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Abstract 
 
We use two randomized controlled trials in Bangladesh to study a simple water conservation 
technology for rice production called “Alternate Wetting and Drying (AWD)”. Despite proven 
results in agronomic trials, our first experiment shows that AWD only saves water and increases 
profits in villages where farmers pay a marginal price for water, but not when they pay fixed 
seasonal charges. The second RCT randomly distributed debit cards that can be used to pay 
volumetric prices for irrigation water. This low-cost, scalable intervention causes farmers to 
place more value on the water-saving technology. Demand for the technology becomes less 
price-sensitive. 
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1 Introduction

Agriculture accounts for almost 70 percent of global water use (FAO, 2016). Many developing

countries have successfully increased food production by irrigating their crops in the dry

season, when rainfall is scarce. This expansion of groundwater irrigation has caused depletion

in many regions, especially in Asia. Technologies to use water more efficiently offer a potential

solution. One such technology, Alternate Wetting and Drying (AWD), is a simple perforated

plastic pipe, open at both ends, that is planted in a rice field to help the farmer irrigate only

when the crop needs water. AWD has been around for decades but is not widely adopted,

despite its simplicity and numerous agronomic trials showing that it can reduce water use

by about 30 percent.1 In this paper we use two randomized controlled trials to study how

a basic market failure, in the form of a zero marginal price for water, affects the usage,

impact, and demand for this technology. We show how fixing this inefficiency by introducing

a marginal price changes demand for water-saving technology.

The first experiment delivers causal estimates of the effectiveness of introducing AWD.

This is done by randomly providing 2,000 farmers in Bangladesh with training on how to

use the AWD technology, a free AWD pipe, and help with installing the pipe on a specific

plot that was identified prior to the experiment in all villages. The 2,000 control farmers

continued to irrigate as before. We placed our sample in different geographical areas in order

to characterize the efficacy of AWD across the various ways in which farmers pay for water.

About 35 percent of the sample faced non-zero marginal prices for irrigation water, while

the remainder purchased water using a seasonal contract where the price is based solely on

area cultivated, not the volume used.

Using about 7,600 observations of water levels, we find that on average AWD leads

to a modest and statistically insignificant change in water use. This finding is in sharp

contrast with evidence from agronomic trials. However, in the sub-sample with volumetric

pricing, treatment plots had 19 percent less water and were 21 percent more likely to be

dry when observed on random days — estimates that are in line with agronomic evidence.2

We estimate that these savings translate to about 0.14 acre feet of water on a single plot,

which is equivalent to about half of the annual residential usage in the United States. In

contrast, we find no difference in water management between treatment and control farmers

when they face seasonal contracts for water.

1Agronomic studies include Cabangon, Castillo, and Tuong (2011) and Bueno et al. (2010) in the Philip-
pines, and Belder et al. (2004) and Yao et al. (2012) in China. Other trials have been carried out in Vietnam
and Bangladesh (Lampayan et al., 2015).

2We collected impact estimates from about 90 agronomic trials. Our estimate falls at the 25th percentile
of this distribution.
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The profitability of the AWD technology depends crucially on whether farmers face volu-

metric prices. AWD has no effect on profits with seasonal water charges, consistent with the

observation that water management did not change in this setting. Volumetric prices, on the

other hand, incentivize use of the technology: we find a significant increase in farm profits

of about 7 percent. Overall, this first experiment suggests that there may be a fundamental

market failure that explains why farmers do not value a water-saving technology with proven

results in the laboratory: they face a zero marginal price of water.

A limitation of this experiment is that we relied on the natural variation across regions

to measure the relationship between volumetric pricing and the effectiveness of water-saving

technology. The non-experimental variation in pricing leaves open the possibility that the

observed heterogeneous treatment effect is due to an omitted factor that correlates with

pricing but also mediates the impact of AWD.

We thus conducted a second RCT to estimate the causal effect of encouraging hourly

irrigation prices on the valuation of water-saving technology by farmers. In Northwestern

Bangladesh, there are 4,000 community tube wells that are equipped with meters that can

take prepaid debit cards and release irrigation water. Farmers can load their own cards with

funds at a nearby kiosk and obtain irrigation water on demand. This solution is low-cost,

implementable and aligns incentives for efficient water use. Our treatment seeks to increase

the penetration of prepaid card usage in order to examine the causal link between pricing

policy and technology adoption and to test a scalable solution for implementing volumetric

pricing.3

We identified 144 villages which have installed meters, but use of prepaid cards by indi-

vidual farmers is almost non-existent.4 In order to encourage hourly pricing for water, we

randomly selected 96 villages for a campaign to assist farmers in obtaining their own debit

cards. Many farmers attribute the low rate of individual card ownership to the costs associ-

ated with the application process. Our treatment sought to reduce these costs by organizing

a meeting with farmers to explain the purpose of the prepaid cards, help them fill out the

paper application, obtain the photograph needed, pay the application fee of $1.9, deliver

the forms to the irrigation authority, pick up the cards once complete, and deliver them to

3It is scalable because the policymaker only needs to provide farmers with payment cards and install a
single meter at each pump, rather than individual meters for each plot.

4In most cases the tube well operator maintains a few cards, manages the allocation of water to farmers,
and provides them with equal per-acre bills regardless of their individual consumption. The bills are most
often paid in two installments: at the beginning and end of the season. One of the main benefits of this
approach — from the perspective of the tube well operator — is the ease of tracking. The operator only needs
to observe how much money is being used on his cards and acreage cultivated by each farmer, rather than
keep track of the individual hours pumped. The operator levies a markup before calculating the per-acre
cost to be charged to each farmer. The per-acre charge makes it easier to conceal this markup: the per hour
cost of pumping is generally known to farmers.
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farmers. Once in hand, a farmer can load the card with funds — the same way as a mobile

phone — and purchase water from the village tube well.

This nudge towards hourly water pricing changes how farmers value water-saving tech-

nology. We estimate the demand curve for AWD by sending sales teams to all villages and

offering farmers an AWD pipe at a randomly determined village-level price, along with in-

formation on its use. The eight different random prices ranged from 15 to 70 percent of the

marginal cost of the pipe.

Encouraging hourly billing causes the demand for AWD to become less price responsive.

Demand elasticity falls by 33 percent from 1.7 to 1.14 when comparing treatment and control

villages. At the four highest prices, the hourly cards increase purchase of AWD by 35 percent.

We find no effect on uptake at the four lowest prices. This demand experiment also lets us

estimate the value farmers place on this conservation technology. Consumer surplus — when

measured at our median price of $0.7 — increases by 64 percent in prepaid card treatment

villages.

Yet, demand for AWD is low, both among treatment and control farmers. Using a survey

with local shop owners, we estimate the marginal cost of production of the pipe to be $1.66

— a price well above the level at which demand falls to zero. Only about 20 percent of the

purchasing farmers were found to be using the technology when field staff returned to check

on usage.5 Nonetheless, we estimate that a one percent increase in price decreases usage by

2.6 percent in control villages but only by 0.6 percent for farmers with hourly irrigation cards.

That is, the price-usage elasticity shows the same pattern as the price-purchase elasticity.

This paper makes three contributions. First, the problem we address is pervasive — in

most countries, farmers pay fixed water charges that are unrelated to water use. Figure 1

shows that of the 80 countries where we could find information, 53 had regions where water

is not priced by volume.6 The absence of a marginal price for water is particularly evident

in the low-income countries of South and Southeast Asia.

Despite calls from economists for institutional reform that introduces marginal prices

(see Zilberman and Schoengold (2005)), there is no rigorous field evidence documenting

the role seasonal water charges play in discouraging efficient agricultural water use. To our

knowledge, this is the first paper that randomly introduces volumetric pricing for agricultural

water.7

5Usage is defined as an enumerator being able to verify that the pipe was installed in one of the farmer’s
fields.

6The pricing methods for most countries were obtained from FAO (2004). Additional countries were
classified using either Johansson et al. (2002) or Molle (2009).

7Fishman et al. (2016) use non-experimental variation to study the water savings from a program in India
where farmers voluntarily installed meters and were compensated for electricity savings relative to baseline
consumption. They find no effect of the program on groundwater pumping.
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Second, we offer rigorous evidence on a scalable policy mechanism for introducing vol-

umetric water pricing.8 Implementing volumetric pricing is difficult due to its high cost

and political pressure from farmers, some of whom may lose under the new regime (Tsur

and Dinar, 1997). We show that a simple digital payment technology moves the pricing

regime closer to marginal cost pricing and induces farmers to put more value on conserva-

tion technology. In essence, encouraging volumetric pricing leads to a perceptible change in

the farmer’s attitude towards conservation, as measured by the shift in their demand for the

technology.

Third, we find that inefficient factor pricing may explain why technologies that are avail-

able, proven in the laboratory, and seemingly in reach of farmers continue to exhibit low

rates of adoption. Earlier explanations have focused on failures in output markets (Ashraf,

Giné, and Karlan, 2009), behavioral biases (Duflo, Kremer, and Robinson, 2011), frictions

in insurance or credit markets (Karlan et al., 2014; Cole, Giné, and Vickery, 2017), un-

observable input quality (Bold et al., 2017), heterogeneity in the net benefits and costs of

adoption (Suri, 2011), and learning frictions (Conley and Udry, 2010; Hanna, Mullainathan,

and Schwartzstein, 2014; Beaman et al., 2015).9 We add to this literature by showing that

the pricing mechanism for a critical factor of production inhibits technology adoption.10

The structure of the paper is as follows. The next section outlines the experimental design

of the first RCT. Section 3 presents the results of that experiment showing how AWD only

saves water and increases profits in villages where farmers pay volumetric prices. Section

4 describes the second experiment that estimates the effect of encouraging prepaid hourly

billing on demand for the AWD technology. We show in Section 5 how demand becomes

less price responsive and farmers put more value on AWD after being encouraged to adopt

hourly billing. Section 6 uses our combined findings to calculate a rough estimate of the

environmental benefits from using this technology when water has a marginal price. Section

8We do not experiment with the level of the hourly irrigation price. Instead, we encourage a switch from
a seasonal contract to hourly billing, where the hourly price is set uniformly by the local irrigation authority.
Our treatment only approximates volumetric pricing because hours pumped is imperfectly correlated with
the volume of water extracted. Given that electricity accounts for a large share of the pumping cost, our
treatment moves the pricing regime towards marginal cost pricing. But we do not necessarily introduce the
socially optimal hourly price because that price would need to incorporate the externality costs of electricity
generation.

9Jack (2011), de Janvry, Sadoulet, and Suri (2017), and Magruder (2018) provide comprehensive reviews
of the literature on technology adoption in developing country agriculture.

10Outside of agricultural technology, inefficiently low (marginal) prices for electricity have been shown to
reduce development and adoption of energy-efficiency technologies in developed countries. Borenstein and
Bushnell (2018) find that electricity is priced below its social marginal cost in many parts of the United States.
At the same time, a literature on induced innovation shows a positive association between electricity prices
and development of energy-efficiency technologies (Newell, Jaffe, and Stavins, 1999; Popp, 2002). Other
studies find that consumers shift to fuel-efficient vehicles when gasoline prices are high (Busse, Knittel, and
Zettelmeyer, 2013; Allcott and Wozny, 2014).
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7 provides concluding remarks.

2 Experimental design to estimate the impact of the

AWD technology

This section describes the experimental design and data collection for the first experiment

to characterize the impact of the AWD technology on water usage and farm profitability. In

particular, we estimate these impacts across a wide geographic region, covering places where

water is priced by cropped area and others where it is priced by the hour of pumping.

Sampling

The experiment took place in three districts: Mymensingh, Rangpur, and Rajshahi (see

Figure A1 for a map). There is considerable variation in the way water is priced in these

three regions. The groundwater table is deeper in Rajshahi and Rangpur. Hence, tube

wells are costly to dig and therefore almost always government owned. Within these tube

wells in Rajshahi, water is priced volumetrically where farmers can pay for each hour of

pumping using a prepaid card. The card is loaded with funds at local shops in the same

way that mobile phones are loaded with air time. The farmer can then obtain water by

providing his card to a tube well operator — known locally as the “deep driver” — who

is employed by the responsible government agency to manage the system. Farmers in our

sample villages in Rangpur pay a per-acre fee for the right to irrigate their field for the entire

season. They simply arrange each irrigation with the tube well operator. Finally, tube wells

in Mymensingh are privately owned because a shallower groundwater table reduces the cost

of digging a borehole. Tube well owners in this area largely use per-acre charges. Contracts

occasionally take the form of two-part tariffs where the per-acre fee is coupled with a charge

for each unit of fuel or electricity used during pumping. We assume that the farmer faces

a volumetric price if he resides in a village with a prepaid pump or if he is responsible for

the fuel costs of pumping. Farmers not facing volumetric prices pay a fixed seasonal fee per

acre cultivated. They do not pay labor costs for applying irrigation. Instead, the tube well

operator employs “linemen” who manage irrigation for the entire command area.

