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Abstract 
 
This paper considers the problem of identification, estimation and inference in the case of spatial 
panel data models with heterogeneous spatial lag coefficients, with and without (weakly) 
exogenous regressors, and subject to heteroskedastic errors. A quasi maximum likelihood 
(QML) estimation procedure is developed and the conditions for identification of spatial 
coefficients are derived. Regularity conditions are established for the QML estimators of 
individual spatial coefficients, as well as their means (the mean group estimators), to be 
consistent and asymptotically normal. Small sample properties of the proposed estimators are 
investigated by Monte Carlo simulations for Gaussian and non-Gaussian errors, and with spatial 
weight matrices of differing degrees of sparsity. The simulation results are in line with the 
paper's key theoretical findings even for panels with moderate time dimensions, irrespective of 
the number of cross section units. An empirical application to U.S. house price changes during 
the 1975-2014 period shows a significant degree of heterogeneity in spill-over effects over the 
338 Metropolitan Statistical Areas considered. 
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1 Introduction

This paper considers a heterogeneous version of the standard spatial autoregressive (SAR) panel

data model whereby the spatial lag coefficients are allowed to differ over the cross section units.

We refer to this generalized specification as the heterogeneous SAR (or HSAR) model. The

model also features weakly exogenous regressors, possible fixed effects and heteroskedastic error

variances, and provides a reasonably general framework for the analysis of heterogeneous inter-

actions, where it is important to distinguish between the average intensity of spillover effects

as characterized by standard spatial models, and the heterogeneity of such effects over different

geographical units such as counties, regions or countries. Importantly, the framework studied

in this paper allows for spatial dependence directly through contemporaneous dependence of in-

dividual units on their connections, and indirectly through possible cross-sectional dependence

in the regressors. The econometric analysis of HSAR models presents new technical difficul-

ties, both for identification and estimation of a large set of spatial lag coefficients that must be

simultaneously estimated.

Our analysis builds on the existing literature on SAR models, pioneered by Whittle (1954)

and Cliff and Ord (1973), and further advanced in a number of important directions. The

maximum likelihood approach of Cliff and Ord, which was developed for a pure spatial model,

has been extended to cover panel data models with fixed effects and dynamics. Other estimation

and testing techniques, such as the generalized method of moments (GMM), also have been

proposed. Some of the key references to this literature include Upton and Fingleton (1985),

Anselin (1988), Cressie (1993), Kelejian and Robinson (1993), Ord and Getis (1995), Anselin

and Bera (1998), and more recently, Haining (2003), Lee (2004), Kelejian and Prucha (1999),

Kelejian and Prucha (2010), Lin and Lee (2010), Lee and Yu (2010), LeSage and Pace (2010),

Arbia (2010), Cressie and Wikle (2011), and Elhorst (2014). Extensions to dynamic panels are

provided by Anselin (2001), Baltagi et al. (2003), Kapoor et al. (2007), Baltagi et al. (2007), Yu

et al. (2008) and Yu et al. (2012). Spatial techniques also have proved useful when analyzing

network effects as can be seen in the pioneering work of Case (1991) and Manski (1993).

Almost all these contributions (whether in the context of spatial or network models) assume

that, apart from possibly fixed effects, spatial spill-over or network effects are homogeneous.

However, even if all units in a network have the exact same number of connections, it can be

the case that not all units are equally important or influential. Therefore, the assumption of a

homogeneous spatial coefficient, though needed when analyzing pure spatial models or spatial

panel data models with a short time dimension (T ), is likely to be restrictive, and its validity

should at least be tested. Also when T is large, the HSAR model can be estimated for any

N and it is not required that N → ∞, which is clearly needed when T is small. Examples of

such data sets include large panels that cover counties, regions, or countries in the analysis of

economic variables such as house prices, real wages, employment and income. For instance, in

the empirical applications by Baltagi and Levin (1986) on demand for tobacco consumption,

and by Holly et al. (2010) on house price diffusion across states in the U.S., it is interesting to

investigate whether the maintained assumption that spillover effects from neighboring states are

the same across all the 48 mainland states in fact holds, particularly considering the large size

of the U.S. and the uneven distribution of economic activity across it.

Whilst estimation of HSAR panel data models can be carried out using MLE and GMM

approaches, in this paper we focus on the former and discuss identification, estimation and
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inference using the quasi maximum likelihood (QML) method. We derive conditions under

which the QML estimators of the individual parameters are locally identified, and establish

consistency and asymptotic normality of the estimators under certain regularity conditions.

Asymptotic covariance matrices of the QML estimators are derived under both Gaussian and

non-Gaussian errors, and consistent estimators of these covariances are proposed. Alternative

estimation methods based on our HSAR model include the Bayesian Markov Chain Monte Carlo

approach of LeSage and Chih (2018) and the generalized Yule-Walker estimation method of Dou

et al. (2016).

We also propose an estimator of the cross section mean of the individual parameters (also

known in the literature as the Mean Group, MG, estimator) assuming a random coefficient

model. It is shown that MG estimators are consistent and asymptotically normal for N and

T → ∞, jointly, so long as
√
N/T → 0, and the spatial dependence is sufficiently weak. Such

estimators are helpful in two respects. They provide an overall average estimator of the spatial

effects that could be compared to corresponding estimates obtained using standard homogeneous

SAR models. They can also be used to obtain average estimators across sub-spatial groupings

such as states or regions, or sub-groups within a production or financial network, such as in-

dustry types. Following Pesaran et al. (1996), the deviations of the MG estimators from their

homogenous counterparts can be used to develop simple Hausman type tests of the homogeneity

of the underlying individual parameters.

The small sample performance of the QML estimator is investigated by Monte Carlo simula-

tions for different values of N and T and alternative choices of the spatial weight matrices. The

simulation results are in line with the paper’s key theoretical findings, and show that the pro-

posed estimators have good small sample properties for panels with moderate time dimensions

and irrespective of the number of cross section units in the panel, although under non-Gaussian

errors, tests based on QML estimators of the spatial parameters can be slightly distorted when

the time dimension is relatively small. We also investigate the small sample performance of

the MG estimator and find its performance to be satisfactory with biases that are universally

negligible, and RMSEs that decline with T and quite rapidly with N . Regarding size and power,

tests based on the MG estimator exhibit some downward size distortions when T is small, but

such distortions disappear as T rises for all values of N . The small sample bias of the MG

estimator can be reduced using half-Jackknife procedure as discussed in Chudik and Pesaran

(2019).

As an empirical application, we fit HSAR models to U.S. quarterly house price changes over

the period 1975Q1-2014Q4 observed at Metropolitan Statistical Areas (MSAs). Not surprisingly

we find a considerable degree of heterogeneity across the MSA specific estimates. As to be ex-

pected, with a few exceptions, the estimates of spatial coefficients are positive and statistically

significant, suggesting a high degree of spill-over effects of house price changes to neighboring

MSAs. There were 11 MSA (out of 338 considered in our analysis) with statistically signifi-

cant negative spatial effects, and included Cheyenne (Wyoming), Coeur d’Alene (Idaho) or Hot

Springs (Arkansas). These MSAs tend to be relatively remote with outward migratory flows to

neighboring regions.

We also consider MG estimators obtained for six U.S. regions based on the individual MSA

level estimates. Spatial parameter estimates are positive and statistically significant for all

regions. The average estimate of the spatial lag obtained for the U.S. (around 0.51) is lower

than the estimate of around 0.65 reported by Yang (2018) who considers a homogeneous SAR
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specification estimated on a similar data set. The differences between the two estimates could

be due to the considerable degree of heterogeneity that we observe across the regions in the

U.S., which is being neglected under the homogeneity assumption. We also find positive and

statistically significant effects of population and income growth on house price changes, again

with a high degree of heterogeneity across the regions.

The rest of the paper is organized as follows: Section 2 introduces the first order spatial

autoregressive model with heterogeneous coefficients and some useful generalizations, and de-

rives its log-likelihood function. Section 3 sets out the assumptions of the model, derives the

identification conditions and proves consistency and asymptotic normality of the QML estimator

when the time dimension is large. Section 4 outlines the Mean Group estimator derived from

the heterogeneous spatial coefficients of the HSAR model. Section 5 presents the Monte Carlo

design and reports small sample results (bias, root mean square errors, size and power) of the

QML and MG estimators for different parameter values and sample size combinations. Section

6 reports the results of our empirical application to the U.S. house price changes across MSAs.

Some concluding remarks are provided in Section 7. Mathematical proofs, data sources and

additional Monte Carlo results are provided in an online supplement.

Notations: We denote the largest and the smallest eigenvalues of the N×N matrix A = (aij)

by λmax (A) and λmin (A) , respectively, its trace by tr (A) =
∑N

i=1 aii, its spectral radius by

ρ (A) = |λmax (A)|, its spectral norm by ‖A‖ = λ
1/2
max (A′A), its maximum absolute column

sum norm by ‖A‖1 = max1≤j≤N

(∑N
i=1 |aij |

)
, and its maximum absolute row sum norm by

‖A‖∞ = max1≤i≤N

(∑N
j=1 |aij |

)
. Diag (A) = Diag (a11, a22, . . . , aNN ) represents an N × N

diagonal matrix formed by the diagonal elements of A, while diag (A) = (a11, a22, . . . , aNN )′

denotes an N ×1 vector. We denote the `p-norm of the random variable x by ‖x‖p = E (|x|p)1/p

for p ≥ 1, assuming that E (|x|p) < K. � stands for Hadamard product or element-wise

matrix product operator, →p denotes convergence in probability,
a.s.→ almost sure convergence,

→d convergence in distribution, and
a∼ asymptotic equivalence in distribution. Asymptotics for

estimation of individual parameters are carried out for N finite and as T → ∞. K and c will

be used to denote finite large and non-zero small positive numbers, respectively, that do not

depend on N and T .

2 A heterogeneous spatial autoregressive model (HSAR)

2.1 Model specification

We consider the following SAR model with heterogeneous slopes:

yit = ψi0

 N∑
j=1

wijyjt

+ β′i0xit + εit, for i = 1, 2, . . . , N ; t = 1, 2, . . . , T, (1)

where yit is the dependent variable for unit i observed at time t, xit = (xi1,t, xi2,t, . . . , xik,t)
′ is

a k × 1 vector of exogenous regressors, with the associated k × 1 vector of slope parameters,

βi0 = (βi1,0, βi2,0, . . . , βik,0)
′. εit is the unexplained component of yit, which we refer to as the

error of the ith cross section unit, or the ‘error’ for short. Finally, y∗it =
∑N

j=1wijyjt = w′iyt is

the average effect of other units on unit i at time t, where yt = (y1t,y2t, . . . , yNt)
′ and w′i is the
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ith row of the N × N spatial weight matrix, W = (wij), with wij , for i, j = 1, 2, . . . , N being

the spatial weights. Without loss of generality we set wii = 0, for all i, assume that wij ≥ 0,

and normalize the spatial weights so that
∑N

j=1wij = 1.1 When the weights are not normalized,

(1) continues to hold with ψi0 re-defined as ψi0/vi, where
∑N

j=1wij = vi. Consequently, in

the heterogeneous case the normalization of the weights is innocuous, and can be viewed as an

identifying restriction, so that ψi0 can be distinguished from vi, which is achieved by setting

vi = 1. The same is not true in the homogeneous case where ψi0 = ψ0 for all i, and the

use of non-normalized weights is equivalent to setting ψi0 = ψ0/vi, which is not an innocuous

restriction. The HSAR model (1) can also be viewed as a generalization of the random coefficient

panel data model reviewed, for example, by Hsiao and Pesaran (2008). However, this is not a

straightforward generalization due to the endogeneity of y∗it = w′iyt in (1).

The assumption of non-negative weights (wij ≥ 0) can be relaxed by replacing W with two

weight matrices: one for positive weights, W+ = (w+
ij), where w+

ij = wij if wij > 0 and zero

otherwise, and one for negative weights, W− = (w−ij), where w−ij = −wij if wij < 0 and zero

otherwise. Then (1) can be written more generally as

yit = ψ+
i0

 N∑
j=1

w+
ijyjt

+ ψ−i0

 N∑
j=1

w−ijyjt

+ β′i0xit + εit, (2)

where ψ+
i0 and ψ−i0 measure the effects of positively and negatively connected units on yit, and

allowed to vary across units. For an empirical application of such a setting see Bailey et al.

(2016).2 The HSAR model can also be generalized further by estimating the weights, wij , so

long as each unit has a finite number of known neighbors. In such a setting the HSAR model

can be written as

yit =
N∑
j=1

ψij0I (wij) yjt + β′i0xit + εit, (3)

where I (wij) = 1 if wij 6= 0 and 0 otherwise, and supi
∑N

j=1 |ψij0| I (wij) < K. This specification

only exploits the qualitative information contained in I (wij) and represents another important

generalization of the homogeneous spatial model. In what follows we focus on the basic HSAR

specification given by (1) and note that estimation and inference for models (2) and (3) can be

conducted along the lines set out in this paper.

Stacking the observations by the N individual units for each time period t, (1) can be written

more compactly as

(IN −Ψ0W )y◦t = B0x◦t + ε◦t, t = 1, 2, . . . , T, (4)

where y◦t = (y1t, y2t, . . . , yNt)
′, IN is an N × N identity matrix, Ψ0 = Diag (ψ0) with ψ0 =

1Strictly speaking, the weights, wij , are N -dependent and should be denoted as wij,N . The same also applies
to yit, βi0, and εit. But we abstract from including the subscript N when denoting wij , yit and εit, to keep the
notations simple and manageable.

2It is also possible to allow for spatial effects in the errors and the regressors. For example, εit can be replaced by

εit = ϕi0

(∑N
j=1 wε,ijεjt

)
+ νit, and the regressors augmented with spatial effects such as x∗i`,t =

∑N
j=1 w`,ijxj`,t,

for ` = 1, 2, . . . , k, where wε,ij and w`,ij are the spatial weights. To simplify the exposition in this paper we
abstract from spatial error and regressor processes and focus on the contemporaneous spatial effects in the
dependent variable, yit.
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(ψ10, ψ20, . . . , ψN0)
′, and B0 is the N × kN block diagonal matrix

B0 =



β′10 0 · · · 0 0

0 β′20 · · · 0 0
...

...
. . .

...
...

0 0 · · · β′N−1,0 0

0 0 · · · 0 β′N,0


, (5)

and x◦t = (x′1t,x
′
2t, . . . ,x

′
Nt)
′ is the kN × 1 vector of observations on the exogenous regressors.

Finally, V ar (ε◦t) = Σ0 = Diag
(
σ2
0

)
, with σ2

0 = (σ210, σ
2
20, . . . , σ

2
N0)
′. We set S0 ≡ S(ψ0) =

IN −Ψ0W , and assume that S0 is invertible.3 Then, the reduced form of (4) can be expressed

as

y◦t = S−1(ψ0) [B0x◦t + ε◦t] , t = 1, 2, . . . , T. (6)

Remark 1 If ψ10 = ψ20 = · · · = ψN0 = ψ0, β10 = β20 = · · · = βN0 = β0 and σ210 = σ220 =

· · · = σ2N0 = σ20, then (1) collapses to the standard first order SAR model. Alternatively, if

β10 = β20 = · · · = βN0 = 0 and σ210 = σ220 = · · · = σ2N0 = σ20, then (1) reverts to a first order

HSAR model with no exogenous regressors and with homoskedastic errors.

2.2 The log-likelihood function

To estimate the unit-specific coefficients we collect all the parameters of the N units in the

N(k + 2) × 1 vector θ = (ψ′,β′,σ2′)′ where ψ = (ψ1, ψ2, . . . , ψN )′, β = (β′1,β
′
2, . . . ,β

′
N )′ and

σ2 = (σ21, σ
2
2, . . . , σ

2
N )′, and denote the associated vector of true values by θ0 = (ψ′0,β

′
0,σ

2′
0 )′.

The log-likelihood function of (6) can be written as

`T (θ) = lnL(θ) = −NT
2

ln(2π)− T

2

N∑
i=1

lnσ2i +
T

2
ln |S′(ψ)S(ψ)| (7)

− 1

2

T∑
t=1

[S(ψ)y◦t −Bx◦t]
′Σ−1 [S(ψ)y◦t −Bx◦t] ,

where Σ = Diag (σ2), Ψ = Diag (ψ), and S ≡ S(ψ) = IN −ΨW .

The quasi maximum likelihood estimators (QMLE), θ̂, are the extreme value estimators

obtained by maximization of (7). When the error terms, ε◦t (θ0) = S(ψ0)y◦t − B0x◦t, are

normally distributed, then vector θ̂ is the maximum likelihood estimator (MLE) of θ, while

under non-Gaussian errors, θ̂ is the QMLE of θ.

3 Asymptotic properties of QML estimators

3.1 Assumptions

In order to investigate the conditions under which θ0 is identified, and to establish consistency

and the asymptotic normality of θ̂, we make the following assumptions, using the filtration

Ft = (x◦t,x◦t−1,x◦t−2, . . .), where x◦t = (x′1t,x
′
2t, . . . ,x

′
Nt)
′:

3Conditions under which S0 is invertible are discussed in Section 3.1.
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Assumption 1 The error terms {εit, i = 1, 2, . . . , N ; t = 1, 2, . . . , T} are independently distributed

over i and t; E(εit|Ft) = 0, E(ε2it|Ft) = σ2i0, for i = 1, 2, . . . , N , where infi
(
σ2i0
)
> c > 0,

supi
(
σ2i0
)
< K < ∞, and E (|εit|p |Ft) = E (|εit|p) = $ip < K, for all i and t, where $ip is a

time-invariant constant, 1 ≤ p ≤ 4 + ε, for some ε > 0. 4

Assumption 2 (a) x◦t are stationary processes with mean zero, and satisfy the moment con-

dition supi,`,tE
(
|xi`,t|2+c

)
< K, for some c > 0, i = 1, 2, . . . , N , ` = 1, 2, . . . , k, and t =

1, 2, . . . , T . (b) E (x◦tx
′
◦t) = Σxx = (Σij) , where Σij = E(xitx

′
jt) exists for all i and j, such

that supi,j ‖Σij‖ < K, and Σii is a k× k non-singular matrix with infi [λmin (Σii)] > c > 0, and

supi [λmax (Σii)] < K; (c) T−1
∑T

t=1 x◦tx
′
◦t
a.s.→ Σxx, as T →∞.

Assumption 3 The N(k + 2) × 1 parameter vector θ = (ψ′,β′,σ2′)′ belongs to Θ = Θψ ×
Θβ ×Θσ ⊂ RN × RNk × RN , a sub-set of the N(k + 2) dimensional Euclidean space, RN(k+2).

Θ is a closed and bounded (compact) set and includes the true value of θ, denoted by θ0, which

is an interior point of Θ, and supi ‖βi‖1 < K.

Assumption 4 W = (wij) is a constant known weights matrix which is uniformly bounded in

row and column sums in absolute value, i.e. ‖W ‖∞ < K < ∞ and ‖W ‖1 < K < ∞, and

its diagonal elements are zero, that is wii = 0, for i = 1, 2, . . . , N . In addition, the spatial

autoregressive parameters reside in the range set by

sup
i
|ψi| < max {1/ ‖W ‖1 , 1/ ‖W ‖∞} , (8)

for all values of ψi, i = 1, 2, . . . , N , in Θψ.

Remark 2 Assumption 1 implies that E(εit) = 0, E(ε2it) = σ2i0, for i = 1, 2, . . . , N, and does

not allow for conditional heteroskedasticity. But it is possible to allow for time variations in

E
(
|εit|4+ε |Ft

)
by relaxing the moment conditions on εit and xi`,t.

Remark 3 Assumption 2 is standard and allows for the regressors to be cross-sectionally cor-

related, and hence x◦t can also include observable common factors. This is sufficiently general

and applies for all N . Further, it allows the regressors to be weakly exogenous, thus allowing the

spatial model to include lagged values of the dependent variable. Finally, the theoretical model

(1) can be modified to include an intercept (fixed effects) by setting one of the elements of xit to

unity, at the expense of complicating the algebra. Such a setting is analyzed in the Monte Carlo

simulation study of Section 5.

