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Abstract 
 
We incorporate prospect-theory preferences in a game-theoretic model to study voter turnout. 
We show that voter turnout is heavily affected by agents having subjective reference points with 
respect to the vote or abstain decision and their subjective probability weighting in the decision-
making process. Using empirically based parameter values, we show that our model has lower 
prediction error than other game-theoretic models with standard expected-utility preferences. 
We also find that our model maintains desirable comparative statics effects and leads to higher 
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1 Introduction

Voter turnout is most often high in large-scale democratic elections. However,

since the probability of being decisive in such elections is negligible, the rational

choice model of Downs (1957) predicts that an individual voter should abstain

from voting. The reason is that, in the presence of positive voting costs, the

benefits will never outweigh the costs of voting. This is the so-called ‘Downsian

paradox’, which is also known as the paradox that ate rational choice theory

(Fiorina, 1990). In this paper, we use prospect theory as proposed by Kahne-

mann and Tversky (1976) to study voter turnout.

Prospect theory is a well-established descriptive theory in behavioral eco-

nomics and cognitive psychology, and developed by Kahnemann and Tversky

(1979) and Kahnemann and Tversky (1992). It has proven to provide a more

accurate description of decision-making under uncertainty than the standard

model of expected utility maximization in several contexts such as consump-

tion, investment and insurance behavior (Barberis, 2013). Here, we apply it to

voting.

Our approach fits in with two strands of research that have emerged to

address the Downsian Paradox. The first proposes to depart from standard ra-

tional choice theory by widening the range of determinants in the cost-benefit

analysis. Including non-instrumental benefits (and costs) in the voters’ utility

function, derived from the act of voting, can rationalize voter turnout. These de-

terminants include civic duty, warm glow or peer pressure (Riker and Ordeshook,

1968; Tullock, 1967), altruism (Fowler, 2006), moral behavior (Kirchgässner,

1992), or, more generally, expressive behavior (Brennan and Buchanan, 1984;

Brennan and Lomasky, 1984).

The second strand of research focuses on the uncertainty of outcome in elec-

tions. Ferejohn and Fiorina (1974) pioneered this strand and impose a minimax

regret strategy in a decision-theoretic framework to explain voter turnout. Many

scholars criticized their approach as it relies on the assumption that voters act

under full uncertainty regarding election outcomes (see e.g. Strøm, 1975; Beck,
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1975; Stephens, 1975). Despite this caveat, their notion of uncertainty of out-

comes in elections has spurred a series of game-theoretic models analyzing voter

turnout.

In particular, Palfrey and Rosenthal (1983) argue that, with a game-theoretic

model, the probabilities of being decisive and turnout decisions are simultane-

ously determined in a noncooperative (Nash) equilibrium (i.e. the probability

of being decisive is not exogenous). They show that with homogeneous voting

costs, equilibria with significant voter turnout do exist. Palfrey and Rosenthal

(1985) make, arguably, assumptions that are more realistic such as heteroge-

neous voting costs as well as private information about voting costs. These

more realistic assumptions unfortunately predict that voter turnout converges

to zero when the electorate grows very large, since only voters with negligible

voting costs will participate in the elections.

Levine and Palfrey (2007) study a laboratory experiment based on a recon-

sideration of the Palfrey and Rosenthal (1985) model. They find that the model

predicts experimentally observed voter turnout well. They further find empirical

evidence for di↵erent comparative statics e↵ects that follow from their model.

These e↵ects include a size e↵ect (i.e., turnout is negatively related to electorate

size), a competition e↵ect (i.e., turnout is positively related to the closeness of

the election outcome), and an underdog e↵ect (i.e., turnout is relatively higher

in the group that supports the candidate who is the underdog in the election).

In this paper, we combine the aforementioned strands of research and build

a prospect-theory model of voter turnout. On the one hand, we rely on the

game-theoretic framework as proposed by Levine and Palfrey (2007). On the

other hand, we depart from the standard rational choice approach by including

prospect-theory preferences that replace the standard expected-utility prefer-

ences. Central to prospect theory is that individuals evaluate perceived losses

in a di↵erent way than perceived gains, and whether outcomes are perceived

as gains or losses depend on a subjective reference point. Furthermore, indi-

viduals assign subjective (biased) weights to objective probabilities using non-

standard weighting functions. Notably, Riker and Ordeshook (1968) hinted on
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an approach that takes account of subjectively chosen probability weights and

Quattrone and Tversky (1988) have elaborated on a similar approach. However,

to the best of our knowledge, we are the first to formalize prospect theory in a

game-theoretic model of voting.

We investigate the predictive performance of our prospect-theory model in

explaining voter turnout observed in the experiment of Levine and Palfrey

(2007), using empirically based values of our model parameters. To preview

our main findings, we find that our model leads to smaller prediction errors

than the already strong results obtained by Levine and Palfrey (2007) for their

model with standard preferences. Our model also provides new insight in the

voting decision individuals make. We find that the reference point of an in-

dividual has a particularly large impact on the propensity to vote. That is,

individuals who have voting as their reference point have a much higher likeli-

hood to vote than those that have abstention as their reference point. We also

find that non-standard probability weighting (as opposed to the assumption of

voters using objective probabilities) leads turnout to decrease at a slower pace

and to higher turnout predictions in larger electorates. This is because individ-

uals tend to overvalue small probabilities and to undervalue large probabilities.