We first identified 12 upazilas (administrative units two levels above villages) in these

three districts.11 In Rajshahi and Rangpur, we obtained a list of villages where water is sold

to farmers from government-operated deep tube wells (DTW).12 All villages in Mymensingh

11Each of these upazilas has 260 villages on average.
12A government agency, the Barind Multipurpose Development Authority (BMDA), maintains the tube
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were included in the sampling frame since each village usually has at least one tube well

owner that sells water to other farmers. Using this sampling frame, we drew a random

sample of 400 villages — split evenly across the three districts.

Field staff visited each selected village to ensure that farmers were growing rice during

the boro (dry) season. If not, then the village was replaced with a randomly drawn village

from the same upazila.13 Once deemed eligible, the teams worked with a village leader to

identify 10 farmers that were cultivating land near the village tube well.14 For each of these

farmers, the plot located closest to the tube well was mapped out. We refer to this plot as

the “study plot” for the remainder of the paper.

Data collection and treatment assignment

Each of the 4,000 farmers were visited for a baseline survey in November-December of 2016.

The survey collected information on household demographics, agricultural production, water

management and water prices for the study plot and one other randomly selected plot of

each farmer. Farmers mostly plant two rice crops — one in the rainy (aman) season and

another in the dry (boro) season. Figure 2 visually characterizes agricultural production in

the sample by showing the status of plots at different times during the year prior to the

study. About 90 percent of the plots are cultivated with rice during the rainy season from

June to November. All plots in the sample are grown with rice during the boro season from

January to May (the second blue spike in the figure). Both our experiments focus on this

boro cultivation season. As is seen in the figure, precipitation is rare during the boro season

and therefore rice cultivation requires irrigation.

We randomly assigned each village to one of two groups prior to the start of boro cul-

tivation in 2017 — with stratification at the upazila level.15 Our field staff visited the 200

treatment villages during the period between planting and 10 days after planting. These

visits took place from January to March, depending on village-specific planting dates. They

trained the 10 farmers on the purpose of AWD and how to use it. Most importantly, they

instructed farmers on the precise timing of when to practice AWD during the season. After

the training, field staff provided each of the farmers with an AWD pipe. Staff then visited

the study plots with the group of farmers and assisted with installation.16 Nothing was done

wells and irrigation canals and employs the tube well operator.
13Replacement occurred in less than 10 percent of villages (36 out of 400).
14In the event that a village had more than one tube well, mostly in Mymensingh, survey teams selected

the tube well with the largest command area.
15We knew that almost all the variation in volumetric pricing exists across upazilas, making it unnecessary

to stratify by both upazila and volumetric pricing.
16Installation is close to costless. It simply requires inserting the pipe deep enough into the mud to allow

the farmer to periodically monitor soil moisture up to 15 centimeters below ground.
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in the remaining 200 villages which serve as a pure control.

Figure 3 shows an AWD pipe on one of the study plots. The plastic PVC pipe is open

at both ends and has holes drilled into the sides, allowing the farmer to observe moisture

below the soil surface. Rather than keep the field flooded to ensure continuous absorption by

the plant, the farmer can use the pipe to determine when the below-ground water level falls

below a 15 centimeter trigger. The field should be irrigated at this time and the process can

be repeated until the crop starts to flower, i.e. the reproductive stage begins. The crop needs

constant water during this flowering period and therefore farmers should stop implementation

of AWD at this time.17 The guidelines suggest that the practice of alternatively wetting and

drying can be resumed after flowering stops and until the field is drained before harvest.

Table A1 shows summary statistics and demonstrates covariate balance. Note that base-

line knowledge of AWD is low. Only about 17 percent of farmers had heard of AWD and

nobody was using the technology at baseline. This suggests that AWD usage in the control

group — at least in terms of using a pipe to monitor soil moisture and plan irrigations —

should be low.18 More importantly, just over a third of the farmers face a nonzero marginal

price for water. This variation is mostly across upazilas, rather than within. Specifically,

89 percent of farmers in Rajshahi reside in villages where prepaid irrigation cards are used

to pump water by the hour. About 15 percent of farmers in Mymensingh face a two-part

tariff where they are responsible for fuel costs. This variation in the sample lets us observe

how farmers exposed naturally (although not randomly) to volumetric pricing use AWD rel-

ative to those facing the more standard seasonal contract. Table A2 shows that observable

covariates remain balanced within this subsample exposed to volumetric pricing.

The experiment required objective measurement of water usage. However, no villages

in our sample were equipped to measure individual-level pumping volumes. We therefore

designed a unique data collection strategy to observe water usage without individual meters.

Survey teams visited each of the study plots on two randomly chosen and unannounced days.

These visits enable us to observe whether the field was being dried and how much irrigation

water stood in it. The random assignment of villages to days allows the treatment-control

comparison to be made throughout the growing season. Having this ability is critical because

the AWD tool should not be used during the reproductive stage of crop growth. Hence,

visiting fields on random days gives us the ability to verify if the tool is being properly used

and whether the causal effect of AWD varies by the type of water pricing. The schedule for

the measurement of water management included 8,000 observations. We obtained data for

17This reproductive or flowering stage occurs around 60-80 days after planting.
18A farmer can of course dry his field without using the AWD pipe, as shown in the results that follow.

The lack of uptake at baseline should be interpreted as a lack of usage of the pipe to facilitate this process,
not evidence that farmers never dry their fields.
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7,596 of them (95 percent). The missing observations resulted from random measurement

dates falling after harvesting was completed.19

Our teams then carried out a follow-up survey in July 2017 after the boro rice crop had

been harvested and close to the time of planting for the next rainy season. This survey

collected information on self-reported irrigation management, input use, crop yield, revenue,

and profit. The data provide the basis for our calculations of profitability and treatment

effects of the AWD technique on profit — both with and without volumetric pricing.

3 Results: The causal effect of AWD

In this section we use the first-year experiment to estimate the causal impact of AWD

technology on water management, input costs, and agricultural profits. Following our pre-

analysis plan, we report the average effect across our entire sample as well as the differential

effect for farmers with seasonal water charges versus those with volumetric pricing. The

analysis on water use is further broken down by time of the growing season — based on the

recommendation that AWD not be practiced during the flowering stage of crop growth.

Our preferred specification is therefore,

yivs = β0 +β1Treatmentv+β2V olumetricivs+β3Treatmentv∗V olumetricivs+αs+εivs, (1)

where yivs is the observed outcome for farmer i in village v and upazila s. The treatment

indicator, Treatmentv, varies only at the village level. The indicator for volumetric pricing

varies mostly across upazilas, but can occasionally vary within these strata.20 We estimate

equation (1) for the sample of 4,000 study plots, regardless of whether the farmer kept the

AWD pipe in that field, chose to move it elsewhere, or removed it entirely — all of which

happened rarely. We report both these heterogeneous effects and the average treatment

effect.

The average effect of AWD on water management — across the entire sample — is both

small and statistically insignificant. Table 1 shows in column 1 that the average study plot

19Harvesting dates were estimated from information on planting dates and length of the growing cycle from
the baseline survey. This is obviously an imperfect proxy for current-year harvesting dates and therefore
explains why the data are missing for a small number of cases. Missing data due to this scheduling issue is
balanced across treatment and control groups.

20Upazila fixed effects explain 77 percent of the variation in the indicator variable for volumetric pricing.
The remaining variation within upazilas is largely due to three factors: 1) some villages in Mymensingh
have a system where the tube well owner collects payment for the fuel used in pumping, while other nearby
villages do not, 2) a few villages in Rajshahi did not have the prepaid card system for irrigation and 3) the
tube well owner (who always faces a nonzero marginal price) may be part of the sample in Mymensingh
villages.
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in treatment villages had only 0.06 cm less water standing in the field. Increased uptake of

the AWD practice should increase the likelihood that study plots of treatment farmers are

being dried, i.e. have no standing water in the field. Column 2 shows that the treatment

increases the effect on drying by about 1.9 percentage points — or about 4 percent — but

this average effect is noisy. It is also clear that farmers practice some form of the AWD

technique without using PVC pipes: fields in the control group were dry 45 percent of the

time. Thus, the correct counterfactual for AWD differs from the one used in agronomic

experiments where water is maintained in the control field for the entire season.21

The rest of the table shows that AWD is only effective for farmers who face volumetric

water prices. In column 3, AWD generates an effect on water levels only for farmers facing

nonzero marginal prices. Introducing AWD in places with volumetric pricing lowers the

amount of observed irrigation water by 0.43 centimeters, or an 18 percent decrease. The

probability of a plot being dry also increases by 8.4 percentage points (19 percent). Finally,

the third row of the table shows that the correlation between volumetric pricing and water use

(within strata) is small and statistically insignificant. This result could be driven by either

the limited variation within strata, or correlation between unobservables and volumetric

pricing.22

The proper usage of AWD also depends on the time during the growing season. Table 2

shows that treatment effects exist only during the first 70 days of the growing season. We

pre-specified this split in the data to approximately divide the season into the time before

and after the start of flowering. Farmers practice AWD during the time up to flowering.

Treatment plots had about 13 percent less water (column 1) and were about 19 percent

more likely to be dry during the first 70 days after planting. In contrast, we do not see a sta-

tistically significant difference between treatment and control plots after 70 days. Therefore,

farmers did follow the directions to stop practicing AWD during the time when crop water

requirements are high. The 70-day threshold is an approximation for the date of flowering.

We show in Tables A3 and A4 that results are similar when using a 60 or 80 day cutoff.

Combining these findings, Figure 4 demonstrates how the effectiveness of AWD varied

both across time and by type of water pricing. It shows nonparametric regressions of water

levels (top panel) and the indicator for dry fields (middle panel) on days after planting,

separately for treatment and control villages. The upper left panel shows that AWD caused

21Agronomic experiments generally compare AWD to “continuous flooding.” This is a system where the
farmer never lets the field go dry. The field is re-irrigated when water reaches a low level, but before
evaporating entirely.

22The volumetric pricing indicator has a negative correlation with water levels and a positive correlation
with the probability of fields being dried when dropping strata fixed effects and therefore using variation
across upazilas.
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a decrease in irrigation withdrawals during the pre-flowering period of crop growth — but

only for farmers paying for water on the margin. The same estimates in the upper right

panel establish that AWD had no impact on measured water levels for farmers facing sea-

sonal charges. The middle panel shows a similar pattern with dry fields: we observe that

introducing AWD leads to a noticeable increase in drying in places with volumetric pricing

during the early part of the growing season, but no changes are observed for the two thirds

of farmers that pay for water on a seasonal basis. The figure also helps visualize how farmers

conserve water when facing volumetric prices, even without AWD. Namely, farmers tend to

keep fields dry after flowering, regardless of whether they are using AWD pipes.

Table 3 shows the exact magnitude of these impacts. Under volumetric pricing, AWD

causes water levels to be lower by 0.83 cm (31 percent) and leads to a 17.3 percentage point

increase in the occurrence of dry fields (54 percent) during the first 70 days of the growing

season. In contrast, the effect of AWD during this time is close to zero and statistically

insignificant for farmers facing seasonal contracts. Columns 3 and 4 verify the visual results

that plots of treatment farmers were managed in the same fashion as those of the control

group after the first 70 days of the growing season, regardless of the type of water contract.

These results are insensitive to the choice of splitting the sample using a threshold of 70

days: we show in Tables A5 and A6 that results are similar when we divide the season using

a 60 or 80 day cutoff. In addition, Table A7 shows Hurdle regression estimates confirming

that most of the effect during the pre-flowering period is driven by the increased propensity

of dry fields, i.e. the extensive margin. This result suggests that the treatment works by

allowing farmers to dry their fields for a longer period, rather than irrigating to a lower level

when flooding the field.

Our estimates line up with findings from agronomic trials only when prices are set volu-

metrically. Figure 5 shows 87 impact estimates reported in 26 different agronomic studies.

The estimated water savings from these experiments range from 5 to 65 percent, with median

savings of 27 percent. Our 19.2 percent effect on water levels when prices are volumetric

— from Table 1 column 3 — falls right at the 25th percentile of the agronomic estimates.

In contrast, the null effect with area-based pricing is outside the range of estimates from

agronomic trials. The failure of markets to efficiently price water appears to be a critical

factor causing the field-based RCT estimates to deviate from those in the laboratory.

Our post-harvest follow up survey included a module on irrigation management. Using

these data, column 1 in Table 4 shows that farmers given AWD report 3.6 fewer irrigations,

which amounts to a 19 percent impact since the average plot in the control group was irrigated

about 19 times, or once every 5-6 days. Yet, all treatment farmers report irrigating their fields

less, regardless of whether their village has volumetric pricing (column 2). Experimenter
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demand effects offer a reasonable explanation for this finding: treatment farmers knew that

practicing AWD reduces the number of irrigations and responded accordingly — even if they

did not practice AWD as recommended. Turning to columns 3 and 4, treatment farmers

report 2.2 additional drainages, which corresponds to a 91 percent increase relative to the

control group. This effect is significantly larger for farmers in villages with volumetric pricing,

as shown in column 4.