Remark 4 Assumption 4 is sufficiently general and allows the spatial weights to take negative

values. But, as noted above, in empirical applications one might wish to distinguish between

positive and negative connections as they might have differential effects on the outcomes. This

assumption does not require the weights to be normalized either, so long as condition (8) is met.

Remark 5 Condition (8) is sufficient for global invertibility of matrix S(ψ) = IN −ΨW on

Θψ. See Lemma 1 in the online appendix A. This result reduces to the condition obtained in

Lemma 2 of Kelejian and Prucha (2010) for the homogeneous case where ψi = ψ for all i.

4Clearly, $i2 = σ2
i0.
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Remark 6 Let V (ψ) = S′(ψ)S(ψ), where S(ψ) = IN −ΨW . Then under Assumption 4, for

all values of ψ ∈ Θψ, and for all N we have

λmin [V (ψ)] > c > 0, (9)

and

λmax [V (ψ)] ≤ ‖S(ψ)‖1 ‖S(ψ)‖∞ (10)

≤
(

1 + sup
i
|ψi| ‖W ‖1

)(
1 + sup

i
|ψi| ‖W ‖∞

)
< K <∞.

These results, together with Assumptions 1, 2(b) and 3, ensure that for all values of N and

θ = (ψ′,β′,σ2′)′ ∈ Θ,

λmin [Σy (θ)] > c > 0, and λmax [Σy (θ)] < K <∞, (11)

and

λmin

[
Σ−1y (θ)

]
> c > 0, and λmax

[
Σ−1y (θ)

]
< K <∞, (12)

where Σy (θ) = S(ψ)−1 [BΣxxB
′ + Σ] S(ψ)′−1.

3.2 Identification

Here we focus on the problem of identification of the individual parameters in N(k+2)×1 vector

θ0 for a given N , and as T → ∞. To highlight the main issues involved in the identification

of spatial parameters under the heterogeneous setting, first we consider the HSAR model (4)

without the exogenous regressors, namely

yit = ψi0

N∑
j=1

wijyjt + εit, i = 1, 2, . . . , N ; t = 1, 2, . . . , T, (13)

where εit ∼ IIDN
(
0, σ2i0

)
for i = 1, 2, . . . , N . Under Assumption 4, (6) is then simplified to

y◦t = S−1(ψ0)ε◦t, t = 1, 2, . . . , T. (14)

With a slight abuse of notation let θ = (ψ′,σ2′)′, and note that in this case the log-likelihood

function is given by

`T (θ) = −NT
2

ln(2π)− T

2

N∑
i=1

lnσ2i +
T

2
ln |S′(ψ)S(ψ)| − 1

2

T∑
t=1

y′◦tS
′(ψ)Σ−1S(ψ)y◦t. (15)

It is also helpful to write the associated average log-likelihood function as

¯̀
T (θ) = −N

2
ln(2π)− 1

2

N∑
i=1

lnσ2i +
1

2
ln |V (ψ) | − 1

2

(
1

T

T∑
t=1

y′◦tP (θ)y◦t

)
, (16)
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where

V (ψ) = S′(ψ)S(ψ), P (θ) = S′(ψ)Σ−1S(ψ), and S(ψ) = IN −ΨW . (17)

Let QT (θ0,θ) = ¯̀
T (θ0) − ¯̀

T (θ), in which ¯̀
T (θ0) is ¯̀

T (θ) evaluated at θ = θ0. Then, for a

given N and as T →∞, we have (see Lemma 3 of the online appendix A when setting B = O

in (A.5)) QT (θ0,θ)− E0 [QT (θ0,θ)]
a.s.→ 0, where

E0 [QT (θ0,θ)] = E0

[
¯̀
T (θ0)− ¯̀

T (θ)
]

= −1

2

N∑
i=1

ln
(
σ2i0/σ

2
i

)
− N

2
(18)

+
1

2

[
ln

(
|V (ψ0) |
|V (ψ) |

)]
+

1

2
tr
[
P (θ) P−1 (θ0)

]
.

Alternatively, we can express (18) in terms of the eigenvalues of V (ψ) and V (ψ0) which we

denote by λ2i and λ2i0, respectively. Recall from Remark 6 that 0 < λ2i , λ
2
i0 < K. Therefore, (18)

reduces to

E0 [QT (θ0,θ)] =
1

2

N∑
i=1

[(
λ̃2i /λ̃

2
i0

)
− ln

(
λ̃2i /λ̃

2
i0

)
− 1
]
, (19)

where λ̃2i = λ2i /σ
2
i , λ̃

2
i0 = λ2i0/σ

2
i0, and 0 < σ2i , σ

2
i0 < K, for i = 1, 2, . . . , N . The above results

imply that
¯̀
T (θ0)− ¯̀

T (θ)
a.s.→ E0

[
¯̀
T (θ0)− ¯̀

T (θ)
]

= E0 [QT (θ0,θ)] ≥ 0, (20)

and in view of (19) we have ¯̀
T (θ0)− ¯̀

T (θ)
a.s.→ 0 if

N∑
i=1

[(
λ̃2i /λ̃

2
i0

)
− ln

(
λ̃2i /λ̃

2
i0

)
− 1
]

= 0. (21)

Hence, for a given N , it readily follows that ¯̀
T (θ0) − ¯̀

T (θ)
a.s.→ 0, as T → ∞, if and only if

λ2i /σ
2
i = λ2i0/σ

2
i0 for all i.5 Therefore, the ratio λ2i0/σ

2
i0 is globally identified, although without

further restrictions on P (θ) and S(ψ), it will not be possible to separately identify λ2i0 and σ2i0.

Consider now the problem of identification of ψ0, which is the parameter vector of interest,

and note that

|V (ψ0) |
|V (ψ) |

=
|S(ψ0)|

2

|S(ψ)|2
=
∣∣S(ψ0)S

−1(ψ)
∣∣2 =

∣∣S(ψ)S−1(ψ0)
∣∣−2 ,

tr
[
P (θ) P−1 (θ0)

]
= tr

[
S′(ψ)Σ−1S(ψ)S−1(ψ0)Σ0S

′−1(ψ0)
]

= tr
[
Σ−1/2S(ψ)S−1(ψ0)Σ0S

′−1(ψ0)S
′(ψ)Σ−1/2

]
,

and rewrite (18) as

E0 [QT (θ0,θ)] = −N
2
− 1

2

N∑
i=1

ln
(
σ2i0/σ

2
i

)
−
[
ln
(∣∣S(ψ)S−1(ψ0)

∣∣)]
+

1

2
tr
[
Σ−1/2S(ψ)S−1(ψ0)Σ0S

′−1(ψ0)S
′(ψ)Σ−1/2

]
.

5Note that a− ln (a)− 1 ≥ 0, for any a > 0, with the equality holding if and only if a = 1.
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Further, we note that S(ψ)S−1(ψ0) = IN − DG0, where G0 = W (IN −Ψ0W )−1, and

D = Ψ − Ψ0, is a diagonal matrix with elements di = ψi − ψi0. Using these results, the

above expression for E0 [QT (θ0,θ)] can be written equivalently as

E0 [QT (θ0,θ)] = −N
2
− 1

2

N∑
i=1

ln
(
σ2i0/σ

2
i

)
− ln |IN −DG0| (22)

+
1

2
tr
[
Σ−1/2 (IN −DG0)

′Σ0 (IN −DG0) Σ−1/2
]

= AN +BN ,

where

AN =
1

2

N∑
i=1

[
σ2i0
σ2i
− ln

(
σ2i0/σ

2
i

)
− 1

]
− ln |IN −DG0| − tr

(
Σ−1Σ0DG0

)
, (23)

BN =
1

2
tr
(
Σ−1/2G′0DΣ0DG0Σ

−1/2
)
. (24)

We first note thatBN ≥ 0, since we can writeBN = (1/2) tr (A′0A0), with A0 = Σ
1/2
0 DG0Σ

−1/2.

Consider now AN , denote the ith eigenvalue of DG0 by µi, and note that since IN −DG0 =

S(ψ)S−1(ψ0), then the eigenvalues of S(ψ)S−1(ψ0) are also given by 1−µi, for i = 1, 2, . . . , N .

Further, by Lemma 1 of the online appendix A, λmin [S(ψ)] > 0 for all ψi that satisfy condition

(8). Hence, we must also have 1− µi > 0, for all i. Using these results, AN can now be written

as

AN =
1

2

N∑
i=1

[
σ2i0
σ2i
− ln

(
σ2i0/σ

2
i

)
− 1

]
−

N∑
i=1

ln(1− µi)−
N∑
i=1

(
σ2i0
σ2i

)
µi.

Let δσi = σ2i0/σ
2
i and δψi = (1− µi) > 0, for all i. Then, write E0 [QT (θ0,θ)] as

E0 [QT (θ0,θ)] = AN +BN

=
1

2

N∑
i=1

[δσi − ln (δσi)− 1]−
N∑
i=1

ln δψi −
N∑
i=1

δσi(1− δψi) +BN

=
1

2

N∑
i=1

[δσi − ln (δσi)− 1] +

[
N∑
i=1

δσi (δψi − ln δψi − 1)

]

+

[
N∑
i=1

(δσi − 1) ln δψi

]
+BN

= A1,N +A2,N + (A3,N +BN ) .

Since δσi > 0, and δψi > 0 for all i, then δσi − ln (δσi) − 1 ≥ 0, and δψi − ln δψi − 1 ≥ 0 for

all i, with equalities holding if and only if δσi = 1 and δψi = 1 for all i. Hence, A1,N ≥ 0, and

A2,N ≥ 0 for all values of N , and global identification of σ2i0 will be possible only if we are able to

show that A3,N +BN is non-negative. But it is easily seen that the non-negativity of A3,N +BN
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can not be guaranteed without further restrictions. This follows since

A3,N =
N∑
i=1

(δσi − 1) ln δψi,

and there are values of δσi and δψi in Θ = Θψ × Θσ for which A3,N < 0. Considering

(A3,N +BN ) somewhat weakens the requirement since BN ≥ 0, but still does not guarantee

that (A3,N +BN ) ≥ 0, for all values of δσi > 0 and δψi > 0. Therefore, global identification of

ψ0 can not be guaranteed. To investigate the possibility of local identification we introduce the

following definition:

Definition 1 Consider the set Nc(σ2
0) in the closed neighborhood of σ2

0 defined by

Nc(σ2
0) =

{
σ2
0∈ Θσ,

∣∣σ2i0/σ2i − 1
∣∣ < ci, for i = 1, 2, . . . , N

}
,

for some ci > 0, i = 1, 2, . . . , N , where Θσ is a compact subset of RN .

We now show that θ0 = (ψ′0,σ
2′
0 )′ is identified on Θc = Θψ × Nc(σ2

0). Consider values of

δσi within the local neighborhood of δσi = 1 for all i. Recall that A1,N + A2,N ≥ 0, and the

boundary values A1,N = 0 or A2,N = 0 can occur if and only if δσi = 1 and δψi = 1 for all i,

respectively. Therefore, AN ≥ 0 if δσi = 1, otherwise A1,N > 0. Similarly, AN ≥ 0 if δψi = 1,

otherwise A2,N > 0. Therefore, there must exist c = (c1, c2, . . . , cN ) > 0, such that AN = 0 on

Θc if and only if θ = θ0, which in turn establishes that ¯̀
T (θ0)− ¯̀

T (θ)
a.s.→ 0, as T →∞, on the

set Θc if and only if θ = θ0.

Next, consider the HSAR model (4) with exogenous regressors. The average log-likelihood

in this case is given by (see (7))

¯̀
T (θ) = −N

2
ln(2π)− 1

2

N∑
i=1

lnσ2i +
1

2
ln |V(ψ)| (25)

− 1

2

(
1

T

T∑
t=1

[S(ψ)y◦t −Bx◦t]
′Σ−1 [S(ψ)y◦t −Bx◦t]

)
,

where θ is now defined by θ = (ψ′,β′,σ2′)′ and B has the same form as in (5). Following a

similar line of reasoning as in the case without exogenous regressors (see Lemma 3 of the online

appendix A), we have that QT (θ0,θ) = ¯̀
T (θ0)− ¯̀

T (θ), where ¯̀
T (θ) is now given by (25), and

QT (θ0,θ)− E0 [QT (θ0,θ)]
a.s.→ 0, (as T →∞) where

E0 [QT (θ0,θ)] = AN +BN + CN . (26)
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AN and BN are defined as before by (23) and (24), and CN is given by

CN =
1

2

N∑
i=1

(βi − βi0)
′Σii (βi − βi0)
σ2i

+ tr
[
Σ−1/2 (B −B0) ΣxxΞ

′
0

]
(27)

+
1

2
tr
(
ΣxxΞ

′
0Ξ0

)
= C1,N + C2,N + C3,N ,

where Ξ0 = Σ−1/2DG0B0, and as before D = Diag(ψ−ψ0). Consider now C3,N and note that

since Σxx = E (x◦tx
′
◦t) and Ξ′0Ξ0 are positive semi-definite matrices, then using result (9) on

p. 44 of Lütkepohl (1996),

tr
(
ΣxxΞ

′
0Ξ0

)
≥ N [det (Σxx)]1/N

[
det
(
Ξ′0Ξ0

)]1/N ≥ 0,

and hence C3,N ≥ 0. Also, as shown above, on the subset Θc = Θψ×Θβ×Nc(σ2
0), AN +BN = 0

if and only if D = Diag(ψ−ψ0) = 0, and hence it must also follow that C2,N = 0 on Θc. Thus,

overall ¯̀
T (θ0)− ¯̀

T (θ)
a.s.→ 0 on Θc if and only if

N∑
i=1

(βi − βi0)
′Σii (βi − βi0)
σ2i

= 0. (28)

This equality holds for all N if and only if (βi − βi0)
′Σii (βi − βi0) = 0, for all i, and since

under Assumption 2(b) Σii is a positive definite matrix this can occur if and only if βi = βi0
for all i.

Before we state the identification result for the general model (4), we require the following

modification of Assumption 3:

Assumption 5 The N(k + 2) × 1 parameter vector θ = (ψ′,β′,σ2′)′ belongs to Θc = Θψ ×
Θβ×Nc(σ2

0), where Θψ and Θβ are compact subsets of RN and RNk, respectively, and Nc(σ2
0) is

given in Definition 1, and Θc is a sub-set of the N(k+2) dimensional Euclidean space, RN(k+2).

The main identification result of the paper is summarized in the following proposition:

Proposition 1 Consider the heterogeneous spatial autoregressive (HSAR) model given by (4)

with the associated log-likelihood function given by (7). Suppose that Assumptions 1, 2, 4 and 5

hold. Then, the N(k + 2) dimensional true parameter vector θ0= (ψ′0,β
′
0,σ

2′
0 )′ is almost surely

locally identified on Θc.

3.3 Consistency and asymptotic normality

We are now in a position to consider consistency and asymptotic normality of the QML estimator

of θ, given by θ̂ = arg maxθ ¯̀
T (θ), where θ̂ = (ψ̂

′
, β̂
′
, σ̂2′)′. We establish the results for a given

N , and as T → ∞. First, we focus on the proof of consistency. Under Assumptions 1, 2,

4 and 5, we have: (i) Θc, being a subset of Θ, is compact, (ii) θ0 is an interior point of

Θc, (iii) QT (θ0,θ)
a.s.→ E0 [QT (θ0,θ)] , with QT (θ0,θ) = ¯̀

T (θ0) − ¯̀
T (θ) and E0 [QT (θ0,θ)] =

AN + BN + CN ,where AN , BN and CN are given by (23), (24) and (27), respectively, and (iv)

11



θ0 is a unique maximum of E0 [QT (θ0,θ)] on Θc. The last result follows from the identification

analysis of Section 3.2. It is clear that all conditions of Theorem 9.3.1 of Davidson (2000) are

satisfied, therefore almost sure local consistency of θ̂ is ensured, with θ̂
a.s.→ θ0 on Θc, as T →∞.

To establish asymptotic normality of θ̂, we apply the mean value theorem to ¯̀
T (θ) such that

¯̀
T (θ)− ¯̀

T (θ0) = (θ − θ0)′ s̄T (θ0)−
1

2
(θ − θ0)′ H̄T (θ̄) (θ − θ0) , (29)

where s̄T (θ) = ∂ ¯̀
T (θ)/∂θ, H̄T (θ) = −∂2 ¯̀

T (θ)/∂θ∂θ′, and θ̄ lies between θ and θ0. By Lemma

5 of the online appendix A we have s̄T (θ0)
a.s.→ 0, and by the results of Section 3.2 we also have

¯̀
T (θ0) − ¯̀

T (θ)
a.s.→ E0

[
¯̀
T (θ0)− ¯̀

T (θ)
]
≥ 0. Hence, in view of (29) it must also hold that (as

T →∞)

(θ − θ0)
′ H̄T (θ̄) (θ − θ0)

a.s.→ E0 [QT (θ0,θ)] ,

where E0 [QT (θ0,θ)] is given by (26). But we have already established that on Θc, the right

hand side of the above expression can be equal to zero if and only if θ = θ0, and hence it must

be that H̄T (θ̄)
a.s.→ H̄(θ0), where H̄(θ0) must be a positive definite matrix given by

H̄(θ0) = lim
T→∞

E0

(
−∂2 ¯̀

T (θ)/∂θ∂θ′
)
.

Next, for a given N we apply the mean value theorem to s̄T (θ) so that

0 =
√
T s̄T

(
θ̂
)

=
√
T s̄T (θ0)− H̄T (θ̆)

√
T
(
θ̂ − θ0

)
,

or equivalently

0 =
1√
T
sT

(
θ̂
)

=
1√
T
sT (θ0)−HT (θ̆)

√
T
(
θ̂ − θ0

)
,

where sT (θ) = ∂`T (θ)/∂θ, HT (θ) = − 1
T ∂

2`T (θ)/∂θ∂θ′, and θ̆ lies between θ̂ and θ0. There-

fore, √
T
(
θ̂ − θ0

)
= H−1T (θ̆)

[√
TsT (θ0)

]
,

and since θ̂ is consistent on Θc, then

√
T
(
θ̂ − θ0

)
a∼ H−1(θ0)

[√
TsT (θ0)

]
,

where H (θ0) = limT→∞E0

[
− 1
T ∂

2`T (θ)/∂θ∂θ′
]
, with

E0

[
− 1

T
∂2`T (θ)/∂θ∂θ′

]
=

 H11 H12 H13

H ′12 H22 H23

H ′13 H ′23 H33


N(k+2)×N(k+2)

.
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The expressions for Hij can be obtained using the partial derivative ∂2`T (θ0)/∂θ∂θ
′ given in

the online appendix B. Specifically we have

H (θ0) =

 (G0 �G′0) + Σ−10 Diag (G0Σ0G
′
0) + ∆β0

Eβ0
Σ−10 Diag (G0)

Eβ0
Z0 0

Σ−10 Diag (G0) 0′ 1
2Σ−20

 , (30)

where ∆β0
, Eβ0

, and Z0 are diagonal matrices given by

∆β0
= Diag

[
σ−2i0

N∑
r=1

N∑
s=1

g0,isg0,irβ
′
r0Σrsβs0, i = 1, 2, . . . , N

]
, (31)

Eβ0
= Diag

[
σ−2i0

N∑
s=1

g0,isβ
′
s0Σis, i = 1, 2, . . . , N

]
, (32)

and

Z0 = Diag
[
σ−2i0 Σii, i = 1, 2, . . . , N

]
. (33)

Again by Lemma 5 of the online appendix A, we have that[
1√
T
sT (θ0)

]
→d N [0,J (θ0, γ)]

where

J (θ0, γ) = lim
T→∞


(G0 �G′0) + Σ−10 Diag (G0Σ0G

′
0) + ∆β0

+ (γ − 2) Diag (G0 �G′0)
Eβ0

γ
2Σ−10 Diag (G0)

Eβ0
Z0 0

γ
2Σ−10 Diag (G0) 0′ γ

4Σ−20


(34)

and

γ = lim
T→∞

T−1
T∑
t=1

V ar(ζ2it) = lim
T→∞

T−1
T∑
t=1

[
E
(
ζ4it
)
− 1
]

, (35)

with ζit = εit/σi0, for i = 1, 2, . . . , N . Hence,

√
T
(
θ̂ − θ0

)
→d N (0,Vθ) , (36)

where Vθ has the usual sandwich formula

Vθ = H−1(θ0)J (θ0, γ) H−1(θ0). (37)

In the case where the errors, εit, are Gaussian, γ = 2 and, as to be expected, H (θ0) =

J (θ0, 2). This is easily verified by referring back to (30) which is equal to J (θ0, γ) defined by

(34) for γ = 2, as required.

