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Estimation and inference for spatial models with
heterogeneous coefficients:
an application to U.S. house prices

Abstract

This paper considers the problem of identification, estimation and inference in the case of spatial
panel data models with heterogeneous spatial lag coefficients, with and without (weakly)
exogenous regressors, and subject to heteroskedastic errors. A quasi maximum likelihood
(QML) estimation procedure is developed and the conditions for identification of spatial
coefficients are derived. Regularity conditions are established for the QML estimators of
individual spatial coefficients, as well as their means (the mean group estimators), to be
consistent and asymptotically normal. Small sample properties of the proposed estimators are
investigated by Monte Carlo simulations for Gaussian and non-Gaussian errors, and with spatial
weight matrices of differing degrees of sparsity. The simulation results are in line with the
paper's key theoretical findings even for panels with moderate time dimensions, irrespective of
the number of cross section units. An empirical application to U.S. house price changes during
the 1975-2014 period shows a significant degree of heterogeneity in spill-over effects over the
338 Metropolitan Statistical Areas considered.
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1 Introduction

This paper considers a heterogeneous version of the standard spatial autoregressive (SAR) panel
data model whereby the spatial lag coeflicients are allowed to differ over the cross section units.
We refer to this generalized specification as the heterogeneous SAR (or HSAR) model. The
model also features weakly exogenous regressors, possible fixed effects and heteroskedastic error
variances, and provides a reasonably general framework for the analysis of heterogeneous inter-
actions, where it is important to distinguish between the average intensity of spillover effects
as characterized by standard spatial models, and the heterogeneity of such effects over different
geographical units such as counties, regions or countries. Importantly, the framework studied
in this paper allows for spatial dependence directly through contemporaneous dependence of in-
dividual units on their connections, and indirectly through possible cross-sectional dependence
in the regressors. The econometric analysis of HSAR models presents new technical difficul-
ties, both for identification and estimation of a large set of spatial lag coefficients that must be
simultaneously estimated.

Our analysis builds on the existing literature on SAR models, pioneered by Whittle (1954)
and Cliff and Ord (1973), and further advanced in a number of important directions. The
maximum likelihood approach of Cliff and Ord, which was developed for a pure spatial model,
has been extended to cover panel data models with fixed effects and dynamics. Other estimation
and testing techniques, such as the generalized method of moments (GMM), also have been
proposed. Some of the key references to this literature include Upton and Fingleton (1985),
Anselin (1988), Cressie (1993), Kelejian and Robinson (1993), Ord and Getis (1995), Anselin
and Bera (1998), and more recently, Haining (2003), Lee (2004), Kelejian and Prucha (1999),
Kelejian and Prucha (2010), Lin and Lee (2010), Lee and Yu (2010), LeSage and Pace (2010),
Arbia (2010), Cressie and Wikle (2011), and Elhorst (2014). Extensions to dynamic panels are
provided by Anselin (2001), Baltagi et al. (2003), Kapoor et al. (2007), Baltagi et al. (2007), Yu
et al. (2008) and Yu et al. (2012). Spatial techniques also have proved useful when analyzing
network effects as can be seen in the pioneering work of Case (1991) and Manski (1993).

Almost all these contributions (whether in the context of spatial or network models) assume
that, apart from possibly fixed effects, spatial spill-over or network effects are homogeneous.
However, even if all units in a network have the exact same number of connections, it can be
the case that not all units are equally important or influential. Therefore, the assumption of a
homogeneous spatial coefficient, though needed when analyzing pure spatial models or spatial
panel data models with a short time dimension (7'), is likely to be restrictive, and its validity
should at least be tested. Also when T is large, the HSAR model can be estimated for any
N and it is not required that N — oo, which is clearly needed when T is small. Examples of
such data sets include large panels that cover counties, regions, or countries in the analysis of
economic variables such as house prices, real wages, employment and income. For instance, in
the empirical applications by Baltagi and Levin (1986) on demand for tobacco consumption,
and by Holly et al. (2010) on house price diffusion across states in the U.S., it is interesting to
investigate whether the maintained assumption that spillover effects from neighboring states are
the same across all the 48 mainland states in fact holds, particularly considering the large size
of the U.S. and the uneven distribution of economic activity across it.

Whilst estimation of HSAR, panel data models can be carried out using MLE and GMM
approaches, in this paper we focus on the former and discuss identification, estimation and



inference using the quasi maximum likelihood (QML) method. We derive conditions under
which the QML estimators of the individual parameters are locally identified, and establish
consistency and asymptotic normality of the estimators under certain regularity conditions.
Asymptotic covariance matrices of the QML estimators are derived under both Gaussian and
non-Gaussian errors, and consistent estimators of these covariances are proposed. Alternative
estimation methods based on our HSAR model include the Bayesian Markov Chain Monte Carlo
approach of LeSage and Chih (2018) and the generalized Yule-Walker estimation method of Dou
et al. (2016).

We also propose an estimator of the cross section mean of the individual parameters (also
known in the literature as the Mean Group, MG, estimator) assuming a random coefficient
model. It is shown that MG estimators are consistent and asymptotically normal for N and
T — oo, jointly, so long as VN /T — 0, and the spatial dependence is sufficiently weak. Such
estimators are helpful in two respects. They provide an overall average estimator of the spatial
effects that could be compared to corresponding estimates obtained using standard homogeneous
SAR models. They can also be used to obtain average estimators across sub-spatial groupings
such as states or regions, or sub-groups within a production or financial network, such as in-
dustry types. Following Pesaran et al. (1996), the deviations of the MG estimators from their
homogenous counterparts can be used to develop simple Hausman type tests of the homogeneity
of the underlying individual parameters.

The small sample performance of the QML estimator is investigated by Monte Carlo simula-
tions for different values of N and T and alternative choices of the spatial weight matrices. The
simulation results are in line with the paper’s key theoretical findings, and show that the pro-
posed estimators have good small sample properties for panels with moderate time dimensions
and irrespective of the number of cross section units in the panel, although under non-Gaussian
errors, tests based on QML estimators of the spatial parameters can be slightly distorted when
the time dimension is relatively small. We also investigate the small sample performance of
the MG estimator and find its performance to be satisfactory with biases that are universally
negligible, and RMSEs that decline with T and quite rapidly with N. Regarding size and power,
tests based on the MG estimator exhibit some downward size distortions when 7' is small, but
such distortions disappear as T rises for all values of N. The small sample bias of the MG
estimator can be reduced using half-Jackknife procedure as discussed in Chudik and Pesaran
(2019).

As an empirical application, we fit HSAR models to U.S. quarterly house price changes over
the period 1975Q1-2014Q4 observed at Metropolitan Statistical Areas (MSAs). Not surprisingly
we find a considerable degree of heterogeneity across the MSA specific estimates. As to be ex-
pected, with a few exceptions, the estimates of spatial coefficients are positive and statistically
significant, suggesting a high degree of spill-over effects of house price changes to neighboring
MSAs. There were 11 MSA (out of 338 considered in our analysis) with statistically signifi-
cant negative spatial effects, and included Cheyenne (Wyoming), Coeur d’Alene (Idaho) or Hot
Springs (Arkansas). These MSAs tend to be relatively remote with outward migratory flows to
neighboring regions.

We also consider MG estimators obtained for six U.S. regions based on the individual MSA
level estimates. Spatial parameter estimates are positive and statistically significant for all
regions. The average estimate of the spatial lag obtained for the U.S. (around 0.51) is lower
than the estimate of around 0.65 reported by Yang (2018) who considers a homogeneous SAR



specification estimated on a similar data set. The differences between the two estimates could
be due to the considerable degree of heterogeneity that we observe across the regions in the
U.S., which is being neglected under the homogeneity assumption. We also find positive and
statistically significant effects of population and income growth on house price changes, again
with a high degree of heterogeneity across the regions.

The rest of the paper is organized as follows: Section 2 introduces the first order spatial
autoregressive model with heterogeneous coefficients and some useful generalizations, and de-
rives its log-likelihood function. Section 3 sets out the assumptions of the model, derives the
identification conditions and proves consistency and asymptotic normality of the QML estimator
when the time dimension is large. Section 4 outlines the Mean Group estimator derived from
the heterogeneous spatial coefficients of the HSAR model. Section 5 presents the Monte Carlo
design and reports small sample results (bias, root mean square errors, size and power) of the
QML and MG estimators for different parameter values and sample size combinations. Section
6 reports the results of our empirical application to the U.S. house price changes across MSAs.
Some concluding remarks are provided in Section 7. Mathematical proofs, data sources and
additional Monte Carlo results are provided in an online supplement.

Notations: We denote the largest and the smallest eigenvalues of the N x N matrix A = (a;;)
by Amax (A) and Apin (A), respectively, its trace by tr (A) = Zfil aji, its spectral radius by
p(A) = |Amax (A)|, its spectral norm by [|A| = Al (A’A), its maximum absolute column

sum norm by [|A]|; = maxi<j<ny <Z@]\L1 |aij|>, and its maximum absolute row sum norm by

|All, = maxi<i<n <Z;V:1 \aij\). Diag (A) = Diag(a11,a22,...,annN) represents an N x N
diagonal matrix formed by the diagonal elements of A, while diag(A) = (a11,a,...,axn)
denotes an N x 1 vector. We denote the £,-norm of the random variable z by [|z||, = E (\:U|p)1/p
for p > 1, assuming that E (|z]’) < K. © stands for Hadamard product or element-wise
matrix product operator, —, denotes convergence in probability, 2% almost sure convergence,
—s4 convergence in distribution, and ~ asymptotic equivalence in distribution. Asymptotics for
estimation of individual parameters are carried out for N finite and as T" — oco. K and ¢ will
be used to denote finite large and non-zero small positive numbers, respectively, that do not
depend on N and 7.

2 A heterogeneous spatial autoregressive model (HSAR)

2.1 Model specification

We consider the following SAR model with heterogeneous slopes:

N
Yit = Vio Zwijyjt + Bioit + €4, for i =1,2,... ,N; t =1,2,...,T, (1)
j=1
where y;; is the dependent variable for unit ¢ observed at time ¢, x;; = (14, Tio, - - - ,xik,t)' is

a k x 1 vector of exogenous regressors, with the associated k x 1 vector of slope parameters,
Bio = (Bi1,0,Bi2,0,- - ﬁik,o)/- g+ is the unexplained component of ;:, which we refer to as the
error of the i cross section unit, or the ‘error’ for short. Finally, Y = Z;Vﬂ WijYje = W,y is
the average effect of other units on unit ¢ at time ¢, where y; = (y1¢,y2t, ..., yne) and w} is the



ith row of the N x N spatial weight matrix, W = (wij), with w;j, for i,j = 1,2,..., N being

the spatial weights. Without loss of generality we set w;; = 0, for all ¢, assume that w;; > 0,
and normalize the spatial weights so that Z;VZI wi; = 1. When the weights are not normalized,
(1) continues to hold with v;y re-defined as 1;0/v;, where Zj\le w;j = v;. Consequently, in
the heterogeneous case the normalization of the weights is innocuous, and can be viewed as an
identifying restriction, so that ;o can be distinguished from wv;, which is achieved by setting
v; = 1. The same is not true in the homogeneous case where ;0 = ¢ for all ¢, and the
use of non-normalized weights is equivalent to setting 1,0 = 1o/v;, which is not an innocuous
restriction. The HSAR model (1) can also be viewed as a generalization of the random coefficient
panel data model reviewed, for example, by Hsiao and Pesaran (2008). However, this is not a
straightforward generalization due to the endogeneity of y}, = wiy; in (1).
The assumption of non-negative weights (w;; > 0) can be relaxed by replacing W with two
+
)

weight matrices: one for positive weights, W+ = (wij , where w;r» = w;; if w;; > 0 and zero

J

otherwise, and one for negative weights, W~ = (wi;), where W = —Wij if w;; < 0 and zero
otherwise. Then (1) can be written more generally as
N N
yie =0 [ D whys | + i | Y wiupe | + Bioma + £, (2)

j=1 j=1

where w;g and v;; measure the effects of positively and negatively connected units on y;, and
allowed to vary across units. For an empirical application of such a setting see Bailey et al.
(2016).2 The HSAR model can also be generalized further by estimating the weights, Wjj, SO
long as each unit has a finite number of known neighbors. In such a setting the HSAR model
can be written as
N
yit = Y _ Wijol (wij) yje + BigTis + e, (3)
j=1
where I (w;;) = 1 if w;; # 0 and 0 otherwise, and sup; Zjvzl [Yijo| I (wij) < K. This specification
only exploits the qualitative information contained in I (w;;) and represents another important
generalization of the homogeneous spatial model. In what follows we focus on the basic HSAR
specification given by (1) and note that estimation and inference for models (2) and (3) can be
conducted along the lines set out in this paper.
Stacking the observations by the N individual units for each time period ¢, (1) can be written

more compactly as
Iy — P W)y, = Boxor + €0, t =1,2,...,T, (4)

where yo, = (yit, Yot - -, ynt)', In is an N x N identity matrix, ¥y = Diag (1)) with ¥, =

!Strictly speaking, the weights, w;;, are N-dependent and should be denoted as w;;,x. The same also applies
to yit, Bio, and €;¢. But we abstract from including the subscript N when denoting wij;, y;+ and €5, to keep the
notations simple and manageable.

21t is also possible to allow for spatial effects in the errors and the regressors. For example, e;; can be replaced by
€it = Pio (E;V:l ws,ijajt> + vit, and the regressors augmented with spatial effects such as a:f“ = Zj\;l We i 56t
for £ = 1,2,...,k, where w.;; and we;; are the spatial weights. To simplify the exposition in this paper we
abstract from spatial error and regressor processes and focus on the contemporaneous spatial effects in the
dependent variable, y;;.



(Y10, %20, - - -, ¥N0)', and By is the N x kN block diagonal matrix

B 0O -+ 0 0
0 By -+ 0 0
By = : D : : ; (5)
0 0 -+ By O
0 0 - 0 13/N’0
and @or = (@), Thy, ..., xy,) is the kN x 1 vector of observations on the exogenous regressors.

Finally, Var (ect) = 3o = Diag (03) , with o = (03,030, ...,0%,)- We set Sg = S(¢py) =
Iy — ¥oW, and assume that Sy is invertible.> Then, the reduced form of (4) can be expressed

as
Yor = ST (o) [Boxor + €0t], t=1,2,...,T. (6)

Remark 1 If 10 = 920 = --- = ¥no = Yo, Big = B = -+ = Bno = By and oy = 035 =
- = 0]2\,0 = 08, then (1) collapses to the standard first order SAR model. Alternatively, if
Bio=Bo == PBno =0 and 0%y = 03y = -+ = 0%y = 08, then (1) reverts to a first order

HSAR model with no exogenous regressors and with homoskedastic errors.

2.2 The log-likelihood function

To estimate the unit-specific coefficients we collect all the parameters of the N units in the

N(k+2) x 1 vector 8 = (¢/,3,06%) where 1 = (¢1,12,...,%n), B = (8,85, ...,8y) and
0? = (0},03,...,0%)’, and denote the associated vector of true values by 6y = (v, Bf, o3').

The log-likelihood function of (6) can be written as

N
0r(0) = L(0) = ~ Sl In(2m) — 3" Ino? + IS (1) (a0) M)
=1

T
> [8(¥)yor — Bzor] 7' [S(4h)yoy — Bt ,
t=1

N

where 3 = Diag (0?), ¥ = Diag (), and S = S(¢p) = Iy — TW.

The quasi maximum likelihood estimators (QMLE), é, are the extreme value estimators
obtained by maximization of (7). When the error terms, €. (6g) = S(¥)yos — Boxot, are
normally distributed, then vector € is the maximum likelihood estimator (MLE) of 0, while
under non-Gaussian errors, 8 is the QMLE of 6.

3 Asymptotic properties of QML estimators

3.1 Assumptions

In order to investigate the conditions under which 8¢ is identified, and to establish consistency

and the asymptotic normality of 6, we make the following assumptions, using the filtration

— _ / /! / /.
Fi = (Tot, Tot—1, Tot—2, - . .), Where Top = (], Xy, ..., x\,)":

3Conditions under which S is invertible are discussed in Section 3.1.



Assumption 1 The error terms{e;y, i =1,2,...,N;t =1,2,...,T} are independently distributed
over i and t; E(eq|F) = 0, E(e%|Ft) = 0%, fori = 1,2,...,N, where inf; (0220) > c > 0,
sup; (0%) < K < 00, and E (leq|" | F) = E (|ew|’) = wip < K, for all i and t, where w;, is a
time-invariant constant, 1 < p < 4+ €, for some € > 0. 4

Assumption 2 (a) xo; are stationary processes with mean zero, and satisfy the moment con-
dition supi’g’tEOxig,t 2+C> < K, for somec >0,i=1,2,... N, £ =1,2,....k, and t =
L2,....T. (b) E(zarmly) = Tge = (i), where Xj; = E(xqx),) evists for all i and j, such
that sup; ; |24 < K, and 2y is a k x k non-singular matriz with inf; [Amin (24)] > ¢ > 0, and
sup; Amax (Zii)] < K; (¢) TV ®orael, 5 Spe, as T — 0.