Consequently, the chance of being pivotal in large elections is overestimated

and turnout is increased. Finally, our model maintains the interesting and intu-

itively appealing comparative statics e↵ects of the model of Levine and Palfrey

(2007).

The paper is organized as follows. We first review the standard game-

theoretic model of voting and characterize its equilibrium in Section 2. In

Section 3, we introduce prospect-theory preferences into the model and present

the corresponding equilibrium conditions. Section 4 compares the properties of

the prospect-theory model and standard model. We conclude in Section 5.
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2 The standard model

We consider individuals who belong to group A or group B. Group A and

group B have, respectively, NA and NB members, with NB > NA � 1. Note

that A is the minority group and B the majority group. An election between

two candidates is held and each individual in either group is given the choice of

whether to vote or not. All members of groupA prefer candidateA, the members

of group B prefer candidate B. Whichever candidate has more votes has won

the election, with ties being broken by the flip of a fair coin. We say that a group

wins the election if the candidate preferred by this group wins the election. If

a group wins, each member of the group receives a reward of (money) value H,

while the members of the losing group each receive a reward L, with H > L � 0.

An individual i who votes incurs a voting cost ci. The value of ci is drawn by

Nature, using the density function f(ci), which is positive everywhere on its

support [0, c̄], with c̄ > 0. The corresponding distribution function is denoted

by F (·). We assume that H � L > c̄. Each individual is privately informed

about the size of her own voting cost before deciding whether to abstain or

vote, but only knows that the voting costs of the other individuals are drawn

with density function f(·). The voting costs of the di↵erent individuals are

drawn independently. This setup is common knowledge.

Let us first consider the standard model of Levine and Palfrey (2007). We

denote the number of voters excluding individual i that vote for the candidate

of group A or group B by n
�i

A
and n

�i

B
, respectively. Tables 1 and 2 describe

the expected payo↵s of di↵erent outcomes for members of the two groups. The

payo↵s depend both on the action chosen by the individual herself, as well as

on the actions of all other individuals. The payo↵ matrix is unique for each

individual, since ci is drawn separately for every individual.

Following Levine and Palfrey (2007), we focus on quasi-symmetric (Bayesian-

Nash) equilibria in which all members of a group employ the same strategy.1

Denoting equilibrium values with a star (⇤), in a quasi-symmetric equilibrium

1Levine and Palfrey (2007, p. 145) discuss that there exists a unique quasi-symmetric
equilibrium for the parameter values used in their experiment, which can be shown numerically.
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Table 1: Expected payo↵ matrix for individual i of group A.

Vote Abstain

n
�i

A
> n

�i

B
+ 1 H � ci H

n
�i

A
= n

�i

B
+ 1 H � ci H

n
�i

A
= n

�i

B
H � ci

H+L

2

n
�i

A
= n

�i

B
� 1 H+L

2 � ci L

n
�i

A
< n

�i

B
� 1 L� ci L

Table 2: Expected payo↵ matrix for individual i of group B.

Vote Abstain

n
�i

A
> n

�i

B
+ 1 L� ci L

n
�i

A
= n

�i

B
+ 1 H+L

2 L

n
�i

A
= n

�i

B
H � ci

H+L

2

n
�i

A
= n

�i

B
� 1 H � ci H

n
�i

A
< n

�i

B
� 1 H � ci H

each individual i of group A uses a cut-point strategy such that she votes if

and only if ci < c
⇤
A
, where the equilibrium threshold c

⇤
A

is shared by everyone

in her group. If this individual votes, we say that ⌧A(ci) = 1, else ⌧A(ci) = 0.

Similarly, and using obvious notation, every individual i of group B votes (so

that ⌧B(ci) = 1) if and only if ci < c
⇤
B
. Thus, the equilibrium is described by

the pair of thresholds (c⇤
A
, c

⇤
B
).2

Given that everybody in a group has the same cut-point strategy, the equi-

librium aggregate voting probabilities of the two groups, (p⇤
A
, p

⇤
B
), are

p
⇤
A

=

Z
c̄

0
⌧A(c)f(c)dc =

Z
c
⇤
A

0
f(c)dc = F (c⇤

A
), (1)

p
⇤
B

=

Z
c̄

0
⌧B(c)f(c)dc =

Z
c
⇤
B

0
f(c)dc = F (c⇤

B
). (2)

Given these voting probabilities for each group, we can calculate the following

2We assume that c⇤A < c̄ and c⇤B < c̄. This also holds in our numerical analysis below.
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probabilities that each voter uses to calculate the benefit of casting her vote:

P
⇤
A,break

= Prob(voter in group A breaks a tie) (3)

=
NA�1X

k=0

✓
NA � 1

k

◆✓
NB

k

◆
(p⇤

A
)k(1� p

⇤
A
)NA�1�k(p⇤

B
)k(1� p

⇤
B
)NB�k

,

P
⇤
A,create

= Prob(voter in group A creates a tie) (4)

=
NA�1X

k=0

✓
NA � 1

k

◆✓
NB

k + 1

◆
(p⇤

A
)k(1� p

⇤
A
)NA�1�k(p⇤

B
)k+1(1� p

⇤
B
)NB�1�k

,

P
⇤
B,break

= Prob(voter in group B breaks a tie) (5)

=
NAX

k=0

✓
NA

k

◆✓
NB � 1

k

◆
(p⇤

A
)k(1� p

⇤
A
)NA�k(p⇤

B
)k(1� p

⇤
B
)NB�1�k

,

P
⇤
B,create

= Prob(voter in group B creates a tie) (6)

=
NA�1X

k=0

✓
NA

k + 1

◆✓
NB � 1

k

◆
(p⇤

A
)k+1(1� p

⇤
A
)NA�1�k(p⇤

B
)k(1� p

⇤
B
)NB�1�k

.