Remark 7 When no exogenous regressors are included in the HSAR specification (1), then the
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asymptotic variance, Vθ = H−1 (θ0) J (θ0, γ)H−1 (θ0) , simplifies so that:

H (θ0) =

(
(G0 �G′0) + Σ−10 Diag (G0Σ0G

′
0) Σ−10 Diag (G0)

Σ−10 Diag (G0)
1
2Σ−20

)
2N×2N

, (38)

and

J (θ0, γ) =

 (G0 �G′0) + Σ−10 Diag (G0Σ0G
′
0)

+(γ − 2) Diag (G0 �G′0)
γ
2Σ−10 Diag (G0)

γ
2Σ−10 Diag (G0)

γ
4Σ−20

 . (39)

Again, under Gaussian errors we have J (θ0, 2) = H (θ0).

The main result of this section is summarized in the following proposition:

Proposition 2 Consider the heterogeneous spatial autoregressive (HSAR) model given by (1).

Suppose that Assumptions 1, 2, 4, 5, and conditions (21) and (28) hold. Denote the N(k + 2)

dimensional (quasi-) maximum likelihood estimator of θ0 by θ̂ = arg maxθ ¯̀
T (θ), where ¯̀

T (θ)

is given by (25). Then, θ̂ is almost surely locally consistent for θ0 on Θc, and has the following

asymptotic distribution √
T
(
θ̂ − θ0

)
→d N (0,Vθ) , (40)

where Vθ = H−1(θ0)J (θ0, γ) H−1(θ0), and H (θ0) and J (θ0, γ) are defined by (30) and (34),

respectively.

Proof. See the online appendix B.

Focusing on the inverse of the information matrix, we partition H (θ0) as follows

H (θ0) =

(
H11 H12

H′12 H22

)
, (41)

where H12 = (H12,H13) is an N × (Nk +N) matrix, and since H23 = H32 = 0, then H22 =

Diag (H22,H33), which is an (Nk +N)× (Nk +N) matrix. Then,

H−1 (θ0) =

(
H−111·2 −H−111·2H12H−122

−H−122 H21H−111·2 H−122 +H−122 H21H−111·2H12H−122

)
.

Of interest is matrix H11·2 given by

H11·2 = H11 −H12H−122 H21 = H11 −H12H
−1
22H21 −H13H

−1
33H31 (42)

=
(
G0 �G′0

)
+ Diag

−g20,ii +
N∑

s=1,s 6=i

(
σ2s0/σ

2
i0

)
g20,is, i = 1, 2, . . . , N


+ Diag

[
σ−2i0

N∑
r=1

N∑
s=1

g0,isg0,irβ
′
r0

(
Σrs −ΣriΣ

−1
ii Σis

)
βs0, i = 1, 2, . . . , N

]
,

since its inverse, H−111·2, represents the asymptotic covariance matrix of
√
T ψ̂ under normality of

the error term. This last result can be summarized in the following corollary:
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Corollary 1 Consider the heterogeneous spatial autoregressive (HSAR) model given by (1).

Suppose that Assumptions 1, 2, 4, 5, and conditions (21) and (28) hold. Then, the N × N

information matrix

H11·2 =
(
G0 �G′0

)
+ Diag

−g20,ii +

N∑
s=1,s 6=i

(
σ2s0/σ

2
i0

)
g20,is, i = 1, 2, . . . , N

 (43)

+ Diag

[
σ−2i0

N∑
r=1

N∑
s=1

g0,isg0,irβ
′
r0

(
Σrs −ΣriΣ

−1
ii Σis

)
βs0, i = 1, 2, . . . , N

]
,

is full rank, where G0 = W (IN −Ψ0W )−1 = (g0,ij), Ψ0 = Diag(ψ0), ψ0 = (ψ10, ψ20, . . . , ψN0)
′,

and W is the spatial weight matrix, and εit ∼ IIDN(0, σ2i0). Then the maximum likelihood es-

timator of ψ0, denoted by ψ̂ and computed by maximizing (A.21), has the following asymptotic

distribution, √
T
(
ψ̂ −ψ0

)
→d N (0,Vψ) , (44)

where

Vψ = [H11·2]
−1 . (45)

Remark 8 In the special case where the regressors are cross-sectionally uncorrelated, namely

when Σrs = 0, if r 6= s, the third term in (43) vanishes and we have

H11·2 =
(
G0 �G′0

)
+ Diag

−g20,ii +
N∑

s=1,s 6=i

(
σ2s0/σ

2
i0

)
g20,is, i = 1, 2, . . . , N

 , (46)

which does not depend on β′is or the exogenous regressors.

Remark 9 In the case where εit are non-Gaussian but E(|εit|4+ε) < K holds for some ε > 0, the

quasi maximum likelihood estimator, ψ̂, continues to be normally distributed but its asymptotic

covariance matrix is given by the upper N ×N partition of H−1 (θ0) J (θ0, γ)H−1 (θ0), where

H (θ0) and J (θ0, γ) are defined by (30) and (34), respectively. Recall that γ is defined by (35),

and under Gaussian errors it takes the value of γ = 2, so that we have J (θ0, 2) = H (θ0).

3.3.1 Consistent estimation of V θ

The asymptotic covariance matrix of θ̂ can be consistently estimated using the expressions given

by (30) and (34), yielding the standard formula

V θ = H−1 (θ0) , (47)

when the information matrix equality holds in the case of εit ∼ IIDN(0, σ2i0) and γ = 2, and

the sandwich formula

V θ = H−1 (θ0) J (θ0, γ)H−1 (θ0) , (48)
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otherwise. Consistent estimators of J (θ0, γ) and H (θ0) can be obtained by replacing θ0 with

its QML estimator, θ̂, and estimating γ by

γ̂ = (NT )−1
T∑
t=1

N∑
i=1

(
ε̂it
σ̂i

)4

− 1,

where ε̂it = yit − ψ̂i
∑N

j=1wijyjt − β̂
′
ixit, with σ̂i, β̂i and ψ̂i being the QML estimators of σi0,

βi0 and ψi0, respectively.

Alternatively, one can use the sample counterparts of J (θ0, γ) and H (θ0) and estimate the

covariance matrix of the QML estimators consistently by

V̂ θ̂ = Ĥ
−1
T

(
θ̂
)
, (49)

and

V̂ θ̂ = Ĥ
−1
T

(
θ̂
)

ĴT

(
θ̂, γ̂

)
Ĥ
−1
T

(
θ̂
)
, (50)

where ĴT (θ) = 1
T

∑T
t=1

(
∂`t(θ)
∂θ

)(
∂`t(θ)
∂θ

)′
, `t (θ) is defined by (A.20) and ĤT (θ) = − 1

T
∂2`T (θ)
∂θ∂θ′

.

Consistency of Ĵ(θ̂, γ̂) for J (θ0, γ) follows from consistency of θ̂ for θ0, of γ̂ for γ and the

independence of ∂`t(θ0)
∂θ over t, as shown in Lemma 5 of the online appendix A. The first and

second derivatives are provided in the online appendix C.

4 Mean group estimators

So far we have focussed on estimation of the unit-specific parameters and have derived the

asymptotic results for a given N and as T →∞. But in practice it is often of interest to obtain

average estimates across all the units or a sub-group of the units in the panel, assuming that the

individual coefficients follow a random coefficient model. In the context of the HSAR model, (1),

suppose that {ψi0, βi0, i = 1, 2, . . . , N} are randomly distributed around the common means,

ψ0 and β0, such that

ψi0 = ψ0 + ηiψ, and βi0 = β0 + ηiβ for i = 1, 2, . . . , N, (51)

where ηi =
(
ηiψ,η

′
iβ

)
∼ IID (0,Ωη) , Ωη > 0 is a positive definite matrix, and it is assumed

that E ‖ηi‖
2+c < K, for some c > 0. The parameters of interest are ψ0 and β0 which are the

population means of spatial lags and slope parameters of the underlying HSAR model. For

consistent estimation of ψ0 and β0 we now need N and T sufficiently large. Large T is required

to consistently estimate the unit-specific coefficients, and large N is required for estimation of

the common means, ψ0 and β0. It is also possible to apply this procedure to subsets of the

units, so long as the number of units in each set is reasonably large.

Consistent estimators of ψ0 and β0 are given by the mean group (MG) estimators,

ψ̂MG = N−1
N∑
i=1

ψ̂i, and β̂MG = N−1
N∑
i=1

β̂i, (52)
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where ψ̂i and β̂i are the underlying unit-specific estimators. The MG estimator was originally

developed by Pesaran and Smith (1995) who show that in the standard case where ψ̂i and β̂i are

independently distributed, then ψ̂MG and β̂MG will be consistent and asymptotically normal.

Recently, Chudik and Pesaran (2019) extend this analysis and consider MG estimators based

on possibly cross correlated estimators and show that the standard MG estimation continues to

apply so long as the underlying unit-specific estimators are weakly cross correlated.

In the case of the present application the asymptotic validity of the MG estimator can be

established by first noting that

√
N
(
ψ̂MG − ψ0

)
= N−1/2

N∑
i=1

(
ψ̂i − ψi0

)
+N−1/2

N∑
i=1

(ψi0 − ψ0) ,

where upon using (51) can also be written as

√
N
(
ψ̂MG − ψ0

)
=

√
N

T

[
N−1

N∑
i=1

T
(
ψ̂i − ψi0

)]
+N−1/2

N∑
i=1

ηiψ

= qNT + ξNT . (53)

Consider now qNT , the first term of the above expression, and recall that under the regularity

conditions set out in the previous sections,
√
T
(
ψ̂i − ψi0

)
a∼ N(0, ω2

ψi
), where supi ω

2
ψi
< K,

and E
(
ψ̂i − ψi0

)
= O

(
T−1

)
, for all i. Hence

E (qNT ) = O

(√
N

T

)
. (54)

Furthermore we note that qNT can also be written as

qNT = N−1/2
N∑
i=1

(
ψ̂i − ψi0

)
= T−1/2N−1/2τ ′N

[√
T
(
ψ̂ −ψ0

)]
,

where ψ̂ = (ψ̂1, ψ̂2, . . . , ψ̂N )′, and τN is an N × 1 vector of ones. Denote the N ×N asymptotic

covariance matrix of ψ̂ by Vψ = AsyV ar
[√

T
(
ψ̂ − ψ0

)]
, then

lim
N,T→∞

V ar (qNT ) = lim
N,T→∞

V ar
[
T−1/2N−1/2τ ′N

√
T
(
ψ̂ −ψ0

)]
= lim

N,T→∞

(
τ ′NVψτN

NT

)
≤ lim

N,T→∞

[
λmax (Vψ)

T

]
. (55)

Suppose now that
√
N/T → 0, and λmax (Vψ) < K as N and T → ∞. Then using (54) and

(55) it readily follows that

lim
N,T→∞

E (qNT ) = 0, and lim
N,T→∞

V ar (qNT ) = 0,

and hence as
√
N/T → 0, qNT = op(1), and in view of (53)

√
N
(
ψ̂MG − ψ0

)
a∼ ξNT =
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N−1/2
∑N

i=1 ηiψ. Finally, under the random coefficient model where {ηiψ, for i = 1, 2, . . . , N}
are assumed to be independently distributed with zero means and finite variances, ξNT

a∼
N [0, V ar (ηiψ)], and therefore under the additional conditions,

√
N/T → 0 and λmax (Vψ) < K,

we have (as N ,T →∞, jointly):

√
N
(
ψ̂MG − ψ0

)
a∼ N

(
0, ω2

ψ

)
, (56)

where ω2
ψ = V ar (ηiψ). It is also easily seen that ω2

ψ can be consistently estimated by

ω̂2
ψ =

1

N − 1

N∑
i=1

(
ψ̂i − ψ̂MG

)2
. (57)

Similarly, √
N
(
β̂MG − β0

)
a∼ N (0,Ωβ) , (58)

so long as λmax (Vβ) < K, where Vβ is the kN × kN asymptotic covariance matrix of
√
T β̂ =

(
√
T β̂
′
1,
√
T β̂
′
2, . . . ,

√
T β̂
′
N )′. A consistent estimator of Ωβ is given by

Ω̂β =
1

N − 1

N∑
i=1

(
β̂i − β̂MG

)(
β̂i − β̂MG

)′
. (59)

It now remains to establish conditions under which λmax (Vψ) < K and λmax (Vβ) < K hold.

We first note that Vψ and Vβ are sub-matrices of Vθ defined by (37) which we reproduce here

for convenience:

Vθ = H−1(θ0)J (θ0, γ) H−1(θ0),

where H (θ0) and J (θ0, γ) are given by (30) and (34), respectively. Hence, it is sufficient to

show that λmax (Vθ) is bounded in N . To this end we first note that

‖Vθ‖ ≤
∥∥H−1(θ0)∥∥2 ‖J (θ0, γ)‖ , (60)

where ‖A‖ = λ
1/2
max (A′A) is the spectral norm of A. However, since Vθ ,H

−1(θ0) and J (θ0, γ)

are symmetric matrices, then ‖Vθ‖ = λmax (Vθ),
∥∥H−1(θ0)∥∥2 = λ2max

[
H−1 (θ0)

]
, and ‖J (θ0, γ)‖ =

λmax [J (θ0, γ)], and (60) can also be written as

λmax (Vθ) ≤ λ2max

[
H−1 (θ0)

]
λmax [J (θ0, γ)] . (61)

But λmax

[
H−1 (θ0)

]
= 1/λmin [H (θ0)], and under the identification conditions established in

Section 3.2, we have λmin [H (θ0)] > 0, which ensures that λmax

[
H−1 (θ0)

]
< K is bounded in

N . Finally, we note that by Theorem 5.6.9 of Horn and Johnson (1985),

λmax [J (θ0, γ)] ≤ ‖J (θ0, γ)‖∞ , (62)

and using (34) it is easily seen that the column (row) norm of J (θ0, γ) is dominated by matrices

(G0 �G′0) , ∆β0
and Eβ0

, where the latter two matrices are diagonal. The other matrices in

J (θ0, γ), namely Σ0 and Z0, are also diagonal matrices whose elements do not vary with N .
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Consider ∆β0
defined by (31) and note that

sup
i

(
N∑
s=1

g20,isσ
2
s0

)
≤ sup

s

(
σ2s0
)

sup
i

(
N∑
s=1

|g0,is|

)
= sup

s

(
σ2s0
)
‖G0‖∞ .

Similarly,

sup
i

∣∣∣∣∣
N∑
r=1

N∑
s=1

g0,isg0,irβ
′
r0Σrsβs0

∣∣∣∣∣ ≤ sup
i

N∑
r=1

N∑
s=1

|g0,is| |g0,ir|
∥∥β′r0Σrsβs0

∥∥
≤ sup

r,s

∥∥β′r0Σrsβs0
∥∥ sup

i

N∑
r=1

N∑
s=1

|g0,is| |g0,ir|

= sup
s
‖βs0‖ sup

r
‖βr0‖ sup

r,s
‖Σrs‖ ‖G0‖2∞ .

However, under Assumptions 2(b) and 3 we have sups ‖βs0‖ < K and supr,s ‖Σrs‖ < K, and

under Assumption 4 it follows that ‖G0‖∞ < K (see Lemma 2 of the online appendix A).

Hence,
∥∥∆β0

∥∥ < K. Similarly, it is also easily established that all elements of Eβ0
are bounded

in N . Finally, again under Assumption 4 and as shown in Lemma 2 of the online appendix

A, ‖G0 �G′0‖∞ < K. Consequently, ‖J (θ0, γ)‖∞ < K, and in view of (62) it follows that

λmax [J (θ0, γ)] < K. Using this result in (61) and recalling that λmax

[
H−1 (θ0)

]
< K, then

overall we have λmax (Vθ) < K, as required. Note that this result does not need the exogenous

regressors to be weakly cross-correlated; it is sufficient that supr,s ‖Σrs‖ < K.

The main result of this section is summarized in the following proposition:

Proposition 3 Consider the heterogeneous spatial autoregressive (HSAR) model given by (1)

where the coefficients {ψi0, βi0, i = 1, 2, . . . , N} are distributed randomly around the common

means ψ0 and β0 following (51). Suppose that Assumptions 1, 2, 4, 5, and conditions (21) and

(28) hold. Then, as N,T →∞, jointly such that
√
N/T → 0, the mean group estimators, ψ̂MG

and β̂MG, defined by (52) have the following asymptotic distributions

√
N
(
ψ̂MG − ψ0

)
a∼ N

(
0, ω2

ψ

)
and
√
N
(
β̂MG − β0

)
a∼ N (0,Ωβ) ,

with consistent estimators of ω2
ψ and Ωβ provided in (57) and (59), respectively.

5 Small sample properties of the QMLE

We investigate the small sample properties of the proposed QML estimator and the associated

MG estimator using Monte Carlo simulations. We consider the following data generating process

(DGP)

yit = ai + ψi

N∑
j=1

wijyjt + βixit + εit, i = 1, 2, . . . , N ; t = 1, 2, . . . , T. (63)
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We include one exogenous regressor, xit, with coefficient βi as well as fixed effects, ai, in unit-

specific regressions. Stacking these regressions we have

y◦t = a+ ΨWy◦t +Bx◦t + ε◦t, t = 1, 2, . . . , T, (64)

where a = (a1, a2, . . . , aN )′, Ψ = Diag (ψ) and ψ = (ψ1, ψ2, . . . , ψN )′, W = (wij), i, j =

1, 2, . . . , N, B = Diag (β), where β = (β1, β2, . . . , βN )′, x◦t = (x1t, x2t, . . . , xNt)
′, and ε◦t =

(ε1t, ε2t, . . . , εNt)
′. Note that since we explicitly account for fixed effects which we separate

out from the remaining regressors included in x◦t, the unknown parameters are summarized

in vector θ, as follows: θ =
(
a′,ψ′,β′,σ2′)′ , σ2 = (σ21, σ

2
2, . . . , σ

2
N )′. In total there are 4N

unknown parameters.

We allow for spatial dependence in the regressors, xit, and generate them as

xit = φiw
′
x,ix◦t + vit, (65)

or in matrix form

x◦t = (IN −ΦW x)−1 v◦t,

where Φ = Diag(φ1, φ2, . . . , φN ), and v◦t = (v1t, v2t, . . . , vNt)
′, with vit ∼ IIDN(0, σ2v). We set

φi = 0.5 (representing a moderate degree of spatial dependence), and set

σ2v =
N

tr
[
(IN −ΦW x)−1 (IN −ΦW x)′−1

] , (66)

which ensures that N−1
∑N

i=1 V ar(xit) = 1. We set W x = W = (wij), i, j = 1, 2, . . . , N , and

use the 4-connection spatial matrix described below.

We consider both Gaussian and non-Gaussian errors. Specifically we consider the following

two error generating processes

εit/σi0 ∼ IIDN(0, 1),

and

εit/σi0 ∼ IID
[
χ2(2)− 2

]
/2,

for i = 1, 2, . . . , N , and t = 1, 2, . . . , T , where χ2(2) is a chi-squared variate with 2 degrees of

freedom. σ2i0 are generated as independent draws from χ2(2)/4 + 0.50, for i = 1, 2, . . . , N, and

kept fixed across the replications.

For the weight matrix, W = (wij), first we use contiguity criteria to generate the non-

normalized weights, woij , then row normalize the resultant weight matrices to obtain wij . More

specifically, we consider W matrices with 2, 4 and 10 connections and generate woij , for i =

1, 2, . . . , N , as6

• 2 connections: woi,j = 1 if j = i− 1, i+ 1, and zero otherwise,

• 4 connections: woi,j = 1 if j = i− 2, i− 1, i+ 1, i+ 2, and zero otherwise,

• 10 connections: woi,j = 1 if j = i−5, i−4, . . . , i−1, i+1, i+2, . . . , i+5, and zero otherwise.