Assumption 3 The N(k + 2) x 1 parameter vector 8 = (¢, 3,0%)" belongs to ® = O, x
O3 x O, C RN x RN* x RN, 4 sub-set of the N(k + 2) dimensional Euclidean space, RN (k+2)
® is a closed and bounded (compact) set and includes the true value of 0, denoted by 6y, which
is an interior point of ®, and sup; ||B;]|; < K.

Assumption 4 W = (w;;) is a constant known weights matriz which is uniformly bounded in
row and column sums in absolute value, i.e. |W| < K < oo and |[W]; < K < oo, and
its diagonal elements are zero, that is wy; = 0, for i = 1,2,...,N. In addition, the spatial
autoregressive parameters reside in the range set by

sup [¢i| < max {1/ W, ,1/ W]}, (8)

for all values of 1;, i =1,2,..., N, in Oy.

Remark 2 Assumption 1 implies that E(e;t) = 0, E(e%) = o2, fori =1,2,...,N, and does
not allow for conditional heteroskedasticity. But it is possible to allow for time variations in
E (\5itl4+e \.7-}) by relaxing the moment conditions on e;x and ;.

Remark 3 Assumption 2 is standard and allows for the regressors to be cross-sectionally cor-
related, and hence xor can also include observable common factors. This is sufficiently general
and applies for all N. Further, it allows the regressors to be weakly exogenous, thus allowing the
spatial model to include lagged values of the dependent variable. Finally, the theoretical model
(1) can be modified to include an intercept (fized effects) by setting one of the elements of x; to
unity, at the expense of complicating the algebra. Such a setting is analyzed in the Monte Carlo
simulation study of Section 5.

Remark 4 Assumption 4 is sufficiently general and allows the spatial weights to take negative
values. But, as noted above, in empirical applications one might wish to distinguish between
positive and negative connections as they might have differential effects on the outcomes. This
assumption does not require the weights to be normalized either, so long as condition (8) is met.

Remark 5 Condition (8) is sufficient for global invertibility of matriz S(v) = In — YW on
®,. See Lemma 1 in the online appendiz A. This result reduces to the condition obtained in
Lemma 2 of Kelejian and Prucha (2010) for the homogeneous case where 1b; =1 for all i.

4
Clearly, wiz = 0.



Remark 6 Let V (¢) = S (¢)S(v)), where S(¢p) = Iy — $W. Then under Assumption 4, for
all values of 1 € @y, and for all N we have

Amin [V ()] > ¢ > 0, (9)
and

Amax [V ()] < IS(9) ][, [S(¥)] (10)

< (1 T sup ] HW||1) (1 4 sup il ||W|roo> <K <o

These results, together with Assumptions 1, 2(b) and 3, ensure that for all values of N and
= (¢/7B/7 0-2/)/ e 67

Amin [y (0)] > ¢ >0, and Amax [2y (0)] < K < o0, (11)

and

Amin [Z57(0)] > ¢ >0, and Amax [Z, " (0)] < K < oo, (12)

where By, (0) = S(¢p) ! [BEzeB' + ] S(ep) 1.

3.2 Identification

Here we focus on the problem of identification of the individual parameters in N (k+2) x 1 vector
6y for a given N, and as T' — oco. To highlight the main issues involved in the identification
of spatial parameters under the heterogeneous setting, first we consider the HSAR model (4)
without the exogenous regressors, namely

N
yit:¢iozwijyjt+€z‘t7’i:1727~-7N§ t:1727"‘7T7 (13)
=1

where €;; ~ IIDN (0, 0120) fori=1,2,..., N. Under Assumption 4, (6) is then simplified to

Yor = S (Wo)eot, t=1,2,...,T. (14)

With a slight abuse of notation let @ = (3’,d?)’, and note that in this case the log-likelihood
function is given by

1 T

tr(6) = ~ L n(2r) —*Zlna F TS @)SW) 5 S vlS ) S Wy, (15)
t=1

It is also helpful to write the associated average log-likelihood function as

N
N 1 1
(r(6) = == In(2m) - 5 > Ino} + V)| -3 ( § y,. P (6 yot> : (16)
i=1



where

V (¢) =S'(¢)S(v), P(0) =S'(4)S7'S(2), and S(p) = Iy — TW. (17)

Let Q7 (09,0) = {1(60) — £7(0), in which l1(0g) is ¢7(0) evaluated at @ = 6y. Then, for a
given N and as T' — oo, we have (see Lemma 3 of the online appendix A when setting B = O
n (A5)) QT (00, 0) — E() [QT (90, 9)] a._s}. 0, where

_ _ 1 N
Eo [Qr (00,0)] = Eo [fr(60) = £r(8)] = =5 > In (o}/07) = 5 (18)

Ao (] 4 L pore o).

Alternatively, we can express (18) in terms of the eigenvalues of V () and V (1) which we
denote by A\? and A%, respectively. Recall from Remark 6 that 0 < A?, A2} < K. Therefore, (18)
reduces to

N
1 32 /32 12 /52
Ey [Qr (00,0)] = 2 z; [(Ai/AiO) —In (Ai/Ai(]) - 1} ; (19)
where 5\? = \2/o?, 5\?0 =\ /o%, and 0 < 02,04 < K, for i = 1,2,...,N. The above results
imply that
(7(00) — 7(0) 3 Eq [01(80) — (1(0)] = Eo [Qr (80,6)] > 0, (20)

and in view of (19) we have £7(80) — £7(0) “3 0 if

' [(xg/xgo> “In (xg/xgo) - 1} —0. (21)

=1

Hence, for a given N, it readily follows that £7(8g) — £7(8) 3 0, as T — oo, if and only if
/o2 = N2, /o% for all i.° Therefore, the ratio A\%,/02 is globally identified, although without
further restrictions on P (8) and S(), it will not be possible to separately identify A% and o2,

Consider now the problem of identification of 1), which is the parameter vector of interest,
and note that

2
\\\/f(gfzf))l’ - ||SS(ZbO))||2 = [S(o)S™' @W)|" = [S(¥)S ™ (8ho)| "

tr [P (6) P~ (8)] = tr [8/(w)Z7S(4)S ™ () ZoS ™ (3)]
= tr | B728 ()87 () oS () ($) 572

and rewrite (18) as

N 1 N 2 2 -1
Eo[Qr (60,0)] = — — 5 > In(of/07) — [In (|S(4)S ™ (3b)])]
i=1

bt [S8()8 T )8 ()8 ($)2 7).

"Note that @ — In (a) — 1 > 0, for any a > 0, with the equality holding if and only if a = 1.



Further, we note that S(1)S™1(¢y) = Iy — DGy, where Gy = W (Ix — % W)™ !, and

D =W — ¥, is a diagonal matrix with elements d; = 1; — 1;0. Using these results, the
above expression for Fy [Qr (00, 0)] can be written equivalently as

N 1 5 s
Eo [Qr (60,0)] = = — 5 > I (ojp/0}) —In|Iy — DGy (22)
=1

1
5t [2—1/2 (Iy — DGo) o (Ix — DGo) S~1/2

= An + By,
where
1 N
An = 3 Z [2 —1In(0})/0?) — 1} —In|Iy — DGy| — tr (Z'Z¢DGy), (23)
o
=1 ?
1
By =t (2_1/2G’0D20DG02_1/2) . (24)

We first note that By > 0, since we can write By = (1/2) tr (AjAy), with Ay = Eé/zDG()E*l/?
Consider now Ay, denote the i" eigenvalue of DGq by p;, and note that since Iy — DGy =
S(1)S (1)), then the eigenvalues of S(1p)S~1 (1)) are also given by 1 — y;, for i =1,2,..., N.
Further, by Lemma 1 of the online appendix A, Apin [S(%0)] > 0 for all ¢; that satisfy condition
(8). Hence, we must also have 1 — p; > 0, for all 7. Using these results, Ay can now be written

as N ,
AN:2Z|:O_Z§—IH(O'Z-20/U —1} Zlnl—uZ Z(;O)Mi-

i=1 v i=1 t

Let 0y; = 0/0? and &y; = (1 — p;) > 0, for all i. Then, write Eo [Qr (60, 0)] as

Ey [QT (90, 0)] = AN + By

N
= 3> [ Zln Syi — Z 0i(1 = i) + B
1 z]:Vl N
QZ — 1] + Z(Sm‘ (51“ —111(51/)2‘ — 1)

i=1 i=1

_l’_

e

(502‘ — 1) lnéwi + By

=1

=A N+ AN+ (AN + Bn).

Since dy; > 0, and dy; > 0 for all 4, then §o; — In(d5;) —1 > 0, and dy; —Indy; — 1 > 0 for
all ¢, with equalities holding if and only if d,; = 1 and é,; = 1 for all <. Hence, A; xy > 0, and
As v > 0 for all values of N, and global identification of 0120 will be possible only if we are able to
show that Az y + By is non-negative. But it is easily seen that the non-negativity of Az y + By



can not be guaranteed without further restrictions. This follows since

N
A3,N = Z (501' — 1) lnéw,

=1

and there are values of d,; and dy; in ©®@ = @, x O, for which A3y < 0. Considering
(Az.n + By) somewhat weakens the requirement since By > 0, but still does not guarantee
that (As n + By) > 0, for all values of d,; > 0 and d,; > 0. Therefore, global identification of
1), can not be guaranteed. To investigate the possibility of local identification we introduce the
following definition:

Definition 1 Consider the set Nc(ag) in the closed neighborhood of 0'% defined by

Ne(od) = {Uge O,

on/of — 1| <ci, fori=1,2,...,N},
for some ¢; >0,i=1,2,..., N, where ® is a compact subset of RY.

We now show that 8y = (1(,03') is identified on O, = Oy x N.(o). Consider values of
0 within the local neighborhood of d,; = 1 for all ¢. Recall that A; y + A2 xy > 0, and the
boundary values A; y = 0 or A y = 0 can occur if and only if d,; = 1 and dy; = 1 for all 7,
respectively. Therefore, Ay > 0 if d,; = 1, otherwise A; y > 0. Similarly, Ay > 0 if dy; = 1,
otherwise As y > 0. Therefore, there must exist ¢ = (c1,¢2,...,cn) > 0, such that Ay =0 on
©. if and only if @ = @, which in turn establishes that f7(8g) — f7(0) “3 0, as T — oo, on the
set O, if and only if 0 = 0.

Next, consider the HSAR model (4) with exogenous regressors. The average log-likelihood
in this case is given by (see (7))

_ N 1Y 1
lr(6) = — In(2m) — 5 ;m of + 5 V()] (25)

T t=1

T
2 (1 > [S(W)yer — Bro] 571 [S()yor — B%J) :

where 0 is now defined by 8 = (¢, 3',0%)" and B has the same form as in (5). Following a
similar line of reasoning as in the case without exogenous regressors (see Lemma 3 of the online
appendix A), we have that Qr (09, 0) = {1(6¢) — £7(0), where {7(8) is now given by (25), and
Qr (00,0) — Eo [Qr (00,0)] “3 0, (as T — o0) where

Eo [Q1 (680,0)] = Ay + By + On. (26)

10



Ay and By are defined as before by (23) and (24), and Cy is given by

N /
Oy = ;z;(,@i — Bio) izu (Bi — Bio) +tr [27Y2(B - By) zma@ (27)

1

=Cy N+ Con +Cs N,

where 29 = ¥71/2DGy By, and as before D = Diag(1 — ). Consider now C3 n and note that
since ., = F (zoxl;) and E(E, are positive semi-definite matrices, then using result (9) on
p. 44 of Liitkepohl (1996),

tr (ZrZ0E0) = N [det ()] [det (2po) ]|~

>0,

and hence C3 y > 0. Also, as shown above, on the subset @, = @, x Opg XNC(O'%), Anv+By =0
if and only if D = Diag(t — 1) = 0, and hence it must also follow that Cy y = 0 on ©.. Thus,
overall £7(0g) — 7(8) “3 0 on O, if and only if

S8 ﬂm’féi (B~ Bu) _, (28)
i=1 i
This equality holds for all N if and only if (3; — B;0) Zii (8; — Big) = 0, for all 4, and since
under Assumption 2(b) ¥;; is a positive definite matrix this can occur if and only if 8, = B,
for all 7.
Before we state the identification result for the general model (4), we require the following

modification of Assumption 3:

Assumption 5 The N(k + 2) x 1 parameter vector 8 = (¢, 3',0%) belongs to O, = O x
Op xN.(0}), where ©, and O5 are compact subsets of RN and RN* | respectively, and N.(o2) is

given in Definition 1, and O, is a sub-set of the N (k+2) dimensional Euclidean space, RN (k+2),

The main identification result of the paper is summarized in the following proposition:

Proposition 1 Consider the heterogeneous spatial autoregressive (HSAR) model given by (4)
with the associated log-likelihood function given by (7). Suppose that Assumptions 1, 2, 4 and 5
hold. Then, the N(k +2) dimensional true parameter vector Oo= (1, B(, d3') is almost surely
locally identified on ©..

3.3 Consistency and asymptotic normality

We are now in a position to consider consistency and asymptotic normality of the QML estimator
of 8, given by § = arg maxg {7(0), where 6= ('J;/, B/, 6?'). We establish the results for a given
N, and as T — oo. First, we focus on the proof of consistency. Under Assumptions 1, 2,
4 and 5, we have: (i) ©., being a subset of ©, is compact, (ii) 6y is an interior point of
O.. (iii) Qr (00,8) “5 Fy [Qr (80,0)], with Qr (8y,8) = i7(8y) — Ir(8) and Fo [Qr (60, 0)] =
AN + By + Cn,where Ay, By and Cy are given by (23), (24) and (27), respectively, and (iv)

11



0y is a unique maximum of Ey [Q7 (0o, 0)] on O.. The last result follows from the identification
analysis of Section 3.2. It is clear that all conditions of Theorem 9.3.1 of Davidson (2000) are
satisfied, therefore almost sure local consistency of 0 is ensured, with 0 3 6y on O, as T — 0.
To establish asymptotic normality of 0, we apply the mean value theorem to ¢7(8) such that

{7 (0) — tp(00) = (6 — 60)" 57 (60) — % (6 —60) Hr(0) (0 — 00), (29)

where 37 (0) = 007(0)/00, Hr(0) = —0%(7(0) /0008’ , and 0 lies between 8 and 8y. By Lemma
5 of the online appendix A we have 57 (g) 3 0, and by the results of Section 3.2 we also have
lr(60) — 07(0) 3 Eo [f7(00) — r(0)] > 0. Hence, in view of (29) it must also hold that (as
T — o0)

(0 — 0,) Hr(0) (0 — 6y) 3 Ey [Qr (00,0)],

where Ey [Qr (00, 0)] is given by (26). But we have already established that on ©,, the right
hand side of the above expression can be equal to zero if and only if @ = 6, and hence it must
be that Hr(0) “3 H(y), where H(8y) must be a positive definite matrix given by

H(0y) = Tlgréo Ey (—0°07(6)/00080') .
Next, for a given N we apply the mean value theorem to §7 (0) so that
0=Tsr (é) — VT5r (0y) — Br(OWT (é - 00) ,
or equivalently
0= \}TST (9) = &ST (60) ~ Hr(0)VT (6 - 60)

where s7 (0) = 9¢r(0)/06, Hy(0) = —1.0%(1(6)/0006', and 6 lies between @ and 6. There-
fore,

VT (6 - 60) = H7'(8) [VTsr (60)]
and since 0 is consistent on ©,, then

VT (8- 60) “ H'(60) |VTsr (60)]
where H (8y) = limr_00 Eo [~ %0%(1(0)/0000'], with

. H,y H;» Hq3
jo) [—TazzT(e)/aeae’} = | m\, Hs Hoy

! /
Hiz Hy Hss ) ygisysv(er)

12



The expressions for H;; can be obtained using the partial derivative 82¢1(8,)/90006" given in
the online appendix B. Specifically we have

(Go @ Gf)) + =y ' Diag (GoXoG)) + Ag, Eg, ;' Diag(Go)

H (6y) = Eg, A 0 ) (30)
3, ! Diag (Go) 0 132
where Ag , Eg, , and Zg are diagonal matrices given by
N N
A,@O = Dl&g O-Z'B2 Z Zgo,isgo,irﬁ;02r5ﬁ507 1= 17 27 ey N] ) (31)
r=1s=1
N
Eg, = Diag |05° Y _ g0.isBhBis, i = 1,2, .. .,N] , (32)
s=1
and
Z, = Diag [0Sy, i = 1,2,...,N]. (33)

Again by Lemma 5 of the online appendix A, we have that

[1ST (90)} —q N [0,J(80,7)]

VT
where
Gy © G)) + 3, ! Diag (GoZoGY) + A
(Go©Go) +3%_ Diog (GoZy ,0) T2 g 337 Diag (Go)
. + (v — 2) Diag (Go ® Gj)
J(6p,v) = lim
T—o0 Eﬁo ZO 0
15! Diag (Go) 0’ 1352
(34)
and
T T
= lim 771 2) = lim T°¢ E(¢H) -1
y = lim tzlwr(@t) Jim tzl (B (¢i) = 1], (35)
with (¢ = ei/0i0, for i = 1,2,..., N. Hence,
VT (é - 00) 4 N(0,Vg), (36)
where Vg has the usual sandwich formula
Vo =H 1(00) (60,7) H (). (37)

In the case where the errors, ¢;;, are Gaussian, v = 2 and, as to be expected, H (6y) =
J (80,2). This is easily verified by referring back to (30) which is equal to J (6g,) defined by
(34) for v = 2, as required.

