬁ, Q, B), denote the first-step GMM estimates.

Tables 1a—2b summarize the results of the GMM and BMM estimators for the experiments
with Gaussian errors, and Tables 3a—4b give the results for non-Gaussian errors. For each
experiment, we report bias, root mean square error (RMSE), size, and power of both estimators
for p and 3. The estimates of the intercept term are omitted in order to save space. In addition,
Figures 1a—2b plot the empirical power functions for p and 3 in the case of py = 0.5 and 5y = 1
for 6 =0, 0.25, 0.75, 0.95, and n = 100 and 300, when the errors are non-Gaussian.'?

Let us begin by examining the bias and RMSE results. We first observe that both GMM
and BMM estimators display declining bias and RMSE as the sample size increases. On the
whole, the bias and RMSE are very small even when n = 100, irrespective of the magnitude
of the spatial autoregressive parameter, p. This result is in line with our theoretical finding
that both estimators are consistent if § < 1. However, as the value of § approaches one, we
see a substantial increase in RMSE for both estimators. The two estimators perform similarly
in terms of RMSE when n > 300, although the BMM estimator of $ has smaller RMSE than
the GMM estimator when n = 100, despite being more biased. The performance of the two
estimators are even closer when we consider p, giving a very similar RMSEs for all sample
sizes under consideration. Finally, the bias and RMSE of both methods are quite robust to
non-Gaussian errors, as can be seen from Tables 3a to 4a.

We now turn to size and power properties of the BMM and GMM estimators. As can be
seen from Table 1b, overall the tests of p have empirical size close to the nominal size of 5%
when § < 0.75. This is true for both estimators. When the sample size is small (n = 100), the
GMM estimator slightly over-rejects the null if the degree of spatial autocorrelation is high

(po = 0.75), and the size distortion becomes more severe as py is increased towards unity. In

upon request). Note that R3 < 0.9 holds when p < 0.75. When 3 # 0, we set R% = R3 + 0.1. We have also
examined the estimation of SAR models without exogenous regressors (§ = 0). The results are also presented
in the Monte Carlo supplement.

H'We also consider GMM estimators using other instruments and quadratic matrices. The results are
presented in the Monte Carlo supplement.

12More power function plots for other values of pg, § and n are documented in the Monte Carlo supplement.
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comparison, the BMM estimator has the correct empirical size even when the sample size is
small and py is close to unity when § < 0.75. As the sample size becomes larger (n > 300), both
estimators have the correct size and reasonable power for all values of pg if 6 < 0.75. These
results suggest that the condition § < 1/2 assumed in this paper might be too conservative,
and whilst sufficient it might not be necessary. Turning to size and power of the tests for (3,
summarized in Table 2b, we note that both estimators perform well, yielding the correct size
and high power, and their performance is overall better as compared the results we obtain for
p. Finally, these findings seem to be quite robust to non-Gaussian errors.

Figures 1la and 1b display the power functions for p when py = 0.5 for n = 100 and 300,
respectively. Overall, the tests of p = py based on GMM and BMM estimators have similarly
good power when § < 0.5. As 0 moves towards one, the tests based on both estimators
tend to over-reject the null. The over-rejection is more severe for the GMM estimator than
the BMM estimator. For example, as shown in Figure 1a, when § = 0.95 and n = 100 the
rejection frequency of the GMM estimator under the null is 25.8% as compared to 14.6% for
the BMM estimator. A comparison of Figures la and 1b reveals that when § < 0.75 the size
distortion is reduced as n expands from 100 to 300, but the over-rejection does not disappear
with increasing sample size when § = 0.95. These findings are in line with our theoretical
results.'> We proceed with Figures 2a and 2b, which show the power functions for S when
Bo = 1 for n = 100 and 300, respectively. We see at once that the power curves for both
estimators are very close. We also note that the over-rejection is less of a problem for the
estimators of $ than for p. The power is relatively low when n = 100 but rises notably as n

increases to 300.

7 Empirical application to US sectoral prices

In earlier studies Acemoglu et al. (2012) and Pesaran and Yang (2019), using US input-output
tables, find that o for the US production network lies between 0.72 and 0.82, and accordingly
the standard assumption in the spatial econometrics literature that presumes all units are
non-dominant is violated. In what follows we first extend the closed economy multi-sectoral
model in Pesaran and Yang (2019) to a small open economy in which production also requires
imported intermediate inputs (raw materials). We then apply the GMM and BMM estimation
techniques to investigate the degree of interdependence in sectoral price changes in the US
economy.

For simplicity, we assume that there is only one type of imported intermediate good, whose

quantity demanded for production by sector ¢ at time ¢ is denoted by m;,. Each sector i at

13Gimilar findings hold for different values of py whether the errors are Gaussian or non-Gaussian, as can
be seen from the power plots in the Monte Carlo supplement (available upon request).
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time ¢ produces output, ¢;;, by the following Cobb-Douglas production technology:
@i = €™ 1Gmy, H q%t_a_ﬂ)w“, for i =1,2,...,n, (49)
j=1

where [;; is the labor input, ¢;;; is the amount of output of sector j used by sector ¢, u;
is the productivity shock that consists of two components: u;; = ~;f; + v, where v; is a
sector-specific shock, and f; is a common factor with heterogeneous factor loadings, ~;, for
1 = 1,2,...,n, The parameter « represents the share of labor, ¢} represents the share of
imported intermediate goods, and w;; is the share of sector j’s output in the total domestic
intermediate input use by sector i.

The representative household is assumed to have Cobb-Douglas preferences over n goods:

u(ci oty ooy Cnt) = A H /" A>0. (50)

i=1
where c¢;; is the quantity consumed of good i. Furthermore, the household is endowed with
l; unit of labor, supplied inelastically at wage rate Wage;. In equilibrium, the commodity

markets clear,

Cit = it — ZjS,t = e, for 1=1,2,...,n,
j=1
where ¢, ;+ is the quantity exported of good i; the labor market clears, I; = Y, l;;; and trade
is balanced, F,,; 2?21 My = Zle P;1qy.it, where P, denotes the price of good ¢, and P,
denotes the exogenous world price of the imported intermediate good.
Given prices { Py, Py, . .., Pot, Prnt, Wage, }, the profit-maximization problem of sector i,
fori=1,2,...,n,is given by

n

n
auigjo, 9 (1—a—Y)w;;
max  Pue®™lmy | | g4 — Wage, X ljy — Ppymy — Y Pjgije.
Qijt5lit, Mt e =

The first-order conditions with respect to ¢;;, lix, and m;; imply that

(1 —a—9) w;;j Puai alPiqi VP q
i = , ll = s ml' = . 51
q J,t -P] t Waget t Pm,t ( )
Substituting (51) into (49) and after some simplifications yields
Dit = [)Zwijpjt + owy + ﬁpm,t — b —« (Vlft + Uit) ) for i = 17 27 ey 1, (52)

j=1
where p = (1 — o — 9), pi = log (Pit), wy = log (Wage,), ps = log (Prt), and b; = alog () +
dlog (9) + plog (1 — a — ) + pd_w;; log(w;;).
j=1
The system of price equations in (52) is in the form of a panel SAR model with fixed effects,

observed (w; and p,, ;) and unobserved common factor (f;). To transform these equations into
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a SAR model in observables we take first differences!*

Apy = prijApjt + aAw; + VAP — o (A fy + Avy), fort =1,2,...,T, (53)
j=1
and consider time averages computed over the sample period ¢t = 1,2,...,T to obtain
Ap, = p> wiyBp, + aBw + VA, — a (wAF + Bv) | (54)
j=1

A T A T A T A7 T
where Apl = %Zt:l Apitu Aw = %Zt:l Awtu Ap'm = %Zt:l Apm,ta Af - %Zt:l Afta and
Av; = %ZL Av;. For a given sample period Aw, Ap,,, and Af are fixed, and only cross
section variations are relevant for estimation of p. We also assume that the factor loadings
follow the random coefficient model ~; = o + 7;, where 7; ~ I[D(O,a%), fori =1,2,...,n.

