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Abstract

The paper studies insurance with moral hazard in a system of
contingent-claims markets. Insurance buyers are modelled as Cournot
monopolists or oligopolists. The other agents condition their expecta-
tions on market prices, as in models of rational-expectations equilib-
rium with asymmetric information. Thereby they correctly anticipate
accident probabilities corresponding to effort incentives induced by in-
surance buyers’ net trades. When there are many agents to share the
insurance buyer’s risk, Cournot equilibrium outcomes are close to being
second-best. In contrast, if insurance buyers are price takers, equilibria
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1 Introduction

Nonlinear incentive provision in Walrasian markets? Surely, the author
doesn’t know what he is talking about! Don’t we all know that Walrasian
markets involve linear price functionals, and that models involvingWalrasian
markets are therefore ill suited to the analysis of incentive contracting? Isn’t
this precisely why over the past two decades Walrasian general-equilibrium
theory has had to make room for contract theory and game theory?
This stereotype view of the insignificance of Walrasian general-equilibrium

theory for the analysis of incentive problems is flawed. In this paper, I de-
velop a Walrasian-market model of insurance subject to moral hazard, which
generates outcomes close to the outcomes of second-best incentive contract-
ing. The model also provides a solution to the problem of exclusivity in
contracting, which as yet is unsolved in contract theory.
In contract theory, incentive contracting is usually studied for a well

specified set of agents without any explicit consideration of other agents
in the economy. Relations of the contracting parties to other agents are
subsumed in participation constraints reflecting opportunities from potential
other matches. The possibility that the scope for incentive contracting itself
may depend on the parties’ relations with other agents in the economy is
neglected.
If all contracts are publicly observable, this neglect does not matter: In

this case, if multiple contracts are concluded, all participants are informed
and are able to adjust their terms accordingly. For example, insurers provid-
ing a contract with a deductible know whether an insurance buyer concludes
a second contract to cover the risk associated with the deductible and adjust
their term to take account of the incentive implications of this second con-
tract. Apart from the fact that more parties may be sharing the insurance
buyer’s risk, the overall outcome then is the same as in contracting with a
single insurer.
However, if not all contracts are publicly observable, the ability to con-

tract with an additional insurer undermines the viability of an arrangement
with a deductible. If a contract with one insurer involves a deductible, the
insurance buyer has an incentive to conclude a second contract with another
insurer to cover the risk associated with the deductible. The second insurer
would know that his client has poor incentives to take care and would price
this contract accordingly. The risk averse insurance buyer would neverthe-
less be happy to deal with him in order to get rid of the risks that are left
over under the first contract. The parties to the second contract neglect
the externality they impose on the first insurer as the additional coverage
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reduces incentives to take care against accidents. If the first insurer is aware
of the situation, he in turn will price his contract accordingly. The insur-
ance buyer may then be worse off than he would be if he could commit to
an exclusivity clause tying him to just one insurer ([21, 38, 16, 5, 6, 7]).
Most contract-theoretic analyses neglect this problem. Following Roth-

schild and Stiglitz [35], they assume that insurers are in a position to ef-
fectively impose exclusivity clauses that prohibit secret side-contracting.
However, the enforcement of such clauses requires communication among
the insurers. As shown by Jaynes [21] for the case of asymmetric informa-
tion and by Hellwig [16] for the case of moral hazard, there is no reason to
suppose that such inter-insurer communication will occur voluntarily as a
feature of insurance market equilibrium.
The present paper shows that the exclusivity problem for incentive con-

tracting disappears if one looks at the provision of insurance subject to
moral hazard in the context of a Walrasian (Arrow-Debreu) system of orga-
nized markets for contingent claims. In this setting there is no room for the
notion that an insurance buyer might obtain additional insurance through
additional contracts. The overall insurance that he gets is determined by
his trade with ”the market”. In a market equilibrium, this trade with ”the
market” is equal to the sum of trades with all other agents in the economy.
Because all agents in the economy participate in the market, there is no
scope for concluding additional contracts with additional agents.
Walrasian models of contingent-claims markets were considered early on

in the literature on insurance with moral hazard, but were soon discarded
because they seemed incompatible with efficient incentive provision. As
argued by Pauly [31], equilibrium outcomes in such markets involve too
much insurance and too little effort to prevent accidents. For example, if
insurance sellers are close to being risk neutral, equilibrium prices must
correspond to approximately fair odds, so the risk averse insurance buyer
will demand close to full insurance, which leaves hardly any incentive to
take effort against accidents. Relative to an efficient allocation that involves
positive effort and partial insurance, there is too little effort and too much
insurance.1 2

1The argument presumes that an equilibrium exists. As shown in Proposition 6.1
below, an equilibrium fails to exist if at fair odds corresponding to zero effort, insurance
is so expensive that the consumer prefers not to insure himself at all and to take care
instead, see also [19, 2, 38, 17].

2The inefficiency is similar to the inefficiency that results from contracting without
effective exclusivity clauses, see Bisin and Guaitoli [7]. Given the difficulties associated
with linear budget constraints in the Walrasian tradition, Bisin and Gottardi [5, 6] as well
as Bisin and Guaitoli [7] have introduced models based on ”minimal” departures from
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Pauly’s argument rests on the assumption that the insurance buyer is
a price taker. This assumption is standard in the analysis of competitive
Walrasian markets. Nevertheless, the assumption of price-taking behaviour
is problematic because it is not based on a more fundamental analysis of
strategic interactions based on the primitives of the model. This paper
shows that this assumption is actually inappropriate for models of insurance
subject to moral hazard. A proper treatment of strategic behaviour leads
to a very different assessment of market outcomes.
Usually, the assumption of price-taking behaviour is justified as an ap-

proximation of behaviour in a large economy in which the individual agent is
small relative to the market. In any finite economy, each agent actually has
the power to affect market-clearing prices by changing the excess demand
function that he transmits to the market, but this power is deemed to be
small if the agent is small relative to the overall economy. The concept of
Walrasian competitive equilibrium with price-taking behaviour by all agents
is then seen as a useful approximation, which avoids the complexity of a pre-
cise strategic analysis while retaining the essence of the market allocation
problem.
For markets without moral hazard or adverse selection, this view of price

taking has, by and large, been supported by the literature on Cournot con-
vergence ( [9, 29, 14, 15, 39]). For sequences of Walrasian market systems in
which individual agents are becoming small relative to the overall economy,
the equilibrium outcomes of Cournot models, in which agents appreciate
the power they have over prices, will under certain regularity conditions
converge to the equilibrium outcomes of the corresponding ”competitive”
models, in which agents are assumed to take prices as given.
However, for markets with moral hazard or asymmetric information, the

view of price taking as a suitable approximation of behaviour in Walrasian
markets is by and large incorrect. For markets with asymmetric information,
this has been shown by Kyle [23] as well as Gale and Hellwig [10, 11]. For
a market with moral hazard, this is shown in the present paper.
The paper studies Cournot convergence in a system of contingent-claims

markets with moral hazard. In a model with a given finite number of partic-

such linear budget constraints.
A somewhat different literature on competitive markets under moral hazard or asym-

metric information simply assumes exclusivity and identifies the commodity space with
the space of ”contracts”, see [32, 22, 4, 24]. Mechanisms of price determination in this
literature are actually closer to the Bertrand model that underlies the contract theoretic
models than to the Walrasian model of pricing with a view to the law of demand and
supply.
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ipants, an insurance buyer does not take prices as given, but takes account
of the effects that his demands and supplies of contingent claims have on
market prices. If there are many other agents to share risks, the equilibrium
outcomes of this insurance market with moral hazard are shown to be close
to the second-best outcomes that are predicted by contract theory when
exclusivity clauses can be enforced. If these second-best outcomes involve
positive effort and less than full insurance, the insurance buyer’s behaviour
is far from that of a price taker, no matter how small he may be in relation
to the market as a whole.
The analysis rests on the following considerations:

• The issue of secrecy vs. transparency of the set of contracts concluded
by the insurance buyer does not arise. The vector of excess demands
for contingent claims which the insurance buyer transmits to ”the mar-
ket” reflects the total of his transactions with all other agents in the
system. This total, which is all that matters for incentives, is reflected
in market prices.

• By looking at market prices, the other traders in the economy can infer
the insurance buyer’s aggregate position and hence the incentives he
has to take care against accidents.3 As in the literature on rational-
expectations equilibrium in markets with asymmetric information (see,
e.g., Grossman [13]), the demand and supply functions that the other
traders transmit to ”the market” are chosen in such a way that for each
price vector q, demands and supplies at q incorporate the information
about the insurance buyer’s incentives that would be implied by q
being the market-clearing price vector.

• The dependence of market-clearing prices on the insurance buyer’s
quantity choices contains an information effect. If the insurance buyer
raises his demand for insurance and this information is transmitted to
the other market participants through the associated change in prices,
they will appreciate that, with more insurance, the insurance buyer
has worse incentives and the accident probability is higher.

• The information effect in the dependence of market-clearing prices on
the insurance buyer’s quantity choices enhances the standard monopoly
effect by which he restricts the quantities that he trades in order not to

3 In the same vein, Admati et al. [1], fn. 14, p. 1107, argue that small shareholders of
a firm can use the market price of the firm’s shares to infer the stockholdings and hence
the monitoring incentives of a large shareholder.
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spoil prices and to obtain a larger share of the surplus that is generated
by his trading with the rest of the economy.

• When there are many agents to trade with and the insurance buyer is
small relative to the market, the standard monopoly effect concerning
the division of surplus between the insurance buyer and the insurers
is negligible.

• In contrast to the standard monopoly effect, the information effect of
the insurance buyer’s quantity choices on prices does not disappear if
the insurance buyer is small relative to the market. This information
effect reflects only the insurance buyer’s incentives at different quantity
choices and has little to do with his size relative to the market.4 As
the insurance buyer takes the information effect of his quantity choices
on market prices into account, he never acts as if prices were even
approximately independent of his quantity choices.

• As the insurance buyer takes the information effect of his quantity
choices on market prices into account, he never acts as if prices were
even approximately independent of his quantity choices. Regardless
of how small he is relative to the market, the price-taking assumption
fails to provide an even approximately appropriate description of his
behaviour.

• However, as in models with perceived demand curves becoming in-
finitely elastic, the aggregate surplus available to other agents from
providing insurance goes to zero. Because of this limiting ”no sur-
plus property”, the insurance buyer ends up choosing socially optimal
(second-best) net trades.

In the following, Section 2 lays out the simplest model of insurance sub-
ject to moral hazard. This model involves one potential insurance buyer
and H potential insurance sellers. For this model, Section 3 character-
izes second-best allocations. Section 4 introduces the notion of a rational
expectations offer curve as the key analytical tool for analysing the behav-
iour of insurance providers when market prices contain information about
the insurance buyer’s incentives. Section 5 defines and characterizes Wal-
rasian (price-taking) and Cournot rational-expectations equilibria. Section
6 shows that Cournot rational expectations equilibrium allocations converge

4This has previously been observed by Marshall [28].
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to second-best outcomes when the number of insurance providers goes out
of bounds. This section also shows that Walrasian rational-expectations
equilibrium allocations converge to the full-insurance/zero-effort outcome
or cease to exist. Section 7 extends the analysis to a specification with
multiple insurance buyers acting as Cournot oligopolists, allowing for the
number of insurance buyers as well as the number of insurers to become
large. In Section 8, the paper concludes with a brief assessment of how
contract-theory and Walrasian general-equilibrium theory handle the exclu-
sivity problem associated with nonlinear incentive contracting. Proofs are
given in the Appendix.