In equilibrium, individuals in groups A and B are indi↵erent between abstaining

and voting if and only if the expected benefit of voting equals the cost of voting,

i.e. we must have

P
⇤
A,break

⇥
✓
H � H + L

2

◆
+ P

⇤
A,create

⇥
✓
H + L

2
� L

◆
= c

⇤
A
, (7)

P
⇤
B,break

⇥
✓
H � H + L

2

◆
+ P

⇤
B,create

⇥
✓
H + L

2
� L

◆
= c

⇤
B
. (8)

The equilibrium pair of thresholds (c⇤
A
, c

⇤
B
) simultaneously solves (1)� (8), and

in turn yields the equilibrium aggregate voting probabilities for each group.

For later use, we also define

P
⇤
A

= P
⇤
A,break

+ P
⇤
A,create

, (9)

P
⇤
B

= P
⇤
B,break

+ P
⇤
B,create

. (10)

Here P
⇤
A

denotes the equilibrium probability that an individual of group A is

pivotal, i.e. breaks or makes a tie. In the same way, we can interpret P ⇤
B
.

3 Prospect-theory model

Building on the standard model, we now introduce prospect-theory preferences

and determine their impact on aggregate turnout. Hence, agents now evaluate
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their actions in terms of gains and losses that result from them, relative to some

reference point. In our setup the reference point can be to either abstain or to

vote. A priori it is not clear which reference point is used. We therefore look at

both cases in our prospect-theory model.

Tables 3 and 4 detail, for individuals of group A, the state-dependent gains

and losses, respectively, when deviating from one’s reference point. Since H �

L > c̄, payo↵s can be unambiguously determined as either gains or losses. Each

individual in the group receives an independent draw from the distribution of

voting costs. Hence, the gains and loss matrices are unique for each individual

i in their respective group.

Consider individual i of group A, who has the reference point of abstaining

(see the second column in Tables 3 and 4). She evaluates the alternative action

of voting in terms of the state-dependent gains and losses that result from that

action. For example, if group A would lead in the election by more than one

vote before taking into account individual i (see the third row in Tables 3 and 4),

then her action of voting would not result in any gain received by her group

winning the election. Yet, she would incur the individual voting cost ci, so that

a net loss would result. The same calculation is performed for the other four

states of the world. Note that (H � L� ci,
1
2 ; 0,

1
2 ) in Table 3 denotes that the

gain equals H �L� ci with probability 1
2 , and 0 with probability 1

2 . The entry

(0, 1
2 ; ci,

1
2 ) in the third column of this table, where voting is the reference point,

can be interpreted analogously. The entries in Table 4 can be interpreted in a

similar way, but then in terms of losses. For brevity, we omit here the gains and

loss matrices of individuals of group B.

Let us examine the case with abstaining as the reference point. Take indi-

vidual i of group A and suppose that she votes. Tables 3 and 4 imply that she

will gain H � L� ci with probability P
⇤
A
/2 and incur a loss ci with probability

1� P
⇤
A
/2, with P

⇤
A
given by (9). Following Tversky and Kahneman (1992) (see

also Barberis, 2013), individual i then attaches the following value to voting:

VA(ci) = ⇡
+

✓
P

⇤
A

2

◆
⇥ u(H � L� ci) + ⇡

�
✓
1� P

⇤
A

2

◆
⇥ u(�ci). (11)
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Table 3: Gains matrix for individual i of group A.

Reference point: Abstain Vote

Strategy: Vote Abstain

n
�i

A
> n

�i

B
+ 1 0 ci

n
�i

A
= n

�i

B
+ 1 0 ci

n
�i

A
= n

�i

B
(H � L� ci,

1
2 ; 0,

1
2 ) (0, 1

2 ; ci,
1
2 )

n
�i

A
= n

�i

B
� 1 (H � L� ci,

1
2 ; 0,

1
2 ) (0, 1

2 ; ci,
1
2 )

n
�i

A
< n

�i

B
� 1 0 ci

Table 4: Loss matrix for individual i of group A.

Reference point: Abstain Vote

Strategy: Vote Abstain

n
�i

A
> n

�i

B
+ 1 ci 0

n
�i

A
= n

�i

B
+ 1 ci 0

n
�i

A
= n

�i

B
(0, 1

2 ; ci,
1
2 ) (H � L� ci,

1
2 ; 0,

1
2 )

n
�i

A
= n

�i

B
� 1 (0, 1

2 ; ci,
1
2 ) (H � L� ci,

1
2 ; 0,

1
2 )

n
�i

A
< n

�i

B
� 1 ci 0

Here the utility function for outcome x is given by

u(x) =

⇢
x
↵

x � 0,
��(�x)� x < 0,

(12)

with 0 < ↵ < 1, 0 < � < 1 and � > 1. We have a gain if x > 0 and a loss if

x < 0. The probability weighting functions for the objective probability p are

given by

⇡
+(p) =

p
�

[p� + (1� p)� ]
1
�

, (13)

⇡
�(p) =

p
�

[p� + (1� p)�]
1
�

, (14)

with 0 < � < 1 and 0 < � < 1.