Adoption of AWD only increases profit when water is priced at the margin.23 We present

the results on costs, revenue, and profits and provide estimates for other specific inputs in

the online appendix.24 Column 1 in Table 5 shows that the causal effect of AWD on profits

per acre, in the absence of volumetric pricing, is close to zero and statistically insignificant.

In contrast, the AWD technology increases profits by approximately 1,870 taka (about $23)

per acre, or about 7 percent, when water has a marginal price. Columns 2-4 decompose

the effect, showing that the overall effect on profitability comes from lower water costs

and higher revenues, not increases in yield.25 Columns 5-8 report similar results when all

outcomes are measured in logs rather than levels. Overall, AWD leads to positive returns

only when water is priced at the margin. This conclusion is robust to trimming outliers

in the profit distribution, controlling for a broad set of baseline covariates, and interacting

those covariates with treatment (Table A13). Consistent with the survey estimates, Figure

A2 shows no difference in satellite-measured greenness between treatment and control plots.

Despite using less water, the plots of treatment farmers appear no less green. We also find

evidence that treatment effects on adoption and water usage persist for another year after

the experiment.26

23We measure revenue per acre by dividing the total output from the plot by plot size to obtain yield,
regardless of how much of the output was sold or kept for consumption. We then multiply the yield by the
output price for the 98.5 percent of farmers that reported selling output. We use the average sale price for the
remaining 1.5 percent of farmers that did not sell any output. We collected input expenditures for fertilizer,
pesticide, herbicide, water, planting labor, weeding labor, and harvesting labor. Labor inputs included both
family labor and hired labor. We valued family labor by multiplying the number of person days by the daily
wage rate from the survey.

24See Tables A8-A12 for these estimates.
25The fact that AWD leaves yield unchanged is consistent with agronomic experiments (Belder et al., 2004;

Yao et al., 2012). The positive — although insignificant — effect on revenue is therefore driven by higher
prices. AWD leading to higher output prices is consistent with a claim sometimes made that periodic drying
of fields improves grain quality.

26We consider the persistence of treatment effects over time by using a subsample of villages where we elicit
demand in the same way as in the second RCT, described later in the paper. In particular, farmers in 112
randomly selected treatment villages and 56 randomly selected control villages were offered an AWD pipe for
the 2018 season at one of eight random prices. These offers took place in both treatment and control villages,
but Table A14 shows that initial treatment farmers were still 70 percent more likely to be using AWD —
on any plot — during the 2018 season. Using water measurements from one of those plots, treatment plots
had 17 percent less water and were 39 percent more likely to be dry. Measurements were taken on the plot
closest to the village tube well for a random 75 percent of farmers and the farthest plot for the remaining 25
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Finally, we find that within Rajshahi district — where prepaid pumps allow water to be

priced by the hour — some farmers do not have their own prepaid cards.27 Instead, farmers

rely on the deep driver (tubewell operator) to use his card and then charge them a fixed

seasonal price. This charge is a function only of acreage cultivated, and not the number of

hours of pumping. The deep driver essentially averages out the total pumping cost over the

entire command area and bills farmers accordingly. This local institution provides additional

heterogeneity. In particular, the profits from AWD should be higher for farmers that hold

their own cards and thus stand to gain by pumping less groundwater. We test this idea in

the study villages in Rajshahi.28

Column 1 of Table 6 shows that AWD lowers water costs by about 931 taka — or

17 percent — for cardholders and has no effect for farmers that pay the deep driver for

water. The effect on profits and log profits in columns 2 and 3 are noisier, but go in the

same direction. AWD increases profit by 11 to 12 percent for farmers with cards, but has

a smaller effect in villages where individual card ownership is absent. The system where

farmers hold their own prepaid cards and pay for water by the hour is however not randomly

assigned.29 The observed heterogeneity could therefore result from factors correlated with

card ownership, rather than card ownership itself. Columns 4 through 6 test whether the

interaction effects are sensitive to interacting the AWD treatment indicator with a large set

of baseline characteristics. The interaction effects between the AWD treatment and having

an individual prepaid card remain similar — and actually increase — when allowing for the

impact of AWD to also depend on observable characteristics. The evidence further points

to inefficient water pricing as a barrier to AWD uptake.

4 Experimental design to estimate the effect of hourly

irrigation on the demand for AWD

Our findings until this point suggest that lack of a marginal price for water creates a disin-

centive for the adoption of water-conserving technology. But the findings from the first RCT

percent. The heterogeneity results in Table A15 show that the treatment effect on second-year adoption is
larger amongst farmers with volumetric prices, but the interaction term is imprecisely estimated. We do not
find heterogeneity in this “first-stage” relationship for the specific plot where enumerators measured water
levels.

27Our baseline survey, and hence the analysis until this point, classified these farmers as paying volumetric
prices because their village already had a prepaid pump installed.

28We did not know about this heterogeneity at the time of designing the study. Therefore, these estimates
were not pre-specified in our analysis plan.

29Farmers who have their own cards are older, have larger households, own more livestock, are less likely
to own their own private tube well, and report irrigating their field more often during the boro season at
baseline.
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do not allow us to firmly rule out that unobservables correlated with the existence of nonzero

marginal prices drive the heterogeneous impact of AWD. With this limitation in mind, we

designed a second experiment to randomly facilitate volumetric pricing and measure its effect

on demand for AWD. This section outlines the timing of events for this experiment.

The ratio of prepaid irrigation cards to farmers in many villages is less than one. In some

areas this phenomenon is extreme: the deep driver or water user’s committee in the village

maintains a small number of prepaid cards, uses them to provide water to farmers, and then

charges each farmer the same fee per acre. In effect, this local institution keeps water pricing

on a per-acre basis, despite the fact that technology is in place for each farmer to pay for their

pumping by the hour. Multiple factors may explain why individual card usage, and hence

volumetric pricing, has not taken effect in these villages: it is costly and time consuming for

farmers to obtain an individual card, coordination difficulties — i.e. problems in creating

an efficient queueing system if each person is individually using a card, and concerns about

fairness because some plots are far from the tube well and water is lost during transport due

to the earthen canals used for conveyance. Combined with highly fragmented landholdings,

this will result in differential prices per unit of actual water between farmers and plots as

well. Our treatment targets the fixed costs of obtaining a card as a barrier to individual

ownership.

We first identified 144 villages in Rajshahi district — not included in the sample of

our first RCT — where most farmers were not using their own prepaid card for pumping.

These villages are spread across three upazilas, two of which were included in our first

experiment. Field staff worked with a local village leader in November 2017 to identify 25

farmers cultivating rice during the boro season in each of these villages. The villages were

then randomly divided into two groups. 96 were assigned to a treatment group where we

sought to increase the share of farmers paying for irrigation by the hour by using their own

cards: the remaining 48 serve as a control group that retained the status quo of seasonal

charges.

Field teams started by organizing a meeting with these 25 farmers. These meetings took

place in December 2017 and served four objectives. First, a short baseline questionnaire

was administered. Second, farmers were instructed on how the irrigation system can be

operated with the individual cards. Third, our field staff explained to farmers that their

local NGO was running a program to help with applying for the prepaid card. Specifically,

the field staff assisted each farmer in filling out the application form — including obtaining

a passport-style photo to be printed on the card. Fourth, there is an application fee of

150 Bangladeshi Taka (around $1.8) to be paid at the time of submitting the application.

Farmers were instructed that the program would be covering these costs. In addition, our
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partner delivered the application forms to the local upazila office of the agency responsible

for producing the cards, collected the printed cards when they were complete, and delivered

them to each treatment village prior to planting. Overall, 2,279 of the 2,400 (95 percent)

farmers in the treatment group agreed to receive the cards as part of the program.

Our design sought to eliminate the possibility that any future behavior could be a function

of the small 150 Taka gift to cover the application cost. Therefore, we provided each of the 25

farmers in the control group with 150 Taka of mobile phone credits right after administration

of the baseline survey.30

Table A16 shows baseline characteristics for the treatment and control groups in this

second RCT. Household and farm characteristics are generally similar across the two groups.

The average farmer in this sample pays around 1500 taka (approximately $18) to irrigate

one bigah of land (a bigah equals one-third of an acre). 70 percent pay this money directly

to the deep driver as a per-bigah fee. The remaining 30 percent pay the fee to a water users

committee.

Does this effort to introduce volumetric pricing cause farmers to place greater value on

the AWD technology? To get at this question, we conducted a revealed-preference demand

experiment in all 144 villages. A sales person visited each of the 25 farmers in January or

early February 2018, depending on the planting dates in the village. S(he) gave each farmer

the opportunity to purchase an AWD pipe at a randomly determined village-level price.

We let the price range from 20-90 taka. As points of reference, the daily wage for casual

agricultural work during the previous boro season was about 350 taka. The estimated profit

advantage of AWD was about 561 taka per plot — when farmers faced nonzero marginal

prices for water. Farmers who bought the pipe were required to pay cash. The pipe was

handed to the farmer, along with instructions on its use, immediately after purchase. Unlike

in the first RCT, field staff did not provide any further training or assistance with actually

installing the AWD pipe.

In addition to observing these purchasing decisions, and tracing out the demand curve

with and without the introduction of individual volumetric water pricing, we collected data

on whether the pipe was installed and water levels in the field. Similar to our first RCT,

we randomly drew dates to visit each of the 144 villages. These dates were drawn to fall

in the 10-70 day period after planting, when we observed farmers from the first experiment

practicing AWD.31 During each visit, the enumerator checked all the plots of each farmer

to see if an AWD pipe was being used. In addition, water levels were measured on the plot

30We chose mobile phone credits to make the funds equally illiquid between the treatment and control
groups.

31The visits took place during February 2nd - May 23rd 2018, with the median visit occurring on April
1st.
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closest to the tube well for a random 75 percent of farmers and the farthest plot for the

rest of the sample. These additional data allow us to decompose any treatment effects into

effects on initial valuation at the time of purchase and actual usage during the season.

5 Results: Hourly irrigation and the demand for AWD

We start by showing some descriptive “first stage” evidence that some farmers did use the

prepaid cards. The experiment was carried out in three upazilas, one of which provided us

complete data on card usage for the 800 treatment farmers. We found that 40.3 percent of

them (323) loaded their card at least once during the period from January 12th to August

7th, 2018. The median farmer — conditional on loading at least once — spent 3,000 taka

($37.5 or the equivalent of irrigating about 2 plots with seasonal charges) and loaded the card

five times. These distributions have a substantial right tail: a farmer at the 90th percentile

reloaded the card 22 times and spent 21,800 taka.

Does the demand curve for AWD change when farmers are encouraged to pay for water

by the hour of pumping? To answer this question, we combine the random variation in

village-level AWD prices with the random encouragement of prepaid card usage. The main

specification is,

Adoptionivs = β0 + β1Cardvs + β2Pricevs + β3Cardvs ∗ Pricevs + αs + εivs, (2)

where Adoptionivs is an indicator for whether farmer i purchased the AWD pipe, Cardvs

equals one if village v in upazila s is one of the 96 prepaid card villages, and Pricevs is

the random AWD price offered in the village. As in our previous analysis, standard errors

continue to be clustered at the village level.

Figure 6 shows the fitted demand estimates from (2) as lines with the raw adoption rates

as dots. Shifting farmers to hourly charges reduces price sensitivity for AWD. Our lower

prices result in high take up rates and no statistical difference between the prepaid card

treatment and control. About 65 percent of farmers in the control group purchased pipes at

the lowest four prices: this rate remains roughly the same in treatment villages. In contrast,

introducing hourly irrigation cards caused AWD demand to increase at higher prices. Only

21 percent of farmers in the control group purchased pipes when priced at 60 taka or higher.

Hourly pricing increased purchases by approximately 35 percent at these four higher prices.

Two additional results are apparent in Figure 6. First, demand is elastic. The demand

elasticity in the control group is about 1.7 at the midpoint price of 55 taka. Delta-method

standard errors lead to a rejection of unit elastic demand in the control. This result is
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consistent with the common finding that demand for improved technology in developing

countries is highly price sensitive — even for technologies proven beneficial. As examples,

experimental estimates of demand show high sensitivity to prices for health technologies

in Kenya (Kremer and Miguel, 2007; Dupas, 2014b) and crop insurance in Ghana (Karlan

et al., 2014). This demand elasticity suggests that even modest subsidies have the potential

to induce large increases in the demand for AWD.