2 The Basic Model

I consider a general-equilibrium version of the standard model of insurance
with moral hazard. There are two states of nature s = 1, 2, and, for each
state of nature, one commodity. There are H +1 households h = 0, 1, ...,H,
with initial endowments ehs of the commodity in state s, for s = 1, 2. The
endowment of household 0 depends on the state, namely,

e01 = w
0 > 0, e02 = w

0 − d > 0,

with the interpretation that d > 0 represents material damage from an acci-
dent that happens to household 0 in state 2. The endowments of households
1, ...,H do not depend on the state. For simplicity, these households are as-
sumed to have the same characteristics,5 in particular the same endowments

ehs = w
1 > 0

for s = 1, 2 and h = 1, ...,H. The endowment specification has been chosen
so that in principle there should be scope for households 1, 2, ...,H, with their
riskless endowments, to accept some of the endowment risk of household 0,
providing him with insurance through the exchange of contingent claims.
However there is moral hazard. The probabilities of states 1 and 2 de-

pend on the effort that household 0 devotes to the avoidance of accidents.
The household finds effort costly. His preferences over triples (c01, c

0
2, η)

5When households 1, 2, ...,H all have the same characteristics, one can talk about
changes in the importance of household 0 relative to the market by simply changing the
number H of potential trading partners of household 0. If these households differ, then for
any sequence of economies withH going out of bounds one has to specify the corresponding
sequence of endowment and preference distributions along the lines of Hildenbrand [20].
This is easily done and leads to similar results as the replication approach used here.
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of state-contingent consumption plans and effort levels have the expected-
utility representation

U(c01, c
0
2, η) = p1(η)u(c

0
1) + p2(η)u(c

0
2)− η, (2.1)

where, for s = 1, 2, ps(η) is the probability of state s induced by the ef-
fort level η and u(c0s) − η is the von Neumann-Morgenstern utility that he
associates with the consumption level c0s and effort level η in the state s.
Households 1, 2, ...H have not only the same endowments, but also the

same preferences over state-contingent consumption plans. Their prefer-
ences depend on the probabilities p1(η), p2(η) of states 1 and 2 and hence,
implicitly, on the effort of household 0. For a given effort level η of house-
hold 0, the preferences of households h = 1, 2, ..., H have the expected-utility
representation

V (c11, c
1
2, η) = p1(η)v(c

h
1) + p2(η)v(c

h
2), (2.2)

where, for s = 1, 2, v(chs ) is the von Neumann-Morgenstern utility that
household h associates with the consumption chs in state s.
The von Neumann-Morgenstern utility functions u(.) and v(.) are as-

sumed to be strictly increasing, and strictly concave on ℜ+, as well as twice
continuously differentiable on ℜ++, with limc→0 u

′(c) = limc→0 v
′(c) = ∞.

The probability functions p1(.) and p2(.) are assumed to be twice contin-
uously differentiable functions on ℜ+; moreover p2(.) is strictly decreasing
and strictly convex, with p′′2(η) > 0 for all η, and p1(.) = 1− p2(.) is strictly
increasing and strictly concave. To simplify the exposition, I also assume
that limη→0 |p

′
2(η)| = ∞ so that the exertion of just a little effort reduces

the accident probability by an amount that is large in relation to the effort
that is exerted.
I assume that household 0 chooses the effort level η after his consump-

tion plan (c01, c
0
2) has been determined. Moreover I assume that his choice

of η is not observed by anybody else and therefore is not subject to any
effective direct control. This implies that whatever effort level η is actually
implemented must satisfy the incentive compatibility condition

η ∈ argmax
η′
[(1− p2(η

′))u(c01) + p2(η
′)u(c02)− η

′], (2.3)

with (c01, c
0
2) taken as given.

The given assumptions on p2(.) ensure that for any consumption plan
(c01, c

0
2) of household 0, the maximization problem in (2.3) is very well be-

haved. Formally one obtains:
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Lemma 2.1 For any consumption plan (c01, c
0
2) ∈ ℜ2+, the maximization

problem in (2.3) has a unique solution η(c01, c
0
2) ≥ 0, so η satisfies (2.3) for

(c01, c
0
2) if and only if η = η(c01, c

0
2). The function η(., .) is continuous on

ℜ2+. If c
0
1 ≤ c02, then η(c

0
1, c

0
2) = 0. If c01 > c02, then η(c

0
1, c

0
2) > 0 and in a

neighbourhood of (c01, c
0
2), η(., .) is continuously differentiable with

∂η

∂c01
(c01, c

0
2) = −

p′2(η) u
′(c01)

p′′2(η)[u(c
0
1)− u(c

0
2)]
> 0 (2.4)

and
∂η

∂c02
(c01, c

0
2) =

p′2(η) u
′(c02)

p′′2(η)[u(c
0
1)− u(c

0
2)]
< 0. (2.5)

Condition (2.3) and Lemma 2.1 indicate the usual tension between insur-
ance and incentives. The less of a difference there is between the household’s
utility of consumption in the ”normal” state and his utility of consumption
in the accident state, the less inclined he is to take care against having an
accident. This effect precludes the attainment of a first-best allocation, i.e.,
an allocation ({ch1 , c

h
2}
H
h=0, η) of state-contingent consumption plans and an

effort level which is feasible as well as Pareto-efficient relative to the set of
feasible allocations, i.e. the set of allocations satisfying

H∑

h=0

chs =
H∑

h=0

ehs (2.6)

for s = 1, 2. If H is large, first-best efficiency requires that households
1, 2, ...,H take over close to all of household 0’s risk of damage in state
2. This implies that the difference between u(c01) and u(c

0
2) is close to zero.

With limη→0 |p
′
2(η)| = ∞, first-best efficiency also requires that the effort

level η be positive and bounded away from zero regardless of H.When taken
together, these two implications of first-best efficiency are incompatible with
incentive compatibility.

3 Second-Best Allocations

Given the need for incentive compatibility, the notion of second-best effi-
ciency provides a suitable normative standard. An allocation ({ch1 , c

h
2}
H
h=0, η)

of state-contingent consumption plans and an effort level is second-best if it
is incentive-compatible and feasible as well as Pareto-efficient relative to the
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set of all incentive-compatible and feasible allocations. Second-best alloca-
tions are obtained as solutions to constrained maximization problems of the
form

max
({ch1 ,c

h
2}

H
h=0, η)

U(c01, c
0
2, η) (3.1)

subject to (2.3), (2.6), and

V (c11, c
1
2, η) ≥ v̄

h for h = 1, 2, ..., H, (3.2)

where v̄1, ..., v̄H are parametrically given. If the utility bounds v̄h are all
the same, second-best allocations involve equal treatment of households
h = 1, 2, ...,H. Adapting a result of Shavell [37], the following proposition
provides a characterization of equal-treatment second-best allocations.

Proposition 3.1 Let ({ch1 , c
h
2}
H
h=0, η) be an equal-treatment second-best al-

location with common utility bound v̄h = v̄ for h = 1, 2, ...,H. Then

η > 0, (3.3)

w0 − d+H(w1 − v−1(v̄)) < c02 < c
0
1 < w

0 +H(w1 − v−1(v̄)), (3.4)

c12 < v
−1(v̄) < c11, (3.5)

and
u′(c01)

u′(c02)
<
v′(c11)

v′(c12)
. (3.6)

Condition (3.5) shows that in a second-best allocation, households 1, 2, ...,H
take over some of household 0’s accident risk, i.e. the presence of moral haz-
ard does not eliminate risk sharing altogether. However, second-best risk
sharing is less than first-best risk sharing, which would be characterized by
Borch’s [8] condition

u′(c01)

u′(c02)
=
v′(c11)

v′(c12)
(3.7)

for equality of the different households’ marginal rates of substitution. The
discrepancy between the different households’ marginal rates of substitu-
tion in (3.6) reflects the external effect on households 1, ..., h that arises
as a reallocation household 0’s consumption across states affects his effort
incentives.
If the number H of potential insurers of household 0 is large, there are

many people to share his risk, so any one of them takes only a small share
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of it. Because expected-utility maximizers are approximately risk neutral
towards small stakes, risk premia are then very small. This consideration
yields:

Proposition 3.2 For H = 1, 2, ..., let ({chH1 , chH2 }Hh=0, η
H) be an equal-

treatment second-best allocation with associated common utility bound v̄hH =
v(w1), regardless of h and H. If (c01, c

0
2) is a limit point of the sequence

{(c0H1 , c0H2 )}∞H=1, then (c
0
1, c

0
2), with associated effort level η(c01, c

0
2), solves

the problem
max
(c01,c

0
2)
U(c01, c

0
2, η(c

0
1, c

0
2)) (3.8)

subject to

(1− p2(η(c
0
1, c

0
2))) c

0
1 + p2(η(c

0
1, c

0
2)) c

0
2 ≤ w

0 − p2(η(c
0
1, c

0
2)) d. (3.9)

Proposition 3.2 relates the model to the usual analysis of insurance with
moral hazard when insurers are risk neutral. Maximization of U(c01, c

0
2, η(c

0
1, c

0
2))

subject to (3.9) is in fact the second-best problem as formulated, e.g., by
Shavell [37] or, in a slightly different form, with effort costs measured in
consumption rather than utility units, by Pauly [31]. As in models without
moral hazard or asymmetric information (e.g., [3, 27]), the allocation of in-
dividual risks in a large economy with many risk averse insurers subdividing
the risk poses approximately the same allocation problem as the allocation
of the same risk in an economy with an arbitrary number of - sufficiently
wealthy - risk neutral insurers.