The utility function u(·) reflects the following three features: (i) reference

dependence, i.e. the gains and losses are relative to a given reference point

9



(here to abstain or to vote), so that the same action may be assigned a di↵erent

utility value for distinct reference points; (ii) diminishing sensitivity, i.e. the

utility function is concave in gains and convex in losses, which implies that

voters are risk-averse in gains and risk-loving in losses; (iii) loss aversion, i.e.

the increase in utility from gaining a given payo↵ is smaller than the (absolute

value of the) decrease in utility from a loss of the same size. The individual

evaluates the utility for each outcome and calculates the corresponding expected

value given her subjective probabilities. The subjective probabilities are given

by the weighting functions ⇡
+(·) and ⇡

�(·) (associated with gains and losses,

respectively), which depend on the objective probabilities of each state. The

weighting functions imply that small probabilities are overestimated, while large

probabilities are underestimated. We allow that the weighting functions are

di↵erent for gains and losses. In the special case with � = � = 1, the individual

calculates the standard expected value based on the objective probabilities.

Next, consider the case where voting is the reference point, and suppose that

individual i of group A abstains from voting. Using Tables 3 and 4, we see that

her value of voting is then given by

WA(ci) = ⇡
+

✓
1� P

⇤
A

2

◆
⇥ u(ci) + ⇡

�
✓
P

⇤
A

2

◆
⇥ u(�(H � L� ci)). (15)

Obviously, we can define the values VB(ci) and WB(ci) for individual i of

group B in the same manner, by replacing P
⇤
A
with P

⇤
B
, defined by (10), in (11)

and (15), respectively. Note that we assume that all individuals of both groups

have the same utility function (12) and probability weighting functions (13) and

(14).

Turning to the quasi-symmetric equilibrium of the model, we use Tables 3

and 4 in order to determine the thresholds of the voting costs in the cut-point

strategies used by the members of each group. First, assume that all voters

use abstaining as their reference point. Then in order to be indi↵erent between

switching or not switching to voting, the value of voting must equal zero. The

equilibrium pair of thresholds of the voting costs, (c⇤
A
, c

⇤
B
), simultaneously solves

10



equations (1)�(6), (9), (10), VA(c⇤A) = 0 and VB(c⇤B) = 0.3 Second, assume that

voting is the reference point. The equilibrium pair (c⇤
A
, c

⇤
B
) then simultaneously

solves equations (1) � (6), (9), (10), WA(c⇤A) = 0 and WB(c⇤B) = 0. In the

special case with ↵ = � = � = 1 and � = � = 1, the equilibrium of the model

coincides with the equilibrium of the standard model of Section 2.

Clearly, the assumption that all voters share the same reference point is

restrictive, with neither reference point being the more obvious and rational

choice. Hence, we now assume that in addition to being randomly assigned a

voting cost, each individual is independently and privately assigned (by Nature)

either the reference point abstaining or the reference point voting with proba-

bilities q and 1�q, respectively. This is also common knowledge. The threshold

for the voting cost in an individual’s cut-point strategy then varies with both

group and reference point type. Let c⇤
A,a

and c
⇤
A,v

denote the equilibrium thresh-

olds for a member of group A who has the reference point abstaining or voting,

respectively. In the same way, we define c
⇤
B,a

and c
⇤
B,v

for members of group

B. Hence, individual i with the reference point abstaining in group A votes if

and only if ci < c
⇤
A,a

, and so on. The two types of individuals per group have

a distinct threshold cost level, but the equilibrium aggregate voting probability

per group is simply their probability weighted average, i.e. we have

p
⇤
A

= q ⇥ F (c⇤
A,a

) + (1� q)⇥ F (c⇤
A,v

), (16)

p
⇤
B

= q ⇥ F (c⇤
B,a

) + (1� q)⇥ F (c⇤
B,v

). (17)

The equilibrium set of thresholds (c⇤
A,a

, c
⇤
A,v

, c
⇤
B,a

, c
⇤
B,v

) simultaneously solves

(3) � (6), (9), (10), (16), (17), VA(c⇤A,a
) = 0, WA(c⇤A,v

) = 0, VB(c⇤B,a
) = 0 and

WB(c⇤B,v
) = 0.

We denote the prospect-theory model with the given mixture of reference

points as the PT(q)-model. The special cases where all individuals have either

abstaining or voting as their reference point are the PT(1)-model and PT(0)-

model, respectively.

3For notational simplicity we also denote equilibrium values of the prospect-theory model
by means of a star (*). The context makes clear to which model the equilibrium applies.
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4 Comparison of models

In this section, we assess the performance of the prospect-theory model com-

pared to the standard model of Section 2. Since there is no closed-form equi-

librium solution for these models, our analysis will be done numerically. We

examine the turnouts predicted by the prospect-theory model and standard

model, as given by the groups’ equilibrium aggregate voting probabilities, while

using the parameter values used in the experiment of Levine and Palfrey (2007).

We investigate how the predictions of the two models match with the turnouts

actually observed in the experiment of Levine and Palfrey. In addition, we ver-

ify whether the predictions of the prospect-theory model satisfy a number of

comparative statics e↵ects discussed by Levine and Palfrey with regard to the

standard model.