6By construction, the first and the last units have fewer neighbors as compared to the other units.
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Since by construction ‖W ‖∞ = 1, then condition (8) is satisfied if supi |ψi| < 1, and ensures

that IN −ΨW is invertible. We generate the unit-specific coefficients of the HSAR model as

ai0 ∼ IIDN(1, 1), βi0 ∼ IIDU (0, 1) , and ψi0 ∼ IIDU(0, 0.8), for i = 1, 2, . . . , N .7 Given the

DGP in (63), values of yit are now generated as

y◦t = (IN −ΨW )−1 (a+Bx◦t + ε◦t) , t = 1, 2, . . . , T.

Initially, to illustrate that our proposed estimator applies to both cases where N is small and

large, we considered the two polar cases of N = 5 and N = 100, and set T = 25, 50, 100, 200.

We then considered a more comprehensive set of N values, namely N = 25, 50, 75, 100. For

each experiment we used R = 2, 000 replications. Across the replications, θ0, and the weight

matrix, W , are kept fixed, whilst the errors and the regressors, εit and xit (and hence yit), are

re-generated randomly in each replication. Note that, as N increases, supplementary units are

added to the original vector θ0 generated initially for N = 5. Due to the problem of simultaneity,

the degree of time variations in y∗it for each unit i depends on the choice of W and the number

of cross section units, N . Naturally, this is reflected in the performance of the estimators and

the power properties of the tests based on them.

We report bias and RMSE of the QML estimators for individual cross section units, as

well as their corresponding empirical sizes. In addition, we report power functions for three

units with true spatial autoregressive parameters, ψi0, selected to be low, medium and large in

magnitude. The experiments are carried out for spatial weight matrices, W , with two, four and

ten connections. The mean of simulated parameter estimates are computed as

ψ̂i(R) = R−1
R∑
r=1

ψ̂i,r, and β̂i(R) = R−1
R∑
r=1

β̂i,r,

where ψ̂i,r and β̂i,r refer to the QML estimates of ψi and βi in the rth replication. The QML

estimators are computed using the log-likelihood function (7). We also report small sample

results for the MG estimators of ψ0 and β0, defined by (52), using the experiment described in

Section 5.2 below.

5.1 Results for individual estimates

Since the results based on the Gaussian and non-Gaussian errors are very close, in what follows

we only report the results for the non-Gaussian case where the errors are generated as iid χ2(2)

random variables, and use the sandwich formula (50) to compute standard errors. Also to

save space, we focus on results based on the spatial weight matrix, W , with four connections.8

Initially, to highlight the applicability of the proposed estimators to small as well as large

dimensional HSAR panels, we provide detailed results for the experiments with N = 5 and

N = 100.

7We also carried out experiments without exogenous regressors with βi0 = 0, for all i, corresponding to model
(14) in Section 3.2. The results of these experiments are available upon request.

8Results for Gaussian errors and other choices of spatial weight matrices are available upon request.
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5.1.1 Two polar cases: N = 5 and N = 100

Table 1 reports the bias, RMSE, empirical size and power of the individual parameters, ψi0 and

βi0, i = 1, 2, . . . , N , for the experiments with N = 5. The bias of estimating ψi0 tends to be

small but negative when T = 25, whilst estimates of βi0 show an upward bias when T is small

(T = 25). But the biases of both estimators fall quite rapidly with T , for all i. A similar pattern

can be seen in the RMSEs, again declining with T reasonably fast. Turning to size and power of

the tests based on the QML estimates, there is some evidence of over-rejection when T is small

(T = 25). But the size distortion gets eliminated as T is increased, with the tests having the

correct size for values of T ≥ 50. This pattern is shared by both ψi0 and βi0. Similarly, power

is low when T = 25 but improves markedly for all 5 units as T is increased.9 Overall the small

sample results are in line with our theoretical findings, and give satisfactory results for values

of T ≥ 50; a property which is repeated for other experiments considered in this paper.

For N = 100 we report the results only for a selected number of units, namely units with the

three smallest and largest population values for ψi0 and a few in between, and the associated

βi0 values. The small sample results for these experiments are summarized in Table 2, and are

qualitatively similar to those reported in Table 1 for N = 5, indicating that the theoretical

framework of Section 3 can be applied equally to data sets with small and large numbers of

cross section units.

5.1.2 RMSE, size and power for all N and T combinations

We now turn to the rest of the results and consider all the combinations of N ∈ {25, 50, 75, 100}
and T ∈ {25, 50, 100, 200}. To save space we use boxplots to summarize the results for RMSE

and size, and use empirical rejection frequency plots for power.10 All results are shown in

the online appendix E. The RMSE boxplots for ψi0 and βi0 are given in Figures A1 and A2,

respectively.11 Overall, the RMSE values are small for both parameters and fall with T but

are not affected by changes in the cross section dimension, N , which is in line with the theory

developed in Section 3.

The boxplots for the size of the tests based on the QML estimates of ψi0 and βi0 are given

in Figures A3 and A7, respectively. These results are based on the sandwich covariance matrix

formula given by (50). As can be seen, in general the tests are correctly sized at 5 per cent for

T relatively large, although for small values of T there are some size distortions. Once again the

size estimates are not affected by N , and tend to 5 per cent as T increases, irrespective of the

value of N .

To save space we only report the empirical power functions of the tests for three cross section

units with low, medium and high parameter values. The power plots are computed for different

values of ψi and βi defined by ψi = ψi0 + δ, and βi = βi0 + δ, for i = 1, 2, . . . , N , where

9Clearly, improvements in power can be achieved by reducing the error variances, σ2
i0. Some supporting

evidence is provided in Tables S1 and S2 in the online appendix E.
10The boxplots for bias of the estimators are similar to those of RMSE and are available upon request. The

corresponding tables that show bias and RMSE results for the individuals estimates (ψ̂i(R), and β̂i(R), i =
1, 2, . . . , N) are also available upon request.

11In each boxplot, the central mark indicates the median, while the bottom and top edges of the box indicate
the 25th and 75th percentiles, respectively. The whiskers extend to the most extreme data points not considered
outliers. Finally, outliers are defined as values greater than q3 + 1.5 (q3 − q1) or smaller than q1 − 1.5 (q3 − q1),
where q1 and q3 are the 25th and 75th percentiles, respectively.
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Table 1: Bias, RMSE, size and power for parameters of individual units in the HSAR(1) model
with one exogenous regressor and non-Gaussian errors for N = 5 and T ∈ {25, 50, 100, 200}.

T 25 50 100 200
Parameter Bias RMSE Bias RMSE Bias RMSE Bias RMSE

ψi0
ψ1,0 = 0.1261 -0.0056 0.1891 0.0005 0.1230 -0.0023 0.0851 0.0010 0.0592
ψ2,0 = 0.3883 -0.0051 0.2495 -0.0058 0.1687 -0.0006 0.1148 -0.0003 0.0803
ψ3,0 = 0.4375 -0.0115 0.2436 -0.0022 0.1499 0.0034 0.1041 -0.0003 0.0743
ψ4,0 = 0.5059 0.0050 0.1769 -0.0040 0.1221 -0.0028 0.0820 -0.0010 0.0571
ψ5,0 = 0.7246 -0.0109 0.2089 -0.0031 0.1502 -0.0009 0.1071 0.0006 0.0721

βi0
β1,0 = 0.9649 0.0125 0.2236 0.0069 0.1472 0.0024 0.1008 -0.0020 0.0717
β2,0 = 0.9572 0.0100 0.2674 0.0068 0.1833 -0.0022 0.1272 -0.0025 0.0892
β3,0 = 0.2785 0.0078 0.2908 -0.0012 0.1806 -0.0026 0.1252 0.0022 0.0907
β4,0 = 0.9134 -0.0020 0.2195 0.0072 0.1461 0.0012 0.1000 0.0000 0.0684
β5,0 = 0.8147 0.0104 0.2842 0.0108 0.1950 0.0081 0.1341 0.0003 0.0911

T 25 50 100 200 25 50 100 200
Parameter Size Power

ψi0
ψ1,0 = 0.1261 0.1040 0.0675 0.0535 0.0515 0.3410 0.4665 0.7060 0.9065
ψ2,0 = 0.3883 0.0950 0.0690 0.0560 0.0580 0.2515 0.3525 0.4900 0.7315
ψ3,0 = 0.4375 0.0935 0.0620 0.0560 0.0510 0.2245 0.3355 0.5115 0.7975
ψ4,0 = 0.5059 0.0835 0.0740 0.0660 0.0485 0.3430 0.5025 0.7355 0.9345
ψ5,0 = 0.7246 0.0660 0.0670 0.0645 0.0530 0.2450 0.3610 0.5410 0.7975

βi0
β1,0 = 0.9649 0.0900 0.0645 0.0525 0.0530 0.2845 0.3825 0.5360 0.8075
β2,0 = 0.9572 0.0930 0.0725 0.0625 0.0570 0.2165 0.2885 0.4380 0.6535
β3,0 = 0.2785 0.0960 0.0710 0.0515 0.0585 0.2585 0.3000 0.4565 0.6375
β4,0 = 0.9134 0.0865 0.0630 0.0565 0.0485 0.3055 0.3845 0.5715 0.8245
β5,0 = 0.8147 0.0890 0.0705 0.0555 0.0510 0.2005 0.2570 0.3700 0.6080

Notes: True parameter values are generated as ψi0 ∼ IIDU (0, 0.8), αi0 ∼ IIDN (1, 1), and βi0 ∼
IIDU (0, 1) for i = 1, 2, . . . , N . Non-Gaussian errors are generated as εi0/σi0 ∼ IID [χ2(2) − 2]/2, with
σ2
i0 ∼ IIDU [χ2(2)/4+0.5] for i = 1, 2, . . . , N . The spatial weight matrix W = (wij) has four connections

so that wij = 1 if j is equal to: i− 2, i− 1, i+ 1, i+ 2, and zero otherwise, for i = 1, 2, . . . , N . Biases

and RMSEs are computed as R−1
∑R

r=1(ψ̂i,r − ψi0) and
√
R−1

∑R
r=1(ψ̂i,r − ψi0)2 for i = 1, 2, . . . , N .

Empirical size and empirical power are based on the sandwich formula given by (50). The nominal size
is set to 5%. Size is computed under Hi0 : ψi = ψi0, using a two-sided alternative, for i = 1, 2, . . . , N .
Power is computed under ψi = ψi0 + 0.2, for i = 1, 2, . . . , N . The number of replications is set to
R = 2, 000. Estimates are sorted in ascending order according to the true values of the spatial autore-
gressive parameters. Biases, RMSEs, sizes and powers for βi, i = 1, 2, . . . , N , are computed similarly,
with power computed under βi = βi0 + 0.2.
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Table 2: Bias, RMSE, size and power for parameters of individual units in the HSAR(1) model
with one exogenous regressor and non-Gaussian errors for N = 100 and T ∈ {25, 50, 100, 200}.

T 25 50 100 200
Parameter Bias RMSE Bias RMSE Bias RMSE Bias RMSE

ψi0
ψ1,0 = 0.0244 -0.0005 0.3152 -0.0049 0.2138 0.0021 0.1415 -0.0001 0.1010
ψ2,0 = 0.0255 -0.0330 0.5189 0.0034 0.3674 -0.0137 0.2641 -0.0033 0.1794
ψ3,0 = 0.0397 0.0129 0.3509 -0.0017 0.2448 -0.0014 0.1681 0.0013 0.1183

...
...

...
...

...
...

...
...

...
ψ51,0 = 0.3927 -0.0027 0.2912 0.0038 0.2056 0.0009 0.1395 0.0005 0.0960
ψ52,0 = 0.3987 0.0001 0.1994 -0.0031 0.1381 0.0029 0.0921 0.0005 0.0638
ψ53,0 = 0.4004 -0.0112 0.3063 0.0075 0.2049 0.0033 0.1392 -0.0015 0.0991

...
...

...
...

...
...

...
...

...
ψ98,0 = 0.7695 -0.0031 0.1621 0.0018 0.1149 0.0055 0.0824 -0.0003 0.0586
ψ99,0 = 0.7705 -0.0530 0.2903 -0.0126 0.1895 0.0002 0.1401 0.0003 0.1041
ψ100,0 = 0.7904 -0.0125 0.1716 -0.0094 0.1275 0.0011 0.0897 0.0008 0.0613

βi0
β1,0 = 0.1978 0.0089 0.2782 0.0017 0.1771 0.0007 0.1192 -0.0073 0.0824
β2,0 = 0.7060 0.0252 0.3699 0.0016 0.2359 -0.0005 0.1608 0.0049 0.1144
β3,0 = 0.4173 0.0107 0.2541 0.0034 0.1733 0.0000 0.1157 0.0028 0.0821

...
...

...
...

...
...

...
...

...
β51,0 = 0.9448 0.0060 0.1924 -0.0024 0.1294 0.0018 0.0896 0.0009 0.0634
β52,0 = 0.1190 0.0046 0.1824 0.0026 0.1259 -0.0005 0.0853 0.0021 0.0578
β53,0 = 0.7127 0.0026 0.2630 -0.0050 0.1654 0.0038 0.1201 0.0012 0.0831

...
...

...
...

...
...

...
...

...
β98,0 = 0.1067 0.0041 0.1688 -0.0031 0.1115 0.0010 0.0762 -0.0002 0.0550
β99,0 = 0.4588 0.0207 0.2643 0.0039 0.1788 0.0033 0.1232 0.0027 0.0888
β100,0 = 0.3674 0.0056 0.1691 0.0032 0.1179 0.0009 0.0830 0.0004 0.0560

T 25 50 100 200 25 50 100 200
Parameter Size Power

ψi0
ψ1,0 = 0.0244 0.0890 0.0810 0.0520 0.0590 0.1820 0.2200 0.3290 0.5480
ψ2,0 = 0.0255 0.0705 0.0595 0.0555 0.0490 0.0945 0.0895 0.1495 0.2140
ψ3,0 = 0.0397 0.0905 0.0745 0.0585 0.0575 0.1555 0.1895 0.2805 0.4450

...
...

...
...

...
...

...
...

...
ψ51,0 = 0.3927 0.0950 0.0645 0.0590 0.0535 0.1785 0.2625 0.3590 0.5810
ψ52,0 = 0.3987 0.0850 0.0620 0.0625 0.0505 0.3050 0.4390 0.6285 0.8660
ψ53,0 = 0.4004 0.0885 0.0785 0.0570 0.0585 0.1995 0.2490 0.3745 0.5800

...
...

...
...

...
...

...
...

...
ψ98,0 = 0.7695 0.0635 0.0630 0.0660 0.0610 0.3340 0.4755 0.6935 0.9145
ψ99,0 = 0.7705 0.0300 0.0285 0.0370 0.0495 0.1455 0.2045 0.3095 0.5205
ψ100,0 = 0.7904 0.0545 0.0570 0.0625 0.0505 0.3120 0.4665 0.6455 0.8845

βi0
β1,0 = 0.1978 0.1160 0.0700 0.0610 0.0505 0.2405 0.3040 0.4380 0.7115
β2,0 = 0.7060 0.1025 0.0580 0.0505 0.0545 0.1725 0.2095 0.2710 0.4510
β3,0 = 0.4173 0.0950 0.0780 0.0550 0.0595 0.2450 0.3160 0.4655 0.7080

...
...

...
...

...
...

...
...

...
β51,0 = 0.9448 0.0910 0.0685 0.0590 0.0570 0.3260 0.4665 0.6500 0.8880
β52,0 = 0.1190 0.0970 0.0800 0.0505 0.0440 0.3500 0.4840 0.7030 0.9150
β53,0 = 0.7127 0.1075 0.0660 0.0665 0.0515 0.2420 0.3150 0.4410 0.6810

...
...

...
...

...
...

...
...

...
β98,0 = 0.1067 0.0960 0.0660 0.0530 0.0545 0.3950 0.5500 0.7605 0.9475
β99,0 = 0.4588 0.0725 0.0615 0.0545 0.0595 0.2015 0.2775 0.4225 0.6415
β100,0 = 0.3674 0.0935 0.0660 0.0695 0.0540 0.3605 0.5025 0.7255 0.9370

Notes: See notes to Table 1. 24



δ = −0.800,−0.791, . . . , 0.791, 0.800. We only consider values of ψi that satisfy the condition

|ψi| < 1.12

The power results for the spatial parameters, ψi0, are displayed in Figures A4-A6, that

correspond to the low value (ψi0 = 0.3374), the medium value (ψi0 = 0.5059) and the high value

(ψi0 = 0.7676), respectively. As to be expected the power depends on the choice of ψi0 and rises

with T , but does not seem to be affected by N . Furthermore, perhaps not surprisingly, empirical

power functions for ψi0 become more and more asymmetrical as ψi0’s move closer and closer to

the boundary value of 1. The power functions for the three associated values of βi0 are shown

in Figures A8-A10 for the low value of βi0 (βi0 = 0.0344), the medium value (βi0 = 0.4898),

and the high value (βi0 = 0.9649), respectively. Again the empirical power functions are similar

across N and improve with T .

5.2 Small sample properties of the MG estimators

We employ the same data generating process, defined by (63), and set ai0 = a0 + ε1i, with

a0 = 1 and ε1i ∼ IIDN(0, 1), ψi0 = ψ0 + ε2i, with ψ0 = 0.4 and ε2i ∼ IIDU(−0.4, 0.4) and

βi0 = β0 + ε3i, with β0 = 0.5 and ε3i ∼ IIDU (−0.5, 0.5). Parameters a0, ψ0 and β0 are fixed

while parameters ai0, ψi0 and βi0 vary across replications, for i = 1, 2, . . . , N , in accordance

to the random coefficients model. The MG estimators and their standard errors are computed

using (52), (57) and (59), and the number of replications is set to R = 2, 000. The small sample

properties of the mean group estimators of ψ0 and β0 are summarized in Table B of the online

appendix E. The top panel gives the results for Gaussian errors, and the bottom panel for non-

Gaussian errors. As to be expected the bias and RMSE of the MG estimators decline steadily

with both N and T , and it does not matter whether the errors are Gaussian or not. There are

some small size distortions when N = T = 25, but the size rapidly converges to the nominal

value of 5 percent as N and T are increased. For example for T = 25 the size is always within

the simulation standard errors when N ≥ 50.

6 Heterogeneous spatial spill-over effects in U.S. housing mar-

ket

As an empirical application we estimate HSAR models for real house price changes in the

United States at Metropolitan Statistical Areas (MSAs) over the period 1975Q1-2014Q4. Ac-

curately modelling and forecasting the housing market cycle is of paramount importance for

prospective owners, investors, and real estate market participants such as insurers and mortgage

lenders (Agnello et al., 2015). Determinants of US house price variations are numerous and

well-documented in the literature, two prominent fundamentals being real per capita disposable

income and population - see for example Malpezzi (1999) and Gallin (2006) among others. An

important aspect of the modelling strategy is to account for the existence of co-movements in

house prices within and across MSAs. Recently, Bailey et al. (2016) (hereafter BHP) highlight

the importance of distinguishing between types of cross-sectional dependence in the analysis of

US house price changes, which if ignored can lead to biased parameter estimates. See, for exam-

ple, the studies by Swoboda et al. (2015) and Munro (2018). BHP distinguish between spatial

12The empirical power functions are computed using the sandwich formula for the covariance matrix of the
underlying estimators.
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dependence that originates from economy-wide common shocks such as changes in interest rates,

oil prices and technology, and the dependence across MSAs due to local spill-over effects arising

from differences in house prices, incomes and demographics across MSAs.13 Here, we use an

extended version of the panel dataset employed by BHP and further augmented with population

and per capita real income data by Yang (2018) to estimate HSAR models, after filtering out

the effects of common factors on house price changes.14 We provide MSA specific estimates of

spill-over effects, as well as population and income elasticities of house prices as compared to the

homogeneous spatial parameter estimates obtained in Yang (2018). To compare our individual

estimates with those of Yang, we also report MG estimates both at the national and regional

levels. As we shall see, we find considerable heterogeneity across MSAs and regions.