4 Rational-Expectations Offer Curves inWalrasian

Markets

In the remainder of the paper, I study what allocations are generated in
competitive markets. Most of the literature looks at this question in terms
of Bertrand competition among risk neutral insurers; an example is Shavell
[37]. If insurers can enforce exclusivity, Bertrand competition induces effi-
cient bilateral contracting and the insurers’ problem in Bertrand competition
can be identified with the welfare problem of maximizing (3.8) subject to
(3.9). Market outcomes then are automatically second-best. However, there
is no explanation of why exclusivity should be enforceable. If exclusivity
is not enforceable, equilibrium outcomes are usually far from second-best
([2, 38, 16, 17]).
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As an alternative to the Bertrand approach, I study insurance provision
in a complete system of organized markets for contingent claims à la Arrow-
Debreu. Here such a system involves claims on state 1 and claims on state
2, with associated prices q1 for a claim to one unit of the commodity in
state 1 and q2 for a claim to one unit of the commodity in state 2. At any
price vector q = (q1, q2), households h = 0, 1, ..., H announce excess demand
vectors (ch1(q) − e

h
1 , c

h
2(q) − e

h
2); a Walrasian auctioneer chooses q so as to

clear the markets (if such a q exists). Without loss of generality, the price
vector q is assumed to be chosen from the nonnegative simplex

Σ := {(q1, q2) ∈ ℜ
2
+| q1 + q2 = 1}. (4.1)

When a market-clearing price vector has been found and the correspond-
ing trades have been concluded, household 0 chooses his effort level η. His
trading partners do not observe his choice and have no way to prevent him
from choosing whatever effort level he wants to choose. However they are
aware of the situation and try to anticipate his choice. They appreciate that
if his trades in the market enable him to reach the consumption plan (c01, c

0
2),

then he is likely to choose the effort level η(c01, c
0
2) which is optimal at this

consumption plan. As a condition of equilibrium, they are required to have
rational expectations about the effort choices of household 0.
I am not actually assuming that the other households observe the con-

sumption plan of household 0. They merely observe market prices and
appreciate that there is a relation between the price vector which clears
the market and the consumption plan of household 0. As they announce
their own demands and supplies of contingent claims at any price vector q,
they ask themselves what effort level would be chosen by household 0 if the
market actually cleared at this price vector. The idea is that different state-
contingent consumption plans of household 0, say (c01, c

0
2) and (ĉ

0
1, ĉ

0
2), give

rise to different market-clearing prices, q and q̂. From observing whether the
price vector is q or q̂, households 1, ...,H can infer whether the household
0’s consumption is (c01, c

0
2) or (ĉ

0
1, ĉ

0
2) and whether his effort level is η(c

0
1, c

0
2)

or η(ĉ01, ĉ
0
2).

The reader may wonder why this inference from prices to effort levels
should work. Couldn’t it be the case that some price vector q is generated
as a market-clearing price vector by several consumption plans of household
0? In this case, the effort level of household 0 could not be inferred from the
observation of q because the other households would not know which of the
several consumption plans generating q the insurance buyer was actually
pursuing.
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In principle this could be a serious problem. However, the following
lemma shows that if households 1, ...,H are price takers, then the structure
here is simple enough to provide for a one-to-one relation between market-
clearing prices and state-contingent consumption plans of household 0. The
argument is similar to one given by Grossman [13] for a model with asym-
metric information. I begin by observing that for any q =(q1, q2)∈ Σ and
any η ∈ ℜ+, if q >> 0, the problem of maximizing V (c11, c

2
2, η) under the

constraint q1c
1
1+q2c

2
2 = w

1 has a unique solution (c11(q,η), c
1
2(q,η)).Moreover

c11(q,η) is nondecreasing and c
1
2(q,η) is nonincreasing in η. In combination

with Lemma 2.1, this observation yields:

Lemma 4.1 For any q =(q1, q2)∈ Σ such that q >> 0, there exists at most
one pair (c01, c

0
2) ∈ ℜ

2
+ such that

c01 +Hc
1
1(q,η(c

0
1, c

0
2)) = w

0 +Hw1 (4.2)

and
c02 +Hc

1
2(q,η(c

0
1, c

0
2)) = w

0 − d+Hw1. (4.3)

If households 1, ...,H are price takers, then equations (4.2) and (4.3)
are the conditions for market clearing when household 0 chooses the con-
sumption plan (c01, c

0
2) and households 1, ..., H correctly anticipate that he

will choose the effort level η(c01, c
0
2). The lemma shows that for any strictly

positive price vector q ∈ Σ there is no more than one consumption plan
for which q clears the market if households 1, ..., H correctly anticipate the
associated effort level chosen by household 0. This permits an unambiguous
inference from the price vector q that is observed in the market to the effort
level η∗(q) that is to be anticipated if q clears the market.
To develop this point formally, let Q ⊂ Σ be the set of price vectors

q >> 0 for which the market-clearing conditions (4.2) and (4.3) have a
solution at all. For any q ∈Q, define γ(q) = (γ1(q), γ2(q)) as the unique
pair (c01, c

0
2) ∈ ℜ

2
+ that solves (4.2) and (4.3) for the given price vector q,

and define
η∗(q) := η(γ(q)) (4.4)

as the associated effort level. Suppose that whenever households 1, 2, ...,H
are faced with a price vector q ∈ Q, they assume that household 0’s effort
level is η∗(q). The demand functions they transmit to the market are then
given as

(C11(.), C
1
2(.)) = (c

1
1(.,η

∗(.)), c12(., η
∗(.))) (4.5)
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because for any q ∈ Q, the consumption plan (c11(q,η
∗(q)), c12(q, η

∗(q)))
maximizes their expected utility under the given budget constraint when
they anticipate the effort level η∗(q).
The demand functions (4.5) that households 1, 2, ..., H transmit to the

market determine what consumption plans household 0 can obtain through
trade in the market. I refer to the set of these consumption plans as the
rational-expectations offer curve of households 1, 2, ...,H to household 0. A
consumption plan (c01, c

0
2) for household 0 is on the rational-expectations

offer curve if and only if there exists a price vector q ∈ Σ such that one
has market clearing at q if, at this price vector, household 0 transmits the
consumption demand (c01, c

0
2) to the market, i.e.,

c01 +HC
1
1(q) = w0 +Hw1, (4.6)

c02 +HC
1
2(q) = w0 − d+Hw1. (4.7)

The following lemma shows that the set of pairs (c01, c
0
2) ∈ ℜ

2
+ for which a

solution q >> 0 to (4.6) and (4.7) can be found is just the range of the
function γ(.) given by Lemma 4.1.

Lemma 4.2 Let Γ ⊂ ℜ2+ be the range of the function γ(.), i.e., let Γ =
γ(Q). For any consumption plan (c01, c

0
2) ∈ Γ, there exists a unique q ∈ Q

such that (c01, c
0
2) = γ(q), i.e., the function γ(.) from Q to Γ has an inverse

q∗(.). For any given (c01, c
0
2) ∈ Γ, the price vector q∗(c01, c

0
2) is the unique

element of Q for which the market-clearing conditions (4.6) and (4.7) are
satisfied, and

η∗(q∗(c01, c
0
2)) = η(c

0
1, c

0
2). (4.8)

Equation (4.8) is the rational-expectations condition for households 1, 2, ..., H.
If the consumption plan (c01, c

0
2) belongs to the set Γ, the market clears at the

price vector q∗(c01, c
0
2). The demand vectors (C

1
1(q

∗(c01, c
0
2)), C

1
2(q

∗(c01, c
0
2)))

of households 1, 2, ..., H at this price vector are based on these households
anticipating the effort level η∗(q∗(c01, c

0
2)). Equation (4.8) shows that this

anticipated effort level is equal to the actual effort level η(c01, c
0
2) chosen by

household 0 if his consumption plan is (c01, c
0
2).

Lemmas 4.1 and 4.2 presume that price vectors are strictly positive.
What about price vectors on the boundary of the simplex? The vector (1, 0)
cannot be a market-clearing price vector at all: The assumptions about the
functions p2(.), u(.), and v(.) guarantee that p2(η) > 0 for any η <∞, and
hence that V (c11, c

1
2, η) is everywhere strictly increasing in c

1
2, which implies

that c12((1, 0), η) is unbounded. If p1(0) = 1− p2(0) > 0, the same argument
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rules out the price vector (0, 1). However, if p1(0) = 1− p2(0) = 0, then for
any (c01, c

0
2) satisfying η(c

0
1, c

0
2) = 0 and c

0
2 = w

0 − d, the price vector (0, 1)
will actually clear the markets.
Given these considerations, one easily sees that the conclusions of Lemma

4.2 remain valid if the sets Γ and Q are replaced by

Γ̄ = Γ ∪ {c01 ≥ 0| p1(η(c
0
1, w

0 − d)) = 0} × {w0 − d} (4.9)

and
Q̄ = Q ∪ q∗(Γ̄\Γ), (4.10)

where for (c01, c
0
2) ∈ Γ̄\Γ, q

∗(c01, c
0
2) := (0, 1) and for q ∈Q̄\Q, η

∗(q) := 0.
I will refer to the set Γ̄ as the rational-expectations offer curve of house-

holds 1, 2, ...,H to household 0. The following result provides a simple ana-
lytical characterization.

Proposition 4.3 A consumption plan (c01, c
0
2) lies on the rational-expectations

offer curve of households 1, 2, ..., H to household 0, i.e., (c01, c
0
2) ∈ Γ̄, if and

only if

(1− p2(η(c
0
1, c

0
2))) v

′(w1 +
1

H
(w0 − c01)) (c

0
1 −w

0)

+p2(η(c
0
1, c

0
2)) v

′(w1 +
1

H
(w0 − d− c02)) (c

0
2 − (w

0 − d)) = 0. (4.11)

The rational-expectations offer curve is illustrated in Figure 1. The
initial position (w0, w0−d) obviously belongs to Γ. At points (c01, c

0
2) north-

west of the initial position, the household is paying an insurance premium
π = w0−c01 in order to receive a net-of-premium indemnity I = c

0
2−(w

0−d)
in the event of an accident. From (4.11), one finds that in this range
where the household is shifting resources from state 1 to state 2, the offer
curve is actually given by a continuously differentiable function ĉ2(.) relating
c02 = ĉ2(c

0
1) to c

0
1. Equivalently, if π = w

0−c01 is the insurance premium that
household 0 is offering to the market, then I(π) = ĉ2(w

0−π)−(w0−d) is the
net-of-premium indemnity in state 2 that the market is willing to provide
in return for the premium that has been offered. The indemnity-premium
ratio I(π)/π corresponds to the ratio q∗1/q

∗
2 of contingent-claims prices for

the two states.
As indicated in Figure 1 below, the indemnity-premium ratio goes down

as π goes up, i.e. the (average) terms at which household 0 is getting insur-
ance worsen as he raises the amount π = w0 − c01 of the premium that he
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is offering to the market. There are two reasons for this effect: First, for a
given assessment of household 0’s accident probability, the other households’
demands for consumption in state 1 are downward sloping; the larger π is
and the more consumption they already have in state 1, the smaller is their
marginal willingness to pay for a further increase in their consumption in
state 1 by providing additional insurance to household 0 in state 2. Second,
the other households’ assessments of household 0’s accident probability be-
come more pessimistic as the household is raising the amount π = w0 − c01
of the good in state 1 that he is offering to the market. Once the 45-degree
line has been reached, incentive are as bad as they can be, and everybody
expects the effortlevel to be zero.