Following Levine and Palfrey (2007), we look at cases where NA = NB � 1

(i.e. group A is slightly smaller than group B) or NA = NB/2 (i.e. group A

is much smaller than group B), H = 105 and L = 5, and the voting cost ci

is uniformly distributed on [0, 55]. We set the preference parameter values in

the prospect-theory model equal to the median estimates of previous empirical

(experimental) studies. Following Abdellaoui (2000), we take ↵ = 0.89, � =

0.92, � = 0.6 and � = 0.7. These values are very close to those of Tversky and

Kahneman (1992). Using Kahneman and Tversky (1979), we set � = 1.69.

4.1 Predictive performance

We first turn to a comparison of the predictive performance of the two models.

As the main criterion, we look at the models’ ability to predict the turnouts

observed in the experiment of Levine and Palfrey (2007). Table 5 gives the

experimental turnouts of group A and group B, denoted as bpA and bpB , respec-

tively, for the seven di↵erent combinations of group sizes considered by Levine

and Palfrey (cf. Table 2 of their study). We also present the observed turnout

of the total electorate for each combination, i.e. bp = (NA ⇥ bpA +NB ⇥ bpB)/N ,

where N = NA + NB is the size of the total electorate. In the same way, Ta-

12



ble 5 gives the turnouts of group A and group B predicted by the standard

model, and the corresponding prediction for the total electorate, i.e. p
⇤ =

(NA ⇥ p
⇤
A
+NB ⇥ p

⇤
B
)/N .

As noted by Levine and Palfrey (2007, pp. 148-149), the (experimentally)

observed turnouts are smaller than the predictions of the standard model for

N = 3 (except for group A in case NA = 1 and NB = 2), they are approximately

equal to each other for N = 9, while for N = 27 and N = 51 the observed

turnouts are larger than the predicted ones. As a simple measure of the fit

between the observed and predicted turnouts, we calculate the average of the

absolute di↵erences between the observed and predicted turnouts of the total

electorate across the seven group size combinations of Table 5. We call this the

average prediction error of the standard model, and express it as a percentage.

It amounts to 6.58%.

Table 5: Turnouts in the experiment of Levine and Palfrey (2007), and predicted
turnouts in the standard model and PT(0.7)-model, for groups A and B, and
the total electorate, for di↵erent group sizes.

Experiment Standard model PT(0.7)-model

NA NB bpA bpB bp p
⇤
A

p
⇤
B

p
⇤

p
⇤
A

p
⇤
B

p
⇤

1 2 0.539 0.573 0.562 0.537 0.640 0.606 0.566 0.598 0.587

3 6 0.436 0.398 0.411 0.413 0.374 0.387 0.437 0.416 0.423

4 5 0.479 0.451 0.463 0.460 0.452 0.456 0.490 0.488 0.489

9 18 0.377 0.282 0.314 0.270 0.228 0.242 0.311 0.281 0.291

13 14 0.385 0.356 0.370 0.302 0.297 0.299 0.371 0.368 0.369

17 34 0.333 0.266 0.288 0.206 0.171 0.183 0.249 0.220 0.230

25 26 0.390 0.362 0.376 0.238 0.235 0.236 0.314 0.312 0.313

Next, we turn to the PT(q)-model and explore whether this model, which

allows for a mixture of reference points regarding prospect-theory preferences,

can provide accurate predictions of the observed turnouts. To err on the safe

side, we evaluate the model performance for 0  q  1, while considering the

predicted turnouts of group A, group B, and the total electorate, for the seven
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group size combinations of Table 5.4 Figure 1 shows the average prediction

error for di↵erent values of q. We find that the value of q yielding the smallest

average prediction error for the total electorate is 0.7, whereas all PT(q)-models

with 0.5 < q < 0.85 have smaller prediction errors than the standard model.

Even though the true value of q is unknown, a recent survey among American

adults finds that only 34% of the electorate can be classified as consistent voters,

who participate regardless of election type, as opposed to voters that vote only

in some elections or not at all (Jones et al., 2018). In other words, the point

estimate of q is 0.66 with some confidence interval, which is reasonably close

to the PT(0.7)-model specification and well within the range of specifications

that outperform the standard model. From here, we continue with the PT(0.7)-

model, i.e., the model with the smallest prediction error, for further evaluation

of the prospect-theory model.

Table 5 gives the predicted turnouts associated with the PT(0.7)-model.The

average prediction error of this model is equal to 2.97%, which is less than one

half of that of the standard model (6.58%). Table 5 further shows that the

observed turnouts are quite close to the predictions of the PT(0.7)-model for

N = 3, N = 9 and N = 27, while the observed outcomes are larger than the

predicted ones for N = 51. Also note that, except for N = 3, all predicted

turnouts of the PT(0.7)-model are somewhat larger than those of the standard

model.