Remark 7 When no exogenous regressors are included in the HSAR specification (1), then the
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asymptotic variance, Vg = H~1(09)J (60,~v) H=1 (0y) , simplifies so that:

/ —1 1 ! —1 1
H (60) = (Go ® Gy) —1:120. Diag (GoX0Gy) X, ?1a§2(G0) 7 (38)
3, Diag (Go) 320 N XN
and )
/ >, Di 3G/
(Go © Gy) + 0 iag (GO, 0GYp) %251 Diag (Go)
J(60,7) = +(y — 2) Diag (Go © Gb) : (39)
135! Diag (Go) 1352

Again, under Gaussian errors we have J (6¢,2) = H (0y).
The main result of this section is summarized in the following proposition:

Proposition 2 Consider the heterogeneous spatial autoregressive (HSAR) model given by (1).
Suppose that Assumptions 1, 2, 4, 5, and conditions (21) and (28) hold. Denote the N(k + 2)
dimensional (quasi-) mazimum likelihood estimator of @y by 6 = arg maxg 07(8), where (7(6)
is given by (25). Then, 6 is almost surely locally consistent for 8y on O, and has the following
asymptotic distribution

VT (é - 90) 4 N (0, V), (40)

where Vg = H™1(09)J (80,7) H™1(0¢), and H (60) and J (09,~) are defined by (30) and (34),
respectively.

Proof. See the online appendix B. m

Focusing on the inverse of the information matrix, we partition H (6) as follows

H (60) = ( Z Z ) , (41)
12 22

where H1a = (H12, H13) is an N x (Nk + N) matrix, and since Hy3 = H3y = 0, then Hog =
Diag (H 2, H33), which is an (Nk + N) x (Nk + N) matrix. Then,

—1 —1 —1
-1 (09) = Hito —HipoHi2Hsy )
~Hyy HorHity Moy + Hop Har My Hio Moy
Of interest is matrix Hi1.2 given by

Hiro = Hiy — HioHoy Hor = Hyy — HinHyy Hoy — Hi3Ho Hyy (42)

:(G0®G6)+Dlag gOZZ+ Z SO/UZO gozs, .:1727...7N
s=1,s#1

N
+Diag | 0> > D go.isgoirBro (Srs — B3 i) Bug, i = 1,2, N,
r=1 s=1

since its inverse, H1_11~27 represents the asymptotic covariance matrix of \/T@E under normality of
the error term. This last result can be summarized in the following corollary:

14



Corollary 1 Consider the heterogeneous spatial autoregressive (HSAR) model given by (1).
Suppose that Assumptions 1, 2, 4, 5, and conditions (21) and (28) hold. Then, the N x N

information matrizc

Hir2 = (GO © G6) + Diag gO Jit + Z 50/010 gO ,i87 i=12,...,N (43)
s=1,s#1

N N
+ Dla‘g 0—7;)2 Z Z 90,is90 zrﬁro 27‘12;12%5) 1650; i = 17 27 ceey N )

is full rank, where Go = W (Iy — WoW) ™" = (go,4;), ®o = Diag(vy), 1o = (10, %20, - - -, ¥no)’,
and W is the spatial weight matriz, and e ~ ITDN (0, J?O). Then the mazimum likelihood es-
timator of v, denoted by 1/; and computed by mazimizing (A.21), has the following asymptotic
distribution,

VT (% = %0) =>4 N (0, Vyp), (44)
where

Vy = [Hi12] " (45)

Remark 8 In the special case where the regressors are cross-sectionally uncorrelated, namely
when 3,5 = 0, if r # s, the third term in (43) vanishes and we have

Hiio = (G0®G6) + Diag gOH—i— Z SO/UZO gom, 1=1,2,...,N|, (46)
s=1,s#1

. /
which does not depend on (3;s or the erogenous regressors.

Remark 9 In the case where ;4 are non-Gaussian but E(]sit\4+€) < K holds for some € > 0, the
quast maximum likelihood estimator, '4,5, continues to be normally distributed but its asymptotic
covariance matriz is given by the upper N x N partition of H™1 (09)J (0g,~) H ' (8y), where
H (0y) and J (8¢,~) are defined by (30) and (34), respectively. Recall that v is defined by (35),
and under Gaussian errors it takes the value of v = 2, so that we have J (8¢,2) = H (0y).

3.3.1 Consistent estimation of Vy

The asymptotic covariance matrix of 0 can be consistently estimated using the expressions given
by (30) and (34), yielding the standard formula

Ve=H"1(6)), (47)

when the information matrix equality holds in the case of e;; ~ IIDN(0,0%) and v = 2, and
the sandwich formula

Vo=H""(60)J(80,7) H " (60), (48)
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otherwise. Consistent estimators of J (6y,7) and H (6¢) can be obtained by replacing 8¢ with
its QML estimator, é, and estimating v by

where &;; = vyt — ”L[}Z Zjvzl Wi Yjt — B;wit, with &, BZ and 1&, being the QML estimators of o,
Bio and 10, respectively.

Alternatively, one can use the sample counterparts of J (6g,~) and H (6y) and estimate the
covariance matrix of the QML estimators consistently by

V,=H;' (é) : (49)

and
V= A7 (8) 31 (6.9) 17 (), 50)

~ , 2
where J7 (8) = LT (f’%g”) (f’{;g@) , £, (8) is defined by (A.20) and Hr (8) = —+ZLrl0),

Consistency of J (OA,@) for J(69,7) follows from consistency of 0 for 6y, of 4 for v and the
independence of % over t, as shown in Lemma 5 of the online appendix A. The first and

second derivatives are provided in the online appendix C.

4 Mean group estimators

So far we have focussed on estimation of the unit-specific parameters and have derived the
asymptotic results for a given N and as T — oco. But in practice it is often of interest to obtain
average estimates across all the units or a sub-group of the units in the panel, assuming that the
individual coefficients follow a random coefficient model. In the context of the HSAR model, (1),
suppose that {0, B9, i = 1,2,..., N} are randomly distributed around the common means,
1o and B, such that

¢i0:7/10+77i¢v and /6102160+n2,8 for i = 1727"'7N7 (51)

where 1, = (nw,ngﬁ) ~ IID(0,82,), €, > 0 is a positive definite matrix, and it is assumed

that E ||n,]|*"¢ < K, for some ¢ > 0. The parameters of interest are 1y and 8, which are the
population means of spatial lags and slope parameters of the underlying HSAR model. For
consistent estimation of 19 and B, we now need N and T sufficiently large. Large T is required
to consistently estimate the unit-specific coefficients, and large N is required for estimation of
the common means, 19 and 3. It is also possible to apply this procedure to subsets of the
units, so long as the number of units in each set is reasonably large.

Consistent estimators of ¢y and 3, are given by the mean group (MG) estimators,

N N
e =N""Y i, and By =N""Y B, (52)
i=1

=1
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where 1/31 and BZ are the underlying unit-specific estimators. The MG estimator was originally
developed by Pesaran and Smith (1995) who show that in the standard case where 1@ and BZ are
independently distributed, then 1& ma and B arc Will be consistent and asymptotically normal.
Recently, Chudik and Pesaran (2019) extend this analysis and consider MG estimators based
on possibly cross correlated estimators and show that the standard MG estimation continues to
apply so long as the underlying unit-specific estimators are weakly cross correlated.

In the case of the present application the asymptotic validity of the MG estimator can be
established by first noting that

VN (@MG —dﬁo) = N1/2§: (% —1/%0) +N1/2§:(¢z‘0 — o),
1=1

i=1

where upon using (51) can also be written as

N N
\/N(l;MG—%)—\/j{v N_12T<@Zz'—¢z’0) + N2y "y,
i=1 i=1
=gnT +&NT- (53)

Consider now gy, the first term of the above expression, and recall that under the regularity
conditions set out in the previous sections, VT (; — %’0) ~ N (O,Ldii), where sup; wii < K,

and F (1,/}Z — %‘0) =0 (T’l), for all ¢. Hence

E (avr) = O <“f> . (54)

Furthermore we note that gy can also be written as
N
gyt = N7V/2 Z <¢z‘ - wz’o) =T AN, {\/T (11’ - 1/’0)} ;
i=1

where qﬁ = (1&1, 1[12, ceey zﬁN)’, and 7y is an NV x 1 vector of ones. Denote the N x N asymptotic
covariance matrix of 1& by Vy = AsyVar [ﬁ (1& — 1/)0)] , then

lim Var(gnr)= lim Var [Tﬁl/QNfl/QTIN\/T <1Z’ - Tpo)}

N, T—oc0 N, T—occ0
7 VyTnN Amax (V)
— N VY < 1 max P )
N <NT )—N,%fﬂoo [T (55)

Suppose now that v/N/T — 0, and Amax (V) < K as N and T — co. Then using (54) and
(55) it readily follows that

lim FE(gnr) =0, and lim Var (gnr) =0,

N, T—oc0 N, T—oc0
and hence as \/N/T — 0, gn7 = o0p(1), and in view of (53) \/N(@M(;—w(o ~ EnT =
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N-U/2 Zf\il Niy- Finally, under the random coefficient model where {n;y, for i =1,2,..., N}
are assumed to be independently distributed with zero means and finite variances, &y ~
N[0, Var (n;y)], and therefore under the additional conditions, VN /T — 0 and Apax (V) < K,
we have (as N, T — oo, jointly):

\/N (&MG - 7#0) ~ N (07“-}12/1) ) (56)
where wi = Var (n;y). It is also easily seen that wi can be consistently estimated by
PR TR ST
Wy = N_1 Z <¢i - 1/1MG> . (57)
i=1
Similarly,
VN (Bu —Bo) © N (0,9), (58)

so long as Amax (V) < K, where Vg is the kN x kN asymptotic covariance matrix of VT B =
(\/T,éll, \/TB;, e \/TB/N)’ A consistent estimator of €2 is given by

Qp = Nl—lé (Bz - BMG) (Bz - BMG)/- (59)

It now remains to establish conditions under which Amax (V) < K and Apax (Vg) < K hold.
We first note that V,, and Vg are sub-matrices of Vy defined by (37) which we reproduce here
for convenience:

Vo =H""(60)J (60,7)H ' (60),

where H (6y) and J (8¢,) are given by (30) and (34), respectively. Hence, it is sufficient to
show that Apax (V) is bounded in N. To this end we first note that

Vol < [[HH(80)||* 13 (80,7, (60)

where [[A| = A2 (A’A) is the spectral norm of A. However, since Vg , H71(8y) and J (6, 7)

are symmetric matrices, then [|[Vg|| = Amax (Vo), H_1(00)H2 = A2 [H (00)], and [|J (8¢, 7)|| =
Amax [J (60,7)], and (60) can also be written as
Amax (Vo) < Anax [H " (80)] Ammax [J (60,7)] (61)

But Amax [H ™' (80)] = 1/Amin [H (80)], and under the identification conditions established in
Section 3.2, we have Amin [H (6))] > 0, which ensures that Amax [H ' (89)] < K is bounded in
N. Finally, we note that by Theorem 5.6.9 of Horn and Johnson (1985),

Amax [J (60,7)] < [II (60,7l » (62)
and using (34) it is easily seen that the column (row) norm of J (6, v) is dominated by matrices

(Go® Gy), Ag, and Eg,, where the latter two matrices are diagonal. The other matrices in
J (69,7), namely ¥y and Zg, are also diagonal matrices whose elements do not vary with N.
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Consider Ag, defined by (31) and note that

N N
sup (Zgo is 80) < sup (020) sup (Z |90, 18’> = sup (0 %) 1Goll
%

i s=1 s=1

Similarly,

Z Z 90,i590,irBro ZrsBso

r=1 s=1

sup

< Supzz \go zs‘ ’90 27"‘ HIBTOETSIBSOH

r=1 s=1

< Sllp HIBTOETSIBSOH sup Z Z |90 zs‘ ‘gO zr‘

z7“151

= sup || Bl sup |80l sup || sl |Gl 2,
s r r,8

However, under Assumptions 2(b) and 3 we have sup, ||B4|| < K and sup, ; [| 25| < K, and
under Assumption 4 it follows that |Gyl ., < K (see Lemma 2 of the online appendix A).
Hence, HAﬁo H < K. Similarly, it is also easily established that all elements of Eg  are bounded
in N. Finally, again under Assumption 4 and as shown in Lemma 2 of the online appendix

A, |Gy ® Gpll, < K. Consequently, [|J(60,7)||,, < K, and in view of (62) it follows that
)\max[ (60,7)] < K. Using this result in (61) and recalling that Amax [H ' (60)] < K, then
overall we have Apax (Vo) < K, as required. Note that this result does not need the exogenous
regressors to be weakly cross-correlated; it is sufficient that sup,. , [| 3] < K.

The main result of this section is summarized in the following proposition:

Proposition 3 Consider the heterogeneous spatial autoregressive (HSAR) model given by (1)
where the coefficients {10, B0, 1 = 1,2,..., N} are distributed randomly around the common
means o and By following (51). Suppose that Assumptions 1, 2, 4, 5, and conditions (21) and
(28) hold. Then, as N, T — oo, jointly such that vV N /T — 0, the mean group estimators, Vrc
and ﬁM(;, defined by (52) have the following asymptotic distributions

\/N(?Z)MG—%) ~ N (0,w7) ‘md\/NQ;MG_ﬁO) YN (0,9),

with consistent estimators of wi and Qg provided in (57) and (59), respectively.

5 Small sample properties of the QMLE

We investigate the small sample properties of the proposed QML estimator and the associated

MG estimator using Monte Carlo simulations. We consider the following data generating process

(DGP)
N

Yit = @i+ Y wigyie + Biwa + e, 1 =1,2,... N; t=1,2,...,T. (63)
j=1
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We include one exogenous regressor, x;;, with coefficient 3; as well as fixed effects, a;, in unit-
specific regressions. Stacking these regressions we have

yot:a+\I’Wyot+BmOt+EOta t:1a27"'7T7 (64)

where @ = (a1,a2,...,an)’, ¥ = Diag(v) and ¢ = (¢P1,¢2,...,¥n), W = (wy), 1,] =
1,2,...,N, B = Diag(8), where 8 = (81,582,...,8n), Tt = (T1t,T2t,...,2N¢), and €op =
(e1¢,€2¢,---,6nt)’. Note that since we explicitly account for fixed effects which we separate
out from the remaining regressors included in @, the unknown parameters are summarized
in vector 0, as follows: 6 = (a’,'l,b',ﬁ',O'Q’)/, o? = (02,03,...,0%)". In total there are 4N
unknown parameters.

We allow for spatial dependence in the regressors, z;;, and generate them as
Tit = PiWl, ;Top + Vi, (65)
or in matrix form
-1
Lot = (IN - (I)Wx) Vot,

where ® = Diag(é1, ¢2,...,0n), and vo; = (vig, Vot - - ., UN¢), With vy ~ ITDN(0,02). We set
¢; = 0.5 (representing a moderate degree of spatial dependence), and set
2 N

o5 = , (66)
tr [(IN —eW,) Iy — ®W,) !

which ensures that N1 Zf\il Var(zy) = 1. Weset W, = W = (wy5), i, =1,2,...,N, and
use the 4-connection spatial matrix described below.

We consider both Gaussian and non-Gaussian errors. Specifically we consider the following
two error generating processes

git/oio ~ IIDN(0,1),

and
Ez’t/Uz‘O ~ 11D [XQ(Q) — 2] /2,

fori=1,2,...,N,and t = 1,2,...,T, where x?(2) is a chi-squared variate with 2 degrees of
freedom. 0% are generated as independent draws from x*(2)/4 + 0.50, for i = 1,2,..., N, and
kept fixed across the replications.