5 Walrasian and Cournot Rational-Expectations

Equilibria

Turning to the analysis of market equilibrium, I consider a Walrasian ap-
proach and a Cournot approach. In the Walrasian approach, all house-
holds, household 0 as well as households 1, 2, .., H, act as price takers. In
the Cournot approach, household 0 acts as a Cournot monopolist or monop-
sonist who is aware of the effects that his choices have on market-clearing
prices.
In the Cournot approach, households 1, 2, ...,H still act as price tak-

ers. There is thus an asymmetry between the treatment of household 0 and
the treatment of households 1, 2, ..., H. This asymmetry mirrors the asym-
metry between the treatment of sellers acting as oligopolists and buyers
acting as price takers in the textbook partial-equilibrium Cournot model.
Some such asymmetry is needed: If everybody was a Cournot oligopolist
or oligopsonist announcing a fixed quantity, then for generic vectors of an-
nouncements of desired trades by the Cournot players, Walrasian auctioneer
would find it impossible to clear the markets. Some other artificial device
would then be needed to model the strategic interdependence between the
Cournot oligopolists in terms of a well specified strategic game.6

The two approaches give rise to the following equilibrium concepts.

6 In Kyle [23], the problem of inelastic excess demand functions of Cournot traders
is avoided through the introduction of noise trading: To take advantage of unforeseen
opportunities provided by noise traders, the Cournot traders submit elastic excess demand
functions to the market. Shapley and Shubik [36] deal with the problem by having prices
and trades determined through an exogenously given rule which does not hinge on the law
of demand and supply and on market clearing.
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Definition 5.1 A Walrasian rational-expectations equilibrium of the sys-
tem of contingent-claims markets with moral hazard is given by a price vector
qW = (qW1 , q

W
2 ) ∈ Q̄ and an allocation ({chW1 , chW2 }Hh=0, η

W ) such that:
(i) the allocation satisfies the feasibility constraint (2.6),
(ii) (c0W1 , c0W2 , ηW ) maximizes U(c01, c

0
2, η) under the budget constraint

qW1 c
0
1 + q

W
2 c

0
2 = w

0 − qW2 d, and
(iii) for h = 1, ..., H, (chW1 , chW2 ) maximizes V (ch1 , c

h
2 , η

∗(qW )) under the
budget constraint qW1 c

h
1 + q

W
2 c

h
2 = w

1.

Definition 5.2 A Cournot rational-expectations equilibrium of the system
of contingent-claims markets with moral hazard is given by a price vector
qC = (qC1 , q

C
2 ) ∈ Q̄ and an allocation ({chC1 , chC2 }Hh=0, η

C) such that:
(i) the allocation satisfies the feasibility constraint (2.6),
(ii) (c0C1 , c

0C
2 , η

C) maximizes U(c01, c
0
2, η) subject to the constraint that

(c01, c
0
2) belong to the rational-expectations offer curve Γ̄, and

(iii) for h = 1, ...,H, (chC1 , chC2 ) maximizes V (ch1 , c
h
2 , η

∗(qC)) under the
budget constraint qC1 c

h
1 + q

C
2 c

h
2 = w

1.

The two equilibrium concepts differ only in the conditions referring to
household 0. The other conditions, i.e., the conditions referring to house-
holds 1, 2, ..., H and the conditions referring to feasibility (market clearing),
are the same in both concepts. In both approaches, households condition
their expectations about household 0’s effort level on the prices that they
observe in the market. For this purpose, they rely on the function η∗(.)
that is given by (4.4); this is the point of condition (iii) in either defini-
tion. Since Lemma 4.2 implies that if the market clears at a price vector
q∗, then η∗(q∗) is incentive compatible, it follows that, in a Walrasian and
in a Cournot rational-expectations equilibrium, the effort expectations of
households 1, 2, ..., H are rational. The following lemma summarizes this
common feature of both equilibrium concepts.

Lemma 5.3 Let (q∗, {ch∗1 , c
h∗
2 }

H
h=0, η

∗) be a Walrasian or a Cournot rational-
expectations equilibrium. Then the effort level η∗ is incentive compatible and
coincides with the expectations of households 1, 2, ..., H, i.e., η∗ = η(c0∗1 , c

0∗
2 ) =

η∗(q∗).

Condition (iii) in Definition 5.1 as well as Definition 5.2, also implies that
in aWalrasian or a Cournot rational-expectations equilibrium (q∗, {ch∗1 , c

h∗
2 }

H
h=0, η

∗),
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one has (ch∗1 , c
h∗
2 ) = (c1∗1 , c

1∗
2 ) for h = 1, 2, ..., H, so the equal-treatment

property is satisfied. Given the feasibility condition (i), it follows that the
consumption plan (c0∗1 , c

0∗
2 ) of household 0 satisfies (4.6) and (4.7) and hence

must belong to the rational-expectations offer curve Γ̄.
However, whereas a Cournot rational-expectations equilibrium plan (c0C1 , c

0C
2 )

of household 0 is chosen so as to maximize the household’s expected util-
ity over Γ̄, a Walrasian rational-expectations equilibrium plan (c0W1 , c0W2 )
is chosen to maximize household’s expected utility under the budget con-
straint determined by the market-clearing price vector qW . The implications
of these different specifications are shown in the following results.

Proposition 5.4 If (qW , {chW1 , chW2 }Hh=0, η
W ) is a Walrasian rational-expectations

equilibrium, then
ηW > 0, (5.1)

w0 − d < c0W2 < c0W1 < w0, (5.2)

ch2 < w
1 < ch1 , (5.3)

and
u′(c0W1 )

u′(c0W2 )
=
v′(chW1 )

v′(chW2 )
(5.4)

for h = 1, 2, ...,H. Moreover, the equilibrium allocation ({ch1 , c
h
2}
H
h=0, η) is

Pareto-dominated by a feasible, incentive-compatible allocation ({ĉh1 , ĉ
h
2}
H
h=0, η̂)

satisfying ĉ01 > c
0
1and η̂ = η(ĉ

0
1, ĉ

0
2) > η.

Proposition 5.5 If (qC , {chC1 , chC2 }Hh=0, η
C) is a Cournot rational-expectations

equilibrium, then
ηC > 0, (5.5)

w0 − d < c0C2 < c0C1 < w0, (5.6)

chC2 < w1 < chC1 , (5.7)

and
u′(c0C1 )

u′(c0C2 )
<
v′(chC1 )

v′(chC2 )
(5.8)

for h = 1, 2, ...,H.
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Proposition 5.4 represents the traditional notion that in the presence of
moral hazard Walrasian insurance markets with price taking generate too
much insurance and too little effort (Pauly [31]). When all agents take
contingent-claims prices as given, the Walrasian-equilibrium risk allocation
satisfies Borch’s [8] condition (5.4) for an efficient risk allocation at a given
accident probability. However the effects of the risk allocation on the cho-
sen effort level and on the accident probability are not taken into account
so, starting from a Walrasian rational-expectations equilibrium allocation,
a small change in the risk allocation which increases effort incentives will
unambiguously improve the allocation. Whereas the welfare effects of the
change in the risk allocation as such are on the second order of smalls, the
improved effort incentives provide first-order gains.
In contrast, as a strategic player à la Cournot, household 0 chooses to

obtain less insurance than would be called for by Borch’s condition. The
inequality (5.8) results from two considerations:

• As household 0 raises his demand for state 2 consumption/lowers his
demand for state 1 consumption, he lowers the equilibrium amount
of state 2 consumption/raises the equilibrium amount of state 1 con-
sumption of the other households. This affects the other households’
marginal utilities of consumption in the two states and worsens the
terms of trade available to household 0.

• As household 0 raises his demand for state 2 consumption/lowers his
demand for state 1 consumption, he also worsens his own effort in-
centives and thereby raises the probability of an accident (state 2).
Through the rational-expectations condition η∗(q∗(c01, c

0
2)) = η(c

0
1, c

0
2),

the other households take this incentive effect into account, which
provides for an additional worsening of the terms of trade available to
household 0.

Both effects induce household 0 to restrict the exchange of contingent
claims to a lower level than would be called for by Borch’s condition. He
thereby avoids the extreme form of overinsurance that is associated with
Walrasian rational-expectations equilibrium. Whether a Cournot rational-
expectations equilibrium involves overinsurance at all is unclear. Depending
on the data of the model, there may be over- or underinsurance. On the
one hand, there is a tendency towards underinsurance due to the standard
monopoly effect keeping the household’s insurance demand down. On the
other hand, there is a tendency towards overinsurance due to the household’s
neglecting the externality that his trading partners suffer when his effort
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incentives are reduced. Depending on the data of the model, one or the
other tendency may dominate, or they may just cancel each other, in which
case an equilibrium allocation may even be second-best. Unfortunately, no
simple data classification seems available to indicate when Cournot rational-
expectations equilibria involve over- or underinsurance.

6 Cournot Convergence

The difference between Walrasian and Cournot rational-expectations equi-
libria is most pronounced when there are many agents subdividing the in-
surance buyer’s risk. In this case, any one of the insurance providers has
only a small share of the risk, and their marginal utilities of consumption are
fairly insensitive to the quantities chosen by household 0. Market-clearing
prices of contingent claims therefore reflect the state probabilities with lit-
tle adjustment for the state dependence of marginal utilities. At the odds
determined by the insurance buyer’s effort against accidents, the price of
insurance is approximately fair.
In theWalrasian approach, there are then two possibilities. Either house-

hold 0 as a price taker obtains approximately full insurance and chooses an
effort level close to zero, or an equilibrium fails to exist. An equilibrium fails
to exist if the accident probability corresponding to zero effort is close to
one. If the accident probability anticipated by the other market participants
is close to one, insurance is very expensive. If insurance is very expensive,
the insurance buyer is better off not buying any insurance at all, but instead
taking care against the possibility of an accident. The two conditions that,
at the effort level chosen by the insurance buyer, the price of insurance be
approximately fair and that the consumption plan and effort level chosen by
the insurance buyer maximize his expected utility at the given price vector
are mutually inconsistent.7 These considerations yield:

Proposition 6.1 There exists ε > 0 such that if p2(0) ≥ 1 − ε, then a
Walrasian rational-expectations equilibrium fails to exist whenever H is suf-

7Technically, nonexistence of equilibrium is due to the fact that moral hazard destroys
the convexity of indifference curves. With convex indifference curves, the marginal willing-
ness to pay for additional consumption in state 2, is a decreasing function of the amount
of insurance that one already has. Without moral hazard, this convexity property follows
from the strict concavity of the von Neumann-Morgenstern utility function. With moral
hazard, this convexity property can fail because the more insurance one buys, the less care
one takes against accidents, the higher is the probability of an accident, and the more one
is willing to pay for an additional unit of consumption in the event of an accident; see
Helpman and Laffont [19].
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ficiently large. If, for H = 1, 2, ..., (qWH , {chWH
1 , chWH

2 }Hh=0, η
WH) is a

Walrasian rational-expectations equilibrium, then

lim
H→∞

c0WH
1 = lim

H→∞
c0WH
2 = w0 − p(0)d, lim

H→∞
ηWH = 0, (6.1)

and
lim
H→∞

qWH = (1− p2(0), p2(0)). (6.2)

In contrast, for Cournot rational-expectations equilibria, one finds:

Proposition 6.2 For H = 1, 2, ..., a Cournot rational-expectations equilib-
rium (qCH , {chCH1 , chCH2 }Hh=0, η