Using this result in (54), we now have

Ap, =a+ prijA_pj + &, (55)

Jj=1

where
a=alAw+I9Ap, — ayAf, and g, = —« (A_Uz + A_fﬁz) .

The SAR model in the rate of price changes, (55), can now be estimated by the methods
of GMM and BMM. The parameter of interest is the spatial coefficient, p, which can be
interpreted as capital’s share of output. The n x n matrix W = (w;;) that summarizes the
input-output relations corresponds to the spatial weights matrix.

The spatial weights matrix, W, is constructed from the input-output tables at the most
disaggregated level obtained from the website of the Bureau of Economic Analysis (BEA).
These tables cover around 400 industries and are compiled by the BEA every five years.
Specifically, W is a commodity-by-commodity direct requirements matrix, of which the (i, j)*"
entry represents the expense on commodity j per dollar of production of commodity i.!> The
commodity-by-commodity direct requirements (DR) tables are derived from the commodity-
by-commodity total requirements (TR) tables by the following formula: DR = (TR —I) (TR) ™",
where I is the identity matrix of conformable dimension. The W matrix is taken as the trans-
pose of DR and standardized so that the sum of intermediate input shares (the row sum of
W) equals unity for every sector. Since the vast majority of the elements in W are rather
small numbers, in order to reduce noise in the system we construct a robust weights matrix
by setting each element of W to one if it is greater than or equal to a given threshold value

€w (0 < €, < 1), and to zero otherwise. Then the sectors with zero row sums are dropped and

14This paper focuses on cross section SAR models. The estimation of the panel data model given by (52) is
beyond the scope of the current paper.
15The words commodity and sector are used interchangeably to convey the same meaning throughout this

paper.
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the matrix is row-standardized so that each row sums to one. The resulting matrix is denoted
by W (€w). The sector-specific price index at annual frequency are obtained from the BEA’s
gross domestic product by industry accounts. The annual rates of price changes are computed
over the period 1998-2015, and they are matched to the sectors in the input-output tables
using the BEA industry codes.

Given the time range of the price data, we consider two versions of W constructed from the
input-output tables for the years 2002 and 2007, denoted by Wagge and Wz, respectively.
In particular, we consider a cut-off value €, = 10%, which means that for any given sector
only important suppliers that contribute at least 10% of the total input purchases are taken
into account.'6

We begin by examining the d-dominance of the production networks for the years 2002
and 2007 by applying the extremum estimator developed by Pesaran and Yang (2019) to the
outdegrees of the filtered input-output matrices Wagge (0.1) and Wonor (0.1). Table 5 reports
the estimates of ¢ for the top five most important sectors for these weight matrices. The
results show that the highest degree of dominance, 25\(1), lies between 0.71 and 0.85, and are
not close to unity. Therefore, our proof of consistency of the GMM and BMM estimators
of the spatial parameter applies to this empirical application. But for valid inference our
proofs require § < 1/2, and special care must be exercised when carrying out inference on p
in the present empirical application. Although, as noted above, our Monte Carlo experiments
suggest that the degree of over-rejection of tests based on the BMM estimator of p is relatively
low so long as 0 is not too close to unity, and inference based on the BMM estimators seems
to be acceptable for values of § around 0.75.

Turning to the sectoral price changes, to allow for the possibility of structural breaks due
to the 2007-2008 financial crisis, we consider two sub-samples: the pre-financial crises (1998
2006) and the post-financial crises (2007-2015) periods. The weights matrix Waggy (0.1) is
used for the first sub-sample, while W2007 (0.1) is used for the second sub-sample. The BMM
estimates are computed by (39). The GMM estimates are obtained in two steps: In the first
step, we compute initial consistent estimate, p, by (30) using two equally weighted quadratic

moments with B; = W and By = W2 — =T (VV2> I,.'" In the second step, we re-estimate
the model using the best quadratic matrix, B* = G — n 'Tr (G) I,, where G = G () is
evaluated at the first-step estimate. Table 6 presents the estimation results of model (55). It

can be seen that the BMM and GMM estimates are very close and highly significant. The

estimated share of capital is around 0.4 for the first sub-sample and 0.3 for the second sub-

16OQur choice of the 10% threshold for non-zero elements of the weight matrix is in line with the US Regulation
SFAS No. 131 that requires public firms to report customers representing more than 10% of their total yearly
sales (see Cohen and Frazzini, 2008, p. 1978). The results for other cut-off values of €, = 5% and 7.5%.
are provided in the empirical supplement available upon request. Using lower threshold values tend to yield
higher estimates of p.

"Here we denote Waggz (0.1) and Wagor (0.1) simply as W to simplify the notations.

22



Table 5: Estimates of the degree of dominance, §, of the top five pervasive sectors using US
input-output tables

Input-output table for 2002 Input-output table for 2007
Wao02 Waggs (0.1) Wago7 Wagor (0.1)
Sy 0.778 0.851 0.724 0.705
) 0.759 0.796 0.651 0.703
o) 0.597 0.642 0.608 0.695
S 0.550 0.422 0.592 0.565
o) 0.546 0.402 0.553 0.491
n 313 [301] 286 [114] 384 [364] 350 [140]
n* 69,268 (70.70%) 581 (0.71%) 107,619 (72.98%) 616 (0.50%)

Notes: W (e, = 0.1) denotes a filtered version of W = (w;;), defined by W (e,,) = (4 (€)), where w;; (€,)

is a row-standardized version of w;; (€,,) defined by w}; (€x) = wi;I (wi; > €,), where I(A) is an indicator

variable which takes the value of unity if A holds and zero otherwise. We set €, = 10%, and report

5(1) > 5(2) > ... > 5(5); the five largest estimates of & corresponding to the outdegrees of W and W (0.1), for
the years 2002 and 2007. n is the total number of sectors with non-zero total demands (indegrees). The
numbers in square brackets are the numbers of sectors with non-zero outdegrees. Note that a few sectors
were dropped when constructing W from W, since their total demands become zero. n* is the number of
non-zero elements. The percentages of non-zero elements are in parentheses.

sample. Although these estimates are not very precise, they match reasonably well with the

commonly documented values of share of capital in the literature.'®

8 Concluding remarks

A crucial assumption in the spatial econometrics literature requires that the weights (connec-
tions) matrix is uniformly bounded in both row and column sums. This assumption excludes
the existence of dominant units in the network and is too restrictive for many applications.
The current paper relaxes this assumption and allows the centrality of the connections matrix
to rise at the rate of § with n, as compared to the value of 6 = 0 assumed in the spatial
literature. We also establish the asymptotic distribution of the GMM estimator due to Lee
(2007) for this more general settings, and propose a new BMM estimator which is simple to
compute and has better small sample properties as compared to the best GMM estimator
when the degree of centrality of the weights matrix, ¢, is relatively large. Both estimators

are shown to be consistent and normally distributed if the maximum absolute column sum of

18The most commonly used value in calibration exercises is 0.36 (Hansen and Wright, 1998; Danthine et al.,
2008). Other frequently used calibration values fall in the range 0.3-0.4. For example, Cooley and Prescott
(1995) suggest 0.4; Gollin (2002) recommends a range of 0.23-0.34; Danthine et al. (2008) uses 0.3.
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Table 6: Estimation results of the cross-section model (55)

Sub-sample Sub-sample
Year 1998-2006 2007-2015
BMM GMM BMM GMM
p [Share of capital] 0.3977  0.395 0.2877  0.2747
(0.106) (0.107) (0.072) (0.073)
67 [Error variance] 7.728 7.815 2.564  2.599
R? 0.219 0.217 0.159 0.148
Weights matrix Wago2 (0.1) Wonor (0.1)
n [Number of sectors] 286 350
T [Number of time periods] 9 9

Notes: All estimations include an intercept (not shown here). The BMM estimates are computed by (39).
The GMM estimates are computed by a two-step procedure following (30) using the best quadratic moment
evaluated at the first-step estimate. R? is computed by (46). The spatial weights matrices are constructed
with a threshold value of €, = 10%. Wag02 (0.1) is used in the estimation over the period 1998-2006;
Wgom (0.1) is used in the estimation over the period 2007-2015. Standard errors are in parentheses. f
indicates significance at 1% level.