Second, willingness to pay for AWD is low when compared to both the profitability

of the technology and the estimated marginal production cost. In the first experiment,

AWD with volumetric pricing increases profits by about 1,870 taka per acre. The median

plot in our first-year sample is 0.3 acres, implying that using an AWD pipe on a single

plot increases profits by about 561 taka — a value well above what farmers are willing to

pay.32 We estimate the marginal cost of AWD production to be 133 taka — based on surveys

conducted with 10 engineering shops.33 Our findings show no demand at this price, even after

promoting hourly pricing for water. However, the socially optimal price of AWD depends on

its external benefits. These may include reduced greenhouse gas emissions from electricity,

reduced methane emissions from rice fields, and the social benefit of the groundwater not

extracted and available to others, discussed later in Section 6.

Table 7 shows the corresponding regression results. Column 1 gives the average treatment

effect across all price levels. The irrigation card treatment led to an increase in the AWD

purchasing rate by about 4.3 percentage points, or roughly 10 percent. The average effect is

indistinguishable from zero due to the significant heterogeneity across price levels. Column

2 provides the main estimates corresponding to the specification in (2). Demand for water-

saving technology is less responsive to price in villages where we introduce hourly irrigation

cards. Increasing the price by 1 taka leads to a 1.29 percentage point decrease in adoption

without volumetric pricing. This price responsiveness falls significantly by 0.34 percentage

points when we facilitate volumetric pricing. The demand elasticity at a price of 55 taka —

reported at the bottom of column 2 — falls by 33 percent from 1.7 to 1.14 with the prepaid

card treatment. This difference in elasticities is statistically significant at the one percent

level.34 We also pre-specified a functional form where prices are measured in logs. Columns

3 and 4 show that this additional specification gives similar results. Overall, introducing a

32Similar observations have been made in the health and development literature: revealed willingness to
pay for water purification in Ghana is orders of magnitude below the estimated benefits to households (Berry,
Fischer, and Guiteras, 2018).

33Field staff visited each shop in June 2018 and asked the owner for a quote to produce two different
randomly selected quantities of AWD pipes. Regressing the estimated quotes on quantity delivers a coefficient
of 133 taka.

34We rely on delta-method standard errors for this statistical test since the elasticities (and their difference)
are a non-linear function of the parameter estimates.
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pricing mechanism that puts a marginal price on water increases farmers willingness to pay

for water-conserving technology.

The estimated demand curves can be used to calculate the gain in consumer surplus

that results from encouraging volumetric prices.35 Figure 7 shows the percentage increase in

consumer surplus between farmers with and without hourly irrigation cards. For instance,

when priced at 55 taka — the median price in our demand experiment — nudging farmers

to adopt volumetric pricing causes consumer surplus from AWD to increase by almost 64

percent. These gains in consumer surplus are largest at higher prices, as seen in Figure 6.

While take up is reasonably high, when measured by purchasing an AWD pipe, instal-

lation and use of the pipe is modest. Only 18.4 percent of purchasing farmers installed the

AWD pipes on one of their rice plots.36 Anecdotally, there are numerous explanations for

not installing AWD. Farmers sometimes report having lost the pipe between the time of

purchase and planting. Some farmers reported that they would install the pipe “in a few

days.”37 After conferring with others, some farmers suggested that it was not feasible to

use AWD individually because of coordination externalities. Two examples were common.

Farmers with low-lying land often get water that spills over into their plot when it is being

pumped into a nearby higher field. Also, a common per-acre water price makes it easy for

the tube well operator to irrigate multiple fields at a time. Adoption of AWD by a subset

of the farmers becomes less practical when each farmer does not have full control over when

their field is irrigated.

The intervention in our first experiment included assistance with installing the AWD

pipe. Providing farmers with the AWD tool, some basic training, and installation support

led to reduced water use and increased profitability for farmers paying for water by the hour.

The large gap between purchasing and using AWD in the second experiment highlights the

importance of basic training and installation support to ensure that the full benefits of AWD

are realized.38

35Using the estimates from Equation 2, the consumer surplus at a given price p in the control villages is
−β2

0

2β2
−β0p− β2p

2

2 . The consumer surplus in prepaid card treatment villages is −(β0+β1)
2

2(β2+β3)
−(β0+β1)p− (β2+β3)p

2

2 .
36A low rate of usage, conditional on purchasing, has been observed for fertilizer trees in Zambia (Jack

et al., 2015) and improved latrines in Cambodia (Ben Yishay et al., 2017). The literature on technology
adoption of health products, on the other hand, has generally found larger rates of follow-through (Dupas,
2014a).

37Farmers that purchased pipes were told that AWD should be practiced starting 10 days after trans-
planting. The date of the verification survey was randomized and survey teams arrived less than 10 days
after planting in fewer than one percent of cases. Moreover, the rate of uptake (conditional on purchas-
ing) is only 20 percent for the farmers that were visited more than 50 days after transplanting. Therefore,
procrastination, combined with our surveys being early in the season, cannot fully explain the low rate of
installation.

38We also measured water levels on a single plot per farmer. Table A17 shows that the interaction between
price and the volumetric treatment does not have a positive coefficient for these specific plots. This lack of
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Figure 8 shows that despite the low rate of installation, the unconditional price-usage

relationship remains steeper in prepaid-card villages. The dashed lines in the figure show

usage (installation), while the solid lines show the demand curves (purchasing). At prices

above 60 taka, only 1.4 percent of farmers installed AWD in control villages. Approximately

7.4 percent did so in treatment villages. The regression estimates in Table 8 provide exact

magnitudes. In column 1, increasing price by one taka (about 1.8 percent of the midpoint

price of 55 taka) causes a decrease in the usage rate by 0.16 percentage points, or 2.3 percent

of the mean usage rate amongst control villages. Column 2 again shows the heterogeneity

in price responsiveness. A one taka price increase causes a decrease in adoption by 0.33

percentage points in control villages and 0.10 percentage points in treatment villages. While

the interaction term is not quite statistically significant (p=0.135), the point estimate shows

that around two thirds of the price responsiveness in control villages is eliminated when

introducing hourly pricing. The estimated elasticities at the bottom of the table make this

clear. The price-usage elasticity in control villages is 2.58 and this falls by over 75 percent

to 0.6 in treatment villages. The difference between the two elasticities is highly significant.

Columns 3-4 demonstrate that similar results are obtained with log prices. The online

appendix further shows that these results are more precisely estimated when accounting for

the binary nature of the dependent variable with logit regressions (Table A18).

The difference in elasticities appears to result from how the prepaid cards change the

screening ability of prices. Among farmers who purchased an AWD pipe, the correlation

between price and usage is significantly larger in prepaid card villages (Table A19). In fact,

the price-usage correlation is negative in control villages and weakly positive in prepaid card

villages. Screening offers one potential explanation. The prepaid cards put a marginal price

on water. Realizing this, farmers carefully evaluate the merits of the AWD pipe. The farmers

induced to buy the AWD pipe at higher prices are those that value them most and are the

ones most likely to install. In contrast, prices for conservation technology do not screen

effectively in the absence of volumetric water pricing because farmers stand to gain little

from using the pipe for irrigation.39

a “first-stage” relationship may explain why we do not observe any effect on water management on these
plots.

39Sunk costs represent another reason why price would be positively correlated with usage. People may
use a product more if they paid a higher price to avoid the feeling of “wasting” their investment. Empirical
research from health products in Zambia finds no evidence for this behavioral explanation and instead
finds evidence for screening (Ashraf, Berry, and Shapiro, 2010). Other work on health products finds no
relationship between price and usage, conditional on adoption (Cohen and Dupas, 2010; Tarozzi et al., 2014).
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5.1 Do people with liquidity constraints value AWD more when

introduced to hourly irrigation cards?

Liquidity constraints offer a competing explanation for our findings. The agreements which

existed prior to our treatment often involve informal credit where the water user pays the per-

acre fee in installments, one at the beginning of the season and another after the harvest.

In contrast, the prepaid irrigation card requires an up-front payment each time water is

applied. Therefore, introducing a prepaid irrigation card to a liquidity constrained farmer

could increase their demand for a water-saving technology like AWD because it extends the

period between successive irrigations and these upfront payments. This effect would not

exist for a farmer with sufficient access to liquid wealth.

We next investigate whether this liquidity mechanism might explain our result that pre-

paid cards change the demand for AWD.40 Our approach is to estimate whether the treatment

effect on demand differs by an observable measure of liquidity constraints. The literature

commonly proxies for liquidity constraints using income or liquid asset holdings (Zeldes,

1989; Johnson, Parker, and Souleles, 2006). We take a slightly different approach by proxy-

ing liquidity constraint tightness using data on actual card recharging behavior for the 323

treatment farmers for whom we obtained data on card usage. We observe the date, time,

and total amount spent for each time the card was charged. Aggregating these data across

the entire growing season, we first estimate the regression

Nrechargei = β0 + β1TotalSpenti + ui, (3)

where Nrechargei is the number of times the card was loaded with funds by farmer i and

TotalSpenti is the total amount spent by him throughout the season. We use the fitted

residual from this regression, ûi, as a proxy for liquidity constraint tightness. This is a

reasonable proxy because it measures the deviation between the actual and expected number

of times a card was recharged, conditional on the total amount spent. In other words, we

expect a higher value of ûi for a liquidity constrained farmer since he likely needs to load

the card more often in order to spend the same amount on water.

We next estimate a function ûi = g(zi) + εi, where zi is a set of baseline observables.41

We estimate the function g using both a LASSO selection method and a Random forests

40We did not pre specify the test of this alternative mechanism in our pre-analysis plan.
41zi consists of age, landholdings, education, number of livestock owned, number of adults in the household,

number of children in the household, baseline number of times a field is irrigated during the season, baseline
per-acre water price, number of assets owned, access to electricity, tractor ownership, ownership of a shallow
tube well for irrigation, and an indicator for whether water fees were paid to the deep driver (as opposed to
the water user’s committee).
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estimator. The predicted values from each of these models (for all farmers in the sample)

generates our measure of liquidity constraint tightness.42

The treatment effect of prepaid cards on AWD demand should be concentrated on the

more liquidity constrained farmers if the liquidity mechanism is important for our estimated

demand effect. The results in Table A20 do not line up with the liquidity explanation. The

effect of the prepaid cards is no larger for farmers that are predicted to have the tightest

liquidity constraint.

6 The environmental benefits of AWD

This section briefly considers the environmental benefits of AWD. First, AWD reduces

groundwater extraction which lowers electricity demand and therefore greenhouse gas emis-

sions from electricity generation. Ideally, electricity should be priced at its marginal social

cost, which would include the negative externalities from electricity generation. However,

taxing electricity has proven to be elusive in practice. In the absence of a socially optimal

electricity price, subsidizing energy efficiency is a second-best alternative to reducing these

externalities (Allcott and Greenstone, 2017).

We quantify one part of such a subsidy for AWD by approximating the dollar value of

reduced carbon emissions from an installed AWD device. We base our estimate on both the

results from the experiment and additional data we collected for this purpose. The remainder

of the section describes the different steps of this computation.

Reduced groundwater pumping: We do not have survey measures of pumping hours

to compare treatment and control farmers from our first experiment. However, column 1 in

Table 6 finds that AWD reduces water costs by 931.1 taka per acre for farmers with hourly

irrigation cards. The median plot size is 0.3 acres and the cost per hour of pumping is 120

taka. Combining these three figures delivers an estimated savings of 2.3 hours of pumping

per AWD device.

Electricity consumption per hour of pumping: We sent enumerators to 26 random

villages in March/April 2018 to observe electricity usage by monitoring electric meters during

tube well operation. We use the starting and ending time of operation, combined with

electricity consumption, to estimate an electricity usage of 18.1 kilowatt hours (kwh) per

42We first randomly divide the 323 observations into training and validation datasets. The training
dataset is used to estimate the LASSO or Random forests model. The predictions from the Random forests
are slightly more correlated with the actual ûi terms in the validation dataset: the correlations between
predicted and actuals are 0.29 for Random forests and 0.23 for LASSO. The covariates selected by LASSO
and the signs of their relationship with liquidity constraint tightness are age (+), landholdings (-), baseline
seasonal water price (+), number of durable assets (-), and connection to the deep driver (+).
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hour of operation. As a benchmark, annual household electricity consumption per capita in

Bangladesh is about 300 kwh.

Electricity produced per unit of consumption: The ratio of electricity produced to

consumed in Bangladesh is 1.14. We adjust this number following Borenstein and Bushnell

(2018) to allow for 75 percent of the transmission losses to be attributed to electricity flowing

through power lines, while the other 25 percent are fixed and independent of consumption.

We therefore end up with 1.105 kwh of production needed per kwh of consumption.

Marginal CO2 emissions from electricity production in Bangladesh: A reduc-

tion in electricity demand for irrigation reduces CO2 emissions from generating electricity.