CH) exists. If (q∗, c0∗1 , c
0∗
2 , η

∗) is a limit point
of a sequence {(qCH , c0CH1 , c0CH2 , ηCH)}∞H=1 of Cournot rational-expectations
equilibria, then

q∗ = (1− p2(η
∗), p2(η

∗)), (6.3)

and (c0∗1 , c
0∗
2 , η

∗) maximizes U(c01, c
0
2, η) under the constraint

(1− p2(η(c
0
1, c

0
2))) c

0
1 + p2(η(c

0
1, c

0
2)) c

0
2 ≤ w

0 − p2(η(c
0
1, c

0
2)) d. (6.4)

Proposition 6.2 contains the main insight of this paper. If H is large,
the maximization problem of household 0 in a Cournot rational-expectations
equilibrium is similar to the second-best allocation problem for an economy
with an arbitrary number of risk neutral insurers. Any limit point of a
sequence of Cournot rational-expectations equilibrium outcomes for house-
hold 0 must therefore be a solution to this second-best allocation prob-
lem. By Proposition 3.2, it follows that, for large H, any Cournot rational-
expectations equilibrium allocation provides the market participants with
payoffs that are close to their payoffs from some second-best allocation. If
the solution to the ”limit problem” of maximizing U(c01, c

0
2, η) subject to

(6.4) is unique, then for large H, Cournot rational-expectations equilibrium
allocations will actually be close to second-best allocations.
Underlying this result is the fundamental fact that trade with household

0 does not generate any surplus for the other market participants if this
household is insignificant relative to the market. This ”no surplus property”
is well known from the literature on Cournot convergence in markets without
moral hazard or asymmetric information ([14, 15]). From that literature we
know that the convergence of Cournot outcomes to efficient outcomes has
less to do with numbers of Cournot oligopolists becoming large than with
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perceived demand curves becoming infinitely elastic and the other partic-
ipants’ surplus from trading with a Cournot trader going to zero. In the
present setting, an effect of perceived demand curves becoming infinitely
elastic would be observed if there was no moral hazard and household 0’s
effort level was exogenously fixed at some η̂ > 0. In this case, for largeH, the
market offer curve would become infinitely elastic at prices corresponding to
the probabilities p1(η̂), p2(η̂). Risk premia obtained by the other households
for accommodating household 0’s trades go to zero as H becomes large.
With endogenous effort choices, the rational-expectations offer curve

does not become infinitely elastic when H becomes large. The dependence
of market-clearing prices on the Cournot trader’s quantity choices reflects
not only changes in risk premia required to accommodate these quantity
choices in the market, but also reflects the changing assessments of effort
incentives that go with the different quantity choices. In contrast to the de-
pendence of required risk premia on the Cournot trader’s choices, this latter
effect persists even when H becomes large and the insurance buyer becomes
insignificant relative to the market.
Why then do Cournot outcomes converge to second-best outcomes even

though the Cournot trader remains far from being a price-taker? Remark-
ably, a limiting ”no surplus property” holds even though the rational-expectations
offer curve does not become infinitely elastic. To verify this property, re-
call that Cournot rational-expectations equilibria have the equal-treatment
property. For any (c0H1 , c0H2 ) ∈ Γ̄H , let wH(c0H1 , c0H2 ) be defined by the
equation

v(wH(c0H1 , c0H2 )) = (1− p2(η(c
0
1, c

0
2)))v(w

1 −
1

H
(c0H1 −w0))

+p2(η(c
0
1, c

0
2))v(w

1 −
1

H
(c0H2 −w0 + d)).

Then wH(c0H1 , c0H2 ) is the certainty equivalent for households 1, 2, ...,H of
the outcome they obtain when household 0 chooses the consumption plan
(c0H1 , c0H2 ), and H(wH(c0H1 , c0H2 )−w1) is a measure of the aggregate surplus
obtained by these households. The concavity of v(.) implies that

H(wH(c0H1 , c0H2 )−w1) ≤ H
v(wH(c0H1 , c0H2 ))− v(w1)

v′(wH(c0H1 , c0H2 ))

≤
v′(w1)

v′(wH(c0H1 , c0H2 ))
[(1− p2(η(c

0
1, c

0
2)))(c

0H
1 −w0) + p2(η(c

0
1, c

0
2))(c

0H
2 −w0d)].

As H becomes large and the rational expectations offer curve Γ̄H converges
to the set of consumption plans satisfying (6.4) with equality, the right
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hand of this inequality converges to zero, uniformly over (c0H1 , c0H2 ). Thus as
H becomes large, the measure H(wH(c0H1 , c0H2 )− w1) of aggregate surplus
converges to zero, regardless of (c0H1 , c0H2 ).
Given this limiting ”no surplus property”, asymptotically, the choices

of household 0 concern only himself. Because all surplus from his trading
with the other participants accrues to him, he has no more incentive to
distort his quantity choices away from second-best efficiency. Whereas he
retains the power to influence market-clearing prices, he does not retain any
power to affect the utility levels attained by the other participants or the
distribution of surplus from his trading in the market. The analysis thus
confirms the suggestion of Ostroy [30] and Makowski [25, 26] that the ”no
surplus property” provides a more fundamental characterization of ”perfect
competition” than price taking.

7 Cournot Convergence with Multiple Insurance

Buyers

The analysis so far has involved just one insurance buyer and H insurers.
In this final substantive section of the paper I show that a model with
m insurance buyers and mH insurers generates roughly the same kind of
Cournot convergence even if m rather than H is taken to go out of bounds.
To model accident risks and moral hazard in an economy with m insur-

ance buyers, households 01, ..., 0m, and mH insurers, households 11, ...Hm,
let (Ω,Σ, ν) be some underlying probability space and, for i = 1, ...,m, let
ãi be some exogenous random variable on (Ω,S, ν) so that, if household 0i
chooses the effort level η, then his endowment in the state ω ∈ Ω is given as

ẽ0i(ω, η) = w0 if ãi(ω) ≤ η (7.1)

and
ẽ0i(ω, η) = w0 − d if ãi(ω) > η. (7.2)

Then the probabilities of the events E0i1 = {ω ∈ Ω| ẽ0i(ω, η) = w0}, where
household 0i does not have an accident, and E0i2 = {ω ∈ Ω| ẽ0i(ω, η) =
w0 − d}, where he does have an accident, depend on η and can be written
as

ν(E0i1 ) = p
i
1(η) := ν({ω ∈ Ω| ãi(ω) ≤ η}) (7.3)

and
ν(E0i2 ) = p

i
2(η) := ν({ω ∈ Ω| ãi(ω) > η}). (7.4)

23



The random variables ã1, ..., ãm are assumed to be independent and iden-
tically distributed. Therefore the functions pi1(.) and p

i
2(.) are the same for

all i and the superscript can be dropped. For simplicity, I also assume that
households 01, ..., 0m all have the same von Neumann-Morgenstern utility
u(c) − η of consumption c and effort η, and that households 11, ...Hm all
have the same von Neumann-Morgenstern utility function v(.) and the same
state-independent endowment w1 > 0. The functions u(.), p1(.), p2(.), and
v(.) have the same properties as in the preceding analysis.
The effort levels η1, ..., ηm as well as the realizations of the random vari-

ables ã1, ...ãm are unobservable so no contracts can be written on them.
However the realizations of the endowment random variables ẽ0i are ob-
servable and verifiable. Therefore one can write contracts for contingent
claims on events such as E0i1 and E0i2 , which are defined with reference to
the endowment random variables ẽ0i. As before, these claims are traded in
organized Walrasian markets.
The model is now more complicated than before because there are more

markets, more strategic traders and more sources of moral hazard. The
system of contingent-claims markets will include markets on events whose
definitions involve more than one household, such as the event ∩mi=1E

0i
1 ,

where no household has an accident, or the event ∩
[m/2]
i=1 E02i2 , where all even-

numbered households have an accident and all odd-numbered households do
not. If E = {w0, w0 − d}m is the space of vectors of possible endowment
realizations of households 01, ..., 0m, then any vector e ∈ E can be thought of
as defining an elementary event on which contingent claims may be written.
A complete market system involves markets for contingent claims on all
elementary events. Any other event, e.g., the event E0i2 where household i
has an accident, can be thought of as a union of elementary events.
For a given vector η = (η1, ..., ηm) of effort levels, the elementary event

defined by the vector e ∈ E has the probability

π(e,η) :=
m∏

i=1

psi(e)(η
i), (7.5)

where, for i = 1, ...,m,

si(e) = 1 if e
0i = w0 and si(e) = 2 if e

0i = w0 − d. (7.6)

If household hj, h = 1, ...,H, j = 1, ...,m expects the effort vector η =
(η1, ..., ηm) from households 01, ..., 0m, his expected utility from a net-trade
plan {z(e)}e∈E for contingent claims on the different elementary events is
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given as ∑

e∈E

π(e,η) v(w1 + z(e)). (7.7)

Given the vector η of anticipated effort choices, household hj would be
choosing his net-trade plan to maximize (7.7) subject to the budget con-
straint ∑

e∈E

q(e) z(e) = 0, (7.8)

where q(e) is the price of a claim contingent on the elementary event de-
fined by e. If q(e) > 0 for all e ∈ E, the solution to this problem is unique.
The net-trade plan which solves this maximization problem is denoted as
{z(e|q,η)}e∈E .Without loss of generality, the price system q = {q(e)}e∈E is
taken to belong to the nonnegative simplexΣ := {{q(e)}e∈E ∈ ℜ

2m
+ |

∑
e∈E q(e) =

1}. I write q >> 0 if q(e) > 0 for all e ∈ E.
As before, the question is to what extent the insurance buyers’ effort

levels can be inferred from market-clearing prices. Answering this question
is more difficult than before because market-clearing prices only convey in-
formation about the aggregate of the insurance buyers’ positions. To infer
individual effort levels from this information, the insurance sellers must form
beliefs about the decomposition of the aggregate into individual positions.
A full treatment of this issue is beyond the scope of this paper. For a

simplified treatment, I impose the - admittedly arbitrary - assumption that
households 01, ..., 0m refrain from selling insurance to each other as well as
buying insurance from households 11, ..., Hm. Household 0i buys or sells
claims on the events E0i1 and E

0i
2 , but not, e.g., on the event E

0i
1 ∩E

0j
2 which

depends on the accident incidence of household 0j as well as household 0i.
Formally, a net-trade plan {z0i(e)}e∈E of household 0i is required to satisfy
the measurability condition that z0i(e) = z0i(ê) whenever si(e) = si(ê).
Under this condition, the net-trade plan {z0i(e)}e∈E is characterized by two
numbers z0i1 , z

0i
2 such that z0i(e) = z0i1 if si(e) = 1 and z0i(e) = z0i2 if

si(e) = 2. Moreover, one has

z0i1 − z
0i
2 =

m∑

j=1

[z0j(ē)− z0j(ê)]

for any two elementary events ē, ê ∈ E such that si(ē) = 1, si(ê) = 2, and
sj(ē) = sj(ê) for all j �= i. Given the budget constraint

∑
e∈E q(e) z

0i
si(e)

=
0, this property is sufficient for anybody to infer the individual positions
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of households 01, ..., 0m from the aggregates
∑m
j=1 z

0j(e), e ∈ E.8 This
decomposition of aggregates into individual positions provides the key to
the following generalization of Lemma 4.1 to the case of multiple insurance
buyers.