the interaction matrix does not increase too fast as n grows. For consistent estimation it is
required that 6 < 1, and for the validity of the asymptotic distribution we need 6 < 1/2. But
the extensive Monte Carlo experiments reported in the paper and in the supplement suggest
that GMM and BMM estimators could perform reasonably well if § < 0.75. Thus, it might
be conjectured that the sufficient condition of § < 1/2 might not be necessary for the validity
of the asymptotic distribution of GMM and BMM estimators. Further analysis is required if
d > 1/2. Such an analysis is beyond the scope of the present paper.
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Figure 1a: Empirical power functions for p in the case of pg = 0.5, n = 100, and non-Gaussian
errors for different values of §
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Figure 1b: Empirical power functions for p in the case of pg = 0.5, n = 300, and non-Gaussian
errors for different values of o
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Figure 2a: Empirical power functions for § in the case of Sy = 1, n = 100, and non-Gaussian
errors for different values of §
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This online mathematical appendix is organized into two sections. Section A.l contains
statements and proofs of necessary lemmas used in establishing the main theoretical results
of the paper. Section A.2 provides proofs of the theorems and propositions in Sections 3—-5
of the paper. Throughout this appendix, Assumptions 1-8 refer to the Assumptions made in

the paper.

A.1 Lemmas

Lemma A.1 Let A = (a;;) and B = (b;;) be nxXn matrices, and suppose that sup, ; |a;;| < K.
(i) Let C = (c;5) = AB. If [|B||1 < K, then sup, ; |c;j| < K and Tr (C) = O (n).
(ii) Let D = (di;) = BA. If ||Bl|o < K, then sup, ; |di| < K and Tr (D) = O (n).

Proof. This lemma is a special case of Lemma A.8 of Lee (2004). m

Lemma A.2 Suppose that A and B are n x n matrices that satisfy ||Al|lee < K and ||B||e <
K, then ||AB||» < K.

Proof. This result can be readily established by the submultiplicativity of the maximum row
sum matrix norm, that is, ||AB||c < [|A]oo||B]|ec- A proof can be found in, for example,
Horn and Johnson (2012, Example 5.6.5). m

Lemma A.3 Let A be an n X n matriz and b be an n X 1 vector.
(i) If ||A]ly < K, and ||b]]; = O(n?), 0 < § < 1, then ||Ab]|; = O(n%).
(i1) If ||All, = O(n(s), 0<d<1, and|b||s < K, then ||Abl|; = O(né).

Al



Proof. (i) Let c = Ab and its i*" element is denoted by ¢;. Then
INED S SRAED D) SIVIED oY 1 wize) EIE
=1 j=1 = SISM =1

The result in (ii) follows from similar reasoning. m

Lemma A.4 Let A = (a;;) and B = (b;;) be n x n matrices such that ||Alle < K, ||Blle <
K, and ||B||; = O (n°), where 0 < § < 1. Then

(i) Tr (A'BB'A) = O (n°™),

(ii) Tr [(A'B)*] = O (n’*1),

(iii) Tr (AB'C) = O (n°*), where C = (¢;;) is an n x n matriz such that sup, ; |c;j| < K.

Proof. (i) From [|A[|o < K, it follows that sup; ; [a;;| < K and ;") >°" | |a;i| < Kn. Then

Tr (A'BB'A)| = IZZZZ% bjkbikan| < ZZ |ajil Z i Z [0 b |

=1 j=1 k=1 I=1 i=1 j=1 =1
< ZZ il (S“p > |ali|> > bl ( sup |blk|>
i=1 j=1 = 1 1<lk<n
n n
< Kn’Y Y agl < Kn't
i=1 j=1

which establishes the claim.

(ii) Since T'r [(A’ B)z] < Tr (A’'BB’A) by Schur’s inequality, the result immediately fol-
lows from (i).

(iii) Note that

Tr (AB'C)| =

Z Z Z az]bkjckz

=1 j=1 k=1

< ZZ’GM ( sup Z|bkj|> ( sup |Clm‘|) < Kn’t,
1<j<n 1<i

i=1 j=1 Stk<n

< Z Z |aw| Z |ka| |Cril

=1 j=1

and the result follows. =

Lemma A.5 Suppose thate = (1,9, ...,&,) is a vector of random variables, where &; ~I1D(0, 0?)
for alli =1,2,...,n, and its fourth moment, ps = E(c}), exists. Let o = puy — 30*. Then
for any n x n constant matriz (need not be symmetric) A = (a;;), we have

(i) E(e'Ae) = o?Tr(A),

(it) E(e'Ae)? =y Y i a2 + o* [Tr?(A) + Tr(AA') + Tr(A?)],

(iii) Var(e'Ae) =y > i a2 + o [Tr(AA") + Tr(A?)] < KTr (AAY).

=1 e

Proof. See Lemma A.11 of Lee (2004). The inequality in (iii) follows from » ! a2 <
Tr(AA’), Tr (A?) < Tr(AA’) (Schur’s inequality), 7o < K and 0> < K. =
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Lemma A.6 Suppose that Assumptions 4 and 5 in the paper hold. Let S =S (p) =1, — pW,
G=G(p)=WS ' (p)=W(I, — pW) ', where |p| < 1. Then

(i) [187 oo < K, and |[[S7![]1 = O(n°).

(i) |G|, < K, and ||G|]; = O(n°).

Proof. (i) By assumption we have ||[pW||. < 1, and hence S™1 = 3722 (pW)* Al Tt follows

that
1
1S7Hloo < 1+ [pll[Wlloo + [0 [[WIE + - - = o < K-
> 1= pl[IW]s
We next prove that |[S71||; = O(n°). The matrix W can be partitioned as follows:
Wi V(V12 :
W _ mxXm mx(n—m
nxn ng ng

(n—m)xm  (n—m)x(n—m)
Applying the formula for the inverse of a partitioned matrix gives
S = < 1(1)1_:l 1 1 p(bl_llwwsill 1 >
PSy W @1 Soy + p?Sys W @1 WSy
where

®, =1L, pWi — PQW12SQ_21W21>

and Sgy = I,,_,,, — pWy,. Since under Assumptions 4 and 5 |p ||[Wal| , < 1, and |p| [|[Wasl|; <

1, then HS_lH < K and HS H1 < K. Also, since m is fixed and does not rise with n, it is
sufficient to examine ||Sy, Wa @1 '||1 and ||S5y + p?Ssy W @7 ' W12S5, ||1. Let w2 denote
the j column of Wy;. By Lemma A.3, |[Sy)w a1l = O(n%), for j = 1,2,...,m, which
yields ||S3; Wai |1 = O (n’), where § = max;(d;). Therefore,

1S5 War @1 |1 < [[S5, Wan[1]|®7 [ = O(n), (A.1)
noting that the norm of the m x mmatrix ®;' is bounded since m is fixed. Similarly,
IWi2S55 [[1 < [[Wio|1][S22 [l < K, and then

1S5 War @17 " W12S5, (|1 < (1S5 War[[1]| @77 [1[[W12S55 [[1 = O(n”). (A.2)
Combining (A.1) and (A.2), it follows that ||S7!||; = O(n?).

(ii) The boundedness of the row norm of G is an immediate result of Assumption 4,
Lemma A.2 and Lemma A.6(i). Let G = (gi;),,,,, and S~' = (s};) . For the j column of

ij
G, j=1,2,...,n, we have

Z‘gzj’_Z|Zwllsl]|_Z’Zwllsl]|+z‘ Z wllsl]
i=1 = i=1 =

=1 Il=m+1

AlSee, for example, Horn and Johnson (2012, Corollary 5.6.16).
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: (é?fmewm) Zwsw( sup erm) > s

+1<i<n i=1 l=m—+1

< Kn®m + Kn’.