Marginal CO2 emissions from electricity depend on a number of factors, including the type of

fuel and the efficiency of power plants. Ideally, we need data from Bangladesh power plants

with repeated observations on plant load and emissions. Such an approach has been used

to estimate marginal emissions rates from electricity in the United States (Zivin, Kotchen,

and Mansur, 2014; Holland et al., 2016). Without this data for Bangladesh, we instead use

annual panel data from about 3,900 U.S. power plants to estimate marginal CO2 emissions

as a function of fuel type and thermal efficiency of the plant (see Table A21 for regression

results). We then obtain these two characteristics (fuel type and efficiency) for the universe

of Bangladesh power plants and estimate marginal emissions per plant using the regression

estimates from U.S. plants. We take the average of plant-level marginal emissions where

each plant is weighted by its share of annual electricity generation for the whole country.

This approach delivers a marginal emissions rate of 1.4 lbs of CO2 per kwh of electricity.

This number is roughly on par with CO2 emissions generated by the electricity grid in the

eastern United States (Zivin, Kotchen, and Mansur, 2014). The estimate is also similar to

the grid emission factor released by the Bangladesh Department of Environment in 2014

(1.47 lbs per kwh).

Social cost of carbon: We use the estimate in Nordhaus (2017) which is 31 US$ per

ton of CO2.

Combining these figures, the estimated one-year benefit of AWD on a single rice plot

— due to reduced carbon emissions from electricity — is 79.91 taka. This annual benefit

represents about 60 percent of the marginal cost of production. Moreover, these are not the

only external benefits of AWD. Agronomic studies find that adopting AWD lowers methane

emissions from rice by approximately 50 percent (Ole Sander, Samson, and Buresh, 2014;

Xu et al., 2015).43

An additional social benefit of AWD is in valuing the groundwater that is not pumped,

43We attempted to measure methane gas on a sample of 104 plots from the first experiment. A malfunction
in our partner’s gas chromatograph delayed analysis of the samples and made these results unreliable.
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and remains in the aquifer for future use, which delivers benefits to other farmers relying on

the same groundwater source. To approximate these benefits, we first need to compute the

volume of water saved by AWD. The calculations above suggest that AWD reduces pumping

times by 2.3 hours per plot. The standard government deep tube well has a capacity of 1

cusec, i.e. 1 ft3/sec or 101.941 m3/hr. Thus, a reasonable estimate of averted pumping by

using AWD on a single plot is 234.46 m3 or 0.19 acre feet of water. Column 3 of Table 1

shows water savings of about 18.3 percent, suggesting total water use of 1.04 acre feet for the

rice plots in our sample. A conservative agronomic estimate of the return flow for rice is 25

percent (Qureshi et al., 2010). That is, 25 percent of the averted pumping caused by AWD is

water that would have returned to the aquifer anyway. Thus, an estimate of the true water

savings from AWD is 75 percent of the averted pumping, or 0.1425 acre-ft.44 This volume

of water is not trivial. It represents about half of the mean annual household residential

consumption in the United States.

What is the value of this conserved groundwater? The average value of water in rice

farming in our sample can be obtained by multiplying the profit per acre from column 1 of

Table 5 (which is 27,133 taka) by plot size (0.3 acres) and dividing by total water use (1.04

acre-ft) which gives 7,827 taka per acre-ft of water. This is approximately $93 per acre-ft,

which is high for a developing country, but shows the value of water for dry-season rice in

Bangladesh. Our estimate of the value of conserved water from using AWD on a single plot

is therefore 1,115 taka per year ($13.9). The estimated benefits from water conservation are

an order of magnitude greater than the benefits from reduced CO2 emissions.

In summary, the technology we study can deliver substantial environmental benefits.

However, farmers valuing the technology, and using it properly, depends on water having a

marginal price.

7 Concluding Remarks

In this paper we conduct two RCTs in Bangladesh with a simple conservation technology

called Alternate Wetting and Drying (AWD) that saves water in rice farming by about 30

percent in agronomic experiments. Our first experiment finds that on average, these positive

results are difficult to replicate in farmers’ fields. However, the data suggest a straightforward

potential explanation: prevailing water-pricing mechanisms fail to create the right incentives

for farmers to benefit from using conservation technology. We show that AWD is only

44We arrive at a similar figure when using an estimate of the water requirement for rice (2,500 liters of
water per kilogram of output in Bouman (2009)) and the average rice yield in our sample of 2,269 kg per
acre from column 3 of Table 5.
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effective for farmers that face a volumetric water price. Relative to the control group, plots

of these farmers have 19 percent less water and are 21 percent more likely to be dry when

observed on random days. Farm profits increase by 7 percent.

Motivated by this evidence, the second experiment tests whether a policy intervention

that encourages volumetric pricing affects the demand for AWD. Prepaid irrigation cards —

where water is metered and farmers purchase irrigation by the hour — have the potential to

move farmers away from seasonal charges and towards volumetric prices. Our treatment that

reduces the application costs for such a card increased ownership to 95 percent. About 40

percent of farmers eventually buy water with the card. Encouraging volumetric prices alters

the demand for the water-saving technology. Demand elasticity for AWD in the treatment

group fell by 33 percent. Purchase of AWD went up by 35 percent at the highest prices.

Consumer surplus at the median price increased by over 50 percent.

This study is the first rigorous field experiment that examines the role of pricing mecha-

nisms in agricultural water use. It shows that a lack of incentives — created by water pricing

— inhibits technology adoption and use. Facilitating access to debit cards for hourly irriga-

tion alters demand and increases the value farmers place on water-saving technology. While

many economists have highlighted the need for water pricing reform as a means to increased

conservation, there is little evidence that policy intervention can alter pricing regimes at the

local level, especially in developing countries. Our study shows that modest efforts to lower

application costs and increase farmer access to marginal pricing have significant positive ef-

fects on the demand for water-conservation technology. These findings have implications for

numerous countries across the world where fixed prices for agricultural water persist while

at the same time water is becoming increasingly scarce.
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Tables

Table 1: Effects of AWD treatment on water usage

(1) (2) (3) (4)
Level Dry Level Dry

AWD Treatment -0.061 0.019 0.119 -0.012
(0.161) (0.023) (0.220) (0.027)

AWD Treatment * -0.544∗ 0.096∗

Volumetric Pricing (0.287) (0.050)

Volumetric Pricing -0.107 -0.058
(0.333) (0.060)

Strata Fixed Effects Yes Yes Yes Yes
Mean in Control 2.32 0.45 2.32 0.45
p-Value: Treat+Treat*Volumetric 0.021 0.047
Number of Observations 7598 7598 7596 7596
R squared 0.033 0.035 0.036 0.037

The data are from random unannounced visits to the study plots of sample farmers during the 2017 boro
(dry) growing season. The dependent variable in columns 1 and 3 is the amount of standing water in the
field, measured in centimeters. The dependent variable in columns 2 and 4 is an indicator variable for a dry
field with no standing water. Volumetric pricing is an indicator for farmers for whom the water price is tied
to usage, either through hourly charges or fuel payments. Standard errors are clustered at the village level.
Asterisks indicate that coefficient is statistically significant at the 1% ∗∗∗, 5% ∗∗, and 10% ∗ levels.
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Table 2: Separate effects by time of growing season

0-70 Days After Planting 70+ Days After Planting

(1) (2) (3) (4)
Level Dry Level Dry

AWD Treatment -0.350∗∗ 0.059∗∗ 0.250 -0.021
(0.152) (0.027) (0.286) (0.033)

Strata Fixed Effects Yes Yes Yes Yes
Mean in Control 2.71 0.32 1.86 0.59
Number of Observations 4188 4188 3410 3410
R squared 0.020 0.035 0.085 0.113

The data are from random unannounced visits to the study plots of sample farmers during the 2017 boro
(dry) growing season. Columns 1 and 2 are for measurements taken up to 70 days after transplanting.
Columns 3 and 4 are for measurements taken more than 70 days after transplanting. The dependent
variable in columns 1 and 3 is the amount of standing water in the field, measured in centimeters. The
dependent variable in columns 2 and 4 is an indicator variable for a dry field with no standing water.
Standard errors are clustered at the village level. Asterisks indicate that coefficient is statistically
significant at the 1% ∗∗∗, 5% ∗∗, and 10% ∗ levels.
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Table 3: Heterogeneous effects by first 70 days of the growing season

0-70 Days After Planting 70+ Days After Planting

(1) (2) (3) (4)
Level Dry Level Dry

AWD Treatment -0.048 -0.012 0.258 -0.003
(0.208) (0.032) (0.376) (0.039)

AWD Treatment * -0.788∗∗∗ 0.185∗∗∗ 0.014 -0.071
Volumetric Pricing (0.287) (0.054) (0.474) (0.075)

Volumetric Pricing 0.026 -0.082 -0.488 0.023
(0.363) (0.065) (0.420) (0.066)

Strata Fixed Effects Yes Yes Yes Yes
Mean in Control 2.71 0.32 1.86 0.59
p-Value: Treat+Treat*Volumetric 0.000 0.000 0.328 0.244
Number of Observations 4187 4187 3409 3409
R squared 0.027 0.043 0.086 0.114

The data are from random unannounced visits to the study plots of sample farmers during the 2017 boro
(dry) growing season. Columns 1 and 2 are for measurements taken up to 70 days after transplanting.
Columns 3 and 4 are for measurements taken more than 70 days after transplanting. The dependent
variable in columns 1 and 3 is the amount of standing water in the field, measured in centimeters. The
dependent variable in columns 2 and 4 is an indicator variable for a dry field with no standing water.
Volumetric pricing is an indicator for farmers for whom the water price is tied to usage, either through
hourly charges or payments for diesel fuel. Standard errors are clustered at the village level. Asterisks
indicate that coefficient is statistically significant at the 1% ∗∗∗, 5% ∗∗, and 10% ∗ levels.
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Table 4: Effects on self-reported water use

Number Irrigations Times Drained

(1) (2) (3) (4)
AWD Treatment -3.589∗∗∗ -3.590∗∗∗ 2.207∗∗∗ 1.888∗∗∗

(0.486) (0.607) (0.225) (0.258)

AWD Treatment * -0.015 0.918∗

Volumetric Pricing (0.994) (0.497)

Volumetric Pricing 1.082 0.032
(1.263) (0.433)

Strata Fixed Effects Yes Yes Yes Yes
Mean in Control 19.10 19.10 2.42 2.42
p-Value: Treat+Treat*Volumetric 0.000 0.000
Number of Observations 3985 3984 3983 3982
R squared 0.539 0.540 0.359 0.366

The data are taken from the followup survey after harvesting. The dependent variables are the number of
times the field was irrigated (columns 1-2) and the number of times the field was drained or dried (columns
3-4). Standard errors are clustered at the village level. Asterisks indicate that coefficient is statistically
significant at the 1% ∗∗∗, 5% ∗∗, and 10% ∗ levels.
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Table 6: Effects separately by card ownership in villages with prepaid irrigation pumps

(1) (2) (3) (4) (5) (6)
Water Cost Profit Log Profit Water Cost Profit Log Profit

AWD Treatment 108.3 1210.6 0.0260 206.1 -41.90 -0.0128
(358.0) (1202.1) (0.0438) (358.9) (1155.2) (0.0411)

AWD Treatment * Has -1039.4∗∗ 2524.1 0.112 -1164.6∗∗ 3793.0∗∗ 0.147∗∗

Card (485.1) (2074.7) (0.0773) (472.1) (1827.4) (0.0646)

Has Card 1184.3∗∗∗ -1253.7 -0.0722 1321.4∗∗∗ -2246.7 -0.0868
(409.1) (1872.9) (0.0708) (411.2) (1576.9) (0.0560)

Strata Fixed Effects Yes Yes Yes Yes Yes Yes

Covariates No No No Yes Yes Yes

AWD Treat*Covariates No No No Yes Yes Yes
Mean in Control 5611.93 29999.22 10.27 5608.07 30025.35 10.27
p-Value: Treat+Treat*Has Card 0.006 0.028 0.030 0.002 0.010 0.011
Number of observations 1340 1340 1332 1337 1337 1329

The data are from the follow up survey and are limited to the Rajshahi district where some farmers have
their own prepaid irrigation card to pay for water by the hour. The variable “Has Card” is an indicator
variable for farmers that report having their own prepaid card. The dependent variables are the cost of
water per acre (columns 1 and 4), profit per acre (columns 2 and 5), and log profit per acre (columns 3 and
6). Columns 4-6 include demeaned farmer covariates from baseline and interactions between these
demeaned covariates and the AWD treatment indicator. The covariates included are all of those in Table
A1 (age, years of education, household size, number of livestock owned, landholdings, television ownership,
refrigerator ownership, tube well ownership, indicator for knowledge of AWD, indicator for a rented or
sharecropped plot, plot area, number of crops grown, indicator for growing two rice crops, number of boro
irrigations, revenue per acre in boro, boro total cost per acre, and aman revenue per acre). Asterisks
indicate that coefficient is statistically significant at the 1% ∗∗∗, 5% ∗∗, and 10% ∗ levels.
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Table 7: Impacts of volumetric pricing treatment on demand for water-saving technology