6.1 Data description and transformations

The U.S. Office of Management and Budget (OMB) delineates metropolitan statistical areas

(MSAs) according to published standards that are applied to Census Bureau data. These are

revised periodically. A total of 381 MSAs fall under the February 2013 definition.15 We consider

377 of these from the contiguous United States.16 Accordingly we compile quarterly nominal

house prices (HP ) for 377 MSAs over the period 1975Q1-2014Q4. In addition, we obtained

nominal income per capita (INC) and population (POP ) at the MSA level over the same

period. Both real house prices and real per capita income for all MSAs are then computed

by deflating their nominal values by State level Consumer Price Index data (CPI) which are

matched to the corresponding MSAs.17 Further details on data sources can be found in the

online appendix D.

We denote the variables that are included in our model by: Πit for percent quarterly rate

of change of real house prices of MSA i in quarter t (dependent variable), GPOPit for percent

quarterly rate of change of population (regressor), and GINCit for percent quarterly rate of

change in real per capita income (regressor). Specifically,

Πit = 100×
[
ln

(
HPit
CPIit

)
− ln

(
HPit−1
CPIit−1

)]
,

GPOPit = 100× [ln (POPit)− ln (POPit−1)] , and

GINCit = 100×
[
ln

(
INCit
CPIit

)
− ln

(
INCit−1
CPIit−1

)]
,

13For a theoretical analysis of the interactions between regional house prices, migration flows and income shocks
see Cun and Pesaran (2018).

14The authors would like to thank Cynthia Yang for providing them with the updated dataset originally used
in Yang (2018).

15The February 2013 delineation states that ‘metropolitan statistical areas have at least one urbanised area of
50,000 or more population, plus adjacent territory that has a high degree of social and economic integration with
the core as measured by commuting ties’. For further details see:

https://www.whitehouse.gov/sites/whitehouse.gov/files/omb/bulletins/2013/b13-01.pdf
16This excludes the non-contiguous states of Alaska (2 MSAs) and Hawaii (2MSAs) and all other off-shore

insular areas.
17The quarterly figures for nominal house prices (HP ) are arithmetic averages of monthly observations of HP .

Further, per capita income (INC), population (POP ) and consumer price index (CPI) are annual data which
are converted into quarterly observations by following the interpolation method provided in the GVAR Toolbox
User Guide which can be found at: https://sites.google.com/site/gvarmodelling/gvar-toolbox.
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for i = 1, 2, . . . , N and t = 1, 2, . . . , T (1975Q1− 2014Q4), where N = 377 MSAs, and T = 160

quarters.

Implementation of our approach requires the panel of variable Πit to be weakly cross-

sectionally dependent by Assumption 4. Hence, we apply the CD test developed in Pesaran

(2004, 2015) to Πit in order to assess the strength of cross-sectional dependence (CSD) in real

house price changes. The CD statistic turns out to be 1621.22 which is substantially higher than

the 1.96 critical value at 5 per cent level. With the null hypothesis of weak CSD soundly rejected,

we then estimated the exponent of cross-sectional dependence, α, due to Bailey et al. (2016)

which measures the degree of cross sectional dependence of house price changes. Values of α

close to unity are indicative of strong cross-sectional dependence. We obtained α̂ = 1.001(0.03),

where the standard error of the estimate is given in brackets. It is clear that real house prices

changes, Πit, are strongly correlated across MSAs, and before estimating local spill-over effects

using the HSAR model, we must first purge the house price inflation series of the common

sources of their dependence, as suggested in BHP.

Accordingly, we de-seasonalize and de-factor the three variables that we use to estimate the

HSAR specifications, and use residuals from OLS regressions of Πit, GPOPit and GINCit on:

(i) an intercept, (ii) 3 quarterly dummies and (iii) national and regional cross-sectional averages

of Πit, GPOPit and GINCit respectively.18 We denote these de-seasonalized and de-factored

variables by πit, gpopit and gincit, respectively.19 The CD statistic for the filtered series πit
now stands at -0.200, which is not statistically significant and πit satisfy the condition of weak

cross-section dependence required when estimating HSAR models.

6.2 Modelling de-factored house price changes

We now consider the following HSAR specification for πit:

πit = ai + ψi

N∑
j=1

wijπjt + βpop1i gpopit + βpop2i gpopi,t−1 + βinc1i gincit + βinc2i ginci,t−1 + εit, (67)

which allows for fixed effects and full heterogeneity in both the spatial coefficients of real house

price changes (ψi), and the slope coefficients for the two regressors and their lagged values

(βpop1i , β
pop
2i , β

inc
1i , β

inc
2i ). Innovations are assumed to be distributed as εit ∼ IID

(
0, σ2iε

)
.20 (67)

is in accordance with the theoretical model (1) analyzed in Sections 2 and 3.21 With regard

to the construction of the weights matrix W = (wij), we consider a distance based weighting

18We partition the MSAs into R = 8 regions, in line with the Bureau of Economic Analysis classification, each
region r = 1, 2, . . . , R, containing a total of Nr MSAs. The eight regions are: New England (15 MSAs), Mid East
(41 MSAs), South East (120 MSAs), Great Lakes (59 MSAs), Plains (33 MSAs), South West (39 MSAs), Rocky
Mountains (22 MSAs) and Far West (48 MSAs).

19This transformation of the data follows Yang (2018). She also includes local cross-sectional averages of house
price changes in her defactoring procedure. Given their limited explanatory power we abstract from incorporating
local averages when defactoring the series.

20In performing the data transformations of Section 6.1, we abstract from the sampling uncertainty related to
using defactored series when estimating HSAR models. In principle, one could estimate the common and local
effects simultaneously, instead of the two-stage procedure being followed. However, such an endeavour is beyond
the scope of the present paper.

21We have considered alternative models to (67): one assuming no time lags in the exogenous variables and
another that allows for lagged dependent variables as well as lagged regressors. Overall, the results convey the
same message as that from running regression (67). For brevity of exposition, these results are not included in
the paper, but are available upon request.

27



scheme implemented in Yang (2018), which is common in the spatial econometrics literature.

More precisely, the calculation of the geodesic distance between each pair of latitude/longitude

coordinates for the MSAs included in our sample uses the Haversine formula. Then, we determine

a specific radius threshold, d (miles), within which MSAs are considered to be neighbors. In this

case, the relevant entries in the un-normalized weights matrix W 0 are set to unity. The MSAs

that fall outside this radius are labelled non-neighbors and their corresponding entries in W 0

are set to zero. Finally, we row-normalize W 0 and obtain W which is used in (67).

We consider three versions of W constructed with the radius threshold values of d = 75,

100 and 125, miles. We name the adjacency matrices W 75, W 100 and W 125, respectively. For

brevity of exposition, in what follows we focus on the version of (67) that uses W 75 which gives

a reasonably sparse weight matrix with 0.88% non-zero elements. Other types of weighting

schemes can also be entertained. For example, BHP consider two separate adjacency matrices

determined by the statistically positive and negative pairwise correlations of de-factored real

house price changes. Another scheme is proposed by Zhou et al. (2017) who use a sample-

based adjacency matrix to approximate the true network structure by focusing on an estimation

framework that incorporates just the degree (number of connections) of each unit in the network.

Since our primary focus is on the estimation of heterogeneous spatial coefficients, we do not

consider such alternative weigh matrices, which can be easily pursued if needed.

6.3 Estimation results

First we present the estimates of individual spatial effects by MSA. Note that when using

adjacency matrix W 75 in (67) there are 39 out of the total 377 MSAs that are completely

isolated (have no neighbors) and are thus excluded from the analysis. This leaves us with a

reduced sample of N = 338 MSAs. For ease of exposition the individual spatial lag coefficient

estimates for these 338 MSAs are displayed in Figure 1. Each estimate, ψ̂i, is matched to its

corresponding MSA on the map of the U.S.. MSAs colored in blue depict positive spatial lag

coefficients, with different shades of blue corresponding to differing ranges within which each

ψ̂i falls: lighter shades refer to ranges closer to zero while darker shades relate to spatial lag

coefficient estimates closer to the boundary value of unity. Similarly, red areas are associated

with negative spatial lag coefficient estimates, with the lighter shade of red indicating ψ̂i falling

in ranges closer to zero while darker red areas refer to more sizable spatial coefficient estimates

in absolute terms.22

It is evident from Figure 1 that spatial coefficients are estimated to be predominantly positive

and in general relatively sizeable. Indeed, 255 MSAs have positive spatial lag coefficients of which

226 are statistically significant. This points to the existence of important spill-over effects in the

U.S. housing market even when the influence of national (common) factors are filtered out. It is

easy to show spill-over effects in house price changes across MSAs without de-factoring, but such

evidence suffers from the conjunctions of national and local influences, and can be misleading.

The spatial display of the estimates in Figure 1 shows how the strength of local spill-over effects

changes as we move from the sparsely populated areas in the middle of the US (Plains, Rocky

Mountains and South West), and towards the two coastal areas (South East, Mid East and Far

West) which have a much higher population density.

22The spatial lag coefficients of 44 MSAs hit the upper or lower bound of 0.994/-0.994 set in our optimization
procedure. These are shown as a separate category in Figure 1. Of these 40 ψ̂i are positive and 4 are negative.
Widening the bounds to (-0.995,0.995) reduces the number of MSAs that fall outside the bounds to 30.
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Figure 1: Spatial autoregressive parameter estimates (ψ̂i) for Metropolitan Statistical Areas in
the Unites States

ψ̂i

(−1,−0.75] (−0.75,−0.5] (−0.5,−0.25] (−0.25,0] (0,0.25] (0.25,0.5] (0.5,0.75] (0.75,1) Non−Conv No−Neigh

Notes: Each ψ̂i is mapped to a Metropolitan Statistial Area (MSA) in the U.S.. A total of 338
MSAs are included in model (67). MSAs coloured in blue correspond to positive spatial parameter
estimates while MSAs coloured in red match to negative spatial parameter estimates. Darker shades of
blue or red indicate more sizable ψ̂i while lighter shades related to ψ̂i closer to zero in absolute terms.
Category ‘Non-conv’ includes MSAs whose ψ̂i estimates hit the upper/lower bound in the optimisation
procedure, while category ‘No-Neigh’ includes MSAs that have no neighbours when using W 75.

Similar differences can also be seen in the estimates of the elasticities of house price changes

to population and real per capita income changes, as shown in Figures 2(a) and 2(b). Focussing

on contemporaneous effects, we observe that in 276 MSAs the population or income variables

have a positive impact on house price changes, although the population effects tend to be more

significant and sizeable. Of these, around two thirds tend to coincide with areas also reporting

positive estimates for the spatial lag coefficients. Important examples of such MSAs include

Seattle (Washington), San Francisco (California) or Boston (Massachusetts).23 In contrast, the

number of MSAs with negative estimates of the spatial lag coefficients is substantially lower,

amounting to 39 of which only 11 are significantly different from zero. These are spread more

evenly across the United States and correspond to economically less active areas in the U.S.,

such as Cheyenne (Wyoming), Coeur d’Alene (Idaho), Hot Springs (Arkansas), and Dothan

(Alabama). It is also interesting that out of these 11 MSAs 7 have in fact experienced stagnant

or declining population over our sample period, which could be the main reason behind the

negative estimates of ψi obtained for these MSAs. One can extend the analysis further by

computing marginal direct as well as spill-in and spill-out indirect effects of each explanatory

variable on changes in real house prices, as discussed in LeSage and Chih (2016).24

23The estimates of the lagged population and real per capita income variables in (67) are generally small and
less statistically significant as compared to their contemporaneous effects. These estimates are available upon
request.

24All individual spatial and slope coefficient estimates with their standard errors from model (67) are available
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The heterogeneity in spatial effects and the population and income elasticities across the

U.S. can be seen even if we average the estimates across different regions in the U.S.. Table 3

reports the mean group estimates of the parameters grouped by six regions. We started with

the standard eight regional classification, but combined New England and the Mid East, and

South West and Rocky Mountains to ensure a reasonable number of MSAs (Nr in Table 3)

per region. The MG estimates of the spatial lag coefficients are quite close for Great Lakes,

South East and Far West (in the range 0.573 to 0.599), but differ markedly from the other three

regions, namely New England & Mid East, Plains, and South West & Rocky Mountains, once

again largely reflecting the different degrees of population density across the U.S.. We notice

even larger differences in the MG estimates of population and real income variables across the

regions, with much larger estimates for the effects of population changes on house prices as

compared to income changes. For the U.S. as a whole, the MG estimate of the spatial effects

amount to 0.509 (0.025) which points to the existence of non-negligible spatial dynamics in

the U.S. even after conditioning on factors that generate strong spatial correlation between

disaggregate house price fluctuations. This result is comparable though slightly lower than the

homogeneous estimates of 0.643 (0.005) and 0.612 (0.003) obtained in Yang (2018) using the

GMM and MLE approaches, respectively. Finally, the MG estimates of the contemporaneous

effects of population and income variables for the U.S. as a whole are 0.446 (0.047) and 0.092

(0.009), respectively. The associated estimates for the lagged values of these variables are 0.155

(0.032) and 0.027 (0.007), all of which are statistically significant, and economically sizeable.

7 Conclusion

Standard spatial econometric models assume a single parameter to characterize the intensity

or strength of spatial dependence across all units. In the case of pure cross section models or

panel data models with a short time dimension, this assumption is inevitable. However, in a

data rich environment where both the time (T ) and cross section (N) dimensions are large,

this can be relaxed. This paper investigates a spatial autoregressive panel data model with

fully heterogeneous spatial parameters (HSAR) where the spatial dependence can arise directly

through contemporaneous dependence of individual units on their neighbors, and indirectly

through possible cross-sectional dependence in the regressors.

The asymptotic properties of the quasi maximum likelihood estimator are analyzed assuming

a sparse spatial structure with each individual unit having at least one connection. Conditions

under which the QML estimator of spatial parameters are consistent and asymptotically normal

are derived. It is also shown that under certain conditions on spatial coefficients and the spatial

weights, the asymptotic properties of the individual estimates are not affected by the size of cross

section dimension N . An estimator of the cross section mean of the individual parameters (MG

estimators) is also analyzed which can be used for comparisons with outcomes from standard

homogeneous SAR models. It is shown that MG estimators are consistent and asymptotically

normal as N and T → ∞, jointly, so long as
√
N/T → 0, and the spatial dependence is

sufficiently weak. Monte Carlo simulation results provided are supportive of the theoretical

findings. As an application of the HSAR model we investigate the potential heterogeneity in

spatial spill-over effects in the U.S. housing market across the 338 MSAs included in our sample.

upon request.
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Figure 2: Contemporaneous elasticities of house price changes to population growth (β̂pop1i ) and

real income growth (β̂inc1i ) for Metropolitan Statistical Areas in the Unites States

β̂1i
pop

<−1.5 (−1.5,−1] (−1,−0.5] (−0.5,0] (0,0.5] (0.5,1] (1,1.5] >1.5 Non−Conv No−Neigh

(a) Population growth

β̂1i
inc

<−0.3 (−0.3,−0.2] (−0.2,−0.1] (−0.1,0] (0,0.1] (0.1,0.2] (0.2,0.3] >0.3 Non−Conv No−Neigh

(b) Real income growth

Notes: Each β̂pop
1i and β̂inc

1i is mapped to a Metropolitan Statistial Area (MSA) in the U.S.. A total of
338 MSAs are included in model (67). MSAs coloured in blue correspond to positive slope parameter
estimates while MSAs coloured in red match to negative slope parameter estimates. Darker shades of
blue or red indicate more sizable β̂pop

1i and β̂inc
1i while lighter shades related to β̂pop

1i and β̂inc
1i closer to

zero in absolute terms. Category ‘Non-conv’ includes MSAs whose ψ̂i estimates hit the upper/lower
bound in the optimisation procedure, while category ‘No-Neigh’ includes MSAs that have no neighbours
when using W 75.
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Table 3: Mean group estimates (MGE) of spatial coefficients and elasticities of house price
changes to population and real income growth by six major U.S. regions, and the U.S. as a
whole

r Name Nr ψ̂r β̂pop1r β̂pop2r β̂inc1r β̂inc2r

1 &2 New England & Mid East 39 0.398‡ 0.959‡ 0.218 0.165‡ -0.046†

(0.074) (0.214) (0.138) (0.032) (0.024)
3 Great Lakes 45 0.599‡ 0.367‡ 0.156 0.071‡ 0.001

(0.065) (0.151) (0.103) (0.021) (0.014)
4 Plains 26 0.444‡ 0.431‡ 0.191∗ 0.064∗ 0.011

(0.083) (0.128) (0.100) (0.035) (0.016)
5 South East 107 0.598‡ 0.320‡ 0.123‡ 0.056‡ 0.030‡

(0.039) (0.054) (0.043) (0.011) (0.012)
6 &7 South West & Rocky Mountains 37 0.238‡ 0.355‡ 0.197† 0.136‡ 0.086‡

(0.070) (0.075) (0.062) (0.029) (0.020)
8 Far West 40 0.573‡ 0.468‡ 0.119 0.116‡ 0.074‡

(0.051) (0.095) (0.076) (0.025) (0.023)

U.S. 294 0.509‡ 0.446‡ 0.155‡ 0.092‡ 0.027‡

(0.025) (0.047) (0.032) (0.009) (0.007)

Notes: ∗ p < 0.1, † p < 0.05, ‡ p < 0.01. Non-parametric robust standard errors in
parentheses (see below). For r = 1, . . . , 6, ψ̂MG,r = N−1r

∑
i∈Ir ψ̂i, and s.e.(ψ̂MG,r) =√

[Nr(Nr − 1)]−1
∑

i∈Ir (ψ̂i − ψ̂MG,r)2, where Ir is the set of units belonging to region r, Ir =

{i : i is in region r}, and Nr is the number of units per region, Nr = #(Ir). New England
(8 MSAs) and Mid East (31 MSAs) as well as South West (22 MSAs) and Rocky Mountains
(15 MSAs) have been merged in order to obtain a sufficiently large number of MSAs in the

two broader regions. For the U.S. as a whole: ψ̂MG,US = N−1
∑N

i=1 ψ̂i, and s.e.(ψ̂MG,US ) =√
[N(N − 1)]−1

∑N
i=1(ψ̂i − ψ̂MG,US )2. The MGE of coefficient estimates of house price changes to

population and real income changes (β̂pop
1i , β̂pop

2i , β̂inc
1i and β̂inc

2i ) are computed similarly. The com-
putations of all MG estimates exclude the MSAs whose spatial lag coefficients hit the upper/lower
bound in the optimisation procedure.

The methods developed in this paper can be extended to consider cases where the spatial

parameter corresponding to each neighbor of unit i is estimated distinctly, as well as to the case

of hierarchical panel data models where spatial parameters are assumed to be the same within

regions (groups) but allowed to differ across regions or groups.
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Introduction

This online supplement is composed of Appendices A-E. Appendix A includes statements and

proofs of lemmas used in the derivations of Sections 3.2, 3.3 and 4 of the paper. Appendix B

provides proof of Proposition 2 in Section 3.3 of the paper, while Appendix C gives the first and

second derivatives of the log likelihood function of the HSAR model with exogenous regressors.

Appendix D describes the data sources used in Section 6, and Appendix E displays additional

Monte Carlo results based on the designs set out in Section 5 of the paper.

Appendix A Technical lemmas

Lemma 1 Consider the weight matrix W and suppose that Assumption 4 holds. Then matrix

S(ψ) = IN −ΨW is non-singular with positive eigenvalues, namely λmin [S(ψ)] > 0.

Proof. Let % (ΨW ) be the spectral radius of matrix ΨW . Non-singularity of S(ψ) = IN−ΨW

is ensured if

% (ΨW ) < 1. (A.1)

However, since for any matrix norm ‖A‖, % (A) ≤ ‖A‖, then using the maximum column sum

matrix norm we have

% (ΨW ) ≤ ‖ΨW ‖1 ≤ ‖Ψ‖1 ‖W ‖1 = sup
i
|ψi| ‖W ‖1 , (A.2)

and from (A.1) we have

sup
i
|ψi| ‖W ‖1 < 1.

Similarly, using a maximum row sum matrix norm we have

sup
i
|ψi| ‖W ‖∞ < 1,

where we have used the result ‖Ψ‖1 = ‖Ψ‖∞ = supi |ψi|. Therefore, matrix S(ψ) = IN −ΨW

is invertible under condition (8) of Assumption 4. Also all eigenvalues of S(ψ) are necessarily

positive, since λmin [S(ψ)] = 1− λmax (ΨW ) ≥ 1− |λmax (ΨW )| = 1− % (ΨW ) > 0.