For the weight matrix, W = (w;;), first we use contiguity criteria to generate the non-
normalized weights, w;, then row normalize the resultant weight matrices to obtain w;;. More
specifically, we consider W matrices with 2, 4 and 10 connections and generate (CHE for ¢ =
1,2,...,N, as®

e 2 connections: wy; =11if j =i—1,i+ 1, and zero otherwise,
e 4 connections: wy; =1 if j=4—2,i—1,i+ 1,7+ 2, and zero otherwise,

e 10 connections: wf,j =1ifj=¢-5,i—4,...,i—1,14+1,i+2,...,i+5, and zero otherwise.

5By construction, the first and the last units have fewer neighbors as compared to the other units.
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Since by construction |[W|_, = 1, then condition (8) is satisfied if sup; |¢;| < 1, and ensures
that Iy — W is invertible. We generate the unit-specific coefficients of the HSAR model as
aio ~ IIDN(1,1), Bijo ~ IIDU (0,1), and ;g ~ IIDU(0,0.8), for i = 1,2,...,N.7 Given the
DGP in (63), values of y;; are now generated as

Yor = Iy — W) (a4 Baor + o), t = 1,2,...,T.

Initially, to illustrate that our proposed estimator applies to both cases where N is small and
large, we considered the two polar cases of N = 5 and N = 100, and set T" = 25, 50, 100, 200.
We then considered a more comprehensive set of N values, namely N = 25,50,75,100. For
each experiment we used R = 2,000 replications. Across the replications, 8¢, and the weight
matrix, W, are kept fixed, whilst the errors and the regressors, ¢;; and z;; (and hence y;;), are
re-generated randomly in each replication. Note that, as IV increases, supplementary units are
added to the original vector 8¢ generated initially for N = 5. Due to the problem of simultaneity,
the degree of time variations in yj; for each unit ¢ depends on the choice of W and the number
of cross section units, V. Naturally, this is reflected in the performance of the estimators and
the power properties of the tests based on them.

We report bias and RMSE of the QML estimators for individual cross section units, as
well as their corresponding empirical sizes. In addition, we report power functions for three
units with true spatial autoregressive parameters, 19, selected to be low, medium and large in
magnitude. The experiments are carried out for spatial weight matrices, W, with two, four and
ten connections. The mean of simulated parameter estimates are computed as

R R
bicwy = RN thi, and By = R71Y_ Bi,
r=1 r=1

where @i,r and Bi,r refer to the QML estimates of 1; and $3; in the r** replication. The QML
estimators are computed using the log-likelihood function (7). We also report small sample
results for the MG estimators of 1y and Sy, defined by (52), using the experiment described in
Section 5.2 below.

5.1 Results for individual estimates

Since the results based on the Gaussian and non-Gaussian errors are very close, in what follows
we only report the results for the non-Gaussian case where the errors are generated as iid x?(2)
random variables, and use the sandwich formula (50) to compute standard errors. Also to
save space, we focus on results based on the spatial weight matrix, W, with four connections.?
Initially, to highlight the applicability of the proposed estimators to small as well as large
dimensional HSAR panels, we provide detailed results for the experiments with N = 5 and

N = 100.

"We also carried out experiments without exogenous regressors with B;o = 0, for all 4, corresponding to model
(14) in Section 3.2. The results of these experiments are available upon request.
8Results for Gaussian errors and other choices of spatial weight matrices are available upon request.
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5.1.1 Two polar cases: N =5 and N = 100

Table 1 reports the bias, RMSE, empirical size and power of the individual parameters, ;o and
Bio, © = 1,2,..., N, for the experiments with N = 5. The bias of estimating ;o tends to be
small but negative when T = 25, whilst estimates of ;9 show an upward bias when 7" is small
(T = 25). But the biases of both estimators fall quite rapidly with 7', for all 7. A similar pattern
can be seen in the RMSEs, again declining with 7" reasonably fast. Turning to size and power of
the tests based on the QML estimates, there is some evidence of over-rejection when 7" is small
(T = 25). But the size distortion gets eliminated as T is increased, with the tests having the
correct size for values of T' > 50. This pattern is shared by both ;9 and S;9. Similarly, power
is low when T = 25 but improves markedly for all 5 units as 7" is increased.” Overall the small
sample results are in line with our theoretical findings, and give satisfactory results for values
of T' > 50; a property which is repeated for other experiments considered in this paper.

For N = 100 we report the results only for a selected number of units, namely units with the
three smallest and largest population values for v,y and a few in between, and the associated
Bio values. The small sample results for these experiments are summarized in Table 2, and are
qualitatively similar to those reported in Table 1 for N = 5, indicating that the theoretical
framework of Section 3 can be applied equally to data sets with small and large numbers of
cross section units.

5.1.2 RMSE, size and power for all N and T combinations

We now turn to the rest of the results and consider all the combinations of N € {25, 50, 75,100}
and T € {25,50,100,200}. To save space we use boxplots to summarize the results for RMSE
and size, and use empirical rejection frequency plots for power.!? All results are shown in
the online appendix E. The RMSE boxplots for ;0 and §;y are given in Figures Al and A2,
respectively.'! Overall, the RMSE values are small for both parameters and fall with 7" but
are not affected by changes in the cross section dimension, IV, which is in line with the theory
developed in Section 3.

The boxplots for the size of the tests based on the QML estimates of ;g and B;9 are given
in Figures A3 and A7, respectively. These results are based on the sandwich covariance matrix
formula given by (50). As can be seen, in general the tests are correctly sized at 5 per cent for
T relatively large, although for small values of T there are some size distortions. Once again the
size estimates are not affected by NV, and tend to 5 per cent as T increases, irrespective of the
value of N.

To save space we only report the empirical power functions of the tests for three cross section
units with low, medium and high parameter values. The power plots are computed for different
values of 1; and (; defined by ¥; = ;0 + 9, and 3; = B;o + 9, for t = 1,2,..., N, where

9Clearly, improvements in power can be achieved by reducing the error variances, ¢%. Some supporting
evidence is provided in Tables S1 and S2 in the online appendix E.

10The boxplots for bias of the estimators are similar to those of RMSE and are available upon request. The
corresponding tables that show bias and RMSE results for the individuals estimates (12)1-(13), and Bi(R), i =
1,2,...,N) are also available upon request.

n each boxplot, the central mark indicates the median, while the bottom and top edges of the box indicate
the 25th and 75th percentiles, respectively. The whiskers extend to the most extreme data points not considered
outliers. Finally, outliers are defined as values greater than g3 + 1.5 (g3 — ¢1) or smaller than ¢1 — 1.5 (g3 — ¢1),
where ¢1 and g3 are the 25th and 75th percentiles, respectively.
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Table 1: Bias, RMSE, size and power for parameters of individual units in the HSAR(1) model
with one exogenous regressor and non-Gaussian errors for N =5 and T € {25, 50,100, 200}.

T 25 50 100 200
Parameter Bias RMSE Bias RMSE Bias RMSE Bias RMSE
(o

1,0 = 0.1261 | -0.0056 0.1891 0.0005  0.1230 -0.0023  0.0851 0.0010  0.0592
Yoo = 0.3883 | -0.0051 0.2495 -0.0058  0.1687 -0.0006 0.1148 -0.0003  0.0803
P30 = 0.4375 | -0.0115 0.2436 -0.0022  0.1499 0.0034 0.1041 -0.0003 0.0743
P40 = 0.5059 | 0.0050 0.1769 -0.0040 0.1221 -0.0028  0.0820 -0.0010 0.0571
P50 = 0.7246 | -0.0109  0.2089 -0.0031  0.1502 -0.0009 0.1071 0.0006 0.0721

Bio
Bi1o=0.9649 | 0.0125 0.2236 0.0069 0.1472 0.0024 0.1008 -0.0020 0.0717
B2,0 = 0.9572 | 0.0100 0.2674 0.0068 0.1833 -0.0022 0.1272 -0.0025 0.0892
B30 = 0.2785 | 0.0078 0.2908 -0.0012 0.1806 -0.0026 0.1252 0.0022  0.0907
Bao = 0.9134 | -0.0020 0.2195 0.0072 0.1461 0.0012 0.1000 0.0000 0.0684
Bs0 = 0.8147 | 0.0104 0.2842 0.0108 0.1950 0.0081 0.1341 0.0003 0.0911

T 25 50 100 200 25 50 100 200

Parameter Size Power

Yio
P10 =0.1261 | 0.1040 0.0675 0.0535 0.0515 0.3410 0.4665 0.7060 0.9065
P20 =0.3883 | 0.0950 0.0690 0.0560 0.0580 0.2515 0.3525 0.4900 0.7315
P30 = 0.4375 | 0.0935 0.0620 0.0560 0.0510 0.2245 0.3355 0.5115 0.7975
P40 = 0.5059 | 0.0835 0.0740 0.0660  0.0485 0.3430 0.5025 0.7355 0.9345
P50 = 0.7246 | 0.0660 0.0670 0.0645 0.0530 0.2450 0.3610 0.5410 0.7975

Bio
51,0 =0.9649 | 0.0900 0.0645 0.0525 0.0530 0.2845 0.3825 0.5360 0.8075
52’0 =0.9572 | 0.0930 0.0725 0.0625 0.0570 0.2165  0.2885 0.4380 0.6535
B30 =0.2785 | 0.0960 0.0710 0.0515 0.0585 0.2585  0.3000 0.4565 0.6375
54,0 =0.9134 | 0.0865 0.0630 0.0565  0.0485 0.3055 0.3845 0.5715 0.8245
B50 = 0.8147 | 0.0890 0.0705 0.0555  0.0510 0.2005 0.2570 0.3700 0.6080

Notes: True parameter values are generated as ;o ~ IIDU(0,0.8), oo ~ IIDN(1,1), and B;o ~
IIDU(0,1) for i = 1,2,..., N. Non-Gaussian errors are generated as e;9/d;0 ~ IID[x?(2) — 2]/2, with
o2 ~ IIDU[x*(2)/4+0.5] for i = 1,2,..., N. The spatial weight matrix W = (w;;) has four connections
so that w;; = 1 if j is equal to: ¢ — 2,4 —1, ¢ + 1, i 4+ 2, and zero otherwise, for ¢ = 1,2,..., N. Biases

and RMSEs are computed as R™! Zfﬂ(i’i,r — 1;0) and \/R—1 Zf:l(q/;iﬂ“ —i)? for i = 1,2,...,N.
Empirical size and empirical power are based on the sandwich formula given by (50). The nominal size
is set to 5%. Size is computed under H;g: 1); = 19, using a two-sided alternative, for ¢ = 1,2,..., N.
Power is computed under v; = ;9 + 0.2, for i+ = 1,2,..., N. The number of replications is set to
R = 2,000. Estimates are sorted in ascending order according to the true values of the spatial autore-
gressive parameters. Biases, RMSEs, sizes and powers for 8;, ¢ = 1,2,..., N, are computed similarly,
with power computed under 5; = B;0 + 0.2.
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Table 2: Bias, RMSE, size and power for parameters of individual units in the HSAR(1) model
with one exogenous regressor and non-Gaussian errors for N = 100 and 7' € {25, 50, 100, 200}.

T 25 50 100 200
Parameter Bias RMSE Bias RMSE Bias RMSE Bias RMSE
Yio

P1,0 = 0.0244 | -0.0005 0.3152 -0.0049 0.2138 0.0021  0.1415 -0.0001  0.1010
2,0 = 0.0255 | -0.0330 0.5189 0.0034 0.3674 -0.0137  0.2641 -0.0033  0.1794
3,0 = 0.0397 | 0.0129  0.3509 -0.0017  0.2448 -0.0014  0.1681 0.0013  0.1183

Ps1,0 = 0.3927 | -0.0027  0.2912 0.0038  0.2056 0.0009  0.1395 0.0005  0.0960
P52,0 = 0.3987 | 0.0001  0.1994 -0.0031  0.1381 0.0029  0.0921 0.0005  0.0638
53,0 = 0.4004 | -0.0112  0.3063 0.0075  0.2049 0.0033  0.1392 -0.0015 0.0991

og,0 = 0.7695 | -0.0031 0.1621 0.0018 0.1149 0.0055 0.0824 -0.0003 0.0586
99,0 = 0.7705 | -0.0530  0.2903 -0.0126 0.1895 0.0002 0.1401 0.0003 0.1041
P100,0 = 0.7904 | -0.0125 0.1716 -0.0094 0.1275 0.0011 0.0897 0.0008 0.0613
Bio
B10=0.1978 | 0.0089 0.2782 0.0017 0.1771 0.0007 0.1192 -0.0073 0.0824
B2,0 = 0.7060 | 0.0252 0.3699 0.0016  0.2359 -0.0005 0.1608 0.0049 0.1144
B30 =0.4173 | 0.0107 0.2541 0.0034 0.1733 0.0000 0.1157 0.0028 0.0821

Bs1,0 =0.9448 | 0.0060 0.1924 -0.0024 0.1294 0.0018  0.0896 0.0009  0.0634
Bs2,0 =0.1190 | 0.0046 0.1824 0.0026  0.1259 -0.0005 0.0853 0.0021  0.0578
Bs3,0 =0.7127 | 0.0026 0.2630 -0.0050 0.1654 0.0038  0.1201 0.0012  0.0831

Bog,o = 0.1067 | 0.0041  0.1688 -0.0031 0.1115 0.0010 0.0762 -0.0002  0.0550
Bog,0 = 0.4588 | 0.0207  0.2643 0.0039  0.1788 0.0033 0.1232 0.0027  0.0888
B100,0 = 0.3674 | 0.0056 0.1691 0.0032  0.1179 0.0009  0.0830 0.0004  0.0560

T 25 50 100 200 25 50 100 200

Parameter Size Power
Pio
P10 = 0.0244 | 0.0890 0.0810 0.0520  0.0590 0.1820  0.2200 0.3290  0.5480
o0 = 0.0255 | 0.0705 0.0595 0.0555  0.0490 0.0945 0.0895 0.1495 0.2140
P30 = 0.0397 | 0.0905 0.0745 0.0585 0.0575 0.1555  0.1895 0.2805  0.4450

Y510 = 0.3927 | 0.0950 0.0645 0.0590  0.0535 0.1785  0.2625 0.3590  0.5810
Y520 = 0.3987 | 0.0850 0.0620 0.0625  0.0505 0.3050  0.4390 0.6285  0.8660
Y530 = 0.4004 | 0.0885 0.0785 0.0570  0.0585 0.1995  0.2490 0.3745  0.5800

98,0 = 0.7695 | 0.0635 0.0630 0.0660 0.0610 0.3340 0.4755 0.6935 0.9145
99,0 = 0.7705 | 0.0300  0.0285 0.0370  0.0495 0.1455 0.2045 0.3095 0.5205
P100,0 = 0.7904 | 0.0545 0.0570 0.0625 0.0505 0.3120 0.4665 0.6455 0.8845
Bio
B1o=0.1978 | 0.1160 0.0700 0.0610 0.0505 0.2405 0.3040 0.4380 0.7115
B2 =0.7060 | 0.1025 0.0580 0.0505 0.0545 0.1725 0.2095 0.2710 0.4510
B30 =0.4173 | 0.0950 0.0780 0.0550 0.0595 0.2450 0.3160 0.4655 0.7080

Bs1,0 =0.9448 | 0.0910 0.0685 0.0590  0.0570 0.3260  0.4665 0.6500  0.8880
Bs2,0 = 0.1190 | 0.0970  0.0800 0.0505  0.0440 0.3500  0.4840 0.7030  0.9150
Bs3o0 = 0.7127 | 0.1075  0.0660 0.0665 0.0515 0.2420  0.3150 0.4410 0.6810

Bog,o = 0.1067 | 0.0960  0.0660 0.0530  0.0545 0.3950  0.5500 0.7605  0.9475
Bog,0 = 0.4588 | 0.0725 0.0615 0.0545  0.0595 0.2015  0.2775 0.4225 0.6415
B1o0,0 = 0.3674 | 0.0935  0.0660 0.0695  0.0540 0.3605  0.5025 0.7255 0.9370

Notes: See notes to Table 1. 24



6 = —0.800,—0.791,...,0.791,0.800. We only consider values of v; that satisfy the condition
[i| < 1.12

The power results for the spatial parameters, ;9, are displayed in Figures A4-A6, that
correspond to the low value (;0 = 0.3374), the medium value (¢;o = 0.5059) and the high value
(10 = 0.7676), respectively. As to be expected the power depends on the choice of 1;y and rises
with T', but does not seem to be affected by V. Furthermore, perhaps not surprisingly, empirical
power functions for ;) become more and more asymmetrical as 1;’s move closer and closer to
the boundary value of 1. The power functions for the three associated values of (5;y are shown
in Figures A8-A10 for the low value of Bi (B0 = 0.0344), the medium value (B;y = 0.4898),
and the high value (8,0 = 0.9649), respectively. Again the empirical power functions are similar
across N and improve with T'.