(1) (2) (3) (4)
Volumetric Treatment 0.0430 -0.1428 0.0353 -0.5510∗∗

(0.0436) (0.1044) (0.0428) (0.2622)

AWD Price -0.0105∗∗∗ -0.0129∗∗∗

(0.0008) (0.0012)

AWD Price * 0.0034∗∗

Volumetric Treatment (0.0015)

Log AWD Price -0.5084∗∗∗ -0.6123∗∗∗

(0.0351) (0.0489)

Log AWD Price * 0.1497∗∗

Volumetric Treatment (0.0654)

Strata Fixed Effects Yes Yes Yes Yes
Mean in Control 0.413 0.413 0.413 0.413
Elasticity at Price=55 Treat -1.26 -1.14 -1.25 -1.13
Elasticity at Price=55 Control -1.39 -1.70 -1.37 -1.70
P-value: Equal Elasticities 0.009 0.025
Number Obs 3569 3569 3569 3569
R squared 0.249 0.254 0.256 0.260

The data are from the 144 villages that were part of the second-year experiment. The sample consists of 25
farmers per village. The dependent variable in all regressions is an indicator if the farmer purchased the
AWD pipe at the randomly set price. Prices were set randomly at the village level and range from 20 to 90
taka (around $0.24 to $1.1). The volumetric treatment variable is an indicator for villages where the 25
farmers were provided assistance with filling out the application for a prepaid (hourly) irrigation card and
a waiver of the 150 taka sign-up fee. The p-value for equal elasticities is based on standard errors from the
delta method. Standard errors are clustered at the village level. Asterisks indicate that coefficient is
statistically significant at the 1% ∗∗∗, 5% ∗∗, and 10% ∗ levels.
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Table 8: Impacts of volumetric pricing treatment on installation of water-saving technology

(1) (2) (3) (4)
Volumetric Treatment 0.0200 -0.1071 0.0187 -0.4848

(0.0278) (0.1074) (0.0279) (0.3321)

AWD Price -0.0016∗∗∗ -0.0033∗∗

(0.0006) (0.0014)

AWD Price * 0.0023
Volumetric Treatment (0.0015)

Log AWD Price -0.0763∗∗ -0.1665∗∗

(0.0307) (0.0739)

Log AWD Price * 0.1287
Volumetric Treatment (0.0795)

Strata Fixed Effects Yes Yes Yes Yes
Mean in Control 0.068 0.068 0.068 0.068
Elasticity at Price=55 Treat -1.01 -0.60 -0.95 -0.45
Elasticity at Price=55 Control -1.31 -2.58 -1.23 -3.08
P-value: Equal Elasticities 0.001 0.005
Number Obs 3600 3600 3600 3600
R squared 0.033 0.041 0.033 0.043

The data are from the 144 villages that were part of the second-year experiment. The sample consists of 25
farmers per village. The dependent variable in all regressions is an indicator equal to one if it was verified
that the farmer installed AWD on one of their plots. Prices were set randomly at the village level and
range from 20 to 90 taka (around $0.24 to $1.1). The volumetric treatment variable is an indicator for
villages where the 25 farmers were provided assistance with filling out the application for a prepaid
(hourly) irrigation card and a waiver of the 150 taka sign-up fee. Standard errors are clustered at the
village level. The p-value for equal elasticities is based on standard errors from the delta method. Asterisks
indicate that coefficient is statistically significant at the 1% ∗∗∗, 5% ∗∗, and 10% ∗ levels.
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Figures

Figure 1: The distribution of water pricing across the world

Notes: The top panel of the map shows shaded countries where at least some irrigation water is not priced
volumetrically, usually priced with seasonal contracts by the acre or acre-crop. The bottom figure adds
areas shaded in light blue to denote irrigated agricultural area.
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Figure 2: Agricultural calendar in sample villages
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Notes: The figure shows the status of the average study plot during the agricultural year prior to the
experiment. The solid lines represent the share of plots that were either fallow or planted with the crop
corresponding to the color. The heavy dashed line shows the average share of cumulative rainfall (May
15th to May 15th) that has fallen on or before the day corresponding to the horizontal axis.
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Figure 3: Image of AWD pipe installed in a farmer’s field

Notes: Figure shows an image of an AWD pipe installed in the farmer’s field. The pipe is inserted to a
level more than 15 cm below the soil surface. Holes are drilled into the plastic pipe, allowing the farmer to
monitor soil moisture below the surface. A small net is wrapped around the bottom of the pipe to prevent
mud from clogging the pipe. The farmer uses the pipe to monitor soil moisture. The field can be dried
until the water level falls below 15 cm below the surface, marked with a line in the pipe. The field is then
re-irrigated, hence the name “Alternate Wetting and Drying.” This procedure should be used during the
period up until the crop starts to reproduce (flower), when water should be kept in the field.
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Figure 4: Nonparametric estimates of AWD treatment effect as a function of days after
planting
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Notes: Figure shows non-parametric fan regressions of water levels in centimeters (top panel) and an
indicator for fields with no standing water (middle panel) on the days after transplanting. The dots show
average values from 10 day bins, where each dot is centered at the bin midpoint. The bottom panel shows
the density of days after transplanting.
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Figure 5: Comparison between impacts from the RCT and agronomic experiments
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Notes: Figure shows the kernel density of the impacts of AWD on irrigation volumes (grey line) from 26
studies. These studies report a total of 87 impact estimates, as a single agronomic trial often includes more
than one experiment in a single season, is done over multiple seasons, or tests different variants of the
AWD technique. The black line shows our estimated treatment effect on water levels with area-based
pricing and the blue line for areas with volumetric pricing (from Table 1 column 3).
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Figure 6: Demand curve by volumetric pricing treatment
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Notes: Figure shows linear demand estimates for farmers in the 144 villages that were part of the
second-year experiment. The blue dots are raw adoption rates for the 96 treatment villages where prepaid
hourly irrigation cards were provided. The blue line is the linear demand estimate for treatment villages.
The grey dots are adoption rates in the 48 control villages and the grey line presents the corresponding
linear demand estimate. Asterisks denote that the marginal impact of the treatment (from the linear
demand estimates) is statistically significant (1% ∗∗∗, 5% ∗∗, and 10% ∗). The estimation sample includes
all 25 farmers in each village.
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Figure 7: Effect of volumetric pricing treatment on consumer surplus from AWD
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Notes: The figure shows the gain in consumer surplus (of AWD) from the prepaid card treatment
(measured in percent) as black dots. Specifically, referring to Equation 2, the consumer surplus in control

villages is
−β2

0

2β2
− β0p− β2p

2

2 and in treatment villages is −(β0+β1)
2

2(β2+β3)
− (β0 + β1)p− (β2+β3)p

2

2 . The black dots

are the percentage difference between these two values at various prices p. The 90 percent confidence
intervals (whiskers) are estimated from 1,000 bootstrapped samples where the range of each whisker shows
the 5th to 95th percentiles of the distribution of percentage changes in consumer surplus.
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Figure 8: AWD usage as a function of price and prepaid card treatment

**

**

***

***

***

*** Treatment
Control

Purchase

Use

20
40

60
80

10
0

Pr
ic

e

0 .2 .4 .6 .8
Purchase or Use

Notes: The figure shows the demand curves for AWD as solid lines, where uptake is measured as
purchasing the pipe from the door-to-door salesperson. The solid lines merely replicate the demand curves
from Figure 6. The dashed lines instead consider usage, where usage is defined as an enumerator being able
to verify that an AWD pipe was installed in one of the farmer’s fields. The blue lines are for farmers in the
96 treatment villages where prepaid hourly irrigation cards were provided. The grey lines are for the 48
control villages. Asterisks denote a statistically significant treatment effect of the hourly irrigation cards
(1% ∗∗∗, 5% ∗∗, and 10% ∗). The sample in each village is the 25 farmers that were identified at the start of
the experiment.
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Appendix: For Online Publication

Figure A1: Location of villages in first-year experiment

Notes: The figure shows the location of the 400 villages in the first-year RCT. The blue dots represent
treatment villages and the green dots control. The bar chart embedded in the figure shows the frequency of
volumetric pricing within each of the three districts - measured across farmers during our baseline survey
from November/December 2016.
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Figure A2: Treatment effects on satellite measures of greenness
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Notes: The figure shows fitted quadratic relationships between NDVI (greenness) and the days after
planting. The dots are averages across 20 bins of days after planting. The NDVI is measured using 8 day
composites from Landsat available on the Google Earth Engine database. The images have a 30 meter
resolution meaning that each pixel is approximately 0.2 acres, about two thirds the size of the median plot
in the experiment.
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Table A1: Summary Statistics and Covariate Balance by Treatment

Means

Control AWD Treatment p-value
Panel A: Household Characteristics

Age 42.33 42.93 0.251
(12.05) (12.23)

Years Education 6.645 6.330 0.125
(4.863) (4.525)

Household Size 4.888 4.802 0.467
(2.202) (2.159)

Number Livestock Owned 2.892 2.701 0.0935
(2.745) (2.502)

Landholdings in Acres 2.026 2.003 0.769
(2.168) (2.046)

Owns Television 0.636 0.612 0.314
(0.481) (0.487)

Owns Refrigerator 0.139 0.129 0.639
(0.346) (0.335)

Owns Irrigation Shallow Tubewell 0.0655 0.0595 0.520
(0.247) (0.237)

Heard of AWD? 0.182 0.163 0.328
(0.386) (0.369)

Panel B: Characteristics of Study Plot

Plot is Rented or Sharecropped 0.0875 0.0675 0.136
(0.283) (0.251)

Area in Acres 0.427 0.405 0.195
(0.494) (0.421)

Volumetric Water Price 0.344 0.350 0.754
(0.475) (0.477)

Number Crops Grown 2.194 2.174 0.611
(0.480) (0.481)

Rice-Rice Cropping System 0.697 0.698 0.989
(0.460) (0.459)

Number Irrigations in Boro 20.80 20.55 0.695
(8.757) (8.097)

Revenue per Acre in Boro 39866.3 40133.4 0.700
(10534.0) (14796.8)

Cost per Acre in Boro 22651.0 22939.6 0.625
(10526.1) (9190.8)

Water Cost per Acre in Boro 6663.9 6199.8 0.357
(8768.0) (5636.1)

Revenue per Acre in Aman 27622.6 27763.4 0.868
(11668.1) (19959.8)

The table shows mean values of baseline characteristics for control and AWD treatment households in columns 1 and 2, respectively. Column 3
shows the p-value from the regression of each characteristic on the treatment indicator and strata (Upazila) fixed effects. Panel A contains
household-level variables and Panel B contains variables specific to the study plot nearest the irrigation tubewell. “Boro” is the dry-season from
January to May and “Aman” is the wet season from June to November. All data are based on the baseline survey from November-December 2016.
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Table A2: Summary Statistics and Covariate Balance by Treatment for places with volu-
metric water pricing

Means

Control AWD Treatment p-value
Panel A: Household Characteristics

Age 42.76 42.88 0.784
(11.99) (12.25)

Years Education 6.565 6.629 0.723
(4.879) (4.365)

Household Size 4.754 4.791 0.860
(2.136) (2.126)

Number Livestock 2.651 2.316 0.0834
Owned (2.818) (2.379)

Landholdings in 2.411 2.339 0.997
Acres (2.315) (2.291)

Owns Television 0.696 0.719 0.499
(0.460) (0.450)

Owns Refrigerator 0.0959 0.114 0.392
(0.295) (0.318)

Owns Irrigation 0.0785 0.0529 0.213
Shallow Tubewell (0.269) (0.224)

Heard of AWD? 0.119 0.136 0.449
(0.324) (0.343)

Panel B: Characteristics of Study Plot

Plot is Rented or 0.102 0.0571 0.0454
Sharecropped (0.303) (0.232)

Area in Acres 0.380 0.374 0.850
(0.532) (0.390)

Number Crops Grown 2.425 2.320 0.333
(0.627) (0.624)

Rice-Rice Cropping 0.382 0.409 0.474
System (0.486) (0.492)

Number Irrigations 19.99 20.75 0.334
in Boro (9.643) (8.375)

Revenue per Acre in 45455.4 46416.6 0.316
Boro (9352.6) (20243.7)

Cost per Acre in 25731.0 26070.9 0.762
Boro (15180.6) (12215.2)

Water Cost per Acre 9637.6 8200.9 0.107
in Boro (14293.5) (8846.5)

Revenue per Acre in 31138.6 29215.6 0.639
Aman (13754.1) (23735.9)