In sum, we conclude that the PT(0.7)-model has better predictive perfor-

mance than the standard model in terms of explaining observed turnout of the

total electorate in the experiment of Levine and Palfrey (2007). For the extreme

case where everyone shares the reference point of abstaining (q = 1), we find

an average prediction error of 12.39%; if all voters have the reference point of

4Calculations were performed using the program ‘Mathematica’. Uniqueness of equilibrium
in the PT(1)-model was shown by plotting conditions VA(c⇤A) = 0 and VB(c⇤B) = 0, and
identifying the unique intersection representing the equilibrium pair (c⇤A, c⇤B). In a similar
way, we have shown uniqueness of equilibrium in the PT(0)-model. Due to the dimensionality
of the problem, uniqueness of the equilibrium in the PT(q)-model with 0 < q < 1 cannot be
shown graphically. However, variation in starting values of the root finding algorithm revealed
no additional equilibria in all cases considered by us. The code is available upon request.
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Figure 1: Comparison of the average prediction error of the total electorate of
the standard model and PT(q)-model.

voting (q = 0), the average prediction error equals 18.44%. Based on this, we

conclude that the prospect-theory model in which all individuals have the same

reference point performs worse than the standard model.

4.2 Decomposition of e↵ects

We now want to enhance our understanding of the di↵erence between the pre-

dictions of the PT(0.7)-model and standard model. Tables 6 and 7 present the

predicted turnouts of groups A and B, and the total electorate, for the PT(1)-

model and PT(0)-model, in which all individuals share the same reference point

of abstaining or voting, respectively. One can verify that (except for group A

in case NA = 1 and NB = 2), the turnout predictions of the PT(0.7)-model

are reasonably close to the weighted average of the predictions of the PT(1)-

model and PT(0)-model, with weights 0.7 and 0.3, respectively.5 Hence, in order

5The larger the electorate size, the closer are the predictions of the PT(q)-model to the
weighted average of the extreme cases. For the case NA = 1 and NB = 2, p⇤A deviates
noticeably from the weighted average of the PT(1)-model and PT(0)-model. This is due to
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to understand the di↵erence between the predictions of the PT(0.7)-model and

standard model, it is useful to compare the PT(1)-model and PT(0)-model with

the standard model.

Table 6 also presents the predictions of a variant of the PT(1)-model in which

both probability weighting functions are set equal to the identity function (i.e.

� = � = 1), and voters thus use the objective probabilities to calculate expected

values. We call this variant the PTOB(1)-model. It can be used to separate the

e↵ects of probability weighting from those of reference dependence, diminishing

sensitivity and loss aversion in the prospect-theory model. In a similar way,

Table 7 presents results for the PTOB(0)-model, which is obtained by using

objective probabilities in the PT(0)-model.

Table 6: Predicted turnouts in the PT(1)-model and PTOB(1)-model, for
groups A and B, and the total electorate, for di↵erent group sizes.

PT(1)-model PTOB(1)-model

NA NB p
⇤
A

p
⇤
B

p
⇤

p
⇤
A

p
⇤
B

p
⇤

1 2 0.459 0.437 0.445 0.457 0.417 0.430

3 6 0.328 0.294 0.305 0.288 0.238 0.255

4 5 0.337 0.326 0.331 0.283 0.266 0.274

9 18 0.230 0.203 0.212 0.179 0.144 0.156

13 14 0.247 0.244 0.246 0.177 0.172 0.174

17 34 0.186 0.162 0.170 0.136 0.108 0.117

25 26 0.209 0.207 0.208 0.137 0.135 0.136

Let us examine Table 6, where the reference point of all individuals is ab-

staining. Comparing the PTOB(1)-model with the standard model, we see that

using the utility function (12) rather than the linear utility function of the stan-

dard model leads to lower predicted turnouts. This is firstly due to the fact that

in (12) the voting costs (considered a loss) are multiplied by the loss aversion

parameter � = 1.69 > 1 such that voting is more costly. In addition, there is a

the fact that for q = 0, turnout in group B dominates that of group A, so that P ⇤
A at first

increases strongly with q before gradually decreasing again. As a result, for this case the
predictions of the PT(0.7)-model di↵er noticeably from the weighted average.

16



Table 7: Predicted turnouts in the PT(0)-model and PTOB(0)-model, for
groups A and B, and the total electorate, for di↵erent group sizes.

PT(0)-model PTOB(0)-model

NA NB p
⇤
A

p
⇤
B

p
⇤

p
⇤
A

p
⇤
B

p
⇤

1 2 0.465 0.916 0.766 0.496 0.802 0.700

3 6 0.556 0.608 0.591 0.488 0.478 0.481

4 5 0.651 0.815 0.724 0.592 0.650 0.624

9 18 0.424 0.399 0.407 0.334 0.287 0.303

13 14 0.670 0.696 0.683 0.425 0.421 0.423

17 34 0.338 0.304 0.316 0.254 0.211 0.225

25 26 0.568 0.571 0.569 0.327 0.325 0.326

similar curvature in (12) for gains and losses implied by the very close param-

eter values ↵ = 0.89 and � = 0.92, which means that diminishing sensitivity

makes voting unattractive as well. In order to see this, note from Tables 3 and 4

that for members of group A, the potential gain of voting equals H � L � c
⇤
A
,

while the potential loss of voting is c⇤
A
. Since H �L� c

⇤
A
is larger than c

⇤
A
, the

decrease in utility associated with the gain of voting is larger than the increase

of the (negative) utility of the loss of voting, if we move from linear utility to

utility function (12). The same holds for group B.