Lemma 7.1 For any q ∈ Σ such that q > > 0, there exists at most one
vector {(z0i1 , z

0i
2 )}

m
i=1 ∈ ℜ

2m such that

∑

e∈E

q(e) z0isi(e) = 0 (7.9)

for i = 1, ...,m, and

m∑

i=1

z0isi(e) +Hm z(e| q,η({(z0i1 , z
0i
2 )}

m
i=1)) = 0 (7.10)

for all e ∈ E, where

η({(z0i1 , z
0i
2 )}

m
i=1) := (η(w

0+z011 , w
0−d+z012 ), ..., η(w

0+z0m1 , w0−d+z0m2 )).
(7.11)

Lemma 4.2 is similarly generalized. Proceeding as before, let Q ⊂ Σ
be the set of price systems q >> 0 for which a vector {(z0i1 , z

0i
2 )}

m
i=1 of

net-trade plans satisfying (7.9) - (7.11) exists. For any q ∈Q, let ξ(q) =
({ξ0i1 (q), ξ

0i
2 (q)}) be the unique net-trade vector satisfying (7.9) - (7.11),

and let
η∗(q) := η(ξ(q)) (7.12)

be the associated vector of effort levels. Again one may suppose that when-
ever households 11, ...,Hm are faced with a price system q ∈ Q, they assume
that the vector of effort levels of households 01, ...0m is η∗(q) and transmit
the net-trade plans {z(e| q,η∗(q))}e∈E to the market.

8Without the additional restriction on insurance buyers’ net-trade plans, the infer-
ence from aggregates to individual positions would involve some arbitrariness. At an
equilibrium outcome, this arbitrariness would be resolved by the requirement of rational
expectations. For deviations away from the Cournot traders’ equilibrium choices, there
would seem to be room for a multiplicity of off-the-equilibrium path beliefs of the insur-
ance sellers. The problem is akin to the problem of specifying off-the-equilibrium-path
beliefs in extensive-form games.
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Lemma 7.2 Let Ξ ⊂ ℜ2m be the range of the function ξ(.), i.e., let Ξ =
ξ(Q). For any vector {(z0i1 , z

0i
2 )}

m
i=1 of net-trade plans in Ξ, there exists a

unique q ∈ Q such that {(z0i1 , z
0i
2 )}

m
i=1 = ξ(q), i.e., the function ξ(.) from Q

to Ξ has an inverse q∗(.). For any given {(z0i1 , z
0i
2 )}

m
i=1 ∈ Ξ, the price system

q∗({(z0i1 , z
0i
2 )}

m
i=1) is the unique element of Q for which

m∑

i=1

z0isi(e) +Hm z(e| q,η∗(q)) = 0 (7.13)

for all e ∈ E. Moreover,

η∗(q∗({(z0i1 , z
0i
2 )}

m
i=1)) = η({(z

0i
1 , z

0i
2 )}

m
i=1). (7.14)

Like Lemmas 4.1 and 4.2, Lemmas 7.1 and 7.2 presume that price vec-
tors are strictly positive. Price vectors on the boundary of the set Σ2

m

can
be handled in the same way as in the case m = 1. However, to avoid this
complication, I simply assume that p1(0) > 0 and therefore p1(η) > 0 for
all η. The assumptions on the functions p1(.) and p2(.) also imply that
p2(η) = 1−p1(η) > 0 for all η. For any q ∈ Σ and any η = (η

1, ..., ηm) ∈ ℜm+
then, the problem of maximizing (7.7) under the constraint (7.8) has a so-
lution only if the price vector q is strictly positive. A price vector q on
the boundary of Σm never clears the markets, and one may identify the
rational-expectations offer curve of households 11, ...Hm, insurance sellers,
to households 01, ..., 0m, the insurance buyers, with the set Ξ that is de-
fined through Lemmas 7.1 and 7.2. Using the first-order conditions for the
determination of z(e| q,η({(z0i1 , z

0i
2 )}

m
i=1)), one obtains the following gener-

alization of the characterization of Ξ in Proposition 4.3.

Proposition 7.3 A vector {(z0i1 , z
0i
2 )}

m
i=1 of net-trade plans of households

01, ..., 0m lies on the rational-expectations offer curve of households 11, ...,Hm
if and only if

∑

e∈E

π(e,η({(z0j1 , z
0j
2 )}

m
j=1)) v

′

(

w1 −
1

mH

m∑

k=1

z0ksk(e)

)

z0isi(e) = 0 (7.15)

for i = 1, ...m.
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The problem of an insurance buyer in the model with m > 1 is the same
as in the model withm = 1.9 He chooses a net-trade plan (z0i1 , z

0i
2 ) and effort

level ηi to maximize U(w0+z0i1 , w
0−d+z0i2 , η

i) under whatever constraints
the market imposes on his choice of (z0i1 , z

0i
2 ). In the Cournot approach, his

opportunity set is determined by the rational-expectations offer curve Ξ.

Definition 7.4 A Cournot rational-expectations equilibrium of the system
of contingent-claims markets with moral hazard is given by a price sys-
tem qC ∈ Q and an array {z0iC1 , z0iC2 , ηiC}mi=1 of net-trade plans and effort
choices of households 01, ...0m such that, for any i, the triple (z0iC1 , z0iC2 , ηiC)

maximizes U(w0+z0i1 , w
0−d+z0i2 , η) subject to the constraint that ((z0i1 , z

0i
2 ), {z

0jC
1 , z0jC2 }j 	=i)

belong to the rational-expectations offer curve Ξ.

In contrast to Definition 5.2, Definition 7.4 refers only to the Cournot
players. The analogues of conditions (i) and (iii) of Definition 5.2 are implicit
in the requirement that the array {z0iC1 , z0iC2 }mi=1 belong to the rational-
expectaitons offer curve; therefore they are not stated explicitly.
To bring out the similarity between the insurance buyers problems in

Definitions 7.4 and 5.2, it is useful to reformulate the constraint on the net
trade vectors available to household 0i. By (7.5) and Proposition 7.3, the
constraint that the array ((z0i1 , z

0i
2 ), {z

0jC
1 , z0jC2 }j 	=i) belong to the rational-

expectations offer curve Ξ is equivalent to the requirement that (z0i1 , z
0i
2 )

and {z0jC1 , z0jC2 }j 	=i satisfy the equation

p1(η
i(w0 + z0i1 , w

0 − d+ z0i2 )) z
0i
1 ϕ(z

0i
1 , {z

0jC
1 , z0jC2 }j 	=i,η

C
−i)

+p2(η
i(w0 + z0i1 , w

0 − d+ z0i2 )) ϕ(z
0i
2 , {z

0jC
1 , z0jC2 }j 	=i,η

C
−i) z

0i
2 = 0, (7.16)

where ηC−i = {η
k(w0 + z0kC1 , w0 − d+ z0kC2 )}k 	=i is the vector of effort levels

of households 0k, k �= i, and for s = 1, 2,

ϕ(z0is , {z
0jC
1 , z0jC2 }j 	=i,η

C
−i) :=

∑

e−i∈E−i

π(e−i,η
C
−i) v

′



w1 −
1

mH
(
∑

k 	=i

z0kCsk(e−i)
+ z0is )



 . (7.17)

9 In contrast, if household 0i was also selling insurance to households 0j, , j �= i, he
would also be worrying about the other insurance buyers’ effort incentives. Like households
11, ..Hm, he might then want to transmit an excess demand function to the market rather
than an excess demand vector.

28



In (7.17), E−i = {w0, w0−d}m−1 is the set of vectors of possible endowment
realizations of households 0k, k �= i, and, for any e−i ∈ E−i, π(e−i,η

C
−i) is

the probability of e−i occurring if the effort vector is η
C
−i. Upon comparing

(7.16) with (4.11), one sees that these constraints on the insurance buy-
ers’ net-trades have the same structure, except that, in (7.16), the marginal
utilities v′

(
w1 + 1

H (w
0 − c01)

)
and v′

(
w1 + 1

H (w
0 − d− c02)

)
in (4.11) are re-

placed by the expected marginal utilities ϕ(z0is , {z
0jC
1 , z0jC2 }j 	=i,η

C
−i) which

also depend on the insurers’ aggregate net trades with the other insurance
buyers.
Given the structural similarity of (7.16) with (4.11), one immediately

sees that the argument in the proof of Proposition 5.5 can be extended to
show that for any insurance buyer 0i, the consumption plan (c0iC1 , c0iC2 ) =
(w0 + z0iC1 , w0 − d+ z0iC2 ) satisfies

w0 − d < c0iC2 < c0iC1 < w0 (7.18)

for m > 1 as well as for m = 1. Analogues for the other parts of Proposition
5.5 are left to the reader.
From (7.18), one infers that any insurance buyer’s net-trade plan in

any Cournot rational-expectations equilibrium belongs to the compact set
[−d, 0]×[0, d]. By the same token, for any e−i ∈ E−i, the aggregate

1
mHZ

C
−i(e−i)

of the other insurance buyers’ net claims on any one insurer belongs to the
compact interval [− d

H ,
d
H ].Asm goes out of bounds, the ratio of the expected

marginal utilities ϕ(z0i1 , {z
0jC
1 , z0jC2 }j 	=i,η

C
−i) and ϕ(z

0i
2 , {z

0jC
1 , z0jC2 }j 	=i,η

C
−i)

in (7.16) converges to one, uniformly over all net-trade plans in the relevant
range.10 Therefore one obtains the same convergence behaviour as for the
case where H goes out of bounds.

Proposition 7.5 Fix H and let {(qCm
′
, {z0iCm

′

1 , z0iCm
′

2 , ηiCm
′
)}m

′

i=1} be a
sequence of Cournot rational-expectations equilibria with m′ insurance buy-
ers and m′H insurers. For any i, let (q∗, z0i∗1 , z0i∗2 , ηi∗) be a limit point of the
sequence {(

∑
{e∈E|si(e)=1}

qCm
′
(e),

∑
{e∈E|si(e)=2}

qCm
′
(e)), (z0iCm

′

1 , z0iCm
′

2 , ηiCm
′
)}

as m′ goes out of bounds. Then

q∗ = (1− p2(η
∗), p2(η

∗)), (7.19)

and (z0i∗1 , z0i∗2 , ηi∗) maximizes U(w0+z01, w
0
2−d+z

0
2 , η) under the constraint

(1−p2(η(w
0+z01, w

0
2−d+z

0
2))) z

0
1+p2(η(w

0+z01 , w
0
2−d+z

0
2)) z

0
2 ≤ 0. (7.20)

10 Indeed the law of large numbers implies that for ((z0i1 , z
0i
2 ), {z

0jC
1 , z

0jC
2 }j �=i) ∈ Ξ,

the expected marginal utilities ϕ(z0is , {z
0jC
1 , z

0jC
2 }j �=i,η

C
−i) in (7.16) must all be close to

v′(w1).
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The account of Cournot convergence given in Proposition 6.2 is thus quite
general, applying to a sequence with m′ insurance buyers with independent
risks and m′H insurers, where m′ goes out of bounds, just as it does to
a sequence where the ratio H of insurers to insurance buyers goes out of
bounds.
In fact the only real difference between the specification with multiple

insurance buyers and the specification with one insurance buyer seems to be
that for m > 1, the existence of a Cournot rational-expectations equilibrium
cannot be taken for granted. The problem is well known from Roberts and
Sonnenschein [33]. However, an argument from Roberts [34] can be adapted
to give conditions ensuring that a Cournot rational-expectations equilibrium
necessarily exists if the number of insurance buyers is sufficiently large.