Since m is fixed, we obtain Y, |g;;| < Kn?, for all j, and this completes the proof. m

Lemma A.7 Suppose that Assumptions 1-5 and 8 in the paper hold, and 6, = 6 < 1. Let
G=G(p)=W(,—pW) ", and n = GX3. Then

(i) n"'e’Ce = 0, (1),

(ii) n~'e'G'Ce = o*Tr (n"*G/C) + 0, (1),

(iii)) n~'e'G'CGe = o*Tr (n"'G'CG) + 0, (1),

(iv) n '3 X'Ce = 0, (1),

(v) n'’'Ce =0, (1),

(vi) n !B X'CGe = 0, (1),

(vii) n~'e'G'Cn = 0, (1).

Proof. (i) Under Assumption 8, C = (B +B')/2, and Tr (B) = 0. Then E (n"'e/Ce) =

1o2Tr (C) = 0, noting that Tr (C) = Tr (B) = 0. Also, by Lemma A.5,

Var (n7'e'Ce) =n %y Y o+ 2n20"Tr(C*) < Kn*Tr (C?),
i=1
where 7, = E(g}) — 30*. Under Assumption 8, ||BJ|, < K, which implies that sup, ; |b;;| <
K. By Lemma A.3 we obtain Tr (B?) = O (n) and Tr (BB') = O(n). Then Tr(C?) =
1 [Tr (B?) + Tr (B'B)] = O (n), and lim,,_.o.Var (n"'e'Ce) = 0. Hence, noting that £ (n~'e’Ce) =
0, then n~'e’C e —, 0, for all values of 4.

(ii) First note that E (n~'e'G'Ce) = o*Tr (n"*CG’). Since ||G'[|; < K by Lemma A.6,
and sup; ; |c;;| < sup,; |bjj| < K, applying Lemma A.1, then Tr (n~'CG’) = O (1) which
establishes that £ (n~'e’G’Ce) = O (1). Now, using Lemma A.5(iii) we have

Var (n7'¢'G'Ce) < Kn*Tr (G'C*G)
< Kn7?[2Tr (B*GG') + Tr (G'BB'G) + Tr (BGG'B')| .
Since ||B||,, < K under Assumption 8, and ||Gyl|,, < K by Lemma A.6, applying Lemma A.2
yields |BG||, < K and |B*G||_, < K. Then by Lemma A.1 we have Tr [(B2G) G'] = O (n)
and Tr [BG (BG)'| = O (n). Since |B||;, = O (n’) under Assumption 8, by Lemma A.4 we
obtain Tr (G'BB'G) = O (n’*!). Hence, Var (n"'e’G'Ce) = O (n°'), and it follows that
n'e'G'Ce —, d*Tr (n 'CG') if § < 1.
(iii) By Lemma A.5,

E (n'¢'G'CGe) = o’Tr (n"'G'CG) = o°Tr (n"'G'BG),
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and
1
Var (n"'¢'G'CGe) < Kn™2Tr [(G’CG)Z} L {TT [(G’BG)Z} +Tr (G’BGG’B’G)}.
Since ||BJ|, < K under Assumption 8, and ||Gy||,, < K by Lemma A.6, applying Lemma A.2
yields |BG||, < K. Then by Lemma A.1, Tr (G'BG) = O (n) and hence E (n~'e'G'CGe) =
O (1). Since |G|, = O (n’) by Lemma A.6, applying Lemma A.4 gives T'r [(G’BG)Q} =
O (n°*') and Tr (G'BGG'B'G) = O (n°*!). Therefore, Var (n"'e’G'CGe) = O (n°~!), and
it follows that n 'e’G'CG € —, o?Tr (n 'G'BG), if § < 1.
(iv) E (n~'3'X'Ce) = 0 readily follows from the independence of X and e. Also,
Var (n7'@'X'Ce|X) = n?8'X'CE (e') C'XB = n 0?8’ X'C*X 3,
and then
Var (n7'@'X'Ce) = E [Var (n”'8'X'Ce|X)] + Var [E (n'8'X'Ce|X)]
= E [Var (n"'8'X'Ce|X)] =n"?¢*E (B'X'C*X1)
o2
=n"?c*Tr (C°M) = 53 [Tr (B°M) +Tr (BB'M)] ,
n
where
M = (m;;) = E(XBB'X'). (A.3)
Let 3 denote the [*" element of 3, for | = 1,2, ..., k. Then, for any 1 < i,j < n,

Kok koK
mi; = K (Z > ffille’ﬁlﬁl’> =Y BBE (wazjp) .

=1 =1 =1 =1
Since
|E (zazjp)| < Elzgzy| < [E(23) E (%z')}l/ < sup E(2}) <K,
1<i<n,1<I<k

and sup; ;. || < K, we have

kE kK
Z Z 6 BZ’E lex]l’

sup |m;;| < sup

2
< <sup |BZ) sup ZZ|E x|

1<ij<n 1<ij<n | 1<i<k 1<ij<n = 1=
2
(sup |51 ) sup  E (27) < K. (A.4)
1<i<k 1<i<n,1<i<k

Also under Assumption 8 |B|| . < K, and by Lemma A.2 ||B?|| < K. Then applying Lemma
A.1(ii) we obtain T'r (B*M) = O (n). Moreover, as ||B||, = O (n°), applying Lemma A.4(iii)
gives Tr (BB'M) = O (n’*!). Therefore, Tr (C*M) = O (n°™) and Var (n"!@'X'Ce) =
O (n°71). Tt follows that n=!3'X'Ce —, 0, if § < 1.
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(v) The proof is similar to that of (iv). The mean of n~'n'Ce is zero and its variance is
given by
Var (n7'n'Ce) = n?0’E (B X'G'C*GXf) = n"*¢*Tr [C* (GMG)] ,
where M is defined in (A.3). Let M = (1;;) = GMG'. We have shown in (A.4) that
SUP; <, j<n |Mij| < K. Using [|Gol|, < K by Lemma A.6, and Lemma A.2(i) and (ii) yields
SUD)<; j<p [Tj| < K. Repeating the arguments for T (C*M) in (iv) leads to T (021\7[) =
O (n°*1). Therefore, Var (n"'n'Ce) = O (n°~!) and it follows that n='n'Ce —, 0 if § < 1.

(vi) Similar to proving the results in (iv) and (v), it can be shown that the mean of

n '@ X'CGe is zero and its variance is
Var (n7'@'X'CGe) = n"*¢*Tr (CGG'CM)
< Kn?[Tr (BGG'BM) + Tr (B'GG'BM)

+ Tr (BGG'B'M) + Tr (B'GG'B'M)), (A.5)
where M is defined in (A.3). Let P = (p;;) = BM. Then sup,; ;-, |pi;| < K follows from
Lemma A.1, due to ||[B|, < K by Assumption 8 and sup,; <, |mi;| < K, which is proved
in (A.4). Since we have also shown in the proof of (iii) that |BG||_ < K, applying Lemma
A.6(ii) and Lemma A.4(iii) leads to Tr[(BG)G'P] = O (n°*!). Similarly, the remaining
three traces in (A.5) can be shown to be O (n°™) by applying Lemmas A.1, A.2 and A.4.
Consequently, Var (n7*3'X'CGe) = O (n°!), and we obtain n'3'X'CGe —, 0, if § < 1.