Going from the PTOB(1)-model to the PT(1)-model, we see that the e↵ect

of probability weighting works in the opposite direction. Since the probability

of a gain is now overweighted (because P
⇤
A
/2 and P

⇤
B
/2 are small), while the

probability of a loss is underweighted (because 1�P
⇤
A
/2 and 1�P

⇤
B
/2 are large),

probability weighting leads to higher predicted turnout relative to the PTOB(1)-

model, where objective probabilities are used. Since the smaller the objective

probabilities are, the more they are overweighted, the impact of probability

weighting increases with the number of voters. Nevertheless, for the group size

combinations considered in Table 6, the predictions of the PT(1)-model are still

somewhat smaller than those of the standard model.6

6Numerical calculations show that for large group sizes (total electorate size 169 and
greater), the PT(1)-model shows slightly higher turnouts than the standard model. Hence,
while for a small number of voters reference dependence, diminishing sensitivity and loss aver-
sion o↵set the impact of probability weighting, the latter has a higher impact when the group
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Next, take Table 7, where all individuals have the reference point voting. In

this situation, the PTOB(0)-model shows that reference dependence, diminish-

ing sensitivity and loss aversion lead (except for group A in case NA = 1 and

NB = 2) to higher predicted turnout than in the standard model. This is due

to the fact that, if members of group A abstain in this situation, then opposite

to the previous case, c⇤
A

is considered as a potential gain and H � L � c
⇤
A

as a

potential loss. The same holds for group B. Moving from the PTOB(0)-model

to the PT(0)-model, we see that the e↵ect of probability weighting is to fur-

ther increase predicted turnout. The intuition behind this result is that the

probability of receiving a gain from abstaining is now underweighted, while the

probability of a loss is overweighted.

In sum, we see that the turnout predictions of the PT(0)-model are sub-

stantially larger than those of the standard model, whereas the predictions of

the PT(1)-model are somewhat smaller. We have also explained the driving

forces behind these results. Combining, and recalling that the predictions of

the PT(0.7)-model are quite close to the weighted average of the predictions of

the PT(1)-model and PT(0)-model (with weights 0.7 and 0.3, respectively), we

have also identified the main determinants of the di↵erence in the predictions

of the PT(0.7)-model and standard model. Loosely speaking, the di↵erence in

the predictions can be seen as the net outcome of the (weighted) interplay be-

tween the two extreme cases in which all voters have either the reference point

abstaining or voting.

4.3 Comparative statics hypotheses

Based on the predictions of their model, Levine and Palfrey (2007) stipulate

seven comparative statics hypotheses, with the main ones being the ‘size’, ‘com-

petition’ and ‘underdog’ e↵ect.

The size-e↵ect hypothesis states that, holding constant relative group sizes,

turnout in each group decreases with electorate size. For the group sizes studied

here, the hypothesis implies twenty four pairwise inequalities of the form that

size gets larger.
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if the total electorate sizes N and M satisfy N < M , then p
⇤
j
(N�1

2 ,
N+1
2 ) >

p
⇤
j
(M�1

2 ,
M+1

2 ) and p
⇤
j
(N3 ,

2N
3 ) > p

⇤
j
(M3 ,

2M
3 ) for j = A,B (we attach here the

size of groups A and B to p
⇤
j
). In the case where NA = NB � 1, one example

is that p
⇤
A
(4, 5) > p

⇤
A
(13, 14). And for the case where NA = NB/2, one of the

inequalities is p⇤
B
(1, 2) > p

⇤
B
(17, 34). The intuition behind this e↵ect is that the

larger the electorate, the smaller is the probability of being pivotal, and with it

turnout.

According to the competition-e↵ect hypothesis, turnout is decreasing with

the gap between group sizes. This hypotheses implies six pairwise inequalities:

p
⇤
j
(4, 5) > p

⇤
j
(3, 6), p⇤

j
(13, 14) > p

⇤
j
(9, 18) and p

⇤
j
(25, 26) > p

⇤
j
(17, 34), for j =

A,B. This hypothesis is again intuitive, with closer group sizes implying a

higher chance of individual’s being pivotal, and thus higher turnout.

Lastly, the underdog-e↵ect hypothesis posits that, except in the case that

N = 3, turnout in the smaller group is higher. The six pairwise inequalities in

this case are: p
⇤
A
(4, 5) > p

⇤
B
(4, 5), p⇤

A
(3, 6) > p

⇤
B
(3, 6), p⇤

A
(13, 14) > p

⇤
B
(13, 14),

p
⇤
A
(9, 18) > p

⇤
B
(9, 18), p

⇤
A
(25, 26) > p

⇤
B
(25, 26) and p

⇤
A
(17, 34) > p

⇤
B
(17, 34).

Underlying this hypothesis is the fact that the larger the group size, the larger

the free-rider problem, so that turnout in the larger group is expected to be

lower. For the case where N = 3, the relationship is reversed, i.e. p
⇤
A
(1, 2) <

p
⇤
B
(1, 2). Consequently, Levine and Palfrey (2007) refer to the hypothesis as the

‘counter-example to the underdog e↵ect’.

The experimental data of Levine and Palfrey (2007) is overall in line with

the seven hypotheses derived from the standard model, with only three quanti-

tatively small deviations. One of these violations is in regards to the size-e↵ect

hypothesis: in the experimental data, bpj(13, 14) < bpj(25, 26) for j = A,B. How-

ever, as Levine and Palfrey (2007) argue, some deviations from the hypotheses

can be expected due to sampling variation.