5.2 Small sample properties of the MG estimators

We employ the same data generating process, defined by (63), and set a0 = ag + €14, with
ag = 1 and €15 ~ IIDN(O, 1), %‘o = 1/J0 + €94, with wo = 0.4 and €95 ~~ IIDU(—0.4,0.4) and
Bio = Po + €34, with Sy = 0.5 and e3; ~ IIDU (—0.5,0.5). Parameters ag, ¥p and [y are fixed
while parameters a;g, ¥;0 and B;y vary across replications, for ¢ = 1,2,..., N, in accordance
to the random coefficients model. The MG estimators and their standard errors are computed
using (52), (57) and (59), and the number of replications is set to R = 2,000. The small sample
properties of the mean group estimators of 1y and Sy are summarized in Table B of the online
appendix E. The top panel gives the results for Gaussian errors, and the bottom panel for non-
Gaussian errors. As to be expected the bias and RMSE of the MG estimators decline steadily
with both NV and T', and it does not matter whether the errors are Gaussian or not. There are
some small size distortions when N = T = 25, but the size rapidly converges to the nominal
value of 5 percent as N and T are increased. For example for T' = 25 the size is always within
the simulation standard errors when N > 50.

6 Heterogeneous spatial spill-over effects in U.S. housing mar-
ket

As an empirical application we estimate HSAR models for real house price changes in the
United States at Metropolitan Statistical Areas (MSAs) over the period 1975Q1-2014Q4. Ac-
curately modelling and forecasting the housing market cycle is of paramount importance for
prospective owners, investors, and real estate market participants such as insurers and mortgage
lenders (Agnello et al., 2015). Determinants of US house price variations are numerous and
well-documented in the literature, two prominent fundamentals being real per capita disposable
income and population - see for example Malpezzi (1999) and Gallin (2006) among others. An
important aspect of the modelling strategy is to account for the existence of co-movements in
house prices within and across MSAs. Recently, Bailey et al. (2016) (hereafter BHP) highlight
the importance of distinguishing between types of cross-sectional dependence in the analysis of
US house price changes, which if ignored can lead to biased parameter estimates. See, for exam-
ple, the studies by Swoboda et al. (2015) and Munro (2018). BHP distinguish between spatial

12The empirical power functions are computed using the sandwich formula for the covariance matrix of the
underlying estimators.
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dependence that originates from economy-wide common shocks such as changes in interest rates,
oil prices and technology, and the dependence across MSAs due to local spill-over effects arising
from differences in house prices, incomes and demographics across MSAs.'> Here, we use an
extended version of the panel dataset employed by BHP and further augmented with population
and per capita real income data by Yang (2018) to estimate HSAR models, after filtering out
the effects of common factors on house price changes.'* We provide MSA specific estimates of
spill-over effects, as well as population and income elasticities of house prices as compared to the
homogeneous spatial parameter estimates obtained in Yang (2018). To compare our individual
estimates with those of Yang, we also report MG estimates both at the national and regional
levels. As we shall see, we find considerable heterogeneity across MSAs and regions.

6.1 Data description and transformations

The U.S. Office of Management and Budget (OMB) delineates metropolitan statistical areas
(MSAs) according to published standards that are applied to Census Bureau data. These are
revised periodically. A total of 381 MSAs fall under the February 2013 definition.'® We consider
377 of these from the contiguous United States.'® Accordingly we compile quarterly nominal
house prices (HP) for 377 MSAs over the period 1975Q1-2014Q4. In addition, we obtained
nominal income per capita (INC) and population (POP) at the MSA level over the same
period. Both real house prices and real per capita income for all MSAs are then computed
by deflating their nominal values by State level Consumer Price Index data (C'PI) which are
matched to the corresponding MSAs.!” Further details on data sources can be found in the
online appendix D.

We denote the variables that are included in our model by: II;; for percent quarterly rate
of change of real house prices of MSA i in quarter t (dependent variable), GPOP; for percent
quarterly rate of change of population (regressor), and GINC}y for percent quarterly rate of
change in real per capita income (regressor). Specifically,

[ HPy HP;
L, = 100 x |1 Y aain s
it M (CPIit) n (CPIit_1>] ’

GPOP; =100 x [In (POP;) — In (POP;;_1)], and

GINC; = 100 x |In (INC“> —In <INC“‘1>] ,

CPI; CPIy,

13For a theoretical analysis of the interactions between regional house prices, migration flows and income shocks
see Cun and Pesaran (2018).

14The authors would like to thank Cynthia Yang for providing them with the updated dataset originally used
in Yang (2018).

15The February 2013 delineation states that ‘metropolitan statistical areas have at least one urbanised area of
50,000 or more population, plus adjacent territory that has a high degree of social and economic integration with
the core as measured by commuting ties’. For further details see:

https://www.whitehouse.gov /sites/whitehouse.gov /files/omb/bulletins /2013 /b13-01.pdf

'6This excludes the non-contiguous states of Alaska (2 MSAs) and Hawaii (2MSAs) and all other off-shore
insular areas.

17"The quarterly figures for nominal house prices (HP) are arithmetic averages of monthly observations of HP.
Further, per capita income (INC), population (POP) and consumer price index (CPI) are annual data which
are converted into quarterly observations by following the interpolation method provided in the GVAR Toolbox
User Guide which can be found at: https://sites.google.com/site/gvarmodelling/gvar-toolbox.
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fori=1,2,...,Nand t =1,2,...,T (1975Q1 — 2014Q4), where N = 377 MSAs, and T' = 160
quarters.

Implementation of our approach requires the panel of variable II;; to be weakly cross-
sectionally dependent by Assumption 4. Hence, we apply the CD test developed in Pesaran
(2004, 2015) to II;; in order to assess the strength of cross-sectional dependence (CSD) in real
house price changes. The CD statistic turns out to be 1621.22 which is substantially higher than
the 1.96 critical value at 5 per cent level. With the null hypothesis of weak CSD soundly rejected,
we then estimated the exponent of cross-sectional dependence, «, due to Bailey et al. (2016)
which measures the degree of cross sectional dependence of house price changes. Values of «
close to unity are indicative of strong cross-sectional dependence. We obtained & = 1.001(0.03),
where the standard error of the estimate is given in brackets. It is clear that real house prices
changes, 11;;, are strongly correlated across MSAs, and before estimating local spill-over effects
using the HSAR model, we must first purge the house price inflation series of the common
sources of their dependence, as suggested in BHP.

Accordingly, we de-seasonalize and de-factor the three variables that we use to estimate the
HSAR specifications, and use residuals from OLS regressions of Il;;, GPOP;; and GINCy; on:
(i) an intercept, (ii) 3 quarterly dummies and (iii) national and regional cross-sectional averages
of II;;, GPOP; and GINCj; respectively.'® We denote these de-seasonalized and de-factored
variables by 7, gpopi; and gincy, respectively.!? The CD statistic for the filtered series 7
now stands at -0.200, which is not statistically significant and 7;; satisfy the condition of weak
cross-section dependence required when estimating HSAR models.

6.2 Modelling de-factored house price changes
We now consider the following HSAR specification for 7;;:

N
T = ai+ i Y wime + BLT gpopie + BhY gpopis—1 + Biigincy + Bygincii_1 + €, (67)
=1

which allows for fixed effects and full heterogeneity in both the spatial coefficients of real house
price changes (1);), and the slope coefficients for the two regressors and their lagged values
(BY7P, BE7P, pine, Binc). Innovations are assumed to be distributed as e; ~ I1D (0,02).20 (67)
is in accordance with the theoretical model (1) analyzed in Sections 2 and 3.2! With regard
to the construction of the weights matrix W = (w;;), we consider a distance based weighting

18We partition the MSAs into R = 8 regions, in line with the Bureau of Economic Analysis classification, each
region r = 1,2,..., R, containing a total of N, MSAs. The eight regions are: New England (15 MSAs), Mid East
(41 MSAs), South East (120 MSAs), Great Lakes (59 MSAs), Plains (33 MSAs), South West (39 MSAs), Rocky
Mountains (22 MSAs) and Far West (48 MSAs).

'9This transformation of the data follows Yang (2018). She also includes local cross-sectional averages of house
price changes in her defactoring procedure. Given their limited explanatory power we abstract from incorporating
local averages when defactoring the series.

29Tn performing the data transformations of Section 6.1, we abstract from the sampling uncertainty related to
using defactored series when estimating HSAR models. In principle, one could estimate the common and local
effects simultaneously, instead of the two-stage procedure being followed. However, such an endeavour is beyond
the scope of the present paper.

2'We have considered alternative models to (67): one assuming no time lags in the exogenous variables and
another that allows for lagged dependent variables as well as lagged regressors. Overall, the results convey the
same message as that from running regression (67). For brevity of exposition, these results are not included in
the paper, but are available upon request.
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scheme implemented in Yang (2018), which is common in the spatial econometrics literature.
More precisely, the calculation of the geodesic distance between each pair of latitude/longitude
coordinates for the MSAs included in our sample uses the Haversine formula. Then, we determine
a specific radius threshold, d (miles), within which MSAs are considered to be neighbors. In this
case, the relevant entries in the un-normalized weights matrix W0 are set to unity. The MSAs
that fall outside this radius are labelled non-neighbors and their corresponding entries in W°
are set to zero. Finally, we row-normalize W and obtain W which is used in (67).

We consider three versions of W constructed with the radius threshold values of d = 75,
100 and 125, miles. We name the adjacency matrices W5, Wigo and W 195, respectively. For
brevity of exposition, in what follows we focus on the version of (67) that uses W5 which gives
a reasonably sparse weight matrix with 0.88% non-zero elements. Other types of weighting
schemes can also be entertained. For example, BHP consider two separate adjacency matrices
determined by the statistically positive and negative pairwise correlations of de-factored real
house price changes. Another scheme is proposed by Zhou et al. (2017) who use a sample-
based adjacency matrix to approximate the true network structure by focusing on an estimation
framework that incorporates just the degree (number of connections) of each unit in the network.
Since our primary focus is on the estimation of heterogeneous spatial coefficients, we do not
consider such alternative weigh matrices, which can be easily pursued if needed.

6.3 Estimation results

First we present the estimates of individual spatial effects by MSA. Note that when using
adjacency matrix W5 in (67) there are 39 out of the total 377 MSAs that are completely
isolated (have no neighbors) and are thus excluded from the analysis. This leaves us with a
reduced sample of N = 338 MSAs. For ease of exposition the individual spatial lag coefficient
estimates for these 338 MSAs are displayed in Figure 1. Each estimate, 1@-, is matched to its
corresponding MSA on the map of the U.S.. MSAs colored in blue depict positive spatial lag
coefficients, with different shades of blue corresponding to differing ranges within which each
iﬂi falls: lighter shades refer to ranges closer to zero while darker shades relate to spatial lag
coefficient estimates closer to the boundary value of unity. Similarly, red areas are associated
with negative spatial lag coefficient estimates, with the lighter shade of red indicating 1/31 falling
in ranges closer to zero while darker red areas refer to more sizable spatial coefficient estimates
in absolute terms.??

It is evident from Figure 1 that spatial coefficients are estimated to be predominantly positive
and in general relatively sizeable. Indeed, 255 MSAs have positive spatial lag coefficients of which
226 are statistically significant. This points to the existence of important spill-over effects in the
U.S. housing market even when the influence of national (common) factors are filtered out. It is
easy to show spill-over effects in house price changes across MSAs without de-factoring, but such
evidence suffers from the conjunctions of national and local influences, and can be misleading.
The spatial display of the estimates in Figure 1 shows how the strength of local spill-over effects
changes as we move from the sparsely populated areas in the middle of the US (Plains, Rocky
Mountains and South West), and towards the two coastal areas (South East, Mid East and Far
West) which have a much higher population density.

22The spatial lag coefficients of 44 MSAs hit the upper or lower bound of 0.994/-0.994 set in our optimization
procedure. These are shown as a separate category in Figure 1. Of these 40 1); are positive and 4 are negative.
Widening the bounds to (-0.995,0.995) reduces the number of MSAs that fall outside the bounds to 30.
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Figure 1: Spatial autoregressive parameter estimates (1[12) for Metropolitan Statistical Areas in
the Unites States
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Notes: Each v; is mapped to a Metropolitan Statistial Area (MSA) in the U.S.. A total of 338
MSAs are included in model (67). MSAs coloured in blue correspond to positive spatial parameter
estimates while MSAs coloured in red match to negative spatial parameter estimates. Darker shades of
blue or red indicate more sizable 1&1 while lighter shades related to 1/32 closer to zero in absolute terms.
Category ‘Non-conv’ includes MSAs whose 'g/;l estimates hit the upper/lower bound in the optimisation
procedure, while category ‘No-Neigh’ includes MSAs that have no neighbours when using Ws.

Similar differences can also be seen in the estimates of the elasticities of house price changes
to population and real per capita income changes, as shown in Figures 2(a) and 2(b). Focussing
on contemporaneous effects, we observe that in 276 MSAs the population or income variables
have a positive impact on house price changes, although the population effects tend to be more
significant and sizeable. Of these, around two thirds tend to coincide with areas also reporting
positive estimates for the spatial lag coefficients. Important examples of such MSAs include
Seattle (Washington), San Francisco (California) or Boston (Massachusetts).?? In contrast, the
number of MSAs with negative estimates of the spatial lag coefficients is substantially lower,
amounting to 39 of which only 11 are significantly different from zero. These are spread more
evenly across the United States and correspond to economically less active areas in the U.S.,
such as Cheyenne (Wyoming), Coeur d’Alene (Idaho), Hot Springs (Arkansas), and Dothan
(Alabama). It is also interesting that out of these 11 MSAs 7 have in fact experienced stagnant
or declining population over our sample period, which could be the main reason behind the
negative estimates of 1; obtained for these MSAs. Omne can extend the analysis further by
computing marginal direct as well as spill-in and spill-out indirect effects of each explanatory
variable on changes in real house prices, as discussed in LeSage and Chih (2016).%4

23The estimates of the lagged population and real per capita income variables in (67) are generally small and
less statistically significant as compared to their contemporaneous effects. These estimates are available upon
request.

24 All individual spatial and slope coefficient estimates with their standard errors from model (67) are available
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The heterogeneity in spatial effects and the population and income elasticities across the
U.S. can be seen even if we average the estimates across different regions in the U.S.. Table 3
reports the mean group estimates of the parameters grouped by six regions. We started with
the standard eight regional classification, but combined New England and the Mid East, and
South West and Rocky Mountains to ensure a reasonable number of MSAs (N, in Table 3)
per region. The MG estimates of the spatial lag coefficients are quite close for Great Lakes,
South East and Far West (in the range 0.573 to 0.599), but differ markedly from the other three
regions, namely New England & Mid East, Plains, and South West & Rocky Mountains, once
again largely reflecting the different degrees of population density across the U.S.. We notice
even larger differences in the MG estimates of population and real income variables across the
regions, with much larger estimates for the effects of population changes on house prices as
compared to income changes. For the U.S. as a whole, the MG estimate of the spatial effects
amount to 0.509 (0.025) which points to the existence of non-negligible spatial dynamics in
the U.S. even after conditioning on factors that generate strong spatial correlation between
disaggregate house price fluctuations. This result is comparable though slightly lower than the
homogeneous estimates of 0.643 (0.005) and 0.612 (0.003) obtained in Yang (2018) using the
GMM and MLE approaches, respectively. Finally, the MG estimates of the contemporaneous
effects of population and income variables for the U.S. as a whole are 0.446 (0.047) and 0.092
(0.009), respectively. The associated estimates for the lagged values of these variables are 0.155
(0.032) and 0.027 (0.007), all of which are statistically significant, and economically sizeable.

7 Conclusion

Standard spatial econometric models assume a single parameter to characterize the intensity
or strength of spatial dependence across all units. In the case of pure cross section models or
panel data models with a short time dimension, this assumption is inevitable. However, in a
data rich environment where both the time (7") and cross section (N) dimensions are large,
this can be relaxed. This paper investigates a spatial autoregressive panel data model with
fully heterogeneous spatial parameters (HSAR) where the spatial dependence can arise directly
through contemporaneous dependence of individual units on their neighbors, and indirectly
through possible cross-sectional dependence in the regressors.