(vii) It is easily seen that E (n"'e’G'Cn) = 0 and Var (n"'e'G'Cn) = n 20?Tr <CGG'CM>,
where as before M = (1;;) = GMG' and M is defined by (A.3). We have shown in the proof

of (v) that sup,; ;, || < K. Then by similar line of reasoning applied to (A.5), it follows
that Var (n7'¢’G'Cn) = O (n°~!). Therefore, n7'¢’'G'Cn —, 0,if§ < 1. m

Lemma A.8 Suppose that Assumptions 4 and 5 in the paper hold. Consider G = G (p) =
W (I, — pW) ", where |p| < 1. Then

n
1'G1,=1G1, = —— A.
n
GGl = " (A7)
(1-p)°
Tr (n_lGS) <K, fors=1,2,..., (A.8)
Tr (n'G'G) < K. (A.9)

Proof. First note that since W is a row-standardized stochastic matrix and |p| < 1, then
1
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and (A.6) and (A.7) follow. Denote the diagonal elements of G® by g, ;; and note that

Tr(n7'G*) < |Tr (n7G)| <07t Y gl
=1

Also by Lemma A.6, |G| < K, and since [|G*|| < (||G]|)°, then [|G*|| < K. Hence, all
elements of G* must be bounded, specifically |gs ;| < K and result (A.8) follows. Finally,

ZZWZ(ZI%) ,

i=1 j=1

but by Lemma A.6, sup, > 7, |gij| < K, and hence Tr (G'G) < nk, and the result (A.9)
follows. m

Lemma A.9 Suppose that Assumptions 1-5 in the paper hold. Let G = G (p) = W (I, — pW)_l ,
n=GXg3, and M, =1, — X (X’X)_l X'. Then

E (n'n'M,n) = O(1 (A.11)

E (n_l 'G'M,e) =n" 02T7" G'M,) = O(1), (A.12)

Var (n 77) ( ) (A.13)

Var (n n'M,e) =0 (n7), (A.14)

Var (n7'¢'G'M,e) = O ('), (A.15)

Proof. Let G = (g;;) and & = (&,&,...,&) = XB. Note that n = G¢ and under the

assumptions |E(&&;)| = |oe(i,j)| < K, for all 7 and j. Since M, is an idempotent matrix, we
have

nIgM,n < n'¢G'GE=n"" Z Z &i&; Z gsigsj =0 Z Z Z §i&j9si9sj

i=1 j=1 s=1 i=1 j=1

and n ' E (n'M,n) < n7t 30 375 gsigsjoe(i, 7). Now noting that |og(i,j)| < K, then
n'E(n'M,n) < Kn~ 'Y (3, |gsi])?, and noting from Lemma A.6 that 3, |gu| < K, we
obtain (A.11). To establish (A.12) note that

E (n'¢'G'M,e) = n'E [Tr (G'M,ee)] = n~'o*Tr (M, G).

Applying Cauchy-Schwarz inequality to T'r (M,G) we have

E (n'¢'G'M,e) = n 'o*Tr (M,G) < n'o®/Tr (M,M,) Tr (G'G) = n"'o*\/(n — k)Tr (G'G),

and in view of (A.9) we have E (n7'e'G'M,¢€) = n~'0?Tr (M,G) < K. Alsosince E (n'e'G'M,n) =
0, then

Var (n"'¢'G'M,n) =n20’E [5' (G'M,G)¢| =0(n™),
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which establishes (A.13), and similarly (A.14). Consider now Var (n"'e’GM,e) = n ?*Var (¢'Aeg),
where A = GM,.. Using Lemma A.5 we have

N
Var(e'Ae) =72 Y al+ o [Tr(AA’) + Tr(A%)] < KTr(AA),
i=1
where vo = 14 — 30%. But using result (12) in Liitkepohl (1996, p.44) yields
Tr(AA) =Tr (G'M,G) < Apax (M) Tr (G'G) = Tr (G'G),

and using (A.9) we have Tr(AA’) < Tr (G'G) < nK. Then the result (A.15) follows. =

Lemma A.10 Let {X;,, 1 <i<k,, n> 1} be a martingale difference array with respect to
the filtration §7_, ,, = o [(Xjn)j 1 |- Suppose that (a) X, is square integrable, (b) S B X

0, and (c) 5 E(X2|3% 1.,.) —p 1. Then S0 X, —a N(0,1).

!

Proof. See Corollary 3.1 of Hall and Heyde (1980).4? m

A.2 Proofs of theorems and propositions

The following proofs make use of the lemmas in Section A.1 of this online mathematical
appendix. Note that the elements of the matrix and variables in the theorems and propositions
may depend on sample size n and form triangular arrays, but we suppress subscript n in the

proofs for notational simplicity.

Proof of Theorem 1. We first consider w? given by (15) in the paper and show that w? is
bounded. Note that (11) in the paper implies that p;; (or pj;;) must all be bounded in n. By
definition, a;; = (p;; + pji) /2, and hence sup, ; |a;;| < (sup,; [pi;| + sup; [pjil) /2 < K. Using

(15) given in the paper we now have

wi < Ksup !,u4 — 304’ + 2 (sup a4> [Tr (n’lAQ)] .

Furthermore,
Tr(n'A?) = % [Tr (P?) + Tr (P"?) + 2Tr (P'P)]
= % [Tr (n'P?) +Tr (n 'P'P)],
and

n n

2 n n 2
Tr Zp?] < Z <Z |pm ) < Z (Supz |plj|>
1 j=1 i= i=1 toj=1

1=

A2Condition (b) in Theorem A.10 is a sufficient condition for the conditional Lindeberg condition (3.7) in
Corollary 3.1 (see Davidson, 1994, Theorem 23.11).
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But under (11) of the paper, sup; >, |pij| < K, and we have Tr (n~'P'P) < K, which also

implies that Tr (n~'P?) < K. Hence, w? is bounded in n for all values of 0 < § < 1. Also

note that condition (13) in the paper ensures that w? > 0, for all n (including n — o).
Consider ) defined by (14) in the paper and following Kelejian and Prucha (2001) write

it as @ = >, X;, where

X, = w;ln’lﬂaii (8? — 02) + 2w;1n’1/25i(i,1, (A.16)
and
i-1
Cifl — Zaijgj' (Al?)
j=1

Clearly, F' (X;) =0 and
FE (Xf) = wfn_lE [Cbn' (6? — 02) + 281'@‘—1]2
=w,’n"'E [a; (52l + o0 —2e70%) + 43¢0 | + day (€] — 07) €G]

i—1
= w;%’l a?i (/M — 04) + 40* Z afj] ) (A.18)
=1

Notice that (15) in the paper can be written equivalently as

w2 = (pg — o) Zau—kéln 1042":2:& >0 (A.19)

i=1 j=1
Using (A.18) and (A.19) leads to > | E(X?) = 1. Note that {X;,1 <i < n} forms a mar-
tingale difference array with respect to the filtration §5_, = o [(63);;11} (with §5 = {0, Q}).
=1 it is readily seen that {X;} is a martingale difference array
with respect to the filtration §¥ ; = o [(XJ);;ll
Lemma A.10 is applicable to @ if the three conditions on {Xi, 3%;1} can be established. Since
we have shown that Y "' | E(X?) = 1, and E (X?) > 0 for all i, it follows that E (X?) <1,
and hence X? is square integrable for all values of 0 < § < 1. In what follows, we only need
to show that conditions (b) and (c) of Lemma A.10 hold under 0 < § < 1/2.

We now consider condition (b) of Lemma A.10. Let ¢ = 2 + v, where 0 < v < ¢/2. Then

Since X;_; depends on {¢;}'_!

] . Hence, the central limit theorem given in

by Minkowski’s inequality,
E|Xl|q = w;qn_%E ‘aii (8? - 0'2) + 25Z’Ci_1|q
q
<wym [Jal (B |2 = o%) " + 2 (Bl B G |) ]

i—1 a
\aii| (E |€7,2 — 0_2’(1)1/(1 + 2 (Z ]al]\) (E|€Z’qE |€j|q)1/q] .

Jj=1

q
g —1
<w,n"2

Since sup; E |&;|*™ < K, we have E |2 — 02" < K and E|e;|*t” < K for all i, and it follows
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that

E|X ’2+V < W (2+l/)n

i1 2ty
K |lag| +2 (Z |aij’)]

Jj=1

2+v
<w, —(2+v)), (Z |alj |> ’

and

ZE|X|2+V<CU 2+V

=1

- (le)

Using the definition,

24v 24v

zn: (zn: |aij|> _ zn: (i |Dij +pji|>
i=1 \j=1 i=1 \j=1 2
n n n 2+v
<27y (Z i+ |pji|> ,
i=1 \j=1 J=1

and applying Loeve’s ¢, —inequality,*?

n n 2+v 2+v n 24v
<Z IZIEY iji|> < 2B+~ (Z |pij ) + <Z |sz‘|> ,
i=1 i=1 i=1

therefore we have
24v 2+v 24v

> (iw) 5|2 (Z |pw> > (Z 'pﬁ')

i=1 \j=1

24v
But under assumption (11) in the paper, > ., (Z?:1 |pij|> = O(n). Also, letting m
denote the number of unbounded columns of P,, and noting that m is finite by assumption,

we obtain from (12) in the paper that

n n 24v
Z (Z |pjz‘|) < Kmn’®™) + K (n —m) = O {nm@PEAI

i=1 \j=1

2+v
Hence, 3, (Z;Ll |aij|) = O {nmax{BE)1Y and then

2+v
S (So) oy,

ZE|X|2+V<CU 2+V

=1

A3See, for example, Davidson (1994), p. 140.
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or equivalently,

n _v . 1
Seppr= {00 s
22T oo ben] i > L

Therefore, 321 E|X,;|*™ converges to zero if 0 < § < 1/2, and this completes the proof of
condition (b).
We now turn to establishing condition (c) of Lemma A.10. Note that

2 — ot 402(2 A 11=C
E (Xz2|{§f_1) _ Qi (M‘l - g ) + o C@271 + &n,ui‘)ngl
nw? nw? nw?