Proposition 7.6 Suppose that, in addition to the assumptions made so far,
the von Neumann-Morgenstern utility functions u and v are three times
continuously differentiable. Assume further that the problem of maximizing
U(w0 + z01 , w

0
2 − d + z

0
2, η) under the constraint (7.20) has a unique solu-

tion and that the second-order conditions for this solution hold with strict
inequality. Then for any H and any sufficiently large m, the economy with
m insurance buyers and mH insurers has a Cournot rational-expectations
equilibrium, which is moreover symmetric.

8 Concluding Remarks

To conclude the paper, I return to the discussion of contract theory and
Walrasian general-equilibrium theory and the way the exclusivity problem
is handled in the two approaches. I begin with a remark on perfect competi-
tion. Economic theory has two models of perfect competition, the Bertrand
model of price competition between suppliers with constant marginal costs
and the Walrasian model of organized markets with many agents where each
agent is too small to have a significant impact on the rest of the economy.
The latter is often referred to as involving agents too small to have a sig-
nificant impact on market prices, but the analysis here suggests that this is
not quite appropriate. When prices refer to personalized objects of trade
such as the contingent claims on state referring to household 0’s accident
risk, there is no reason to expect equilibrium prices to be insensitive to the
quantity choices of the agent concerned, but this does not mean that this
agent has any power over anybody’s well being.
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The two notions of perfect competition have very different strategic foun-
dations. Whereas in the Walrasian setting, perfectly competitive outcomes
arise because no one individual has any power, the Bertrand model gives
rise to perfectly competitive outcomes because competing powers neutralize
each other. The mutual neutralization of power results from each agent’s
fear that his clients will leave him for his competitor. If one insurer at-
tempted to raise his insurance premium, his clients would just go to another
insurer. This presumes that another insurer is actually available, i.e., that
there is always a ”reserve supply” of insurance that is not actually used,
but would be available the moment one of the ”incumbent insurers” tried
to exploit his clients.
The existence of such a ”reserve supply” of insurance gives the exclu-

sivity problem its bite. As discussed in the introduction, with insurance
contracts involving deductibles or coinsurance, i.e., c02 < c

0
1 in terms of the

analysis here, the insurance buyer has an incentive to secretly conclude an
additional insurance contract with an additional insurer if such an additional
insurer is available. In the Bertrand model, additional insurers are neces-
sarily available because their ”reserve supplies” of insurance are needed to
discipline the incumbents.
In the Walrasian setting, this problem does not arise, at least, if the

insurance buyer takes account of the relation between his quantity choices
and market-clearing prices. As the insurance buyer is trading with the
market, he is actually trading with everybody, and there is nobody left as
a potential partner for secret side-contracting. Exclusivity is not an issue
because ”the market” observes the insurance buyer’s overall position, and
the market-clearing price communicates this information to insurers who
draw the appropriate inference about the insurance buyer’s effort incentives
and choose their own positions accordingly.
One may object that this analysis exaggerates the information trans-

mission role of market prices. Is it really reasonable to assume that ”the
market” observes a given trader’s total net-trade vector as sharply as the
appearance of this net-trade vector in the market-clearing conditions would
seem to suggest? Or would it be more reasonable to follow the literature on
rational-expectations equilibrium with asymmetric information, e.g., Gross-
man [12], and inject a little bit of ”noise” into the system?
The question of what happens to insurance subject to moral hazard in

such a ”noisy” setting poses an entirely new research problem. For the
moment, I merely note that the traditional ”noiseless” market-clearing con-
ditions (4.6) and (4.7) lead to the conclusion that in the Cournot approach
the Walrasian system of organizationed markets solves the exclusivity prob-

31



lem associated with nonlinear incentive contracting by the simple device of
having ”the market” observe each agent’s total net-trade vector and trans-
mitting this information through market prices.

A Appendix: Proofs

The proofs of Lemma 2.1 and Proposition 3.1 are standard and are omitted
here. The reader is referred to Hellwig [18].
The proof of Proposition 3.2 is based on the following lemma.

Lemma A.1 For any H, let ΦH be the set of pairs (c0H1 , c0H2 ) satisfying
w0 − d ≤ c0H2 ≤ c0H1 ≤ w0 as well as

V (w1 +
1

H
(w0 − c0H1 ), w1 +

1

H
(w0 − d− c0H2 ), η(c0H1 , c0H2 )) ≥ v(w1). (A.1)

As H goes out of bounds, the sets ΦH converge in the Hausdorff topology to
the set Φ∗ of pairs (c01, c

0
2) satisfying w

0−d ≤ c02 ≤ c
0
1 ≤ w

0 as well as (3.9).

Proof. I first note that any sequence {(c0H1 , c0H2 )}∞H=1 of elements of
ΦH , H = 1, 2, ..., lies in [0, w0]2 and must have a convergent subsequence.
Since v(.) is a concave function, for any H, the validity of (A.1) implies
that (c0H1 , c0H2 ) ∈ ΦH satisfies (3.9). Since p2(.) and η(., .) are continuous, it
follows that any limit point (c01, c

0
2) of a sequence {(c

0H
1 , c0H2 )}∞H=1 of elements

of ΦH , H = 1, 2, ..., must satisfy (3.9) as well. Trivially, such a limit point
also satisfies (c01, c

0
2) ∈ [0, w

0]2 and c01 ≥ c
0
2, and hence is an element of Φ

∗.
To complete the argument, I also show that for any point (c01, c

0
2) ∈ Φ

∗

there exists a sequence {(c0H1 , c0H2 )}∞H=1 of elements of Φ
H , H = 1, 2, ... ,

that converges to (c01, c
0
2). If w

0 − d = c02 ≤ c
0
1 ≤ w

0, then trivially the pair
(c01, c

0
2) itself belongs to Φ

H for all H, and there is nothing left to prove.
Suppose therefore that w0 − d < c02 ≤ c

0
1 ≤ w

0 and note that, by (3.9),
w0 − d < c02 implies p2(η(c

0
1, c

0
2)) < 1. I claim that for any sufficiently large

integer n, one may define (c0n1 , c
0n
2 ) so that w

0−d < c0n2 ≤ c0n1 = c01−
1
n ≤ w

0

and
η(c0n1 , c

0n
2 ) = η(c

0
1, c

0
2). (A.2)

To see that this can be done, observe first that if w0− d < c02 ≤ c
0
1, then for

any sufficiently large integer n, c01 −
1
n > w0 − d. If η(c01, c

0
2) = 0, then by

Lemma 2.1, one also has η(c01 −
1
n , c

0n
2 ) = 0 whenever c

0n
2 ≥ c02, so the claim

is verified with c0n1 = c01 −
1
n and c

0n
2 = min(c02, c

0n
1 ). If instead η(c

0
1, c

0
2) > 0,
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then by Lemma 2.1, one has c02 < c
0
1, and by the implicit function theorem,

there exist an open neighbourhood of c01 and an increasing, continuously
differentiable function γ(.), such that for any c0n1 , (A.2) is satisfied if and
only if c0n2 = γ(c0n1 ); in particular, c

0
2 = γ(c01). For n sufficiently large,

c0n1 = c01 −
1
n may be taken to belong to the given neighbourhood of c

0
1,

and with c0n2 = γ(c0n1 ) satisfies (A.2); moreover since γ(.) is continuous,
one may suppose that w0 − d < c0n2 < c0n1 for any sufficiently large n.
Thus in the case η(c01, c

0
2) > 0 as well as the case η(c01, c

0
2) = 0, if n is

sufficiently large, there exists a pair (c0n1 , c
0n
2 ) that satisfies (A.2) as well as

w0 − d < c0n2 ≤ c0n1 = c01 −
1
n ≤ w

0. In either case, one also has c0n2 ≤ c02.
For any H consider the expected utility that households 1, 2, ..., H as-

sociate with the feasible equal-treatment allocation implied by the pair
(c0n1 , c

0n
2 ) so defined. By the concavity of v(.), one obtains

V (w1 +
1

H
(w0 − c0n1 ), w

1 +
1

H
(w0 − d− c0n2 ), η)

≥ v(w1) + (1− p2(η))v
′(w1 +

1

H
(w0 − c0n1 ))

1

H
(w0 − c0n1 )

+p2(η)v
′(w1 +

1

H
(w0 − d− c0n2 ))

1

H
(w0 − d− c0n2 ), (A.3)

where η denotes the common value of η(c0n1 , c
0n
2 ) and η(c

0
1, c

0
2). By a re-

arrangement of terms on the right-hand side, (A.3) becomes

V (w1 +
1

H
(w0 − c0n1 ), w

1 +
1

H
(w0 − d− c0n2 ), η)

≥ v(w1) + v′(w1 +
1

H
(w0 − c0n1 ))

1

H
[w0 − (1− p2(η))(c

0
1 −

1

n
)− p2(η)(c

0
2 + d)]

+p2(η)[v
′(w1 +

1

H
(w0 − d− c0n2 ))− v

′(w1 +
1

H
(w0 − c0n1 ))]

1

H
(w0 − d− c0n2 ).

By (3.9), the second term on the right-hand side is nonnegative and can be
dropped. Moreover, if one uses the mean value theorem to simplify the third
term on the right-hand side, one obtains

V (w1 +
1

H
(w0 − c0n1 ), w

1 +
1

H
(w0 − d− c0n2 ), η)

≥ v(w1) + v′(w1 +
1

H
(w0 − c0n1 ))

1

H

1− p2(η)

n

−p2(η)v
′′(w1 + θH)

1

H
(c0n1 − c0n2 − d)

1

H
(w0 − d− c0n2 ),

where θH is some element of the interval [ 1H (w
0−d−c0n2 ),

1
H (w

0−c0n1 )]. Now
with c0n1 = c01−

1
n ≥ c

0n
2 ≥ w0− d, the second term on the right-hand side is
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bounded below by v′(w1+ 1
H d)

1−p2(η)
H n > 0. As for the third term on the right-

hand side, I note that c0n1 − c0n2 − d ≥ −d, and, trivially, w0 − d− c0n2 ≤ w0,
so this term is bounded below by p2(η)v

′′(w1+ θH) dw0/H2. It follows that

V (w1 +
1

H
(w0 − c0n1 ), w

1 +
1

H
(w0 − d− c0n2 ), η)

≥ v(w1) +
1

H
[v′(w1 +

1

H
d)
1− p2(η)

n
+ p2(η)v

′′(w1 + θH) d
w0

H
].