Lemma 2 Let G (ψ) = W (IN −ΨW )−1, and suppose that Assumption 4 holds. Then

‖G (ψ)‖1 < K and ‖G (ψ)‖∞ < K, (A.3)

and ∥∥G (ψ)�G′ (ψ)
∥∥
1
< K and

∥∥G (ψ)�G′ (ψ)
∥∥
∞ < K, (A.4)

for all values of ψ= (ψ1, ψ2, . . . , ψN )′ that satisfy condition (8).

Proof. Under condition (8), we have

G (ψ) = W +WΨW +WΨWΨW + . . . ,

1



and

‖G (ψ)‖1 ≤ ‖W ‖1 + ‖W ‖21 ‖Ψ‖1 + ‖W ‖31 ‖Ψ‖
2
1 + . . . .

But ‖Ψ‖s1 = [supi |ψi|]
s, and under condition (8) we have sup

i
|ψi| ‖W ‖1 < 1. Hence,

‖G (ψ)‖1 ≤ ‖W ‖1
(

1

1− supi |ψi| ‖W ‖1

)
.

Similarly,

‖G (ψ)‖∞ ≤ ‖W ‖∞
(

1

1− supi |ψi| ‖W ‖∞

)
.

The boundedness of column and row matrix norms of G (ψ) now follow since, under Assumption

4, ‖W ‖1 and ‖W ‖∞ are bounded, 1− sup
i
|ψi| ‖W ‖1 > 0, and 1− supi |ψi| ‖W ‖∞ > 0. Finally,

(A.4) follows since

∥∥G (ψ)�G′ (ψ)
∥∥
1

= max
1≤j≤N

(
N∑
i=1

|gijgji|

)
≤ max

1≤j≤N

(
sup
j
|gij |

N∑
i=1

|gji|

)
< K,

and ∥∥G (ψ)�G′ (ψ)
∥∥
∞ = max

1≤i≤N

 N∑
j=1

|gijgji|

 ≤ max
1≤i≤N

sup
i
|gij |

N∑
j=1

|gji|

 < K,

from (A.3).

Lemma 3 Consider the average log-likelihood function of (4):

¯̀
T (θ) = T−1`T (θ) = −NT

2
ln(2π)− T

2

N∑
i=1

lnσ2i +
T

2
ln |V(ψ)| (A.5)

− 1

2

T∑
t=1

[S(ψ)y◦t −Bx◦t]
′Σ−1 [S(ψ)y◦t −Bx◦t] ,

where θ = (ψ′,β′,σ2′)′, B is given in (5), ¯̀
T (θ) = T−1`T (θ) and `T (θ) is defined by (7). Also,

V (ψ) = S′(ψ)S(ψ). Denote the true parameter vector of θ by θ0 = (ψ′0,β
′
0,σ

2′
0 )′ which lies in

the interior of Θ = Θψ ×Θβ ×Θσ ⊂ RN × RNk × RN . Then, under Assumptions 1 and 2 we

have
¯̀
T (θ0)− ¯̀

T (θ)
a.s.→ E0

[
¯̀
T (θ0)− ¯̀

T (θ)
]
, (A.6)

where E0 represents expectations taken under θ = θ0.
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Proof. Let QT (θ0,θ) = ¯̀
T (θ0)− ¯̀

T (θ), and evaluating (A.5) at θ = θ0, note that

QT (θ0,θ) = −1

2

N∑
i=1

ln
(
σ2i0/σ

2
i

)
+

1

2

[
ln

(
|V (ψ0) |
|V (ψ) |

)]
(A.7)

− 1

2

{
1

T

T∑
t=1

[S(ψ0)y◦t −B0x◦t]
′Σ−10 [S(ψ0)y◦t −B0x◦t]

}

+
1

2

{
1

T

T∑
t=1

[S(ψ)y◦t −Bx◦t]
′Σ−1 [S(ψ)y◦t −Bx◦t]

}
,

where, by Remark 6, λmin [V (ψ)] > 0 and λmax [V (ψ)] < K, so that |V (ψ) | = |S′(ψ)S(ψ)| =
|S(ψ)|2. Also, by first taking conditional expectations with respect to Ft, and then taking

expectations with respect to x◦t, we have

T∑
t=1

E0

{
tr
[
y′◦tS

′(ψ)Σ−1S(ψ)y◦t
]}

= T tr
[
S′(ψ)Σ−1S(ψ)Σy0

]
,

T∑
t=1

E0

{
tr
[
y′◦tS

′(ψ)Σ−1Bx◦t
]}

= T tr
[
Σ−1BΣxxB

′
0S
′−1
0 S′(ψ)

]
,

T∑
t=1

E0

{
tr
[
x′◦tB

′Σ−1Bx◦t
]}

= T tr
[
Σ−1BΣxxB

′] ,
and hence

1

T

T∑
t=1

E0

{
[S(ψ)y◦t −Bx◦t]

′Σ−1 [S(ψ)y◦t −Bx◦t]
}

=


tr
[
S′(ψ)Σ−1S(ψ)Σy0

]
−2 tr

[
Σ−1BΣxxB

′
0S
′−1
0 S′(ψ)

]
+ tr

[
Σ−1/2BΣxxB

′Σ−1/2
]

 .

Using the above results in (A.7) we now obtain

E0 [QT (θ0,θ)] = E0

[
¯̀
T (θ0)− ¯̀

T (θ)
]

= −1

2

N∑
i=1

ln
(
σ2i0/σ

2
i

)
− N

2
+

1

2

[
ln

(
|V (ψ0) |
|V (ψ) |

)]
+

1

2
tr
[
P(θ)P−1(θ0)

]
+

1

2
tr
{

Σ−1/2
[
S(ψ)S−10 B0 −B

]
Σxx

[
S(ψ)S−10 B0 −B

]′
Σ−1/2

}
,

where
|V (ψ0) |
|V (ψ) |

=
|S(ψ0)|

2

|S(ψ)|2
=
∣∣S(ψ0)S

−1(ψ)
∣∣2 =

∣∣S(ψ)S−1(ψ0)
∣∣−2 ,

tr
[
P (θ) P−1 (θ0)

]
= tr

[
S′(ψ)Σ−1S(ψ)S−1(ψ0)Σ0S

′−1(ψ0)
]

= tr
[
Σ−1/2S(ψ)S−1(ψ0)Σ0S

′−1(ψ0)S
′(ψ)Σ−1/2

]
,

3



and P (θ) = S′(ψ)Σ−1S(ψ). To establish (A.6) we show that

QT (θ0,θ)− E0 [QT (θ0,θ)]
a.s.→ 0. (A.8)

To this end we note that under (4),

1

T

T∑
t=1

[S(ψ0)y◦t −B0x◦t]
′Σ−10 [S(ψ0)y◦t −B0x◦t] =

1

T

T∑
t=1

ζ′◦tζ◦t,

where ζ◦t = (ζ1t, ζ2t, . . . , ζNt) ∼ IID(0, IN ), ζit = εit/σi0, for i = 1, 2, . . . , N . Also,

1

2

{
1

T

T∑
t=1

[S(ψ)y◦t −Bx◦t]
′Σ−1 [S(ψ)y◦t −Bx◦t]

}

=
1

2

[
1

T

T∑
t=1

ε′◦tS
′−1(ψ0)P (θ) S−1(ψ0)ε◦t

]

+
1

2

[
1

T

T∑
t=1

{
Σ−1/2

[
S(ψ)S−10 B0 −B

]
x◦t

}′ {
Σ−1/2

[
S(ψ)S−10 B0 −B

]
x◦t

}]

+

[
1

T

T∑
t=1

x′◦t
[
S(ψ)S−10 B0 −B

]′
Σ−1S(ψ)S−10 ε◦t

]
.

Using the above results in (A.7) and after some simplifications we have

QT (θ0,θ)− E0 [QT (θ0,θ)] = −1

2

[
1

T

T∑
t=1

z1t,N (θ0)

]
+

1

2

[
1

T

T∑
t=1

z2t,N (θ)

]
(A.9)

+
1

2

[
1

T

T∑
t=1

z3t,N (θ0,θ)

]
+

1

2

[
1

T

T∑
t=1

z4t,N (θ)

]
,

where

z1t,N (θ0) = ζ′◦tζ◦t −N =
N∑
i=1

(
ζ2it − 1

)
, (A.10)

z2t,N (θ) = ε′◦tS
′−1(ψ0)P (θ) S−1(ψ0)ε◦t − E0

[
ε′◦tS

′−1(ψ0)P (θ) S−1(ψ0)ε◦t
]

(A.11)

= ζ′◦tA (θ0,θ) ζ◦t − tr [A (θ0,θ)] ,

in which A (θ0,θ) = Σ
1/2
0 S′−1(ψ0)P (θ) S−1(ψ0)Σ

1/2
0 ,

z3t,N (θ0,θ) = x′◦tB (θ0,θ)x◦t − tr [B (θ0,θ) Σxx] , (A.12)

in which B (θ0,θ) =
[
S(ψ)S−10 B0 −B

]′
Σ−1

[
S(ψ)S−10 B0 −B

]
, and

z4t,N (θ) = x′◦t
[
S(ψ)S−10 B0 −B

]′
Σ−1S(ψ)S−10 ε◦t. (A.13)
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We establish that each zjt,N , j = 1, 2, 3, 4 is a martingale difference process with finite second

order moments. Starting with z1t,N (θ0), we have that under Assumption 1, supitE |ζit|
4+ε < K,

for some ε > 0. Then the elements in (A.10) are L2 bounded, in the sense that supitE
∣∣ζ2it − 1

∣∣2 <
K, and

1

T

T∑
t=1

(
ζ2it − 1

) a.s.→ 0, (A.14)

for a givenN and as T →∞. Consider now (A.11), and note that z2t,N (θ) is serially independent

(over t), and has mean zero. Under our assumptions (see Assumption 1, Remarks 4 and 6)

‖A (θ0,θ)‖1 < K, and ‖A (θ0,θ)‖∞ < K. (A.15)

Further, note that z2t,N is a de-meaned quadratic form in ζit and Theorem 1 of Kelejian and

Prucha (2001) applies to z2t,N . Denote the (i, j) element of A (θ0,θ), by aij , and note that

aij = aji. Then using (3.2) in Kelejian and Prucha (2001), we have (recall that E
(
ζ2it
)

= 1)

V ar [z2t,N (θ)] = V ar
[
ζ′◦tA (θ0,θ) ζ◦t

]
= 4

N∑
i=1

i−1∑
j=1

a2ij +
N∑
i=1

a2ii
[
E
(
ζ4it
)
− 1
]
.

But
N∑
i=1

i−1∑
j=1

a2ij ≤
N∑
i=1

N∑
j=1

a2ij = tr
[
A (θ0,θ)′A (θ0,θ)

]
= [‖A (θ0,θ)‖F ]2 ,

and using (A.15),

‖A (θ0,θ)‖F ≤
√
‖A (θ0,θ)‖1 ‖A (θ0,θ)‖∞ < K.

Hence,
∑N

i=1 a
2
ii < K and

∑N
i=1

∑i−1
j=1 a

2
ij < K. Furthermore,∣∣∣∣∣

N∑
i=1

a2ii
[
E
(
ζ4it
)
− 1
]∣∣∣∣∣ < sup

it

∣∣E (ζ4it)− 1
∣∣ N∑
i=1

a2ii,

and under Assumption 1, supitE
(
ζ4it
)
< K, and hence V ar [z2t,N (θ)] < K. Further, since

z2t,N (θ) are independently distributed over t, then we have (see, for example, White (1984))

1

T

T∑
t=1

z2t,N (θ)
a.s.→ 0. (A.16)

Next, using (A.12),

1

T

T∑
t=1

z3t,N (θ) = tr

[
B (θ0,θ)

(
T−1

T∑
t=1

x◦tx
′
◦t

)]
− tr [B (θ0,θ) Σxx]

= tr

{
B (θ0,θ)

[
T−1

T∑
t=1

(
x◦tx

′
◦t −Σxx

)]}
,
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But by Assumption 2(b) and (c) we have that E (x◦tx
′
◦t −Σxx|Ft) = 0, and T−1

∑T
t=1 x◦tx

′
◦t
a.s.→

Σxx, as T → ∞, which establishes that T−1
∑T

t=1 z3t,N (θ)
a.s.→ 0, as required. Finally, using

(A.13),

1

T

T∑
t=1

z4t,N (θ) = tr

{[
S(ψ)S−10 B0 −B

]′
Σ−1S(ψ)S−10 T−1

T∑
t=1

ε◦tx
′
◦t

}
.

But by Assumption 2(a), we have that E (ε◦tx
′
◦t|Ft) = 0 and E (|ε◦tx′◦t|

p | Ft) ≤ E (|ε◦t|p |x′◦t|
p | Ft) ,

for p = 2, which is bounded. Hence, T−1
∑T

t=1 ε◦tx
′
◦t
a.s.→ 0, as T →∞ and 1

T

∑T
t=1 z4t,N (θ)

a.s.→ 0.

(see, for example, White (1984)). Finally, (A.8) and (A.6) follow similarly.

Lemma 4 Let

ηit = σ−1i0 e′i,NG0B0x◦tζit + σ−1i0 e′i,NG0Σ
1/2
0 ζ◦tζit − g0,ii, (A.17)

where G0 = W (IN −Ψ0W )−1 = (g0,ij) and ei,N is an N dimensional vector with its ith element

unity and zeros elsewhere, and ζ◦t = (ζ1t, ζ2t, . . . , ζNt)
′ = (ε1t/σ10, ε2t/σ20, . . . , εNt/σN0)

′. Then

under Assumptions 1 and 2, ηit is a martingale difference process with respect to the filtration,

Ft = (x◦t,x◦t−1,x◦t−2, . . .), namely E (ηit|Ft) = 0, and

sup
i,t
E |ηit|p < K, for 1 ≤ p ≤ 2 + c, and some c > 0. (A.18)

Proof. We first recall that E (ζt|Ft) = 0, and hence E (ζt) = 0. Also E (ζ◦tζit) = ei,N and

V ar(ζ◦t) = IN . Now under Assumption 1 it follows that

E (ηit|Ft) = E
(
σ−1i0 e′i,NG0B0x◦tζit|Ft

)
+ E

(
σ−1i0 e′i,NG0Σ

1/2
0 ζ◦tζit|Ft

)
− g0,ii

= 0 + g0,ii − g0,ii = 0,

and establishes that ηit is a martingale difference process with respect to Ft, as required. To

establish (A.18), since ζit = εit/σi0 then by Minkowski’s inequality for p ≥ 1 we have:

‖ηit‖p ≤ σ
−2
i0

∥∥ϕ′ix◦tεit∥∥p + σ−1i0
∥∥ϑ′iζ◦tζit∥∥p + |g0,ii| , (A.19)

where ϕ′i = e′i,NG0B0, ϑ
′
i = e′i,NG0Σ

1/2
0 = (gi1σ10, gi2σ20, . . . , giNσN0) , and |g0,ii| < K. Con-

sider now the first term of (A.19), and note that since conditional on Ft, ϕ′ix◦t is given, and

noting that by Assumption 1 E (|εit|p |Ft) = $ip < K, then∥∥ϕ′ix◦tεit∥∥pp = E
[
E
(∣∣ϕ′ix◦tεit∣∣p | Ft)] ≤ E [∣∣ϕ′ix◦t∣∣p |E (|εit|p | Ft)

]
= E

(∣∣ϕ′ix◦t∣∣p)$ip,

and hence ‖ϕ′ix◦tεit‖p ≤ $
1/p
ip ‖ϕ′ix◦t‖p. Also

∥∥ϕ′ix◦t∥∥p =

∥∥∥∥∥∥
N∑
j=1

gij,0β
′
j0xjt

∥∥∥∥∥∥
p

≤
N∑
j=1

|gij,0|
∥∥β′j0xjt∥∥p

≤

(
sup
j,t

E
∥∥β′j0xjt∥∥p

)
N∑
j=1

|gij,0| .
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The first term on the right hand side is bounded by Assumption 2(a), for p ≤ 2 + c, and

supi
∑N

j=1 |gij,0| is bounded by Lemma 2. Hence, supi,t ‖ϕ′ix◦t‖p < K , and overall we have

supi,t ‖ϕ′ix◦tεit‖p < K. Consider now the second term of (A.19) and note that

∥∥ϑ′iζ◦tζit∥∥p ≤ N∑
j=1

‖gij,0σj0ζjtζit‖p ≤
1

σi0

N∑
j=1

|gij,0| |εjtεit|p =
1

σi0

N∑
j=1

|gij,0| [E |εjtεit|p]1/p .

But supi (1/σi0) < K by Assumption 1, and using Cauchy–Schwarz inequality we obtain25

∥∥ϑ′iζ◦tζit∥∥p ≤ K N∑
j=1

|gij,0|
[
E
(
ε2pjt

)]1/2p [
E
(
ε2pit

)]1/2p
≤ K

{
sup
i,t

[
E
(
ε2pit

)]1/p} N∑
j=1

|gij,0| .

Again supi
∑N

j=1 |gij,0| < K under Lemma 2 , and E
(
ε2pit

)
< K for 2p = 4 + ε under Assump-

tion 1, and hence
∥∥ϑ′iζ◦tζit∥∥p < K. Using this result together with supi,t ‖ϕ′ix◦tεit‖p < K

(established above) in (A.19) now yields (A.18) by setting c = 2ε.

Lemma 5 Let

`t(θ) = −N
2

ln(2π)− 1

2

N∑
i=1

lnσ2i +
1

2
ln |V(ψ)| (A.20)

− 1

2
[S(ψ)y◦t −Bx◦t]

′Σ−1 [S(ψ)y◦t −Bx◦t] ,

where V(ψ) = S′(ψ)S(ψ), and note that the log-likelihood function is given by

`T (θ) =

T∑
t=1

`t(θ) = −NT
2

ln(2π)− T

2

N∑
i=1

lnσ2i +
T

2
ln |V(ψ)|

− 1

2

T∑
t=1

[S(ψ)y◦t −Bx◦t]
′Σ−1 [S(ψ)y◦t −Bx◦t] ,

(see also (7)) which can be written equivalently as

`T (θ) = −NT
2

ln(2π)− T

2

N∑
i=1

lnσ2i +
T

2
ln |V(ψ)| (A.21)

− 1

2

{
N∑
i=1

(yi◦ − ψiy∗i◦ −Xi◦βi)
′ (yi◦ − ψiy∗i◦ −Xi◦βi)

σ2i

}
,

where yi◦ = (yi1, yi2, . . . , yiT )′ and y∗i◦ = (y∗i1, y
∗
i2, . . . , y

∗
iT )′ are T × 1 vectors, and Xi◦ =

(xi1,xi2, . . . ,xiT )′ is the T × k matrix of observations on regressors specific to the ith cross

25Note that since by Assumption 1 E (|εit|p |Ft) = $ip < K, then for a given i we also have E (|εit|p) = $ip,
unconditionally.
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section unit. Suppose that Assumptions 1, 2, 4 and 5, and conditions (21) and (28) hold.

Denote the score function by sT (θ) = ∂`T (θ)/∂θ =
∑T

t=1 ∂`t(θ)/∂θ. Then

T−1sT (θ0)
a.s.→ 0, (A.22)

and

T−1/2sT (θ0)→d N [0,J (θ0, γ)] , (A.23)

where

J (θ0, γ) = (J0,ij) = lim
T→∞

T∑
t=1

E0

[
1

T

(
∂`t(θ)

∂θ

)(
∂`t(θ)

∂θ

)′]
(A.24)

and

γ =

[
lim
T→∞

T−1
T∑
t=1

E
(
ζ4it
)
− 1

]
= lim

T→∞
T−1

T∑
t=1

V ar(ζ2it),

with ζit ∼ IID(0, 1), ζit = εit/σi0, for i = 1, 2, . . . , N . A consistent estimator of J (θ0, γ) is

given by

Ĵ(θ̂, γ̂) =
1

T


 T∑
t=1

∂`t

(
θ̂
)

∂θ

 T∑
t=1

∂`t

(
θ̂
)

∂θ

′
 ,

where θ̂ = arg maxθ ¯̀
T (θ) and

γ̂ = (NT )−1
T∑
t=1

N∑
i=1

(
ε̂it
σ̂i

)4

− 1,

with ε̂it = yit − ψ̂i
∑N

j=1wijyjt − β̂
′
ixit. σ̂i, β̂i and ψ̂i are the QML estimators of σi0, βi0 and

ψi0, respectively.