The table shows mean values of baseline characteristics for control and AWD treatment households in columns 1 and 2,
respectively. Column 3 shows the p-value from the regression of each characteristic on the treatment indicator and strata
(Upazila) fixed effects. Panel A contains household-level variables and Panel B contains variables specific to the study plot
nearest the irrigation tubewell. “Boro” is the dry-season from January to May and “Aman” is the wet season from June to
November. All data are based on the baseline survey from November-December 2016 and only include households that
reported volumetric water pricing at baseline.
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Table A3: Separate effects by time of growing season, 0-60 and 60+ days after planting

0-60 Days After Planting 60+ Days After Planting

(1) (2) (3) (4)
Level Dry Level Dry

AWD Treatment -0.357∗∗ 0.071∗∗ 0.094 0.001
(0.149) (0.030) (0.248) (0.030)

Strata Fixed Effects Yes Yes Yes Yes
Mean in Control 2.65 0.31 2.11 0.54
Number of Observations 3148 3148 4450 4450
R squared 0.037 0.036 0.057 0.068

The data are from random unannounced visits to the study plots of sample farmers during the 2017 boro
(dry) growing season. Columns 1 and 2 are for measurements taken up to 60 days after transplanting.
Columns 3 and 4 are for measurements taken more than 60 days after transplanting. The dependent
variable in columns 1 and 3 is the amount of standing water in the field, measured in centimeters. The
dependent variable in columns 2 and 4 is an indicator variable for a dry field with no standing water.
Standard errors are clustered at the village level. Asterisks indicate that coefficient is statistically
significant at the 1% ∗∗∗, 5% ∗∗, and 10% ∗ levels.
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Table A4: Separate effects by time of growing season, 0-80 and 80+ days after planting

0-80 Days After Planting 80+ Days After Planting

(1) (2) (3) (4)
Level Dry Level Dry

AWD Treatment -0.213 0.045∗ 0.251 -0.029
(0.152) (0.025) (0.334) (0.039)

Strata Fixed Effects Yes Yes Yes Yes
Mean in Control 2.55 0.36 1.80 0.63
Number of Observations 5316 5316 2282 2282
R squared 0.033 0.052 0.100 0.130

The data are from random unannounced visits to the study plots of sample farmers during the 2017 boro
(dry) growing season. Columns 1 and 2 are for measurements taken up to 80 days after transplanting.
Columns 3 and 4 are for measurements taken more than 80 days after transplanting. The dependent
variable in columns 1 and 3 is the amount of standing water in the field, measured in centimeters. The
dependent variable in columns 2 and 4 is an indicator variable for a dry field with no standing water.
Standard errors are clustered at the village level. Asterisks indicate that coefficient is statistically
significant at the 1% ∗∗∗, 5% ∗∗, and 10% ∗ levels.
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Table A5: Heterogeneous effects by first 60 days of the growing season

0-60 Days After Planting 60+ Days After Planting

(1) (2) (3) (4)
Level Dry Level Dry

AWD Treatment -0.103 0.008 0.219 -0.001
(0.188) (0.035) (0.335) (0.035)

AWD Treatment * -0.670∗∗ 0.164∗∗∗ -0.386 0.008
Volumetric Pricing (0.298) (0.062) (0.429) (0.068)

Volumetric Pricing -0.035 -0.038 -0.365 -0.011
(0.363) (0.074) (0.418) (0.072)

Strata Fixed Effects Yes Yes Yes Yes
Mean in Control 2.65 0.31 2.11 0.54
p-Value: Treat+Treat*Volumetric 0.001 0.001 0.519 0.916
Number of Observations 3147 3147 4449 4449
R squared 0.043 0.043 0.059 0.068

The data are from random unannounced visits to the study plots of sample farmers during the 2017 boro
(dry) growing season. Columns 1 and 2 are for measurements taken up to 60 days after transplanting.
Columns 3 and 4 are for measurements taken more than 60 days after transplanting. The dependent
variable in columns 1 and 3 is the amount of standing water in the field, measured in centimeters. The
dependent variable in columns 2 and 4 is an indicator variable for a dry field with no standing water.
Volumetric pricing is an indicator for farmers for whom the water price is tied to usage, either through
hourly charges or payments for diesel fuel. Standard errors are clustered at the village level. Asterisks
indicate that coefficient is statistically significant at the 1% ∗∗∗, 5% ∗∗, and 10% ∗ levels.
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Table A6: Heterogeneous effects by first 80 days of the growing season

0-80 Days After Planting 80+ Days After Planting

(1) (2) (3) (4)
Level Dry Level Dry

AWD Treatment 0.049 -0.007 0.294 -0.020
(0.209) (0.030) (0.442) (0.049)

AWD Treatment * -0.719∗∗ 0.144∗∗∗ -0.055 -0.037
Volumetric Pricing (0.279) (0.052) (0.514) (0.071)

Volumetric Pricing 0.097 -0.087 -0.718 0.023
(0.345) (0.063) (0.522) (0.070)

Strata Fixed Effects Yes Yes Yes Yes
Mean in Control 2.55 0.36 1.80 0.63
p-Value: Treat+Treat*Volumetric 0.000 0.001 0.346 0.264
Number of Observations 5315 5315 2281 2281
R squared 0.037 0.057 0.102 0.130

The data are from random unannounced visits to the study plots of sample farmers during the 2017 boro
(dry) growing season. Columns 1 and 2 are for measurements taken up to 80 days after transplanting.
Columns 3 and 4 are for measurements taken more than 80 days after transplanting. The dependent
variable in columns 1 and 3 is the amount of standing water in the field, measured in centimeters. The
dependent variable in columns 2 and 4 is an indicator variable for a dry field with no standing water.
Volumetric pricing is an indicator for farmers for whom the water price is tied to usage, either through
hourly charges or payments for diesel fuel. Standard errors are clustered at the village level. Asterisks
indicate that coefficient is statistically significant at the 1% ∗∗∗, 5% ∗∗, and 10% ∗ levels.
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Table A7: Hurdle regression estimates of treatment effects on water usage

(1) (2)
All 70 Days or Less

Intensive
AWD Treatment 0.270 -0.188

(0.507) (0.265)

AWD Treatment * -0.756 -0.280
Volumetric Pricing (0.637) (0.335)

Volumetric Pricing -1.241∗ -0.666
(0.634) (0.446)

Extensive
AWD Treatment 0.032 0.034

(0.069) (0.090)

AWD Treatment * -0.245∗ -0.498∗∗∗

Volumetric Pricing (0.127) (0.148)

Volumetric Pricing 0.149 0.219
(0.154) (0.178)

Strata Fixed Effects Yes Yes
Number of Observations 7596 4187

The data are from random unannounced visits to the study plots of sample farmers during the 2017 boro
(dry) growing season. Both columns present coefficients from hurdle regression estimates where the top
panel shows effects on the intensive margin (water levels conditional on a nonzero observation) and the
bottom panel shows extensive margin effects. Standard errors are clustered at the village level. Asterisks
indicate that coefficient is statistically significant at the 1% ∗∗∗, 5% ∗∗, and 10% ∗ levels.

54



Table A8: Effects on material input expenditure

Fertilizer Chemicals

(1) (2) (3) (4) (5) (6) (7)
N apps Urea TSP Potash Other Pesticide Herbicide

AWD Treatment -0.004 -5.653 3.685 5.868 -24.266∗ -106.318∗ 34.564∗∗∗

(0.044) (31.897) (36.014) (18.581) (13.634) (56.998) (12.265)

Strata Fixed Effects Yes Yes Yes Yes Yes Yes Yes
Mean in Control 2.67 1513.80 1073.34 586.13 115.56 1542.37 301.71
Number of Observations 3986 3983 3983 3983 3983 3983 3983
R squared 0.187 0.270 0.215 0.187 0.150 0.391 0.131

The data are taken from the followup survey after harvesting. The dependent variables are number of
times fertilizer was applied (column 1), fertilizer expenditure per acre (columns 2-5), and chemical
expenditure per acre (columns 6-7). All expenditures are recorded in Bangladeshi taka per acre. Standard
errors are clustered at the village level. Asterisks indicate that coefficient is statistically significant at the
1% ∗∗∗, 5% ∗∗, and 10% ∗ levels.
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Table A9: Effects on labor expenditure

Hired Family

(1) (2) (3) (4) (5) (6)
Plant Weed Harvest Plant Weed Harvest

AWD Treatment 107.067 172.178∗∗ 120.103 25.970 -94.987 -49.090
(82.276) (83.377) (174.900) (59.703) (72.594) (75.184)

Strata Fixed Effects Yes Yes Yes Yes Yes Yes
Mean in Control 3706.13 1907.60 6605.49 862.73 1298.77 1160.69
Number of Observations 3983 3981 3983 3978 3983 3982
R squared 0.234 0.138 0.216 0.259 0.204 0.271

The data are taken from the followup survey after harvesting. The dependent variables are expenditure per
acre on hired labor (columns 1-3), and imputed expenditure on family labor (columns 4-6). All
expenditures are recorded in Bangladeshi taka per acre. Family labor expenditure is imputed by
multiplying observed person days by the daily wage rate. Standard errors are clustered at the village level.
Asterisks indicate that coefficient is statistically significant at the 1% ∗∗∗, 5% ∗∗, and 10% ∗ levels.
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Table A11: Heterogeneous effects on labor expenditure

Hired Family

(1) (2) (3) (4) (5) (6)
Plant Weed Harvest Plant Weed Harvest

AWD Treatment 121.638 96.450 214.949 -12.322 -78.577 -1.534
(117.075) (94.393) (225.466) (56.321) (84.846) (77.506)

AWD Treatment * -43.480 213.977 -279.576 112.744 -43.809 -134.140
Volumetric Pricing (141.671) (185.537) (352.897) (147.297) (162.296) (179.529)

Volumetric Pricing 215.358 211.368 671.095∗∗ -198.722 -212.623 -173.712
(153.256) (170.082) (269.756) (125.856) (233.701) (197.290)

Strata Fixed Effects Yes Yes Yes Yes Yes Yes
Mean in Control 3706.13 1907.60 6605.49 862.73 1298.77 1160.69
p-Value: Treat+Treat*Volumetric 0.341 0.053 0.811 0.460 0.372 0.401
Number of Observations 3982 3980 3982 3977 3982 3981
R squared 0.235 0.142 0.219 0.260 0.205 0.273

The data are taken from the followup survey after harvesting. The dependent variables are expenditure per
acre on hired labor (columns 1-3), and imputed value of family labor (columns 4-6). All expenditures are
recorded in Bangladeshi taka per acre. Standard errors are clustered at the village level. Asterisks indicate
that coefficient is statistically significant at the 1% ∗∗∗, 5% ∗∗, and 10% ∗ levels.

58



Table A12: Effects on revenues and profit

Log:

(1) (2) (3) (4) (5) (6)
Yield Revenue Profit Yield Revenue Profit

AWD Treatment 7.736 604.360 425.276 0.002 0.011 0.007
(21.221) (614.012) (681.853) (0.010) (0.012) (0.034)

Strata Fixed Effects Yes Yes Yes Yes Yes Yes
Mean in Control 2269.16 52696.04 27133.39 7.71 10.85 10.12
Number of Observations 3983 3983 3983 3983 3983 3933
R squared 0.352 0.389 0.296 0.328 0.349 0.270

The data are taken from the followup survey after harvesting. The dependent variables are crop yield in
kilograms per acre (column 1), revenue in Bangladeshi taka per acre (column 2) and profit in Bangladeshi
taka per acre (column 3). Columns 4 through 6 show the same regressions with log yields, revenue, and
profits, respectively. Standard errors are clustered at the village level. Asterisks indicate that coefficient is
statistically significant at the 1% ∗∗∗, 5% ∗∗, and 10% ∗ levels.
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Table A13: Profit effects when trimming top and bottom 1.5 percent of distribution

Profit Log Profit

(1) (2) (3) (4) (5) (6)
AWD Treatment -192.9 -61.98 -213.9 -0.0266 -0.0227 -0.0380

(751.0) (843.5) (872.7) (0.0422) (0.0431) (0.0422)

AWD Treatment * 2325.6∗∗ 1927.0 2237.7 0.115∗∗ 0.115∗ 0.153∗∗

Volumetric Pricing (1108.6) (1280.9) (1413.9) (0.0544) (0.0606) (0.0623)

Volumetric Pricing -1605.6 -124.2 -629.9 -0.111∗ -0.102 -0.140∗∗

(1092.5) (1416.9) (1362.4) (0.0576) (0.0684) (0.0702)

Trim Top and Bottom 1.5% Yes No No Yes No No

Strata Fixed Effects Yes Yes Yes Yes Yes Yes

Controls No Yes Yes No Yes Yes

Controls X Treatment No No Yes No No Yes
Mean in Control 27125.15 27137.22 27137.22 10.11 10.12 10.12
p-Value Treat+Treat*Volumetric 0.010 0.052 0.046 0.013 0.029 0.010
Number Obs 3863 3978 3978 3863 3928 3928