)

and it follows that

2 2
nws nw;,

i E (Xi2|gff1) 1= (o, af) (pa — ‘74) do® 3o, G
=1

s 0 aCioy (e — o) Y0y i+ Ao 300 Y050 af

2 2
nw;, nwy;

[Z, 1 C2 -0’ Zz 1 Z] 1 ZJ n 4#3 Z?:1 aii(i—l

2 2
nws nws

=w,? (8H, + 4H, + 4H3),

+

where

n i—1 j—1

H1 = n‘ngZZZazjaikqek, (AZO)

i=1 j=1 k=1

n -1
Hy =n"'o? Z Zafj (2 —0?), (A.21)

i=1 j=1
n i—1

H3 = n_l,ugzZaiiaijgj. (A22)
i=1 j=1

We need to show that Hy, for s = 1,2, 3, tend to zero in probability as n — oco. For Hy, we

have
n i—17-1 n [-1 r—1
—n 042 ZZ Qi Aif ALy AsEjERLEFE 5.
i=1 j=1 k=1 I=1 r=1 s=1
Note that E (¢ere,e5) # 0 only if (j=71) # (k=s)or (j =s) # (k=r), since k # j, s #r.
Therefore,
I -1 j5—-1
FE (H2 =2n" 2082222‘%@%“”‘%
I=1 i=1 j=1 k=1
n n n n
<2n 20"y > i ai] lay] la|
=1 i=1 j=1 k=1

All



<n2® Z Z ;| Z ;] (Z |air||p| + Z ‘aikaklO

=1 j=1 k—1
n
<n-%822|%|2|%| s 3 (s fou)
i=1 j=1 I<i<n )~ 1<i.k<n
+n_20822|az]|2|a1k| ( SUp Z|pkl|) ( Sup |al]|)
=1 j5=1 <n
< Kn~ ZZ |azj| ( sSup Z |alj| + sup Z |aik|> < Knd .
=1 j=1 sjsn I<isn 7

Noting also that E(H;) = 0, by Markov’s inequality we conclude that H; = o,(1) if § < 1.
Turning next to Hy. We have E(Hs) = 0 and

n  i—1 n k-1
2 _ -2 4 2 2 2 2 2 2
H2 =N "0 E E aij (5j —0 ) Qg (gl -0 )
=1 j=1 k=1 [=1
n i—1 n k-1 n i—1 n k-1
_ =2 4 2 2.2 8
=n ‘o E E E jakls g +n- 25 E g g E a”akl
i=1 j=1 k=1 I=1 1=1 j=1 k=1 [=1
n i—1 n k-1 n i—1 n k-1
E § E 6 E E § :E : 2 2 2
ajakléfj _n 0- CL aqu,
i=1 j=1 k=1 I=1 i=1 j=1 k=1 I=1

which leads to

n i—1 n n i—1 n k—1
2\ . —2 4 2 4
E (HQ) =n ‘o E a;; ak] 4t+0 E a”akl
=1 k=1 i=1 j=1 k=11=1,1#j

—n28

:

i=1 j=1 k=1 I=1

n i —1 n

=n"%0* u4—a ZZZ@Z&M

=1 j=1 k=1
n n

<ot (- N sup§j|a,w| (s o)
=1 j—1 1<j<n k,j<n

S Kn(sf].

Y

where in the last line we used n=' Y1 >0, af;
Hy; =o0,(1) if 6 < 1. Lastly, F(H;) =0, and

=Tr (n"'A’A) < K. Thus, we obtain that

n k-1
—2 2 2
;=n 3o E g %%E g ApkAkIEL,
i=1 j=1 k=1 I=1
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and it follows that

n i—1

E (Hg) =n"*uzo° Z Z Z @i Qi Ak Ok

i=1 j=1 k=1

n n n
<n?30” Y Y O al lai;| [ar| ax|

i=1 j=1 k=1

< Kn™? il |ag; su Qi sup |a < Kn® %

< #0733 o b <er m) EE
Hence, H3 = 0,(1) if § < 1. Overall, we conclude that > ;" | F(X?|§7 ;) —, 1if 0 <6 < 1,
which proves condition (c) of Lemma A.10. Combining our findings for (a)—(c) establishes the
result in (14) of the paper under 0 < § < 1/2. m

Proof of Theorem 2. We begin by showing that @?, which is defined in (18) of the paper,
is bounded in n for all 0 < § < 1. Note that

n n
~2 2 2, 1 ~1
W, =w, tomn E Mo + 2p3n E Qi fln i

i=1 i=1
where w? is defined by (15) in the paper. We have shown in the above proof of Theorem
1 that w? is bounded in n for all 0 < ¢ < 1, and since 07, < K, py; < K, g < K, and

laii] < |pu| < K for all 4, it is immediate that w? is bounded in n for 0 < § < 1. Also note
that condition (16) in the paper implies that @2 > 0, for all n (including n — oo).
Consider ) defined by (17) in the paper and write it as Q = >, Y;, where

~—1,_—1/2 2 2 ~—1,_—1/2 ~—1,—1/2
Yi=&,n /aii(gi —0)+2wn n /ag,l—l—wn n /771-81-,

and (1 is defined in (A.17). It is easy to check that {Y;,1 <i <n} forms a martingale
difference array with respect to the filtration §,”5, = o [(nj);;ll : (Ej);;ll] (with F0° = {0,Q}),
and therefore {Y;} is also a martingale difference array with respect to the filtration §7 ; =
o [(Y;);;ﬂ . To apply the central limit theorem given by Lemma A.10, we need to show in
turn that the three conditions (a)—(c) are satisfied for {Y;, ¥ ,}.

First, we see that

1—1
E(Y?) =& n" [a?i (4 — o) + 40" Z ag; + 0% gy + 2N3aiiﬂn,z’] :

j=1
Using (18) in the paper we obtain Y, E(Y;?) = 1. Since E (Y;?) > 0 for all i, we readily
have E (Y;?) <1 and hence Y; is square integrable.

Turning to condition (b). Notice that Y; can be rewritten as Y; = @, 'n=Y2 (Y}, + Ya,),
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where Y1 ; = a;; (67 — 02) + 2¢;(;_1, and Ya; = n;e;. Applying the ¢, —inequality, we have

n

ZE|Y|2+6 _ 2+€ ZE D/lz + }/*21|2+e

=1

Since

ZElez”e ZEW@ [ < nsup B (Jei +)SUIDE(V?J\M) < Kn,
=1

2+£

it follows that n="z S E|Yy,[*** = O (n~2), which converges to zero for all values of
0 < § < 1. In addition, note that Y;; = X;n'/2w,, where X; is defined in (A.16). As
we have shown in the proof of Theorem 1 that 32" E|X;|*™ — 0if 0 < § < 1/2, we
immediately obtain that n~ 2" Sr L EYPte — 0if 0 <6 < 1/2. Thus, overall we have
St B — 0if 0 < < 1/2, and this completes the proof of condition (b).