Proof. For a given N , the N (k + 2)×1 score vector sT (θ0) =
(
∂`T (θ0)
∂ψ′

, ∂`T (θ0)
∂β′

, ∂`T (θ0)

∂σ2′

)′
, where


∂`T (θ0)
∂ψ

∂`T (θ0)
∂β

∂`T (θ0)
∂σ2


N(k+2)×1

=


[
−T Diag (G0) + Diag

(
y∗′i◦εi◦
σ2
i0
, i = 1, 2, . . . , N

)]
τN

Diag
(
X′i◦εi◦
σ2
i0

, i = 1, 2, . . . , N
)
τNk

Diag
[
− T

2σ2
i0

+ 1
2σ4

i0
(ε′i◦εi◦) , i = 1, 2, . . . , N

]
τN

 , (A.25)

y∗i◦ = (y∗i1, y
∗
i2, . . . , y

∗
iT ), εi◦ = (εi1, εi2, . . . , εiT ), εi◦ = yi◦ − ψi0y∗i◦ −Xi◦βi0, and τ κ is a κ × 1

vector of ones. Consider first the ith component of ∂`T (θ0) /∂ψ, and note that it can be written

as

∂`T (θ0)

∂ψi
= −Tg0,ii +

1

σ2i0

T∑
t=1

y∗itεit.

Also y∗it = e′i,NG0 (B0x◦t + ε◦t), where G0 = W (IN −Ψ0W )−1 and ei,N is an N dimensional
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vector with its ith element unity and zeros elsewhere. Then

1

T

∂`T (θ0)

∂ψi
=

1

T

T∑
t=1

ηit, (A.26)

where ηit is already defined by (A.19) which we write as

ηit = σ−1i0 ϕ
′
ix◦tζit + σ−1i0 σ

−1
i0 ϑ

′
iζ◦tζit − g0,ii, (A.27)

and as in proof of Lemma 4, ϕ′i = e′i,NG0B0, ϑ
′
i = e′i,NG0Σ

1/2
0 = (gi1σ10, gi2σ20, . . . , giNσN0),

ζ◦t = (ζ1t, ζ2t, . . . , ζNt)
′, and ζit = εit/σi0. Also recall that by Lemma 4, E (ηit|Ft) = 0, and

supi,tE |ηit|
2+c < K, for some c > 0. Therefore, using (A.26) by the strong law of large numbers

for martingales we have (see, for example, White (1984))

1

T

∂`T (θ0)

∂ψ

a.s.→ 0. (A.28)

Further, since E (ηit|Ft) = 0, then using (A.27)

V ar (ηit) = E [V ar (ηit | Ft)] = σ−2i0 g′0,iB0ΣxxB
′
0g0,i + σ−2i0

N∑
j=1

σ2j0g
2
0,ij + g20,ii

[
E
(
ζ4it
)
− 2
]

= σ−2i0

N∑
r=1

N∑
s=1

g0,isg0,irβ
′
r0Σrsβs0 + σ−2i0

N∑
j=1

σ2j0g
2
0,ij + g20,ii

[
E
(
ζ4it
)
− 2
]
. (A.29)

Consider now the limiting distribution of 1√
T

∂`T (θ0)
∂ψi

= 1√
T

∑T
t=1 ηit, and note that by Lemma 4,

supi,tE |ηit|
2+c < K for some c > 0, and by Corollary 5.25 in White (1984) it follows that

1√
T

∂`T (θ0)

∂ψi
→d N (0, ωii) , as T →∞, (A.30)

where (using (A.29))

ωii = lim
T→∞

T−1
T∑
t=1

V ar (ηit)

= g20,ii

[
lim
T→∞

T−1
T∑
t=1

E
(
ζ4it
)
− 2

]
+ σ−2i0 g′0,iB0ΣxxB

′
0g0,i + σ−2i0

N∑
j=1

σ2j0g
2
0,ij ,

which exists and is finite under Assumptions 1 and 2(b).

Similarly, consider the ith component of ∂`T (θ0)
∂β . Then, write

1

T

∂`T (θ0)

∂βi
=

1

σ2i0

1

T

T∑
t=1

xitεit =
1

σi0

1

T

T∑
t=1

xitζit. (A.31)

But by Assumption 2(a), E (xitζit | Ft) = (1/σi0)xitE (εit |Ft ) = 0, and V ar (xitζit | Ft) =
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xitx
′
itE
(
ζ2it | Ft

)
= xitx

′
it. Hence E (xitζit) = 0, and V ar (xitζit) = Σii < K. Therefore, noting

that xitζit is a martingale difference process with finite second-order moments, it follows that

1

T

∂`T (θ0)

∂β

a.s.→ 0, as T →∞. (A.32)

Denote the `th element of xitζit by zi`,t = xi`,tζit for ` = 1, 2, . . . , k, and note that the `th element

of 1√
T

∂`T (θ0)
∂βi

is given 1
σi0

1√
T

∑T
t=1 zi`,t, where zi`,t is a martingale difference process with respect

to Ft. Also, by Assumptions 1 and 2(a),

sup
i,`,t

E |zi`,t|p = sup
i,`,t

E |xi`,tζit|p = sup
i,`,t

E [E (|xi`,tζit|p |Ft )] ≤ sup
i,`,t

E [|xi`,t|pE (|ζit|p |Ft )]

= sup
i,`,t

(E |xi`,t|p)σ−pi0 $ip < K,

for p = 2 + c, c > 0. Hence, by Corollary 5.25 in White (1984) it follows that for each i and `

and as T →∞, 1
σi0

1√
T

∑T
t=1 zi`,t tends to a normal distribution and as whole we have

1√
T

∂`T (θ0)

∂βi
→d N (0,Ωi) , (A.33)

where

Ωi =
1

σ2i0
lim
T→∞

T−1
T∑
t=1

E
(
xitx

′
it

)
. (A.34)

Finally, consider the ith component of ∂`T (θ0)
∂σ2 , and note that

1

T

∂`T (θ0)

∂σ2i
=

1

2σ2i0

1

T

T∑
t=1

(
ε2it
σ2i0
− 1

)
=

1

2σ2i0

[
1

T

T∑
t=1

(
ζ2it − 1

)]
.

Let ξit = ζ2it − 1,where ζit = εit/σi0. Then

1

T

∂`T (θ0)

∂σ2i
=

1

2σ2i0

[
1

T

T∑
t=1

ξit

]
. (A.35)

We have E (ξit | Ft) = E
(
ζ2it | Ft

)
− 1 = 0, and E

(
ξ2it | Ft

)
= E

(
ζ4it | Ft

)
− 1, so that, since

under Assumption 1 ξit’s are martingale difference processes and E(|εit|4+ε |Ft) < K, for some

small positive ε, then supiE |ξit|
2 < K and by the strong law of large numbers for martingale

processes we have
1

T

∂`T (θ0)

∂σ2

a.s.→ 0, as T →∞. (A.36)

Similarly, since supiE |ξit|
2+c < K for some c > 0, then as before

T−1/2
∂`T (θ0)

∂σ2i
→d N(0, vii), (A.37)
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where

vii = lim
T→∞

T−1
T∑
t=1

[
1

4σ4i0
V ar(ξit)

]
=

(
1

4σ4i0

)
lim
T→∞

T−1
T∑
t=1

V ar(ζ2it). (A.38)

Now results (A.28), (A.32) and (A.36) establish (A.22), and results (A.30), (A.33) and (A.37)

establish (A.23), as required, with J (θ0, γ) = limT→∞
∑T

t=1E0

[
1
T

(
∂`t(θ)
∂θ

)(
∂`t(θ)
∂θ

)′]
. Consis-

tency of Ĵ(θ̂, γ̂) for J (θ0, γ) follows from consistency of θ̂ for θ0, and γ̂ for γ, and independence

of ∂`t(θ0)
∂θ over t. Further, since θ̂

a.s.→ θ0 on Θc, as T →∞, as shown in Section 3.3, we have

ε̂it = εit +Op

(
1√
T

)
, and σ̂2i = σ2i +Op

(
1√
T

)
,

which establishes that

γ̂ = (NT )−1
T∑
t=1

N∑
i=1

(
ε̂it
σ̂i

)4

− 1→p γ, as T →∞, for any N.

Appendix B Proof of Proposition 2

Proof of Proposition 2. First, we consider the information matrix H (θ0) given by

H (θ0) = lim
T→∞

E0

[
− 1

T

∂2`T (θ)

∂θ∂θ′

]
, (B.39)

where

E0

[
− 1

T

∂2`T (θ)

∂θ∂θ′

]
=

 H11 H12 H13

H ′12 H22 H23

H ′13 H ′23 H33


N(k+2)×N(k+2)

.

We evaluate each partial derivative in (B.39):

H11 = E0

[
− 1
T
∂2`T (θ)
∂ψ∂ψ′

]
is given by the N ×N matrix

H11 =
(
G0 �G′0

)
+ Diag

[
1

σ2i0

1

T

T∑
t=1

E0

(
y∗2it
)

, i = 1, 2, . . . , N

]
,

where G0 = W (IN −Ψ0W )−1 with its ith row denoted by g′0i, and

1

T

T∑
t=1

E0

(
y∗2it
)

= w′i(IN −Ψ0W )−1
[
B0E

(
x◦tx

′
◦t
)
B′0 + Σ0

]
(IN −W ′Ψ0)

−1wi

= g′0i
(
B0ΣxxB

′
0 + Σ0

)
g0i

=

N∑
r=1

N∑
s=1

g0,isg0,irβ
′
r0Σrsβs0 +

N∑
s=1

g20,isσ
2
s0.
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Note that as shown in Lemmas 2 and 5,

‖G0‖∞ < K,
∥∥G0 �G′0

∥∥
∞ < K and

∥∥∥∥∥
N∑
r=1

N∑
s=1

g0,isg0,irβ
′
r0Σrsβs0

∥∥∥∥∥
∞

< K.

H12 = E0

[
− 1
T
∂2`T (θ)
∂ψ∂β′

]
is an N × kN matrix with its ith row given by a 1× kN vector of zeros

except for its ith block which is given by the 1× k vector σ−2i0 E0(T
−1y∗

′
i Xi), namely

H12 =


σ−210 E0(T

−1y∗
′

1 X1) 0 · · · 0

0 σ−220 E0(T
−1y∗

′
2 X2) · · · 0

...
...

. . .
...

0 0 · · · σ−2N0E0(T
−1y∗

′
NXN )

 ,

where

E0(T
−1y∗′i Xi) = E0

(
T−1

T∑
t=1

y∗itx
′
it

)
= E0

(
T−1

T∑
t=1

w′iy◦tx
′
it

)
= w′i(IN −Ψ0W)−1BE

(
x◦tx

′
it

)
= g′0i (Σi1β10,Σi2β20, . . . ,ΣiNβN0)

′ =
N∑
s=1

g0,isβ
′
s0Σis.

Again by Assumptions 2(b), 3 and 5, sups ‖βs0‖1 and Σis exist and are finite. Also, maxi
∑N

s=1 |g0,is| =
‖G0‖∞ which is bounded under our assumptions. H13 = E0

[
− 1
T
∂2`T (θ)
∂ψ∂σ2′

]
is an N ×N diagonal

matrix with its ith element given by σ−2i0 w
′
i(IN −Ψ0W)−1ei,N = σ−2i0 g0,ii, where ei,N is an N

dimensional vector with its ith element unity and zeros elsewhere. H22 = E0

[
− 1
T
∂2`T (θ)
∂β∂β′

]
is

an Nk × Nk block diagonal matrix with its ith block given by σ−2i0 Σii. H23 = 0, and finally

H33 = E0

[
− 1
T

∂2`T (θ)
∂(σ2)∂(σ2′)

]
= Diag(1/2σ410, 1/2σ

4
20, . . . , 1/2σ

4
N0). Collecting all terms, we obtain

(B.39).

Next, recalling from Lemma 4 that

ηit = σ−1i0 ϕ
′
ix◦tζit + σ−1i0 ϑ

′
iζ◦tζit − g0,ii,

12



where ϕ′i = e′i,NG0B0 and ϑ′i = e′i,NG0Σ
1/2
0 , and using (A.26) and (A.29) of Lemma 5, we have

the following cross-products (for i 6= j)

E0

[
1√
T

∂`T (θ)

∂ψi

1√
T

∂`T (θ)

∂ψj

]
=

1

T

T∑
t=1

T∑
t′=1

E0

(
ηitηjt′

)
=

1

T

T∑
t=1

T∑
t′=1

E

{ [
σ−1i0 ϕ

′
ix◦tζit + σ−1i0 ϑ

′
iζ◦tζit − g0,ii

][
σ−1j0 ϕ

′
jx◦t′ζjt′ + σ−1j0 ϑ

′
jζ◦t′ζjt′ − g0,jj

] }

=
1

T

T∑
t=1

E

{ [
σ−1i0 ϕ

′
ix◦tζit + σ−1i0 ϑ

′
iζ◦tζit − g0,ii

][
σ−1j0 ϕ

′
jx◦tζjt + σ−1j0 ϑ

′
jζ◦tζjt − g0,jj

] }

=
1

T

T∑
t=1

{
σ−1i0 σ

−1
j0 ϕ

′
iE (x◦tx

′
◦tζitζjt)ϕj + σ−1i0 σ

−1
j0 ϑ

′
iE
(
ζitζjtζ◦tζ

′
◦t
)
ϑj − g0,iig0,jj

+σ−1i0 σ
−1
j0 ϕ

′
iE0

(
x◦tζ

′
◦tϑjζitζjt

)
+σ−1j0 σ

−1
i0 ϕ

′
jE0

(
x◦tζ

′
◦tϑjζjtζit

)
=


{
g20,ii

[
1
T

∑T
t=1E

(
ζ4it
)
− 2
]

+ σ−2i0 g′0,iB0ΣxxB
′
0g0,i

+σ−2i0
∑N

j=1 σ
2
j0g

2
0,ij

, for i = j

g0,ijg0,ji, , for i 6= j

.

Further, using (A.31) and (A.34) of Lemma 5 we have

E0

[
1√
T

∂`T (θ)

∂βi

1√
T

∂`T (θ)

∂β′j

]
=

1

σi0σj0

1

T

T∑
t=1

T∑
t′=1

E
(
xitζitζjt′x

′
jt′
)

=

{
1

σ2
i0T

∑T
t=1E (xitx

′
it) , for i = j

0, for i 6= j
,

and using (A.35) and (A.38) of Lemma 5 we have

E0

[
1√
T

∂`T (θ)

∂σ2i

1√
T

∂`T (θ)

∂σ2j

]
=

1

4σ2i0σ
2
j0

1

T

T∑
t=1

T∑
t′=1

E
(
ξitξjt′

)
=

1

4σ2i0σ
2
j0

1

T

T∑
t=1

T∑
t′=1

E
[(
ζ2it − 1

) (
ζ2jt′ − 1

)]
=

1

4σ2i0σ
2
j0

1

T

T∑
t=1

E
(
ζ2itζ

2
jt − ζ2it − ζ2jt + 1

)
=

{
1

4σ4
i0T

[∑T
t=1E

(
ζ4it
)
− 1
]
, for i = j

0, for i 6= j
.
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In addition,

E0

[
1√
T

∂`T (θ)

∂βi

1√
T

∂`T (θ)

∂ψj

]
=

1

σi0T

T∑
t=1

T∑
t′=1

E0

[
(xitζit) ηjt′

]
=

1

σi0T

T∑
t=1

T∑
t′=1

E0

[
xitζit

(
σ−1j0 ϕ

′
jx◦t′ζjt′ + σ−1j0 ϑ

′
jζ◦t′ζjt′ − g0,jj

)]

=
1

σi0T

T∑
t=1

[
σ−1j0 E0

(
xitϕ

′
jx◦tζitζjt

)
+ σ−1j0 E0

(
xitζitϑ

′
jζ◦tζjt

)
−g0,jjE (xitζit)

]

=

{
σ−2i0 g

′
0i (Σi1β10,Σi2β20, . . . ,ΣiNβN0)

′ , for i = j

0, for i 6= j
.

Moreover,

E0

[
1√
T

∂`T (θ)

∂σ2i

1√
T

∂`T (θ)

∂ψj

]
=

1

2σ2i0

1

T

T∑
t=1

T∑
t′=1

E
(
ξitηjt′

)
=

1

2σ2i0

1

T

T∑
t=1

T∑
t′=1

E
[(
ζ2it − 1

) (
σ−1j0 ϕ

′
jx◦t′ζjt′ + σ−1j0 ϑ

′
jζ◦t′ζjt′ − g0,jj

)]
=

1

2σ2i0

1

T

T∑
t=1

E
[
ζ2it

(
σ−1j0 ϕ

′
jx◦tζjt + σ−1j0 ϑ

′
jζ◦tζjt − g0,jj

)]

=


g0,ii[ 1

T

∑T
t=1 E(ζ4it)−1]
2σ2

i0
, for i = j

0, for i 6= j
,

and finally,

E0

[
1√
T

∂`T (θ)

∂βi

1√
T

∂`T (θ)

∂σ2j

]
=

1

2σi0σ2j0

1

T

T∑
t=1

T∑
t′=1

E
[
(xitζit) ξjt′

]
=

1

2σi0σ2j0

1

T

T∑
t=1

T∑
t′=1

E
[
(xitζit)

(
ζ2jt′ − 1

)]
= 0, for all i, j = 1, 2, . . . , N.

Overall, let

γ =

[
lim
T→∞

T−1
T∑
t=1

E
(
ζ4it
)
− 1

]
= lim

T→∞
T−1

T∑
t=1

V ar(ζ2it). (B.40)

We can collect the various terms and construct matrix

J (θ0, γ) = (J0,ij) = lim
T→∞

E0

 1

T

(
T∑
t=1

∂`t (θ)

∂θ

)(
T∑
t=1

∂`t (θ)

∂θ

)′ =

 J11 J12 J13

. J22 J23

. . J33


N(k+2)×N(k+2)

,

(B.41)
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where `t (θ) is defined in (A.20) and

J11 =

{
(G0 �G′0) + (γ − 2) Diag (G0 �G′0)

+ Diag
[
σ−2i0 g

′
0i (B0ΣxxB

′
0 + Σ0) g0i, i = 1, 2, . . . , N

] ,

J12 = Diag

[
σ−2i0

N∑
s=1

g0,isβ
′
s0Σis, i = 1, 2, . . . , N

]
,

J13 =
γ

2
Diag

(
σ−2i0 g0,ii, i = 1, 2, . . . , N

)
, J22 = Diag

(
σ−2i0 Σii, i = 1, 2, . . . , N

)
,

J23 = 0, J33 =
γ

4
Diag

(
1/σ4i0, i = 1, 2, . . . , N

)
.

Having established that the score vector is asymptotically normally distributed, it is now easily

seen that as T →∞, √
T
(
θ̂ − θ0

)
→d N (0,V θ) , (B.42)

where V θ = H−1 (θ0) J (θ0, γ)H−1 (θ0).

Appendix C Estimator of V
(
θ̂
)

Derivatives of the log-likelihood function

The vector of maximum likelihood estimates, θ̂T , in Section 2 is obtained by maximizing the

log-likelihood function (A.21) which we reproduce here for convenience26

`T (θ) = −NT
2

ln(2π)−T
2

N∑
i=1

lnσ2i +T ln |IN−ΨW | −1

2

N∑
i=1

(yi◦ − ψiy∗i◦ −Xi◦βi)
′ (yi◦ − ψiy∗i◦ −Xi◦βi)

σ2i
,

(C.43)

where θ = (ψ′,β′,σ2′)′.