The asymptotic properties of the quasi maximum likelihood estimator are analyzed assuming
a sparse spatial structure with each individual unit having at least one connection. Conditions
under which the QML estimator of spatial parameters are consistent and asymptotically normal
are derived. It is also shown that under certain conditions on spatial coefficients and the spatial
weights, the asymptotic properties of the individual estimates are not affected by the size of cross
section dimension N. An estimator of the cross section mean of the individual parameters (MG
estimators) is also analyzed which can be used for comparisons with outcomes from standard
homogeneous SAR models. It is shown that MG estimators are consistent and asymptotically
normal as N and T — oo, jointly, so long as v/ N/T — 0, and the spatial dependence is
sufficiently weak. Monte Carlo simulation results provided are supportive of the theoretical
findings. As an application of the HSAR model we investigate the potential heterogeneity in
spatial spill-over effects in the U.S. housing market across the 338 MSAs included in our sample.

upon request.
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Figure 2: Contemporaneous elasticities of house price changes to population growth ( Aff ?) and
real income growth (3i7¢) for Metropolitan Statistical Areas in the Unites States
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Notes: Each ﬁffp and {7 is mapped to a Metropolitan Statistial Area (MSA) in the U.S.. A total of
338 MSAs are included in model (67). MSAs coloured in blue correspond to positive slope parameter
estimates while MSAs coloured in red match to negative slope parameter estimates. Darker shades of
blue or red indicate more sizable Bffp and Bi7¢ while lighter shades related to Af;’p and 3i7¢ closer to
zero in absolute terms. Category ‘Non-conv’ includes MSAs whose 1/31 estimates hit the upper/lower
bound in the optimisation procedure, while category ‘No-Neigh’ includes MSAs that have no neighbours
when using Ws.
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Table 3: Mean group estimates (MGE) of spatial coefficients and elasticities of house price
changes to population and real income growth by six major U.S. regions, and the U.S. as a
whole

r Name N
1 &2 New England & Mid East 39  0.398%  0.959%  0.218  0.165% -0.046T
(0.074) (0.214) (0.138) (0.032) (0.024)

3 Great Lakes 45  0.599%  0.367F  0.156  0.071F  0.001
(0.065) (0.151) (0.103) (0.021) (0.014)

4 Plains 26 0.444%  0.431%  0.191* 0.064*  0.011
(0.083) (0.128) (0.100) (0.035) (0.016)

5  South East 107 0.598%  0.320f  0.123%F  0.056%  0.030%

(0.039) (0.054) (0.043) (0.011) (0.012)
6 &7 South West & Rocky Mountains 37  0.238%  0.355¢  0.1977  0.136%  0.086F
(0.070)  (0.075) (0.062) (0.029) (0.020)

8  Far West 40  0.573%  0.468F  0.119  0.116F  0.074%
(0.051)  (0.095) (0.076) (0.025) (0.023)
U.S. 204  0.509%  0.446% 0.155%  0.092%  0.027F

(0.025) (0.047) (0.032) (0.009) (0.007)

Notes: * p < 0.1, T p < 0.05, ¥ p < 0.01. Non-parametric robust standard errors in
parentheses (see below). For r = 1,...,6, 1/}MG,,. = Nt D el ¥;, and s.e.(@MG,,.) =
\/[NT(NT - 1)t Zielr(@ — arg.r)?, where I, is the set of units belonging to region r, I, =
{i: i is in region r}, and N, is the number of units per region, N, = #(I.). New England
(8 MSAs) and Mid East (31 MSAs) as well as South West (22 MSAs) and Rocky Mountains
(15 MSAs) have been merged in order to obtain a sufficiently large number of MSAs in the

two broader regions. For the U.S. as a whole: ’(/AJMG’US = N-! Zil 12%7 and S.e.(’(/AJ]WG,Us) =

\/[N(N - 1)t vazl(qﬁl — &MG,US)Q. The MGE of coefficient estimates of house price changes to
population and real income changes (377, B8P, finc and fi7¢) are computed similarly. The com-
putations of all MG estimates exclude the MSAs whose spatial lag coefficients hit the upper/lower

bound in the optimisation procedure.

The methods developed in this paper can be extended to consider cases where the spatial
parameter corresponding to each neighbor of unit ¢ is estimated distinctly, as well as to the case
of hierarchical panel data models where spatial parameters are assumed to be the same within
regions (groups) but allowed to differ across regions or groups.
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Introduction

This online supplement is composed of Appendices A-E. Appendix A includes statements and
proofs of lemmas used in the derivations of Sections 3.2, 3.3 and 4 of the paper. Appendix B
provides proof of Proposition 2 in Section 3.3 of the paper, while Appendix C gives the first and
second derivatives of the log likelihood function of the HSAR model with exogenous regressors.
Appendix D describes the data sources used in Section 6, and Appendix E displays additional
Monte Carlo results based on the designs set out in Section 5 of the paper.

Appendix A Technical lemmas

Lemma 1 Consider the weight matric W and suppose that Assumption 4 holds. Then matrix
S(¢) = Iy — ¥W is non-singular with positive eigenvalues, namely Amin [S(¢)] > 0.

Proof. Let o (W) be the spectral radius of matrix $W. Non-singularity of S(¢) = Iy —¥W
is ensured if

0 (TW) < 1. (A1)

However, since for any matrix norm [|A||, o (A) < ||A]|, then using the maximum column sum
matrix norm we have

o (W) <[[W][; < [, [Wl; = sup [l W], , (A.2)

and from (A.1) we have
sup [¢;] [[W][; < 1.

Similarly, using a maximum row sum matrix norm we have

sup il [ W < 1,
(2

where we have used the result |||, = ||¥||, = sup; [¢i|. Therefore, matrix S(¢p) = Iy — YW
is invertible under condition (8) of Assumption 4. Also all eigenvalues of S(v) are necessarily
positive, since Amin [S(¥)] =1 — Amax (TW) > 1 — | Apax (FW)| =1 — (W) >0. =

Lemma 2 Let G (¢) =W (Iy — lIIVV)A, and suppose that Assumption 4 holds. Then
1G ()]l < K and |G (¥)] < K, (A.3)

and

|G ()0 G (@), <K and ||G (%) 0 G ()| <K, (A4)
for all values of Y= (1,1a,...,0¥N) that satisfy condition (8).

Proof. Under condition (8), we have

Gp) =W +WIW + WIEWIW + ..,



and
IG (@), < W + IWITI1®], + W] 17+

But | ®||] = [sup; [¢i]]°, and under condition (8) we have sup |¢;| || W|; < 1. Hence,
i

1
IG @)l < Wi, <1 — sup; v ||W|h> '

Similarly,

1
1G @)l < W]l <1 — sup; [¢i] [W] ) |

The boundedness of column and row matrix norms of G () now follow since, under Assumption

4, [W]|; and [|W|, are bounded, 1 —sup [¢;| [W|; > 0, and 1 —sup; [¢;] [W|[, > 0. Finally,
(A.4) follows since

N N
/
— ol ] < . .
|G (v) © G ()], e (Z; \gugﬂ|> < max, (sb;plgw Z; Igﬂl> <K
and

! _
HG (’l,b) oG (¢) = 120335\[ Z |gz]g]z| < 1235\[ sup |91]| Zl |g]z| <K,
J

from (A.3). m

Lemma 3 Consider the average log-likelihood function of (4):

Ur(0) = T~ 01(8) = —gln o) — —Zlna += 1n|V( )| (A.5)

|
N | =

T
> 8y — Bzor] T S(9)yo — Baoi] ,
t=1

where @ = (', 3,0, B is given in (5), br(0) = T~1r(0) and (1(0) is defined by (7). Also,
V (1) = S'(1)S(vp). Denote the true parameter vector of 6 by 0o = (3, By, a3') which lies in
the interior of @ = @y x Og x O, C RN x RNk x RN, Then, under Assumptions 1 and 2 we
have

{1(60) — £(8) =3 Eo [€r(80) — (r(0)] (A.6)

where Ey represents expectations taken under @ = 0.



Proof. Let Qr (6¢,0) = {7(6) — {7(0), and evaluating (A.5) at 6 = 6y, note that

@r (0.0 :‘;iln i) +5 | ()] Ao

_;{

T
{ Z yot - Bwot]/ 271 [S("vb)yot - Bwot]} )
t=1

N[~

T
Z 'lpO Yor — Bowot]/ 20_1 [S(QpO)yot - BOth]}
t=1

Nl

where, by Remark 6, Apin [V (¥)] > 0 and Apax [V (¥)] < K, so that |V (¢) | = |S'(¢)S(¥)| =
|S(1,b)\2. Also, by first taking conditional expectations with respect to JF;, and then taking
expectations with respect to .+, we have

T
Z Eo {tr [y,S'(¥)S7'S(9)yo ] } = Ttr [S'(4)S78(3) 340 ,
ZEO {tr [y,S' (W)E ' Baoy|} = Ttr [ B, B)S; 'S (v)],
ZEO {tr [z, B'S"'Bay]} = Ttr [X7'BE,,B']

and hence
L T tr [S'(4)Z7'S () Zy0]
T > Eo{[S(¥)yer — Bxot) 7' [S(3)yo; — Bt} = —2tr [ B, BS; 'S (¥)]
= +tr [27Y/2BS,,B'S"1/?

Using the above results in (A.7) we now obtain

Eo [Qr (80,0)] = Eo [¢(80) — (7(6)]

1 N 1 \%
=-3 Zln (0120/0,;2) — 5 + 3 [ln <||V(pro))|’)]
=1

tr [P(8)P~(60)]

tr {=71/2 [S(4)S5" By — B S0 [S(¥)S;' By — B] 572},

_l’_

DN — DN —

_l’_

where

V(@) | _ S(h)|”
V()| |S(w)?

= |S(0)S (w)|” = [S(w)SH(wo)|

tr [P (6) P~ (80)] = tr [S'(4)27'S(1)S ™ (100) DS~ ()]
= tr [ST28 ()8 () oS~ (W) () 572



and P (0) = S’(v)X7!S(2p). To establish (A.6) we show that
Q1 (60,6) — Eo [Qr (60,6)] =5 0. (A.8)
To this end we note that under (4),

T

1 _

T Z (%0)Yor — Bozor]’ % ' [S(¥0)Yor — Boxot] = ZCotCon
t=1

~

where Cot = (Clt?CQtJ s 7<Nt) ~ ‘[I‘D(()?IN)? C’it = €it/0i07 for i = 1727 s 7N' AISOJ

_ 1 1 d / S/*l
=5 T;EOt (¢o)P (0) (%o)€ot
T
3 s m - Bl e {5 sy B0 - Bl

T
Qr (60,0) — Eo [Qr (60,0) Z zu,N (6o) | + 5 l Z 2o, N (9)] (A.9)
t:l
T T
+ % ;tZlZStN(0070) + % ;;ZM,N (9)] ;
where
N
Z1t,N (00) = CgtCot - N = Z (C7,2t - 1) ) (A.l())
=1
2,5 (0) = €58 ()P (8) S~ (vhg)eor — Eo [€0,8" (1) P (6) S ()0t (A.11)
= CgtA (007 0) Cot —tr [A (007 0)] )
in which A (6, 0) = 3¢/2S"~1 (1) P (6) S~ () =4/ ?,
z3t,v (00,0) = ;B (00,0) xop — tr (B (00,0) Xaa] (A.12)
in which B (60,0) = [S(¢)Sy By — B]' 71 [S()S; ! By — B], and
2 (8) = 2y [S(1)S; ' Bo — B) £7'S(4)S; e (A.13)



We establish that each zj; n, j = 1,2,3,4 is a martingale difference process with finite second
order moments. Starting with zi; v (6p), we have that under Assumption 1, sup;, E [¢it|* ™ < K,
for some € > 0. Then the elements in (A.10) are Ly bounded, in the sense that sup;, ! 2 - 1’2

K, and
T

% > (G -1) %o, (A.14)

t=1

for a given N and as T" — oco. Consider now (A.11), and note that 29 v (@) is serially independent
(over t), and has mean zero. Under our assumptions (see Assumption 1, Remarks 4 and 6)

||*A(00a0)||1 < K, and H'A(O(]’O)Hoo < K. (A15)
Further, note that zo; n is a de-meaned quadratic form in ¢;; and Theorem 1 of Kelejian and

Prucha (2001) applies to za; . Denote the (i, ) element of A (6o, 0), by a;j, and note that
aij = aj;. Then using (3.2) in Kelejian and Prucha (2001), we have (recall that E ((3) = 1)

Var [z v (0)] = Var [¢.A (6o, 0) Cot)

N -1
_4ZZCL’LJ+ZG’L’L Czt ]
=1 j=1
But
N i—1
Zzagj <Zzaz23 0079)/“4(0070)] = [||A(0070)”F]27
i=1 j=1 =1 j=1

and using (A.15),

|4 (60,0) - < /14 (60, 0)Il, |4 (60, 0)]|, < K.
Hence, Y a2 < K and 2V 123 10 U < K. Furthermore,
N

> ai [B () - 1]

i=1

< sup |E Czt — 1‘ Za”,

=1

and under Assumption 1, supy E (¢j;) < K, and hence Var [z3¢ n (6)] < K. Further, since
zot N (@) are independently distributed over ¢, then we have (see, for example, White (1984))

T
1 a.s.
t=1

Next, using (A.12),

T

T
% Z z3¢ N (0) = tr [ (69,0 (T ! Z :Botmot)] —tr[B (60, 0) Xzz)
t=1

_ { 00,6 }

~

1
T g il?ota:ot a::c)




But by Assumption 2(b) and (c) we have that E (o), — Zaz|Fi) = 0, and T~ ST @, ©5
Sew, as T — oo, which establishes that 7! ZtT:l 23 (0) ©3 0, as required. Finally, using
(A.13),

T
= zun(8) =tr { [S()Sy By — B] ' =7'S()Sy T Zeotxgt} .
t=1

But by Assumption 2(a), we have that F (eo;xl,|F;) = 0 and E (|leqrzl,|? | Fi) < E (leat|” |25, | F),
for p = 2, which is bounded. Hence, 7! Ethl eorxh; “3°0,as T — oo and % Zthl 24t N (0) %0.
(see, for example, White (1984)). Finally, (A.8) and (A.6) follow similarly. m

Lemma 4 Let
_ _ 1/2
it = 05 €5y GoBo®or Git + Uioleé,NGozo/ CotCit — 90,iis (A.17)

where Go = W (Iy — \IIOVVY1 = (go,ij) and e; n is an N dimensional vector with its it" element
unity and zeros elsewhere, and oy = (C1t, Cats - - - CNt) = (€1¢/010, €2t /020, - - - ENt/ON0)'. Then
under Assumptions 1 and 2, ny is a martingale difference process with respect to the filtration,
Fit = (Xot, Tot—1, Tot—2, - - .), namely £ (ny|F) =0, and

sup E [nul? < K, for 1 <p<2+4c¢, and some ¢ > 0. (A.18)
it

Proof. We first recall that E ({;|F;) = 0, and hence E ({;) = 0. Also E ({,;(it) = e; v and
Var(Cy) = In. Now under Assumption 1 it follows that

E (nit| Fi) = E (079" €} nGoBowor(it| Fr) + E (U;)leg,NGOEé/ZCotQﬂft) — 90,ii
=0+ g0,ii — g0,is =0,

and establishes that 7;; is a martingale difference process with respect to F;, as required. To
establish (A.18), since (;; = €i/00 then by Minkowski’s inequality for p > 1 we have:

miell, < oi0” [[izoreit|], + 70" [[9Carill,, + |90l (A.19)

1/2
where go; = e;',NGOBOa '19; = e;NG()EO/ = (gilo'lo,gigdzo, e ,giNO'NO), and |gg7ii| < K. COH—
sider now the first term of (A.19), and note that since conditional on F, ¢}xo is given, and
noting that by Assumption 1 F (le;|" | F;) = wip < K, then

leizacall, = B [E (leizacal” | 71)] < E[|eiza|” B (el | F)] = E (|¢izet|”) @i,

1/p

and hence [[@;xoreill, < @;," ||PiTorl, Also

N
el = (> gis0B50zse|| <> lgiol [|Bj0sell,
=1

p

(sop 160,

IN

9i5,0

N
j=1
N
2|
j=1



The first term on the right hand side is bounded by Assumption 2(a), for p < 2 4 ¢, and
sup; Zjvzl |gijol is bounded by Lemma 2. Hence, sup;,[[@;Zot][, < K , and overall we have
sup; ¢ [|@;@otcit||, < K. Consider now the second term of (A.19) and note that

o Z ’gw 0’ E ‘Ejtgzt‘p]

] 1

N R
Hﬁ;Cotéith < Z ll9ij,00j0¢Gitll,, < -
J=1 Jj=
But sup; (1/0i0) < K by Assumption 1, and using Cauchy—Schwarz inequality we obtain?>
N
1/2p 1/2p
0l < Kool [B (2)] [2 ()
j=1
N
1/p
< s fan 2 ()] | ol
i, =1

( ) < K for 2p = 4 4 € under Assump-

Again sup,; Zj 1
tion 1, and hence HﬂicotQth < K. Usmg this result together with sup; [[@izoeill, < K
(established above) in (A.19) now yields (A.18) by setting ¢ = 2¢. m

Lemma 5 Let

000) = ~Ninger) - 1 im o2 4 L V() (A.20)
D) 247 T2 '

[S(’lp)yot - BmOt]/ 2_1 [S(’lp)yot - BmOt] ’

where V (¢) = S’ (¢)S(v)), and note that the log-likelihood function is given by

N
NT T T
E 6(8) = ——-In(2m) — 5 > 1no?+§ln!V(¢)l
=1

—

T
Z yot - Ba:ot]/ 271 [S(T/))yot - Bazot] )
t:l

(see also (7)) which can be written equivalently as

KT(Q):—Eln 27) ——Zlna += ln|V( )| (A.21)

2 o2
i=1 i

1 al (yio - ¢iyz<o - Xioﬁi)/ (yio - ¢iy;o - Xioﬂi)
1 {Z |

/ !/
where Y;o = (Yi1,Yi2,---,¥ir) and Yyl = (Y, Y5, ..., yip) are T x 1 wvectors, and X;o =
(i1, @i2, ..., xy7) is the T X k matriz of observations on regressors specific to the it" cross

25Note that since by Assumption 1 F (leat|” |Ft) = wip < K, then for a given ¢ we also have E (|et|”) = wip,
unconditionally.



section unit. Suppose that Assumptions 1, 2, 4 and 5, and conditions (21) and (28) hold.
Denote the score function by st (0) = 0lr(6)/06 = Zthl 004(0)/06. Then

T sy (60) %3 0, (A.22)
and
T~'2s7(80) =4 N 0,3 (60,7)], (A.23)
where
3(80,7) = (Jogy) = Jim ZEo [T (855(99)> <6£5g9)” (A.24)
and

T T
= | TP - 1] = fim 7 3o Var(ch).

with Gy ~ I1D(0,1), Gt = €it/oi0, fori = 1,2,...,N. A consistent estimator of J(0¢,7) is

given by /
A T 0l (0 T 0l (0
oo-H 550 (575 |

where @ = arg maxg I7(0) and
T g 4
=SS (3) -
t=1 i=1

with € = Yyt — wl ZJ 1 Wit — B;wzt Gi, BZ and 1[11 are the QML estimators of o9, B9 and
0, respectively.