The data are taken from the followup survey after harvesting. The dependent variables are profit in taka
per acre (columns 1-3) and log profit (columns 4-6). Columns 1 and 4 trim the top and bottom 1.5 percent
of the profit distribution. The controls in the remaining columns are age, education, household size,
number of livestock owned, landholdings, television ownership, refrigerator ownership, tube well ownership,
baseline knowledge of AWD, indicator for renting/sharecropping at baseline, plot area, number of crops
grown, indicator for a rice-rice cropping system, number of irrigations during the boro season, boro revenue
per acre, boro total cost per acre, boro water cost per acre, and aman revenue per acre. All control
variables were measured during the baseline survey. The controls are all demeaned before being interacted
with treatment in columns 3 and 6. Standard errors are clustered at the village level. Asterisks indicate
that coefficient is statistically significant at the 1% ∗∗∗, 5% ∗∗, and 10% ∗ levels.
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Table A14: Persistence of results from the first RCT in the second year

On plot w/ water measurement:

(1) (2) (3) (4)
Usage Usage Water Level Dry Field

AWD Treatment 0.140∗∗∗ 0.101∗∗∗ -0.607∗∗ 0.082∗∗

(0.043) (0.034) (0.292) (0.038)

Strata Fixed Effects Yes Yes Yes Yes
Mean in Control 0.20 0.09 3.61 0.21
Number Obs 984 984 980 984

The table shows regression estimates for a subsample of villages where water management and AWD
uptake were measured in the second year after the treatment (2018). The sample consists of a randomly
selected subset of 56 control villages and 112 treatment villages. Within each village, we further selected a
random group of 6 farmers. Each farmer was offered an AWD pipe at a random village-level price,
explaining why 20 percent of the farmers in the control group were using AWD during the second year.
The dependent variable in column 1 is usage of AWD, where usage is defined as an enumerator observing
an AWD pipe on any of the farmer’s plots. We measured water levels on a single plot, which was randomly
chosen to be the plot closest to the tube well for 75 percent of farmers and the farthest plot for the
remaining 25 percent. Columns 2-4 show regressions for only that plot. The dependent variables are an
indicator for AWD being used on that plot (column 2), the measured water level in cm (column 3), and an
indicator for a dry field with no water (column 4). Standard errors are clustered at the village level.
Asterisks indicate that coefficient is statistically significant at the 1% ∗∗∗, 5% ∗∗, and 10% ∗ levels.
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Table A15: Persistence of heterogeneity results in the second year

On plot w/ water measurement:

(1) (2) (3) (4)
Usage Usage Water Level Dry Field

AWD Treatment 0.097 0.110∗∗ -0.674∗∗ 0.094∗∗

(0.059) (0.050) (0.307) (0.042)

Volumetric Pricing -0.047 0.019 0.282 -0.006
(0.085) (0.069) (0.707) (0.087)

AWD Treatment * 0.126 -0.025 0.257 -0.036
Volumetric Pricing (0.086) (0.058) (0.655) (0.086)

Strata Fixed Effects Yes Yes Yes Yes
Mean in Control 0.20 0.09 3.61 0.21
p-Value: Treat+Treat*Volumetric 0.000 0.005 0.482 0.443
Number Obs 984 984 980 984

The table shows regression estimates for a subsample of villages where water management and AWD
uptake were measured in the second year after the treatment (in 2018). The sample consists of a randomly
selected subset of 56 control villages and 112 treatment villages. Within each village, we further selected a
random group of 6 farmers. Each farmer was offered an AWD pipe at a random village-level price,
explaining why 20 percent of the farmers in the control group were using AWD during the second year.
The dependent variable in column 1 is usage of AWD, where usage is defined as an enumerator observing
an AWD pipe on any of the farmer’s plots. We measured water levels on a single plot, which was randomly
chosen to be the plot closest to the tube well for 75 percent of farmers and the farthest plot for the
remaining 25 percent. Columns 2-4 show regressions for only the plot. The dependent variables are an
indicator for AWD being used on that plot (column 2), the measured water level in cm (column 3), and an
indicator for a dry field with no water (column 4). Standard errors are clustered at the village level.
Asterisks indicate that coefficient is statistically significant at the 1% ∗∗∗, 5% ∗∗, and 10% ∗ levels.
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Table A16: Balance of baseline characteristics for volumetric pricing experiment

Means

Control Prepaid Card p-value
Age 39.24 39.74 0.445

(10.28) (11.18)

Years Education 7.253 7.008 0.451
(4.131) (4.267)

Household Size 4.489 4.232 0.0184
(1.649) (1.840)

Number Livestock Owned 2.686 2.812 0.507
(2.052) (2.357)

Landholdings in Acres 1.598 1.609 0.967
(1.640) (1.418)

Owns Television 0.887 0.870 0.366
(0.317) (0.336)

Owns Refrigerator 0.195 0.192 0.824
(0.396) (0.394)

Owns Irrigation Shallow Tubewell 0.0569 0.0421 0.439
(0.232) (0.201)

Seasonal Water Price (taka per bigah) 1522.3 1481.9 0.626
(427.6) (372.3)

Usual Number Irrigations 18.98 18.74 0.985
(8.178) (8.506)

Pays Deep Driver for Irrigation 0.708 0.707 0.919
(0.455) (0.455)

The table shows mean values of baseline characteristics for farmers in the 48 control (column 1) and 96
prepaid-card treatment villages (column 2). Standard deviations are displayed below each mean value in
parentheses. Column 3 shows the p-value from the regression of each characteristic on the treatment
indicator and strata (Upazila) fixed effects. The data are based on the baseline survey carried out with 25
farmers per village during December 2017.
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Table A17: Relationship between the prepaid card treatment and observed water manage-
ment on one field per farmer

(1) (2) (3)
AWD installed Water Level Dry Field

Volumetric Treatment 0.0424 0.3651 -0.0988
(0.0268) (0.6997) (0.1334)

AWD Price -0.0002 0.0002 0.0010
(0.0003) (0.0121) (0.0021)

AWD Price * -0.0001 -0.0040 0.0008
Volumetric Treatment (0.0004) (0.0132) (0.0024)

Strata Fixed Effects Yes Yes Yes
Mean in Control 0.008 2.214 0.393
P-value: Price+Price*Volumetric 0.165 0.469 0.136
Number Obs 3598 3600 3600
R squared 0.017 0.012 0.014

The data are from the 144 villages that were part of the second-year experiment. The sample consists of 25
farmers per village. The data are for one plot per farmer. The chosen plot is the closest to the village tube
well for 75 percent of random farmers and the furthest plot for the remaining 25 percent of farmers. Prices
were set randomly at the village level and range from 20 to 90 taka (around $0.24 to $1.1). The volumetric
treatment variable is an indicator for villages where the 25 farmers were provided assistance with filling out
the application for a prepaid (hourly) irrigation card and a waiver of the 150 taka sign-up fee. Standard
errors are clustered at the village level. Asterisks indicate that coefficient is statistically significant at the
1% ∗∗∗, 5% ∗∗, and 10% ∗ levels.
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Table A18: Logit estimates of demand functions

Purchase Usage

(1) (2) (3) (4)
Volumetric Treatment -0.889 -3.426∗ -2.197∗∗ -8.390∗∗∗

(0.638) (2.029) (1.062) (3.057)

AWD Price -0.0667∗∗∗ -0.0722∗∗∗

(0.00913) (0.0212)

AWD Price * 0.0208∗ 0.0601∗∗∗

Volumetric Treatment (0.0108) (0.0223)

Log AWD Price -3.168∗∗∗ -2.815∗∗∗

(0.429) (0.748)

Log AWD Price * 0.924∗ 2.379∗∗∗

Volumetric Treatment (0.508) (0.810)

Strata Fixed Effects Yes Yes Yes Yes
Mean in Control 0.413 0.413 0.068 0.068
Number Obs 3569 3569 3600 3600

The data are from the 144 villages that were part of the second-year experiment. The sample consists of 25
farmers per village. The table shows coefficients from logit regressions where the dependent variable is an
AWD purchase indicator (columns 1 and 2) and an indicator for installing the pipe (columns 3 and 4).
Prices were set randomly at the village level and range from 20 to 90 taka (around $0.24 to $1.1). The
volumetric treatment variable is an indicator for villages where the 25 farmers were provided assistance
with filling out the application for a prepaid (hourly) irrigation card and a waiver of the 150 taka sign-up
fee. Standard errors are clustered at the village level. Asterisks indicate that coefficient is statistically
significant at the 1% ∗∗∗, 5% ∗∗, and 10% ∗ levels.
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Table A19: Relationship between price and usage conditional on purchase of AWD pipe

(1) (2)
Volumetric Treatment -0.2501 -1.0292∗∗

(0.1522) (0.4638)

AWD Price -0.0044∗

(0.0024)

AWD Price * 0.0066∗∗

Volumetric Treatment (0.0027)

Log AWD Price -0.1910∗

(0.1067)

Log AWD Price * 0.2904∗∗

Volumetric Treatment (0.1193)

Strata Fixed Effects Yes Yes
Mean in Control 0.162 0.162
P-value: Price+Price*Volumetric 0.086 0.058
Number Obs 1580 1580
R squared 0.046 0.049

The data are from the 144 villages that were part of the second-year experiment. The sample is limited to
the farmers that bought AWD pipes during the demand experiment. The dependent variable in all
regressions is an indicator if it was verified that the farmer installed AWD on one of their plots. Prices
were set randomly at the village level and range from 20 to 90 taka (around $0.24 to $1.1). The volumetric
treatment variable is an indicator for villages where the 25 farmers were provided assistance with filling out
the application for a prepaid (hourly) irrigation card and a waiver of the 150 taka sign-up fee. Standard
errors are clustered at the village level. Asterisks indicate that coefficient is statistically significant at the
1% ∗∗∗, 5% ∗∗, and 10% ∗ levels.
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Table A20: Heterogenous effects of the prepaid card treatment by a predicted measure of
liquidity constraints

(1) (2)
Lasso Random Forest

Volumetric Treatment 0.0500 0.0289
(0.0643) (0.0614)

Liquidity Constraint -0.0268 -0.0347∗∗

(0.0202) (0.0163)

Volumetric Treatment -0.0013 0.0044
* Liquidity Constraint (0.0231) (0.0185)

Strata Fixed Effects Yes Yes
Mean in Control 0.413 0.413
Number Obs 3460 3569
R squared 0.032 0.036

The data are from the 144 villages that were part of the second-year experiment. The table tests whether
the effect of the prepaid card treatment varies as a function of predicted liquidity constraints. The
predicted measure of liquidity constraints is from a two step procedure where in the first step the total
number of times a prepaid card was recharged (throughout the season) is regressed on the total amount
spent. The residual from this regression gives a measure of liquidity constraint tightness since it measures
the deviation between the actual and expected number of times a given farmer needed to recharge their
card in order to spend a given amount on irrigation water. The second step involves predicting this
measure of liquidity constraint as a function of observable characteristics zi. Columns 1 uses predictions
from a LASSO regression, while column 2 uses the prediction from a random forest algorithm. The
dependent variable in both regressions is an indicator if the farmer purchased the AWD pipe at the
randomly set price. Standard errors are clustered at the village level. Asterisks indicate that coefficient is
statistically significant at the 1% ∗∗∗, 5% ∗∗, and 10% ∗ levels.
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Table A21: Marginal CO2 emissions for U.S. power plants in lbs/kwh

(1) (2)
All Plants Balanced Panel

Generation 3.046∗∗∗ 3.600∗∗∗

(0.136) (0.144)

Generation * Coal 0.647∗∗∗ 0.617∗∗∗

(0.0426) (0.0795)

Generation * Oil 0.248∗∗∗ 0.328∗∗∗

(0.0560) (0.0961)

Generation * Thermal -4.492∗∗∗ -5.894∗∗∗

Efficiency (0.288) (0.293)

Plant Fixed Effects Yes Yes

Year Fixed Effects Yes Yes
Number Obs 21238 5136
R squared 0.944 0.968

The data are from the Emissions & Generation Resource Integrated Database (eGRID) database of the
U.S Environmental Protection Agency. The data include annual information for U.S. power plants on the
amount of electricity produced, CO2 emissions, the fuel source of the plant, thermal efficiency, and a
number of other variables for the years 1998-2000, 2005, 2007, 2009, 2010, 2012, 2014, and 2016. Both
columns are fixed effects regressions where annual CO2 emissions (in lbs) are regressed on electricity
generated (in kwh) and its interaction with fuel type and thermal efficiency. Standard errors are clustered
at the level of the power plant. Column 1 includes all observations and column 2 includes only the power
plants for which we have a balanced panel. Asterisks indicate that coefficient is statistically significant at
the 1% ∗∗∗, 5% ∗∗, and 10% ∗ levels.
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