First derivatives

We have

∂`T (θ)

∂ψi
= −T tr[(IN −ΨW )−1EiiW ] +

y∗′i◦ (yi◦ − ψiy∗i◦ −Xi◦βi)

σ2i
, for i = 1, 2, . . . , N,

∂`T (θ)

∂βi
=

X′i◦ (yi◦ − ψiy∗i◦ −Xi◦βi)

σ2i
, for i = 1, 2, . . . , N,

∂`T (θ)

∂σ2i
= − T

2σ2i
+

1

2σ4i
(yi◦ − ψiy∗i◦ −Xi◦βi)

′ (yi◦ − ψiy∗i◦ −Xi◦βi) , for i = 1, 2, . . . , N,

where Eii is the N ×N matrix whose (i, i) element is 1 and zero elsewhere.

26Note that ln |S′(ψ)S(ψ)| = 2 ln |IN −ΨW |.
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Second derivatives

We have

Ĥ (θ) = − 1

T

∂2`T (θ)

∂θ∂θ′
=

 Ĥ11 Ĥ12 Ĥ13

. Ĥ22 Ĥ23

. . Ĥ33

 ,

=


− 1
T
∂2`T (θ)
∂ψ∂ψ′

− 1
T
∂2`T (θ)
∂ψ∂β′

− 1
T
∂2`T (θ)
∂ψ∂σ2′

. − 1
T
∂2`T (θ)
∂β∂β′

− 1
T
∂2`T (θ)
∂β∂σ2′

. . − 1
T

∂2`T (θ)
∂(σ2)∂(σ2′)

 .

With the (i, j) or ith element of associated matrix or vector given in {}, we have

Ĥ11 = − 1

T

∂2`T (θ)

∂ψ∂ψ′
=

{
− 1

T

∂2`NT (θ)

∂ψi∂ψj

}
,

− 1

T

∂2`T (θ)

∂ψi∂ψj
=

{
tr
[
(I −ΨW )−1EiiW (I −ΨW )−1EiiW

]
+ 1

σ2
i

y∗′i◦y
∗
i◦

T if i = j

tr
[
(I −ΨW )−1EjjW (I −ΨW )−1EiiW

]
if i 6= j

,

− 1

T

∂2`T (θ)

∂ψi∂ψj
=

{
g2ii + 1

σ2
i

y∗′i◦y
∗
i◦

T if i = j

gijgji if i 6= j
,

where Eij is the N × N matrix whose (i, j) element is 1 and zero elsewhere and G = (gij) =

W (IN −ΨW )−1. Further,

Ĥ12 = − 1

T

∂2`T (θ)

∂ψ∂β′
=

{
− 1

T

∂2`T (θ)

∂ψi∂β
′
j

}
=

{
1

σ2i

y∗′i◦Xi◦
T

, if i = j, and 0, if i 6= j

}
,

Ĥ13 = − 1

T

∂2`T (θ)

∂ψ∂σ2′ =

{
− 1

T

∂2`T (θ)

∂ψi∂σ2j

}
=

{
1

σ4i

y∗′i◦ (yi◦ − ψiy∗i◦ −Xi◦βi)

T
, if i = j, and 0, if i 6= j

}
,

Ĥ22 = − 1

T

∂2`T (θ)

∂β∂β′
=

{
− 1

T

∂2`T (θ)

∂βi∂β
′
j

}
=

{
1

σ2i

X ′i◦Xi◦
T

, if i = j, and 0, if i 6= j

}
,

Ĥ23 = − 1

T

∂2`T (θ)

∂β∂σ2′ =

{
− 1

T

∂2`T (θ)

∂βi∂σ
2
j

}
=

{
1

σ4i

X′i◦(yi◦ − ψiy∗i◦ −Xi◦βi)

T
, if i = j, and 0, if i 6= j

}
,

Ĥ33 = − 1

T

∂2`T (θ)

∂ (σ2) ∂ (σ2′)
=

{
− 1

T

∂2`T (θ)

∂σ2i ∂σ
2
j

}

=

{
− 1

2σ4i
+

1

σ6i

1

T
(yi◦ − ψiy∗i◦ −Xi◦βi)

′(yi◦ − ψiy∗i◦ −Xi◦βi), if i = j, and 0, if i 6= j

}
.
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Finally, from the above results we obtain:

Ĵ (θ) =
1

T


[

T∑
t=1

∂`t (θ)

∂θ

][
T∑
t=1

∂`t (θ)

∂θ

]′ and Ĥ (θ) = − 1

T

∂2`T (θ)

∂θ∂θ′
,

from which the standard and sandwich covariance matrix estimators (49) and (50), are given by

V̂ θ̂ = Ĥ
−1 (

θ̂
)

and V̂ θ̂ = Ĥ
−1 (

θ̂
)
Ĵ
(
θ̂
)
Ĥ
−1 (

θ̂
)
.

Appendix D Data sources

Monthly data for U.S. house prices over the period January 1975 to December 2014 are obtained

from the Freddie Mac House Price Index (FMHPI). These data are available at:

http://www.freddiemac.com/research/.

Annual data on nominal income per capita and population at MSA level are acquired from

the Bureau of Economic Analysis website for the same period. These data are available at:

https://www.bea.gov/data/.

Annual State level Consumer Price Index data are obtained from the Bureau of Labour

Statistics: https://www.bls.gov/cpi/. These are matched to the corresponding MSAs. In some

cases where area data are missing then the U.S. average CPI is used instead.

Appendix E Additional Monte Carlo results

The Monte Carlo results provided in the tables and plots below are based on the designs set out

in Section 5 of the paper.
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Table S1: Bias, RMSE, size and power for parameters of individual units in the HSAR(1) model
with one exogenous regressor and non-Gaussian errors for N = 5 and T ∈ {25, 50, 100, 200}.

T 25 50 100 200
Parameter Bias RMSE Bias RMSE Bias RMSE Bias RMSE

ψi0
ψ1,0 = 0.1261 -0.0063 0.1537 0.0001 0.1012 -0.0023 0.0707 0.0007 0.0490
ψ2,0 = 0.3883 -0.0035 0.2078 -0.0049 0.1392 -0.0006 0.0955 -0.0002 0.0666
ψ3,0 = 0.4375 -0.0096 0.1852 -0.0016 0.1155 0.0020 0.0807 0.0000 0.0578
ψ4,0 = 0.5059 0.0022 0.1478 -0.0039 0.1018 -0.0020 0.0686 -0.0008 0.0481
ψ5,0 = 0.7246 -0.0040 0.1747 -0.0016 0.1248 -0.0008 0.0880 0.0001 0.0597

βi0
β1,0 = 0.9649 0.0097 0.1663 0.0047 0.1102 0.0020 0.0758 -0.0015 0.0540
β2,0 = 0.9572 0.0065 0.1968 0.0048 0.1349 -0.0017 0.0938 -0.0018 0.0657
β3,0 = 0.2785 0.0054 0.2088 -0.0012 0.1316 -0.0017 0.0918 0.0013 0.0666
β4,0 = 0.9134 -0.0011 0.1643 0.0054 0.1098 0.0007 0.0749 0.0000 0.0515
β5,0 = 0.8147 0.0039 0.2079 0.0069 0.1440 0.0056 0.0989 0.0003 0.0674

T 25 50 100 200 25 50 100 200
Parameter Size Power

ψi0
ψ1,0 = 0.1261 0.1025 0.0665 0.0545 0.0505 0.4350 0.6010 0.8260 0.9725
ψ2,0 = 0.3883 0.1000 0.0690 0.0575 0.0555 0.3015 0.4520 0.6205 0.8535
ψ3,0 = 0.4375 0.0990 0.0630 0.0570 0.0520 0.3395 0.4910 0.7365 0.9400
ψ4,0 = 0.5059 0.0795 0.0670 0.0615 0.0460 0.4265 0.6165 0.8475 0.9780
ψ5,0 = 0.7246 0.0770 0.0720 0.0700 0.0560 0.3270 0.4680 0.6765 0.9125

βi0
β1,0 = 0.9649 0.0920 0.0645 0.0535 0.0610 0.3985 0.5485 0.7610 0.9500
β2,0 = 0.9572 0.0965 0.0725 0.0595 0.0545 0.3100 0.4265 0.6445 0.8690
β3,0 = 0.2785 0.0965 0.0695 0.0500 0.0625 0.3370 0.4380 0.6435 0.8525
β4,0 = 0.9134 0.0890 0.0685 0.0550 0.0470 0.4230 0.5305 0.7830 0.9545
β5,0 = 0.8147 0.0940 0.0730 0.0590 0.0525 0.2885 0.3880 0.5590 0.8350

Notes: True parameter values are generated as ψi0 ∼ IIDU (0, 0.8), αi0 ∼ IIDN (1, 1), and βi0 ∼
IIDU (0, 1) for i = 1, 2, . . . , N . Non-Gaussian errors are generated as εi0/σi0 ∼ IID [χ2(2) − 2]/2, with
σ2
i0 ∼ IIDU [χ2(2)/8 + 0.25] for i = 1, 2, . . . , N . The spatial weight matrix W = (wij) has four connec-

tions so that wij = 1 if j is equal to: i−2, i−1, i+1, i+2, and zero otherwise, for i = 1, 2, . . . , N . Biases

and RMSEs are computed as R−1
∑R

r=1(ψ̂i,r − ψi0) and
√
R−1

∑R
r=1(ψ̂i,r − ψi0)2 for i = 1, 2, . . . , N .

Empirical size and empirical power are based on the sandwich formula given by (47). The nominal size
is set to 5%. Size is computed under Hi0 : ψi = ψi0, using a two-sided alternative, for i = 1, 2, . . . , N .
Power is computed under ψi = ψi0 + 0.2, for i = 1, 2, . . . , N . The number of replications is set to
R = 2, 000. Estimates are sorted in ascending order according to the true values of the spatial autore-
gressive parameters. Biases, RMSEs, sizes and powers for βi, i = 1, 2, . . . , N , are computed similarly,
with power computed under βi = βi0 + 0.2.
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Table S2: Bias, RMSE, size and power for parameters of individual units in the HSAR(1) model
with one exogenous regressor and non-Gaussian errors for N = 100 and T ∈ {25, 50, 100, 200}.

T 25 50 100 200
Parameter Bias RMSE Bias RMSE Bias RMSE Bias RMSE

ψi0
ψ1,0 = 0.0244 -0.0021 0.2572 -0.0036 0.1741 0.0009 0.1160 0.0000 0.0828
ψ2,0 = 0.0255 -0.0356 0.4532 0.0022 0.3105 -0.0114 0.2191 -0.0022 0.1499
ψ3,0 = 0.0397 0.0078 0.3029 -0.0032 0.2099 -0.0006 0.1438 0.0011 0.1025

...
...

...
...

...
...

...
...

...
ψ51,0 = 0.3927 -0.0022 0.2698 0.0020 0.1914 -0.0003 0.1305 0.0001 0.0896
ψ52,0 = 0.3987 0.0002 0.1694 -0.0039 0.1166 0.0021 0.0777 0.0004 0.0545
ψ53,0 = 0.4004 -0.0097 0.2691 0.0054 0.1770 0.0025 0.1205 -0.0017 0.0855

...
...

...
...

...
...

...
...

...
ψ98,0 = 0.7695 -0.0012 0.1433 0.0019 0.1013 0.0046 0.0724 -0.0001 0.0510
ψ99,0 = 0.7705 -0.0397 0.2546 -0.0088 0.1692 0.0020 0.1248 0.0007 0.0920
ψ100,0 = 0.7904 -0.0084 0.1514 -0.0070 0.1113 0.0008 0.0771 0.0006 0.0521

βi0
β1,0 = 0.1978 0.0066 0.2012 0.0010 0.1280 0.0006 0.0868 -0.0052 0.0598
β2,0 = 0.7060 0.0202 0.2711 0.0005 0.1720 -0.0001 0.1176 0.0033 0.0837
β3,0 = 0.4173 0.0077 0.1852 0.0027 0.1254 -0.0002 0.0842 0.0019 0.0597

...
...

...
...

...
...

...
...

...
β51,0 = 0.9448 0.0043 0.1415 -0.0015 0.0962 0.0015 0.0665 0.0007 0.0471
β52,0 = 0.1190 0.0030 0.1324 0.0023 0.0913 -0.0004 0.0619 0.0014 0.0421
β53,0 = 0.7127 0.0019 0.1941 -0.0036 0.1226 0.0025 0.0893 0.0010 0.0615

...
...

...
...

...
...

...
...

...
β98,0 = 0.1067 0.0024 0.1221 -0.0024 0.0807 0.0005 0.0553 -0.0002 0.0399
β99,0 = 0.4588 0.0147 0.1909 0.0026 0.1300 0.0017 0.0899 0.0017 0.0650
β100,0 = 0.3674 0.0035 0.1239 0.0022 0.0865 0.0006 0.0607 0.0002 0.0408

T 25 50 100 200 25 50 100 200
Parameter Size Power

ψi0
ψ1,0 = 0.0244 0.0915 0.0805 0.0560 0.0600 0.2255 0.3025 0.4560 0.7070
ψ2,0 = 0.0255 0.0830 0.0645 0.0580 0.0525 0.1225 0.1170 0.1940 0.2890
ψ3,0 = 0.0397 0.0905 0.0785 0.0605 0.0630 0.1815 0.2390 0.3450 0.5405

...
...

...
...

...
...

...
...

...
ψ51,0 = 0.3927 0.0995 0.0640 0.0595 0.0530 0.1975 0.2915 0.4020 0.6325
ψ52,0 = 0.3987 0.0865 0.0660 0.0620 0.0525 0.3785 0.5380 0.7440 0.9395
ψ53,0 = 0.4004 0.0960 0.0810 0.0520 0.0590 0.2400 0.3020 0.4540 0.6760

...
...

...
...

...
...

...
...

...
ψ98,0 = 0.7695 0.0710 0.0665 0.0675 0.0660 0.4015 0.5760 0.7930 0.9650
ψ99,0 = 0.7705 0.0390 0.0320 0.0405 0.0535 0.1750 0.2380 0.3820 0.6095
ψ100,0 = 0.7904 0.0690 0.0655 0.0575 0.0510 0.3845 0.5705 0.7605 0.9500

βi0
β1,0 = 0.1978 0.1085 0.0710 0.0570 0.0485 0.3320 0.4715 0.6715 0.9195
β2,0 = 0.7060 0.1055 0.0580 0.0495 0.0570 0.2315 0.3110 0.4530 0.6680
β3,0 = 0.4173 0.0935 0.0805 0.0520 0.0590 0.3585 0.4815 0.6985 0.9120

...
...

...
...

...
...

...
...

...
β51,0 = 0.9448 0.0940 0.0705 0.0535 0.0545 0.4710 0.6580 0.8445 0.9745
β52,0 = 0.1190 0.0950 0.0845 0.0525 0.0470 0.5250 0.6900 0.8940 0.9920
β53,0 = 0.7127 0.1055 0.0690 0.0685 0.0545 0.3615 0.4800 0.6485 0.8910

...
...

...
...

...
...

...
...

...
β98,0 = 0.1067 0.0945 0.0685 0.0520 0.0570 0.5775 0.7650 0.9320 0.9960
β99,0 = 0.4588 0.0745 0.0625 0.0505 0.0580 0.2845 0.4355 0.6460 0.8600
β100,0 = 0.3674 0.1000 0.0710 0.0680 0.0540 0.5480 0.7205 0.9070 0.9935

Notes: See notes to Table S1.

19



Figure A1: Boxplots of RMSEs for the individual autoregressive spatial parameter estimates
from the HSAR(1) model with non-Gaussian errors, one exogenous regressor and spatial weight
matrix W having 4 connections for different N and T combinations
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Notes: True parameter values are generated as ψi0 ∼ IIDU(0, 0.8), ai0 ∼ IIDN(1, 1) and
βi0 ∼ IIDU(0, 1), for i = 1, 2, . . . , N . Non-Gaussian errors are generated as εit/σi0 ∼
IID[χ2(2) − 2]/2, with σ2

i0 ∼ IID[χ2(2)/4 + 0.5], for i = 1, 2, . . . , N . Exogenous regres-
sors are spatially correlated across i and generated by (65), with φi = 0.5. The spatial weight
matrix W = (wij) has four connections so that wij = 1 if j is equal to i− 2, i− 1, i+ 1, i+ 2,

and zero otherwise, for i = 1, 2, . . . , N . RMSEs are computed as
√
R−1

∑R
r=1(ψ̂i,r − ψi0)2 for

i = 1, 2, · · · , N . The number of replications is set to R = 2, 000.
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Figure A2: Boxplots of RMSEs for the individual slope parameter estimates from the HSAR(1)
model with non-Gaussian errors, one exogenous regressor and spatial weight matrix W having
4 connections for different N and T combinations
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Notes: RMSEs are computed as
√
R−1

∑R
r=1(β̂i,r − βi0)2 for i = 1, 2, · · · , N . See the notes

to Figure A1 for details of the data generating process. The number of replications is set to
R = 2, 000.
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Figure A3: Boxplots of empirical sizes of tests for individual spatial parameters from HSAR(1)
model with non-Gaussian errors, one exogenous regressor and spatial weight matrix W having
4 connections for different N and T combinations, using the sandwich formula for the variance
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Notes: Nominal size is set to 5%. The sandwich formula is given by (50). See the notes to
Figure A1 for details of the data generating process. Size is computed under H0: ψi=ψi0,
using a two-sided alternative where ψi0 takes values in the range [0.0, 0.8] for i = 1, 2, . . . , N .
The number of replications is set to R = 2, 000.
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Figure A4: Empirical power functions for different N and T combinations, associated with
testing the spatial parameter value ψi0 = 0.3374 from HSAR(1) model with non-Gaussian errors,
one exogenous regressor and spatial weight matrix W having 4 connections, using the sandwich
formula for the variance
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Notes: The power functions are based on the sandwich formula given by (50). See the notes
to Figure A1 for details of the data generating process. Power is computed under ψi=ψi0 + δ,
where δ = −0.8,−0.791, . . . , 0.791, 0.8 or until the parameter space boundaries of -1 and 1 are
reached. The number of replications is set to R = 2, 000.
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Figure A5: Empirical power functions for different N and T combinations, associated with
testing the spatial parameter value ψi0 = 0.5059 from HSAR(1) model with non-Gaussian errors,
one exogenous regressor and spatial weight matrix W having 4 connections, using the sandwich
formula for the variance
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Notes: See the notes to Figure A4.
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Figure A6: Empirical power functions for different N and T combinations, associated with
testing the spatial parameter value ψi0 = 0.7676 from HSAR(1) model with non-Gaussian errors,
one exogenous regressor and spatial weight matrix W having 4 connections, using the sandwich
formula for the variance
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Notes: See the notes to Figure A4.
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Figure A7: Boxplots of empirical sizes of tests for individual slope parameters from HSAR(1)
model with non-Gaussian errors, one exogenous regressor and spatial weight matrix W having
4 connections for different N and T combinations, using the sandwich formula for the variance
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Notes: Nominal size is set to 5%. The sandwich formula is given by (50). See the notes to
Figure A1 for details of the data generating process. Size is computed under H0: βi=βi0, using
a two-sided alternative where βi0 takes values in the range [0.0, 1.0] for i = 1, 2, . . . , N . The
number of replications is set to R = 2, 000.
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Figure A8: Empirical power functions for different N and T combinations, associated with
testing the slope parameter value βi0 = 0.0344 from HSAR(1) model with non-Gaussian errors,
one exogenous regressor and spatial weight matrix W having 4 connections, using the sandwich
formula for the variance
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Notes: The power functions are based on the sandwich formula given by (50). See the notes
to Figure A1 for details of the data generating process. Power is computed under βi=βi0 + δ,
where δ = −1.0,−0.991, . . . , 0.991, 1.0. The number of replications is set to R = 2, 000.
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Figure A9: Empirical power functions for different N and T combinations, associated with
testing the slope parameter value βi0 = 0.4898 from HSAR(1) model with non-Gaussian errors,
one exogenous regressor and spatial weight matrix W having 4 connections, using the sandwich
formula for the variance
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Notes: See the notes to Figure A8.
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Figure A10: Empirical power functions for different N and T combinations, associated with
testing the slope parameter value βi0 = 0.9649 from HSAR(1) model with non-Gaussian errors,
one exogenous regressor and spatial weight matrix W having 4 connections, using the sandwich
formula for the variance
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Notes: See the notes to Figure A8.
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