Now it remains to establish condition (c): Y., E (Y*|F?_;) —, 1. Note that

Y E(YPEL,) - 1=, (8H, +4H, + 4H; + 4H,),

where H,, s = 1,2,3, are given by (A.20)-(A.22), respectively, and Hy = n'o? > " n:¢i1
Since F (H4) = 0 and

Var (Hy) = n_2U4ZE () E(G,) <o supE n?) < Kn,

i=1

_2ZE 1

we have Hy —, 0. As it has been shown in the proof of Theorem 1 that H, —, 0, for
s =1,2,3,if 0 < § < 1, overall we conclude that " | E (Y2F,) —, 1if 0 <6 < 1.
Combining conditions (a)—(c), Lemma A.10 is applicable and the result in (17) of the paper
is established under 0 <6 < 1/2. m

Proof of Proposition 1. Let us first consider the estimator defined by (27) in the paper

using a single quadratic moment. We can rewrite € (p), given by (29) in the paper, as
e(p) =€~ (p— po) Goe. (A.23)
Substituting (A.23) into g, (p), which is given by (28) in the paper, yields

g (p) =n"" e = (p— po) Goe]' Cle — (p — po) Goe]
R ] e L & (A24)

n

Since Tr (C) = Tr (B) = 0 under Assumption 8, we have E, (¢'Ce) = 0217 (C) = 0. Using
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the results in Lemma A.7(i)—(iii), we obtain

gn (p) = (p— po)? 02ao — 2 (p — po) o2bo + 0, (1),

where ag = lim,, o, Tr (n"*G{CGy) and by = lim, .., Tr (n"'G{C). Note that g, (py) =
n~1e'Ce. Using (A.24), it follows that

n (p) = gn (po) = (p — po)* oga0 — 2 (p — po) ogbo + 0 (1) .

Since j is such that g, (5) < g, (po), or equivalently (p — po)* o2ag — 2 (p — po) 02by < 0, then
we will have global identification if by = 0 and ag # 0. In this case, (5 — po)° ag < 0, which
is satisfied if and only if p = py. However, in general where by # 0, and we must have either
p=po+o,(1),o0rp=py+2by/ag+o,(1). It is clear that py is not globally identified if by # 0.

Now suppose that we use at least two quadratic moments to obtain the GMM estimator.
Formally, consider the estimator defined by (30) in the paper using L (L > 2) quadratic
moments. The above arguments for a single quadratic moment readily extends to the case of
multiple quadratic moments. Each (population) moment condition will have two solutions:
pre = po and poy = po + 2buy/as, for £ = 1,2,..., L, where ay = lim, .., Tr (n"'G{C/Gy)
and by = lim,, o, Tr (n"'G{Cy). Then it is clear that p, is uniquely identified as long as the

ratios, by /ag, are not all the same across £ =1,2,...,L. =

Proof of Theorem 3. Consider € (1) given by (20) in the paper. It can be rewritten as

() =€~ (p—po)Goe — Qo (V¥ — vy), (A.25)

where Qo = (19, X) and 1, = G¢X3,, which is defined by (9) in the paper. Substituting
(A.25) into the quadratic term in (25) of the paper and reorganizing yields

nle! (4) O () = S0 —2(p — ) S0 o — ) WE (g gy X
T (p— pop S GG | (2 (5 m)XCX(B Bo)
+2<p—po>2%+2<p—po>€(;'#<ﬂ—ﬁo>+z<p—po>"OCXw Ba).

Using the results in Lemma A.7 and Assumption 7(d), the above equation becomes
n~e' (¥) Ce (¥) = (p — po)” (c5a0 + co) — 2 (p = po) a5bo + 2 (p — po) i (B — By)
+ (8 = Bo) Zex (B~ Bo) + 0, (1), (A.26)

if 6 < 1, where ag = lim,, o, T7 (n " 'G{CGy), by = lim,, ... T7 (n"'G{C), co = plim,,_.o n~ 1 Cny,
dj = plim,, .., n 'n,CX, and X,., = plim, .., n ' X’CX. Substituting (A.25) into the linear
term in (25) in the paper yields

n~'Z'e () =n"'Z'e — (p— po) n T Z'Goe — T Z'Qo (P — 1)
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=X (Y — ) + 0, (1), (A.27)

where ¥, = plim,, o n'Z'Qq and n"'Z'e = 0, (1) readily follow Assumption 7. To see that

n~'Z'Goe = o, (1), first note that its mean is zero due to independence of Z and e, and we

.....

Z,forl=1,2,...,r. Then
Var (n7'2',Goe) = E [Var (n'2/,Goe|Z)] = n 05T (GoGiM) ,

where M = (my;) = E(z;2);). Since sup, ; |my| = sup,; |E (zqz;)| < K under Assump-
tion 7, using Lemma A.4(iii) and Lemma A.6(ii) yields T (GoG{M) = O (n°™) and then
Var (n 7'z ,Goe) = O (n°!) for | = 1,2,...,r. Consequently, by Chebyshev’s inequality
n~1Z'Gye converges in mean square and therefore also in probability to zero if § < 1.
Now combining (A.26) and (A.27), we obtain
(p = po)? (03ao + co) =2 (p = po) agbo + 2 (p — po) dy (B — By)
Ag, () =A +(B - By) Tecr (B — By) +0,(1),
Xq (¥ — 1)

or alternatively,

Under Assumption 7, ¥, has full column rank, then 3., (¢» — v,) = 0 if and only if ¢ = 1.

Hence, global identification is ensured without the quadratic moment. Moreover, it is readily
seen that g,, (1) converges in probability uniformly in ¢ € ¥ since ¥ is compact and g,, ()

is a continuous function. Thus, consistency of ¥ can be established.

Consider now to the asymptotic distribution of 7). By a mean-value expansion of %&:#)AQLAH gn({b) =

0 around 1), we obtain

i@ — o) = — (MA;An ag@) 99.00) p1 A g, ().

np oy’ P
where 1 lies element by element between ), and 7,[) Note that
99,(¥)

P — -0 2Ce (). 2] (. X).
and y* = n, + Goe, we have
n e’ (v) Cy* = n te' (1) Cny +n e’ (v) CGee.
Using (A.25), Lemma A.7, and Assumption 7(d) yields
n~'e’ () Cng = n~'e'Cny —n~'(p — po)e'GCny — 1~ (3 — 9,)’ QoCryg
=—n"" (1 — 1) QuCrq + 0, (1),
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n e’ (1) CGoe = n 'e'CGoe — n 1 (p — po)e' G{CGoe — n~ (¥ — 1) Q,CGoe
=n"togTr (CGo) —n 'og(p — po)Tr (GyCGy) + 0,(1),

if 0 < 1, and consequently
n~e () Cy" = —n~" (¥ — 2hy) QuCnygtn a5 Tr (CGo)—n"" 05 (p—po)T7 (GoCGo)+0,(1),
uniformly in ¥ € ¥. At 1 = 1p,, we have € (1p,) = €, and it follows that n~'e'Cy* =
n~todTr (CGy) + 0,(1), and

nZ'y* =n'Z'ng +n 12 Goe = n"'Z/n, + 0, (1),
if § < 1. Thus, dg,,(¥)/0y’ = =D +o0, (1), where D is given by (31) in the paper. Moreover,
by Theorem 2 in the paper we have V;1/2\/ﬁgn(¢0) —q N (0,141) if 6 < 1/2, where V is

given by (31). Hence, the asymptotic distribution of \/n(t) — 1)) is as stated in Theorem 3.
n

Proof of Theorem 4. To establish consistency and asymptotic distribution of the BMM

estimators, we first note that under model (5) in the paper with 8 = 6, we have

~

y=py == (p—po)y" +XBy+e¢,
and hence
M, (y—=py") = = (P — po) MLy" + Mye,
where M, is given by (42) in the paper. Also note that
~ I ~
o X8) (s X8) < - Mt