/
Proof. For a given N, the N (k + 2) x 1 score vector st (6y) = (WT(GO), 0tz (6o) WT(GO)) , where

oy’ B’ ao?
9tr(80) [ T Diag (Gy) + Diag (y“’e“’ 1=1,2,.. .,N)] TN
ZO
BeT’ZLéO) = D]a,g (X 5107?:: 1’2’..‘7N) TNk‘ , (A25)
aeT(eo) ) “’
do? N(k+2)x1 Dlag[ 202, + 5T (E o€io) :1127"-7N1| TN
y;'ko = (yj;hy;bv s 7y;<T)7 Eijo = (€i17€i27 o 7€iT)) €io = Yio — ¢i0y'>;o - XiO/BZ'07 and Tk isarx1

vector of ones. Consider first the i*" component of 9¢7 (8¢) /91, and note that it can be written

as
T

0lr (69) 1
— = "Tg0i+ = D _Yutit.
i 0 0'2'20 tz:; =

Also yj, = e;’NGO (Boxot + €ot), where Gop = W (Iny — \IIOW)f1 and e; v is an N dimensional



vector with its i*" element unity and zeros elsewhere. Then

1907 (6)
T 8wl Z?’]Zt, (A26)

where n;; is already defined by (A.19) which we write as

it = 059 @itorCit + 05 030 i CorCit — Gois (A.27)
and as in proof of Lemma 4, ¢; = €] yGoBo, ¥; = e;’NGgE)(l)/2 = (9i1010, 920205 - - - s §iNONO),
Cor = (Cit5Caty -5 Cne)y and Gp = €it/0i0. Also recall that by Lemma 4, E (ny|F;) = 0, and

sup; ; F¥ Init|*T¢ < K, for some ¢ > 0. Therefore, using (A.26) by the strong law of large numbers
for martingales we have (see, for example, White (1984))

T oy (A.28)
Further, since E (1;|F:) = 0, then using (A.27)
N
Var (nir) = E [Var (i | Fo)] = 055°80,BoZaeB080i + 03 > 020045 + 90,41 | E (Git) — 2]
j=1
N N N
_ 2 TR —2 2 2 2 TE(¢) -2 A.29
= 040 Z Z 90,i590,irBro2rsBso + 05 Z T5090.45 + 9o, [ E (Gi) — 2] - (A.29)
r=1 s=1 j=1

Consider now the limiting distribution of ﬁ 86512(:’0) = ﬁ Z;le 7;t, and note that by Lemma 4,

sup; ; F¥ Init)*T¢ < K for some ¢ > 0, and by Corollary 5.25 in White (1984) it follows that

0)

é} —d N (O,U.}ii) , as T — o0, (A30)

E\

where (using (A.29))

T
Wi = Tlggo 71 ; Var (ni)

T
2 : -1 4
= Y90 Tll_I)IéQT ; I:E( it) +0-10 gO zBOEMCBOgOZ +0-10 E 1: 090 g0
= Jj=

which exists and is finite under Assumptions 1 and 2(b).

34T(90)

Similarly, consider the i*" component of . Then, write

1 901 (6y) 1 1 1
T 8,3 = szté‘zt = —= Zmit@t- (A.31)

But by Assumption 2(a), E (it | Ft) = (1/0i0) aE (€4 |F:) = 0, and Var (xii | Fr) =



xixi, B ( 2 ]-"t) = xyx),. Hence E (i) = 0, and Var (x(;t) = ;i < K. Therefore, noting
that (s is a martingale difference process with finite second-order moments, it follows that

1 9lr (6o) as
T . A.32
T o8 = 0,as T — o0 (A.32)

Denote the /" element of wztgt by ziet = xir4Cit for £ = 1,2, ..., k, and note that the " element

of \/l,f aggéeo) is given 010 i Zle Zie 1, where 20 is a martingale difference process with respect

to F¢. Also, by Assumptions 1 and 2(a),

sup E |zig[” = sup E'|wie1Git|” = sup E [E (|wie Gitl” [F2)] < sup E |2 |” B (|G l” [F2 )]

it i,0,t it it

= st;p (E|wies]”) 059" wip < K,
it

for p = 2+ ¢, ¢ > 0. Hence, by Corollary 5.25 in White (1984) it follows that for each i and ¢

and as T — oo, 0%0% Zle e+ tends to a normal distribution and as whole we have
1 007 (6y)
— = ;N (0,9;), A.33
L N (0.9 (433
where
Q; = - TIST;OT ! ZE T (A.34)

Finally, consider the i*" component of ZT(GO) , and note that

T
106r(60) _ 1 lz g 1) =
T Odo? 201-20T p o2 2010

Let &; = Clt 1,where (;; = €44/0i9. Then

1007 (00) 1

T 8ai 2010

Z&t] . (A.35)

We have E (& | Ft) :E(Z-Zt|]:t)—1 =0, andE(iQt]]:t) :E(f‘t|]:t)—1, so that, since
under Assumption 1 &;’s are martingale difference processes and E(|ey|*™|F) < K, for some
small positive €, then sup; F \ﬁit|2 < K and by the strong law of large numbers for martingale

processes we have

T 002

< K for some ¢ > 0, then as before

=0, as T — o0. (A.36)

Similarly, since sup; E |&;|*T°

0 (00)

a 2 N(O,Uii), (A37)

10



where

vy = lgI;oT IZ [4;‘/@7“(&,5)} = (414> lim T IZVCL’I“ C2). (A.38)

=1 0 O,/ T—o0

Now results (A.28), (A.32) and (A.36) establish (A.22), and results (A.30), (A.33) and (A.37)
, . . L T 1 (00(0)) (960 -
establish (A.23), as required, with J(0o,v) = imr 00 D ;1 Eo |7 ( —5g 50 . Consis-

tency of J(8,4) for J (8¢, ~) follows from consistency of 8 for 6y, and 4 for ~, and independence

of RIACH)

—ag ~ over t. Further, since 2% 09 on O, as T — oo, as shown in Section 3.3, we have

1
and 67 = o7 + O, <> ,

. 1
€it=€it+0p< Nia

)

which establishes that

T .
)_1 ZZ (5”) —1—,7, asT — oo, for any N.

t=1 i=1

Appendix B Proof of Proposition 2

Proof of Proposition 2. First, we consider the information matrix H (6y) given by

(B.39)

, 1 0% (0
H(GO):TlféoEo[ T aeTafsv’)]’

where

H,y H;; Hi3

1 0%
E0|: T( ):| = /12 H22 H23

T 5006 , ;
Hyy Hy; Hss N(k+2)x N (k+2)
We evaluate each partial derivative in (B.39):
H, =E, [ T%iiggf)} is given by the N x N matrix
1 .
HH—(GOQGO)—I—Dlag ZTZEO yzt 1=1,2,...,N|,

where Gg = W (Iy — ¥oW) ™! with its i*" row denoted by g}, and

TZEO yi) = wi(In — ToW) ™' [BoE (zorzly) By + Zo] (In — W) w;

= 90i (BOEMBE) + 2O) 9oi
N N

= Z Z 90,is90, zrﬁrozrsﬁso + Z 90,is 50

r=1 s=1 =

11



Note that as shown in Lemmas 2 and 5,

N N

Z Z gO,isgo,irﬂiozrsﬂso

r=1s=1

< K and < K.

[e.o]

1Golls < K, [[Go® Gy

e

H;, =E [—%8;%(;,)} is an N x kN matrix with its i* row given by a 1 x kN vector of zeros

except for its i*" block which is given by the 1 x k vector UZ-_O2E0(T_1y;‘/Xi), namely

ol Eo(T 'yt Xy) 0 . 0
0 ool Eo(T 'y Xg) - 0
Hy, = . . . . ,
0 0 o Bo(T 'y X )

where

T T
Eo(T™'yi'X,) = Eo (Tl > y%@sc&) = Ey (Tl Zw%yotwét>
t=1 t=1

= w(Iy — ToW) 'BE (zoz},)

N
= g0 (Zi1B10, Bi2Bao: - - DinBo) = D 90.isB0Bis-

s=1

Again by Assumptions 2(b), 3 and 5, sup, || B0l and ;s exist and are finite. Also, max; >N | |go.is| =

|Gol| o, which is bounded under our assumptions. Hq3 = Ej [—%nggg@] isan N x N diagonal

matrix with its it element given by Ui_Ong(IN — \IIOW)_leZ-7N = Ji_Ongﬁ, where e; vy is an N

dimensional vector with its i*"* element unity and zeros elsewhere. Hoo = Fj [—%8523(36,)} is
an Nk x Nk block diagonal matrix with its i** block given by al-_OZZii. Hy3 = 0, and finally
Hs3 = Ey —%%] = Diag(1/207,,1/20%,...,1/20%,). Collecting all terms, we obtain
(B.39).

Next, recalling from Lemma 4 that

-1, —1,.9/
Nit = 059 PiTotCit + T0 B CorCit — 90,ii,

12



where ¢ = €] yGoBg and 9¥; = €] NGOEé/2,
the following cross-products (for i # j)

T
Z Ey Uztngt'
1¢=1

1 907 (6 )1%(0]
LVT o VT @

*ﬂ\*—‘
B

t

’ﬂ\"
E

t=1t'=1

'ﬂ\’—‘
WE
=

%0 ‘szotQt + 05 7 iCotGit — go,n‘}
750 ‘Pgmot@t +U]o 9 CotCit — go,jj}

XT: E ZOILPiwotCit + Uﬁ)lﬁlcotgt - gO,ii]
[ Tjo %mot/cjt/ +0jg ', Qo Gt — go,jj}

and using (A.26) and (A.29) of Lemma 5, we have

t=1
l ZTI 0101%0 LPzE (wotwotCthJt) p;+0o; Uy_olﬁl (CithtCotcgt) — 00,i390,5;5
T t:I +UzO o Lo Eo (ZotCor®5CitGe) +0]0 T40 SOJEO (:BOtCotﬁ]C]tClt)
{ { 0.4 Zt VB (G — 2] + 59 gOzBoszogOz Cfori—j
+oy° Zj:l jOgO,ij
90,i590,ji+ Jfor i # j

Further, using (A.31) and (A.34) of Lemma 5 we have

Ey

i T s E(witCitht’m;'t’)

1 9 (6) 1 9l () 1 1 LT
7 = — Z
t=1¢=1
_ ﬁ L E (zyx),), fori=j
0, fori # j

and using (A.35) and (A.38) of Lemma 5 we have

1 0tr(6) 1 9tr(0)| T T
\/> 80 ﬁ 80’]2 ] o 4UZ0 jQ ;t/z_:l glté‘jt/
1 1 E
= 40'300']2-01—1;; [(Czt ) ( gt 1)]

1 1w 2,2 2
3 TZ (Citht_Cit_Cjt+1)

i E(g“t)—l}, for i = j



In addition,

T T
1 90y () 1 9y (9)} 1
Pl U7 VT - Eo [(itCit) nje
"LVT 98, VT 0 oioT ;t’; 0 [(@ieGie) 0]
;I
— O-iOT ;;E [mthit (OjO L‘O]ajot/CJt/ + O'jo "9 Cot’Cjt/ 9073])}
= 1 ZT: Uj_olEO (wiﬂP;-CCotCz‘tht) + aj_olEO (wit@tﬁgcot(ﬁ) ]
= —90,; E (@it it)
= 0-6 g6l( Z1610’ Z213207"'yz]iNB]\]O),, fOI‘i:j
0, fori #j
Moreover,
T T

1 9r(0) 1 9ty (0 11
[T v ) T 2 o)

=52 T Z Z E [(C@Qt - 1) (Uj_()lsog‘mot'Cjt’ + 0509 Cop G — go,jj)}

T
11 B B
- 202, T ZE {Ci (Ujol‘p;wotcﬁ + Ujolﬁ;Cotht - gO,jj)]
07 =1
L,
= 90 ,
0, fori#j
and finally,
T
1 0lr(0) 1 00r(0)
Eo | 7= NG T itG /
"IVT 08; VT 00 202032T Z (@) &

SHICHAICES)

=0, foralls,=1,2,...,N.

20200 T

Overall, let
T T
T -1 4 s -1 2
v = [TlgI;OT ; E(¢y) - 1] = Jim T ; Var(Gy). (B.40)
We can collect the various terms and construct matrix

o0, (0) T 5y ) ! Jin Ji2 Jus
() ] (7

t=1

J (00,’}’) = (J()ﬂ'j) = hm E

N (k+2)x N (k+2)
(B.41)
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where ¢, (0) is defined in (A.20) and

Jo = (Go © GY) + (v — 2) Diag (Go © Gy)
"7\ +Diag [035°}; (BoZaw By + Z0) goir i = 1,2,..., N]

)

J12 = Diag

N
-2 / .

750 E 90,is8502is, 1 = 1,2,... N |,

s=1

Jis = %Diag (052g04i i =1,2,...,N), Joy = Diag (0;°%i, i = 1,2,...,N) ,

Jo3 =0, Jg3 = %Diag (1/ok, i=1,2,...,N).

Having established that the score vector is asymptotically normally distributed, it is now easily
seen that as T' — oo,
VT (é - 90) SaN(0,Vy), (B.42)

where Vg = H™1(00)J (60,7) H (6p). m

Appendix C Estimator of V (é)

Derivatives of the log-likelihood function

The vector of maximum likelihood estimates, 7, in Section 2 is obtained by maximizing the

log-likelihood function (A.21) which we reproduce here for convenience?

- Xz’oﬁi)

N N /
NT T 2 1 (Yio — iyl — Xiof3) (Yo — Viys
(7(0) = —2111(277)—2;11&02- +TIn|[In—FW| —22 g
(C.43)
where 8 = (¢, 3, 0%)'.
First derivatives
We have
oy byt — X0
(%gw(e) = _Ttr[Iy — W) 'E;W] + Yio (Yio =¥ g’o '62), fori=1,2,... N,
) Ui
oUr(0)  Xi, (Yo — Viyi, — Xiof3;) .
98, = 0_22 ,fori=1,2,..., N,

o0 T 1 . ) .
(90'-2 = _ﬁ + T‘A (yio - wiyio - X’iOlBi)/ (yio - 7/%’!/10 - XiO/@’i) ’ for i = ]-7 27 s 7N7

(2 K3 3

where E;; is the N x N matrix whose (i,) element is 1 and zero elsewhere.

26Note that In |8’ (¥)S(v)| = 2In |[In — TW|.
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Second derivatives

We have
H, H, H

ﬁ(g) B 1 82£T<9) B 11 ﬁ12 131,13
- T 8080/ - 22 ’ 23 ;

H 33
_laQET(G) 1 BQZT(O) _l 82€T(6)
T opoy’ T o9pod T 90a?
_ 1 82€T(0) 1 82€T(0)
- : T 9Bo8 ~ T 9Bdc?
1 9%r(8)

T 0(a2)0(c?)