Since the empirically supported comparative statics hypotheses are econom-

ically meaningful and intuitively appealing, we would like the prospect-theory

model to generate them as well. It turns out that the PT-(q)-model satisfies

all seven hypothesis for 0.7 < q  0.85. Hence, based on the criterion that the
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model also satisfies the discussed comparative statics e↵ects, we conclude that

a range of 0.7  q  0.85 is best able to explain the observed turnout patterns.7

4.4 What happens when N is large?

Finally, we turn to the prospect-theory model’s predictions in elections with

large electorates. As is well known, an individual voter’s probability of being

pivotal tends to zero as the electorate grows arbitrarily large. As a consequence,

the equilibrium turnout rate in the standard model converges to zero in that

case. This is no di↵erent for the prospect-theory model since the objective

probability p tends to zero and so do the weighted probabilities defined by

equations (13) and (14).

However, there is a significant di↵erence between the prospect-theory model

and the standard model when the size of the electorate grows large. Namely,

the speed of convergence with which voter turnout goes to 0 is in favor of the

prospect-theory model. This is due to the presence of probability weighting.

In particular, it can be shown that limp!0
⇡
+(p)
p

= 1 and limp!0
⇡
�(p)
p

= 1.

That is, arbitrarily small probabilities are infinitely overweighted. Therefore,

even in elections with a large electorate, when the chance of being pivotal is

very small, the prospect-theory model allows for significant turnout.

Due to computational limitations, we cannot calculate the equilibrium turnout

for electorate sizes of several millions.8 We can, however, determine with rea-

sonable precision the turnout for electorates with size up to 2000. Figure 2

illustrates voter turnout for the PT(0.7)-model and standard model for di↵er-

ent electorate sizes. It is evident that while the gap between the predictions of

the two models is fairly constant in absolute terms for di↵erent electorate sizes,

their ratio increases substantially when the electorate size grows, indicating that

7For larger values of q, however, the counter-example to the underdog-e↵ect hypothesis
is violated since group A turnout is smaller than that of group B with NA = 1 and NB =
2. Conversely, the underdog-e↵ect hypothesis itself is violated for q < 0.7; essentially, the
reversion of pattern observed only for NA = 1 and NB = 2 in the standard model now
extends to larger group sizes as the proportion of individuals with voting as reference point
increases.

8As electorate size grows, the terms of equations (3) to (6) become too small to be repre-
sented as a normalized machine number, resulting in increasing loss of precision.
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Figure 2: Predicted turnout for the total electorate in the PT(0.7)-model and
standard model, for larger electorates, and the ratio of the two models’ turnout
predictions.

the prospect-theory model keeps performing well in comparison to the standard

model for larger electorate sizes.

It should be noted that Levine and Palfrey (2007) dictate that the cost-

benefit distribution in the model (and experiment) regarding winning and losing

elections should be such that uniqueness of the equilibrium is ensured. We

followed their approach. However, despite the possible existence of multiple

equilibria, in real elections the benefits of the pivotal voter are, relative to the

costs, substantially larger than in the model. This would imply that in very

large electorates, voter turnout in absolute terms can be substantial.

5 Conclusion

We have shown that the implementation of prospect-theory preferences in a

game-theoretic model of voting yields more accurate predictions of turnout than

standard game-theoretic models, and that these predictions satisfy a number
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of intuitive comparative statics hypotheses. In analyzing the prospect-theory

model of voting, we find that voters’ reference point and probability weighting

have a large impact on voter turnout. The results also show that instrumental

voting plays a more important role in determining real world election turnout

than standard (game-theoretic) rational choice models predict.

The prospect-theory model improves upon the existing two strands of re-

search that seek to explain voter turnout, both of which have limitations. First,

behavioral approaches based on non-instrumental benefits or costs cannot ex-

plain turnout in experimental elections as in Levine and Palfrey (2007), since

their experimental design precludes any possibility of such motivations. Sec-

ond, the game-theoretic approach with standard risk preferences has a hard

time explaining the observed heterogeneity in individual strategies. However,

the prospect-theory model, on the other hand, has smaller prediction error and

is able to explain inter-individual di↵erences based on reference points and risk

preference parameters.

It should be noted that there is a striking similarity between the loss matrix

of the prospect-theory model and the ‘matrix of regrets’ from Ferejohn and

Fiorina (1974). However, relative to their work, the prospect-theory model

also takes into account the impact of potential gains. The model could thus

be considered a generalization of the approach of Ferejohn and Fiorina (1974),

which (unlike Ferejohn and Fiorina) also takes into account the probability of

being decisive.

Levine and Palfrey (2007) apply the Quantal Response Equilibrium (QRE)

solution concept to the standard model in order to show that when individuals

make unsystematic random errors in choosing their optimal strategy, significant

turnout occurs even in the presence of very large electorates. The prospect-

theory model we develop in this paper is, in principle, also compatible with this

set-up. However, as Haile et al. (2008) show, QRE is in general not falsifiable

and can be used to rationalize any observed behavior. This casts doubt on

the usefulness of QRE. In contrast, the behavioral assumptions of the prospect-

theory model as well as its model predictions can be empirically verified.
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The prospect theory of voter turnout opens up a whole new research agenda.

For example, the inclusion of endogenous reference point formation would be

an extension of the model that requires serious study. Furthermore, empirical

investigation of the relation between individual risk preferences, reference points

and voting behavior is necessary to test the model and its possible extensions.
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