Using the above results, the estimating equations (36)—(38) in the paper can now be written

as
(7y"X) (B o) + (17'yy) (5= po) =ty e —Tr G ()] (A28)
(n7'X'X) (B — [30> + (0 X'y*) (p— po) =n" X', (A.29)
and
6* — o = [(n'e'Mae) = 08 = 2(5 — po) (n'y"Mae) + (5= po)* (n 'y My ) . (A.30)
Noting that y* = n, + Goe, where n, is given by (9) in the paper, we obtain
nly"X = n g X +n e 'GiX, nlyYe = nlnhe + n e’ Ge,
n~ly 'yt =nTtnimg +nle' GGoe + 207 ' Gy,
iy M,y* = n~iniM,n, + n" e’ GiM,Goe + 2n L' GM, 1,
nly*M,e = n ' 'niM,e + n 'e'GiM,e.
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Also, denoting G (p) by G, we have
6*Tr (n’1G> —0oiTr (n ( ’IGO) (a — 00) Tr ( ’IGO) + op [Tr (n’lf:”r) —Tr (n’lGo)]
+ (6% — o) [TT ( G) —Tr (n_lGo)} . (A.31)
But
G —Go=W (L, - pW) "' =W (L, — pyW) ™"

=W (I, = pW) ' [(T, — poW) — (L, — pW)] (I, — poW) "

= (p = o) W (L = pW) "W (L, = pyW) ™" = (5 — po) GG (A.32)
Hence, G = Go + (5 — po) GGy, and using this result back in (A.32) now yields

G —Go = (p—po) |Go+ (p— po) GGo| Go = (p — po) Gf + R (p, o) ,

where R,, (5, p0) = (5 — po)’ G (p) G2 (po). But by Lemma A.6, || G(p)||., < K, and only con-
sidering estimates of p that satisfy the condition || < 1, we have ||R., (5, po)ll, < K |p — pol”,
and hence E [n 'Tr [R,, (p, po)]| < KE|p — po|?, which establishes that

n 1Ty (G . G0> = (p—po) Tr (n"'G2) + 0, [(p — po)?] - (A.33)
Using results in Lemmas A.8 and A.9, it is now readily established that
ne'GyX =0, (n?), n'e'Gimy =0, (n?), nte'GyM,n, =0, (n"?),
ne'Gye = agTr (n'Gyo) + O, (n7%), n'e'GyM,Goe = 03 Tr (n"'G{M,Gy) + O, (n™*/?),
n'e'GyGoe = agTr (n'GyGyo) + O, (n %), n'e'GiM,e = a3Tr (n"'GoM,) + O, (n /%) ,
and hence
n'eM,e =02+ 0, (n"?), nly"e = 02Tr (n"'Go) + O, (2,
n"ly"M,e = 02Tr (n"'GoM,) + O, (n2),
nly " M,y” = n inyM,n, + 02 Tr (n ' G{M,Gy) + O, (n~/?).
Using these results in (A.30) now yields
62— 02 = [(n"'e'M,e) — 02] — 2(p— po) 02T (n ' GoM,)
+ 0y [(p—po) ] + 0, [(p— p0)°] - (A.34)
Substituting (A.33) and (A.34) in (A.31) we have (noting that Tr (n"'Go) < K)
6*Tr (n'G) = 03T (n"'Go)
=Tr (n 'Go) [(n"'e'M,e) — 03] — 205 (p — po) Tr (n'GoM,) Tr (n™' Gy)
+ 05 (p—po) Tr (01 Gg) + Oy [(5 = po)’] + Oy [(5— po) n~*]. (A.35)
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Using (A.35) in (A.28) and rearranging gives

(n7y"'X) (B~ Bo) + g (5= p0) = onge + O [(p = p0)] + Oy [(5 = po) /2] (A.36)

where

Pnpe =1 'mpe +n7'e [Gy — MLTr (n'Go)] €,

hopp =1 y"y* + 05T (n7'Gy) — 205Tr (R 'GoM,) T (n'Gy) .
Combining (A.36) and (A.29) we have

( gy 5 ) ( p=ro ) _ ( P pe ) N ( O, [(5 = po)’] + Oy [(p = po)n 7] )
le* X/X o X_IS' .
n n ’8 ﬂo n 0

It is also easily seen that
B pp =107 mpmo + 11’ GHGoe + 2n'e'Gn,
+ 05T (n7'GY) — 203Tr (R 'GoM,) T'r (n™' Gy)
=n"'nyne + o3 Tr (' GyGo) + o3 Tr (n~'Gj)
—203Tr (n_lGoMm) Tr (n_ng) + 0, (n_l/z) )
Notice that
Tr (n"'GoM,) = n~'Tr (Gy) — n~'Tr [GOX (X'X)! X]
=n'Tr(Go) —n 'Tr [(n_1X/X)71 (n_lX'GOX)} :

Under Assumption 3, we have

p lim n ™ 'Tr (GoM,) = hm nTr (Go) — hm nTr (X2X54,) = lim n T (Gy).

n—o0

Hence, using results in Lemmas A.8 and A.9 we have

pnh_{{.lo hnypp - ﬁ()zxggxﬁo + O'gho,

!

where hy = lim, .o hy, and h, is given by (10); plim, e hppe = 0; plim, o % = 0;
plim,, X _ [%Exga:; and plim,, % = 3,.. Therefore, the BMM estimators are con-

sistent if H, defined in (40) in the paper, is a non-singular matrix. In particular, under this

condition p — py = O,(n~/2).
To derive the asymptotic distribution of the BMM estimators, we first note that

(};g_ypp g)(\/\/—_@ gﬁ)) (fj;"ﬂf) <0p[\/ﬁ(ﬁ—po)z]+op[(p_p0)]

n n

and

By () = (Vi)

v
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Consider now
noe €'lle
Pppe = —F=+ ———,
NI /e + 7

where II is given by (42) in the paper. Since X is strictly exogenous under Assumption 3,

(A.37)

we carry on the analysis of (A.37) conditional on X. By Lemma A.6(ii), G, satisfies the
conditions in (11) and (12) in the paper. Since M, is an idempotent matrix, IT also satisfies
(11) and (12). Therefore, applying Theorem 2 in the paper leads to

1
NG [me + e'Tle — oy Tr (II)] —4 N(0,w?),
where w? is given by (41) in the paper. Notice that

n—=k k

Tr(IT) = Tr (Go) — Tr (M) Tr (n™'Go) =T (Go) — Tr(Go) = ETT (Go) < K,

n

and it follows that plim, ... [n™"/262Tr (IT)] = 0. Hence, by Slutsky’s theorem we obtain
noe €'lle
i m

In addition, it is readily seen that XT/TT —4 N (0,0%%,,). Thus, the asymptotic distribution of

d N(O, wi)

1/3 as stated in Theorem 4 in the paper is established. m

Proof of Proposition 2. We will show that under the stated conditions the limiting distrib-
ution of the BMM estimator given by Theorem 4 in the paper is equivalent to the distribution
of the best GMM estimator given by (4.5) of Proposition 3 in Lee (2007). Note that the last
term of (41) in the paper can be rewritten as
Tr (n'II'TI) + Tr (n~'I17)
=Tr (n'GyGo+n"'G) —ATr (n "M, Gy) Tr (n™'Gy)
LT (n "M, [Tr (n'Go)]’
— 07T (GG + G2) — 2 [Tr (n'Gy) ]
—ATr [0 X (X'X) T X/Go | Tr (n7'Go) + 207k [Tr (n7'Go) |
= h,, — 4n"'Tr [(X’X)_1 (X’GOX)} Tr (n'Go) +2n 'k [Tr (n’lGo)]Q,
where h,, is given by (10) in the paper. Since 2., = plim, . n 'X'X and X,,, = plim,_, n 'X'G¢X

exist and they are k-dimensional square matrices (k is finite), it follows that

p lim [Tr (n 'II'TL) + Tr (n~'I1%)] (A.38)

n—oo

=h—4lm n 'Tr(E;:2.,) +2 lim n 'k [Tr (n_lGoﬂ2 =h,

where h = lim,,_,, h,. In addition, the assumption of normally distributed errors imply that
7 = 0 and gz = 0. Finally, combining (40) and (41) in the paper with (A.38) leads to
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V = 02H and hence Q, = 0c2H !, which is identical to the asymptotic variance of the best
GMM estimator given by (4.5) of Lee (2007). m
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