With the (4,) or i*" element of associated matrix or vector given in {}, we have

. 19%r (0 )_{ 19%nr (0 )}
UTUT ooy’ T Oi0;

10%7(0) | tr[I—-¥W)'E;W(I —¥W)'E; W] + 4 ywj?w ifi=j
T iod; | tr[(I - OW)'E; ;W (I —¥W) 'E,;W] if i j

1 a% (0) G+ = Yisio if j = j
where E;; is the N x N matrix whose (4, j) element is 1 and zero elsewhere and G = (g;;) =
W (Iy — W) . Further,

- 1 0%7 (0) 1 0% (0 ly e e
Hy=-—-~—"""— —2 T ,1fz:],and0,1fz7$j ,

T opog | T awzaﬁj

(o

- 1 9% (0 19%r (6 L yls (Yo — ViYio — XioBi) ... . e g
Hi3=— T@?,ZJ@O'Q’ { Tawlaa _{af T ,1fz—j,and0,1f27éj},
" 1 0% (0 1 0% (0 1 X X .. R
Hy = — T@,@@,@ { T(?,B(?,B —{03 ,lfl—j,ando,lfl#‘]},
~ 182€T 18267‘ 1 Xzo Yio — dh'y;(o_Xio:Bi) g . . oo .
93 = — T@B@a’z’ { T@,@ZE)U _{O';L T ,if 1 =7, and O, 1fz7$j},
5 1 9% (6 1 0% (6
H33=—*ﬁ= 52902
To(o?)0 (o) Taa 80

1 11 . . L o,
- {_%’L + Ef(ylo - ¢iyio - Xioﬁi)/(yio - ¢iyio - XiOIBi)’ ifi = 75 and 07 if ¢ 7& ]} .
) i
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Finally, from the above results we obtain:

T

5~ 2 (0)] [i ot, (9)]' £ (0) - L P2(6)

- 1

J0)= =

00 00 T 0000’

from which the standard and sandwich covariance matrix estimators (49) and (50), are given by

Vo= (0) ma v, =B (0)7(8) B (9).

Appendix D Data sources

Monthly data for U.S. house prices over the period January 1975 to December 2014 are obtained
from the Freddie Mac House Price Index (FMHPI). These data are available at:
http://www.freddiemac.com/research/.

Annual data on nominal income per capita and population at MSA level are acquired from
the Bureau of Economic Analysis website for the same period. These data are available at:
https://www.bea.gov/data/.

Annual State level Consumer Price Index data are obtained from the Bureau of Labour
Statistics: https://www.bls.gov/cpi/. These are matched to the corresponding MSAs. In some
cases where area data are missing then the U.S. average CPI is used instead.

Appendix E Additional Monte Carlo results

The Monte Carlo results provided in the tables and plots below are based on the designs set out
in Section 5 of the paper.
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Table S1: Bias, RMSE;, size and power for parameters of individual units in the HSAR(1) model
with one exogenous regressor and non-Gaussian errors for N =5 and 7' € {25, 50,100, 200}.

T 25 50 100 200
Parameter Bias RMSE Bias RMSE Bias RMSE Bias RMSE
Yio

1,0 = 0.1261 | -0.0063 0.1537 0.0001 0.1012 -0.0023  0.0707 0.0007  0.0490
P20 = 0.3883 | -0.0035 0.2078 -0.0049 0.1392 -0.0006 0.0955 -0.0002  0.0666
P30 = 0.4375 | -0.0096 0.1852 -0.0016 0.1155 0.0020  0.0807 0.0000 0.0578
P40 = 0.5059 | 0.0022  0.1478 -0.0039 0.1018 -0.0020  0.0686 -0.0008 0.0481
Y50 = 0.7246 | -0.0040 0.1747 -0.0016 0.1248 -0.0008  0.0880 0.0001  0.0597

Bio
B0 =0.9649 | 0.0097 0.1663 0.0047  0.1102 0.0020  0.0758 -0.0015 0.0540
B2,0 = 0.9572 | 0.0065 0.1968 0.0048  0.1349 -0.0017  0.0938 -0.0018 0.0657
B30 = 0.2785 | 0.0054 0.2088 -0.0012 0.1316 -0.0017  0.0918 0.0013  0.0666
Bao = 0.9134 | -0.0011  0.1643 0.0054 0.1098 0.0007  0.0749 0.0000 0.0515
Bs0 = 0.8147 | 0.0039 0.2079 0.0069  0.1440 0.0056  0.0989 0.0003 0.0674

T 25 50 100 200 25 50 100 200

Parameter Size Power

Yio
1,0 =0.1261 | 0.1025 0.0665 0.0545 0.0505 0.4350 0.6010 0.8260 0.9725
P20 = 0.3883 | 0.1000 0.0690 0.0575 0.0555 0.3015 0.4520 0.6205 0.8535
P30 =0.4375 | 0.0990 0.0630 0.0570  0.0520 0.3395 0.4910 0.7365 0.9400
P40 = 0.5059 | 0.0795 0.0670 0.0615 0.0460 0.4265 0.6165 0.8475 0.9780
P50 = 0.7246 | 0.0770 0.0720 0.0700  0.0560 0.3270 0.4680 0.6765 0.9125

Bio
B0 =0.9649 | 0.0920 0.0645 0.0535 0.0610 0.3985  0.5485 0.7610  0.9500
B2,0 = 0.9572 | 0.0965 0.0725 0.0595 0.0545 0.3100 0.4265 0.6445 0.8690
B30 = 0.2785 | 0.0965 0.0695 0.0500 0.0625 0.3370 0.4380 0.6435 0.8525
Bao = 0.9134 | 0.0890 0.0685 0.0550 0.0470 0.4230 0.5305 0.7830 0.9545
Bs0 = 0.8147 | 0.0940 0.0730 0.0590 0.0525 0.2885  0.3880 0.5590 0.8350

Notes: True parameter values are generated as ;0 ~ IIDU(0,0.8), a9 ~ IIDN(1,1), and B9 ~
IIDU(0,1) for i = 1,2,..., N. Non-Gaussian errors are generated as €,0/0:0 ~ IID[x?(2) — 2]/2, with
o2 ~ IIDU[x?(2)/8 + 0.25] for i = 1,2,...,N. The spatial weight matrix W = (w;;) has four connec-
tions so that w;; = 1if j is equal to: 1—2, ¢—1, 41, i+2, and zero otherwise, fori = 1,2,..., N. Biases

and RMSEs are computed as R~} Zle(z/}i,r — ;o) and \/R‘l Zle(lﬂi’r —1i0)? for i = 1,2,...,N.
Empirical size and empirical power are based on the sandwich formula given by (47). The nominal size
is set to 5%. Size is computed under H;g: 1); = g, using a two-sided alternative, for ¢ = 1,2,..., N.
Power is computed under ¥; = ;0 + 0.2, for ¢ = 1,2,...,N. The number of replications is set to
R = 2,000. Estimates are sorted in ascending order according to the true values of the spatial autore-
gressive parameters. Biases, RMSEs, sizes and powers for §;, i = 1,2,..., N, are computed similarly,
with power computed under 3; = G;o + 0.2.
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Table S2: Bias, RMSE, size and power for parameters of individual units in the HSAR(1) model
with one exogenous regressor and non-Gaussian errors for N = 100 and 7' € {25, 50, 100, 200}.

T 25 50 100 200
Parameter Bias RMSE Bias RMSE Bias RMSE Bias RMSE
Yio

P10 =10.0244 | -0.0021 0.2572 -0.0036 0.1741 0.0009 0.1160 0.0000 0.0828
P20 = 0.0255 | -0.0356  0.4532 0.0022  0.3105 -0.0114 0.2191 -0.0022  0.1499
P30 = 0.0397 | 0.0078 0.3029 -0.0032  0.2099 -0.0006 0.1438 0.0011  0.1025

Ps1,0 = 0.3927 | -0.0022  0.2698 0.0020 0.1914 -0.0003  0.1305 0.0001  0.0896
520 = 0.3987 | 0.0002 0.1694 -0.0039 0.1166 0.0021  0.0777 0.0004  0.0545
53,0 = 0.4004 | -0.0097 0.2691 0.0054 0.1770 0.0025 0.1205 -0.0017  0.0855

19g,0 = 0.7695 | -0.0012 0.1433 0.0019 0.1013 0.0046 0.0724 -0.0001 0.0510
99,0 = 0.7705 | -0.0397  0.2546 -0.0088 0.1692 0.0020 0.1248 0.0007  0.0920
¥100,0 = 0.7904 | -0.0084 0.1514 -0.0070 0.1113 0.0008 0.0771 0.0006 0.0521
Bio
B10=10.1978 | 0.0066 0.2012 0.0010  0.1280 0.0006 0.0868 -0.0052  0.0598
B2,0 = 0.7060 | 0.0202 0.2711 0.0005 0.1720 -0.0001 0.1176 0.0033 0.0837
ﬂ370 =0.4173 | 0.0077 0.1852 0.0027 0.1254 -0.0002 0.0842 0.0019 0.0597

Bs1,0 = 0.9448 | 0.0043 0.1415 -0.0015 0.0962 0.0015 0.0665 0.0007  0.0471
Bs20 = 0.1190 | 0.0030 0.1324 0.0023  0.0913 -0.0004 0.0619 0.0014 0.0421
Bs3,0 = 0.7127 | 0.0019 0.1941 -0.0036 0.1226 0.0025 0.0893 0.0010  0.0615

Bog,o = 0.1067 | 0.0024 0.1221 -0.0024 0.0807 0.0005 0.0553 -0.0002  0.0399
Bog,0 = 0.4588 | 0.0147  0.1909 0.0026  0.1300 0.0017  0.0899 0.0017  0.0650
Bioo,0 = 0.3674 | 0.0035 0.1239 0.0022  0.0865 0.0006  0.0607 0.0002  0.0408

T 25 50 100 200 25 50 100 200

Parameter Size Power
bio
Y10 =0.0244 | 0.0915 0.0805 0.0560  0.0600 0.2255 0.3025 0.4560 0.7070
P20 = 0.0255 | 0.0830 0.0645 0.0580 0.0525 0.1225 0.1170 0.1940 0.2890
3,0 = 0.0397 | 0.0905 0.0785 0.0605 0.0630 0.1815 0.2390 0.3450  0.5405

P51,0 = 0.3927 | 0.0995 0.0640 0.0595 0.0530 0.1975  0.2915 0.4020 0.6325
Y520 = 0.3987 | 0.0865 0.0660 0.0620  0.0525 0.3785 0.5380 0.7440  0.9395
Ps53,0 = 0.4004 | 0.0960 0.0810 0.0520  0.0590 0.2400 0.3020 0.4540  0.6760

98,0 = 0.7695 | 0.0710  0.0665 0.0675  0.0660 0.4015 0.5760 0.7930  0.9650
99,0 = 0.7705 | 0.0390  0.0320 0.0405 0.0535 0.1750 0.2380 0.3820  0.6095
¥100,0 = 0.7904 | 0.0690  0.0655 0.0575 0.0510 0.3845 0.5705 0.7605  0.9500
Bio
B1,0=0.1978 | 0.1085 0.0710 0.0570 0.0485 0.3320 0.4715 0.6715 0.9195
,6270 =0.7060 | 0.1055 0.0580 0.0495 0.0570 0.2315 0.3110 0.4530 0.6680
B30 =0.4173 | 0.0935 0.0805 0.0520 0.0590 0.3585  0.4815 0.6985 0.9120

Bs10 =0.9448 | 0.0940 0.0705 0.0535 0.0545 0.4710  0.6580 0.8445 0.9745
Bs2,0 = 0.1190 | 0.0950 0.0845 0.0525 0.0470 0.5250  0.6900 0.8940  0.9920
Bs3,0 = 0.7127 | 0.1055  0.0690 0.0685 0.0545 0.3615  0.4800 0.6485 0.8910

Bog,o = 0.1067 | 0.0945 0.0685 0.0520  0.0570 0.5775  0.7650 0.9320  0.9960
Bogo = 0.4588 | 0.0745 0.0625 0.0505 0.0580 0.2845 0.4355 0.6460  0.8600
B100,0 = 0.3674 | 0.1000 0.0710 0.0680 19.0540 0.5480  0.7205 0.9070  0.9935

Notes: See notes to Table S1.



Figure Al: Boxplots of RMSEs for the individual autoregressive spatial parameter estimates
from the HSAR(1) model with non-Gaussian errors, one exogenous regressor and spatial weight
matrix W having 4 connections for different N and T combinations
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Bio ~ IIDU(0,1), for i« = 1,2,...,N. Non-Gaussian errors are generated as e;/o;9 ~
IID[x*(2) — 2]/2, with 0% ~ IID[x*(2)/4 + 0.5], for @ = 1,2,...,N. Exogenous regres-
sors are spatially correlated across ¢ and generated by (65), with ¢; = 0.5. The spatial weight
matrix W = (w;;) has four connections so that w;; =1if jisequal toi—2,3i—1,7+1,i+2,

and zero otherwise, for 1 = 1,2,..., N. RMSEs are computed as \/R—l Ele(z/;i,T — 1hi0)? for
1=1,2,---, N. The number of replications is set to R = 2,000.
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Figure A2: Boxplots of RMSEs for the individual slope parameter estimates from the HSAR(1)
model with non-Gaussian errors, one exogenous regressor and spatial weight matrix W having

4 connections for different N and T combinations
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Figure A3: Boxplots of empirical sizes of tests for individual spatial parameters from HSAR(1)
model with non-Gaussian errors, one exogenous regressor and spatial weight matrix W having
4 connections for different N and T combinations, using the sandwich formula for the variance
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0.17
0.08 |

> 0.06 |
0.04 |
0.02

0.1¢
0.08 1

o

N
& 0.06 |

0.04 |

0.02 -

N =50

The sandwich formula is given by (50).

using a two-sided alternative where ;o takes values in the range [0.0, 0.8] for i = 1,2, ...
The number of replications is set to R = 2,000.
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Figure A4: Empirical power functions for different N and T combinations, associated with
testing the spatial parameter value ;0 = 0.3374 from HSAR(1) model with non-Gaussian errors,

one exogenous regressor and spatial weight matrix W having 4 connections, using the sandwich
formula for the variance
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Notes: The power functions are based on the sandwich formula given by (50). See the notes
to Figure A1 for details of the data generating process. Power is computed under ¥;=v;9 + 9,
where § = —0.8,—0.791,...,0.791, 0.8 or until the parameter space boundaries of -1 and 1 are
reached. The number of replications is set to R = 2, 000.
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Figure A5: Empirical power functions for different N and T combinations, associated with
testing the spatial parameter value ;0 = 0.5059 from HSAR(1) model with non-Gaussian errors,
one exogenous regressor and spatial weight matrix W having 4 connections, using the sandwich

formula for the variance
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Notes: See the notes to Figure A4.
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Figure A6: Empirical power functions for different N and T combinations, associated with
testing the spatial parameter value ;0 = 0.7676 from HSAR(1) model with non-Gaussian errors,
one exogenous regressor and spatial weight matrix W having 4 connections, using the sandwich

formula for the variance
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Figure A7: Boxplots of empirical sizes of tests for individual slope parameters from HSAR(1)
model with non-Gaussian errors, one exogenous regressor and spatial weight matrix W having
4 connections for different N and T combinations, using the sandwich formula for the variance
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Notes: Nominal size is set to 5%. The sandwich formula is given by (50). See the notes to
Figure A1 for details of the data generating process. Size is computed under Hy: 5;=0;9, using
a two-sided alternative where f3;9 takes values in the range [0.0, 1.0] for ¢ = 1,2,..., N. The
number of replications is set to R = 2,000.
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Figure A8: Empirical power functions for different N and T combinations, associated with
testing the slope parameter value 3;9 = 0.0344 from HSAR(1) model with non-Gaussian errors,
one exogenous regressor and spatial weight matrix W having 4 connections, using the sandwich
formula for the variance
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Notes: The power functions are based on the sandwich formula given by (50). See the notes
to Figure A1 for details of the data generating process. Power is computed under 8;=8;0 + ¢,
where 6 = —1.0,—0.991,...,0.991,1.0. The number of replications is set to R = 2, 000.
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Figure A9: Empirical power functions for different N and T combinations, associated with
testing the slope parameter value ;9 = 0.4898 from HSAR(1) model with non-Gaussian errors,
one exogenous regressor and spatial weight matrix W having 4 connections, using the sandwich
formula for the variance
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Notes: See the notes to Figure AS.
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Figure A10: Empirical power functions for different N and T combinations, associated with
testing the slope parameter value B;9 = 0.9649 from HSAR(1) model with non-Gaussian errors,
one exogenous regressor and spatial weight matrix W having 4 connections, using the sandwich

formula for the variance
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