Now it is clear that for the given n, there exists Hn such that for H ≥ Hn,
one has

v′(w1 +
1

H
d)
1− p2(η)

n
+ p2(η)v

′′(w1 + θH) d
w0

H
≥ 0,

and therefore

V (w1 +
1

H
(w0 − c0n1 ), w

1 +
1

H
(w0 − d− c0n2 ), η) ≥ v(w

1).

Upon setting (c0H1 , c0H2 ) = (c0n1 , c
0n
2 ) if H

n ≤ H < Hn+1, one thus obtains
a sequence {(c0H1 , c0H2 )} of elements of ΦH , H = 1, 2, ... that converges to
(c01, c

0
2). This completes the proof that the sets Φ

H , H = 1, 2, ..., converge to
Φ∗.

Proof of Proposition 3.2. From Lemma 2.1 and the feasibility
constraint (2.6), for any H, the allocation ({chH1 , chH2 }Hh=0, η

H) is an equal-
treatment second-best allocation with common utility bound v̄h = v(w1) if
and only if it is feasible and (c0H1 , c0H2 ) solves the problem

max
(c0H1 ,c0H2 )

U(c0H1 , c0H2 , η(c0H1 , c0H2 )) (A.4)

subject to (A.1). By Proposition 3.1, the solutions to this maximization
problem satisfy w0 − d ≤ c0H2 ≤ c0H1 ≤ w0, so there is no loss of generality
in supposing that the maximization in (A.4) is restricted to the set ΦH of
pairs satisfying these inequalities as well as (A.1).
As discussed by Shavell [37], the solutions (c01, c

0
2) to the problem of

maximizing (3.8) subject to (3.9) must also satisfy w0 − d ≤ c02 ≤ c
0
1 ≤ w

0,
so there is also no loss of generality in supposing that the maximization in
(3.8) is restricted to the set Φ∗ of pairs that satisfy these inequalities as well
as (3.9).
Lemma 2.1 implies that the sets ΦH , H = 1, 2, ..., and Φ∗ are closed

subsets of the compact set [0, w0]2 and are themselves compact. By the
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maximum theorem (see, e.g., Hildenbrand [20], pp. 29f.), it follows that
if the sets ΦH converge to Φ∗ in the Hausdorff topology, then any limit
point (c01, c

0
2) of the sequence {(c

0H
1 , c0H2 )}∞H=1 is a solution to the problem

of maximizing (3.8) over the set Φ∗ and hence a solution to the problem of
maximizing (3.8) subject to (3.9).

Proof of Lemma 4.1. Using the budget constraint q1c
1
1 + q2c

2
2 = w

1,
one easily finds that for any strictly positive q ∈ Σ, a pair (c01, c

0
2) ∈ ℜ

2
+

satisfies (4.2) and (4.3), if and only if

c02 = w
0 − d+

q1
q2
(w0 − c01) (A.5)

and
c01 +Hc

1
1(q,η(c

0
1, w

0 − d+
q1
q2
(w0 − c01))) = w

0 +Hw1. (A.6)

The lemma is thus equivalent to the claim that for any q >> 0, there exists
at most one c01 that satisfies (A.6).
Given the budget constraint q1c11 + q2c

2
2 = w

1 the function c11(.,.) must
satisfy the first-order condition

1− p2(η)

p2(η)

v′(c11)

v′(
w1−q1c11

q2
)
=
q1
q2
. (A.7)

Since (1−p2(η))/p2(η) is increasing in η and v
′(c11)/v

′(
w1−q1c11

q2
) is decreasing

in c11, (A.7) implies that c
1
1(q,η) is increasing in η. By Lemma 2.1, it follows

that c11(q,η(c
0
1, w

0− d+ q1
q2
(w0− c01))) is nondecreasing in c

0
1 and hence, that

the left-hand side of (A.6) is increasing in c01. Therefore there cannot be
more than one value of c01 for which (A.6) is satisfied.

Proof of Lemma 4.2. By the definition of Γ, for (c01, c
0
2) ∈ Γ, there

exists q ∈ Q such that (c01, c
0
2) = γ(q). By the definition of γ(.), for any price

vector q satisfying (c01, c
0
2) = γ(q), the consumption plan (c

0
1, c

0
2) satisfies the

market-clearing conditions (4.2) and (4.3). By the definitions of η∗(.) and
(C11(.), C

1
2(.)), for s = 1, 2, one also has:

c1s(q,η(c
0
1, c

0
2)) = c

1
s(q,η(γ(q))) = c

1
s(q,η

∗(q)) = C1s (q).

Upon substituting for c1s(q,η(c
0
1, c

0
2)) = C1s (q) in (4.2) and (4.3), one finds

that for the given (c01, c
0
2) ∈ Γ, any price vector q satisfying (c

0
1, c

0
2) = γ(q)

must also satisfy (4.6) and (4.7).
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I next prove that for any (c01, c
0
2) ∈ Γ, there is no more than one q ∈ Q for

which (4.6) and (4.7) hold. Since any price vector q satisfying (c01, c
0
2) = γ(q)

must also satisfy (4.6) and (4.7), this automatically implies that there is no
more than one q ∈ Q for which (c01, c

0
2) = γ(q) and hence, that the function

γ(.) is invertible.
I give separate arguments for the cases (c01, c

0
2) = (w0, w0 − d) and

(c01, c
0
2) �= (w0, w0 − d). If (c01, c

0
2) �= (w0, w0 − d), then for any q validat-

ing (4.6) and (4.7), one has (C11(q), C
1
2(q)) �= (w

1, w1), so, from the budget
constraint for households 1, 2, ...,H, one obtains

q1
q2
= −

w1 −C12(q)

w1 −C11(q)
.

From (4.6) and (4.7), this in turn yields

q1
q2
= −

c02 − (w
0 − d)

c01 −w
0

,

which in conjunction with q1 = 1−q2 implies that for (c
0
1, c

0
2) ∈ Γ unequal to

(w0, w0− d), the price vector q that validates (4.6) and (4.7) is well defined
and unique.
Alternatively, if (c01, c

0
2) = (w

0, w0−d), then for any q validating (4.6) and
(4.7), one has (C11(q), C

1
2(q)) = (w

1, w1), so from the first-order conditions
for (C11(q), C

1
2(q)) = (c

1
1(q,η(w

0, w0− d)), c12(q, η(w
0, w0− d))), one obtains

q1
q2
=
1− p2(η(w

0, w0 − d))

p2(η(w0, w0 − d))
,

which in conjunction with q1 = 1 − q2 shows that for (c01, c
0
2) ∈ Γ equal to

(w0, w0− d), the price vector q that validates (4.6) and (4.7) is also unique.
Given the definitions of the functions q∗(.) and η∗(.), for any (c01, c

0
2) ∈ Γ,

we have
η∗(q∗(c01, c

0
2)) = η(γ(q

∗(c01, c
0
2))) = η(c

0
1, c

0
2),

as claimed in (4.8).

Proof of Proposition 4.3. I first show that any pair (c01, c
0
2) ∈

Γ̄ satisfies (4.11). For (c01, c
0
2) ∈ Γ̄\Γ, one has 1 − p2(η(c01, c

0
2)) = 0 and

c02 = w0 − d, so (4.11) is trivially satisfied. For (c01, c
0
2) ∈ Γ, use Lemma

4.2 to define q = q∗(c01, c
0
2) and η = η∗(q) = η(c01, c

0
2). Then (c

0
1, c

0
2) and

q = (q1, q2) satisfy (4.6) and (4.7) and hence, by the argument given in the
proof of Lemma 4.2, the budget constraint

q1(c
0
1 −w

0) + q2(c
0
2 − (w

0 − d)) = 0. (A.8)
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By the first-order condition for (C11(q), C
1
2(q)), one also has

q1
q2
=
(1− p2(η))

p2(η)

v′(C11(q))

v′(C12(q))
. (A.9)

Upon combining (A.8) and (A.9), one obtains

(1− p2(η))v
′(C11(q))(c

0
1 −w

0) + p2(η)v
′(C12(q))(c

0
2 − (w

0 − d)),

so (4.11) follows if one uses (4.6) and (4.7) to substitute for (C11(q), C
1
2(q)).

I next show that any pair (c01, c
0
2) satisfying (4.11) must belong to Γ̄.

Given (c01, c
0
2) satisfying (4.11), define q = (q1, q2) by setting q1 = 1− q2 and

q1
q2
=
(1− p2(η))

p2(η)

v′(c11)

v′(c12)
, (A.10)

where η = η(c01, c
0
2), and c

1
1 = w

1+ 1
H (w

0− c01), c
1
2 = w

1+ 1
H (w

0− d− c02). If
q1 = 0, one must have p2(η) = 1, in which case (4.11) implies w

0−d−c02 = 0.
By the strict monotonicity of p2(.), p2(η) = 1 also implies that η = 0 and
hence, (c01, c

0
2) ∈ Γ̄. Alternatively if q1 > 0, then from (4.11) one infers that at

the price vector (q1, q2), (c01, c
0
2) also satisfies the budget constraint (A.8). By

the definition of c11 and c
1
2, it follows that the pair (c

1
1, c

1
2) satisfies the budget

constraint q1c
1
1+ q2c

1
2 = w

1. Since (A.10) is just the first-order condition for
the maximization of V (c11, c

1
2, η) under the given budget constraint, it follows

that
(c11, c

1
2) = (c

1
1(q, η), c

1
2(q, η))

and hence, that (c01, c
0
2) satisfies (4.2) and (4.3) for the specified price vector

q >> 0. Thus (c01, c
0
2) = γ(q), which proves that (c

0
1, c

0
2) belongs the Γ, the

range of γ(.).

Proof of Lemma 5.3. If (q∗, {ch∗1 , c
h∗
2 }

H
h=0, η

∗) is a Walrasian or a
Cournot rational-expectations equilibrium, condition (iii) in Definition 5.1
or 5.2 implies that

(ch∗1 , c
h∗
2 ) = (C1(q

∗), C2(q
∗))

for h = 1, 2, ..., H. By condition (i), it follows that

(c0∗1 , c
0∗
2 ) = (w

0, w0 − d)−
1

H
(C1(q

∗)−w1, C2(q
∗)−w1),

so (c0∗1 , c
0∗
2 ) satisfies (4.6) and (4.7) for the price vector q

∗.Therefore (c0∗1 , c
0∗
2 ) ∈

Γ̄ and q∗ = q∗(c0∗1 , c
0∗
2 ). By Lemma 4.2, it follows that η

∗(q∗) = η(c0∗1 , c
0∗
2 ).

By condition (ii) in Definition 5.1 or 5.2, we also have η∗ = η(c0∗1 , c
0∗
2 ).

37



The proof of Proposition 5.4 is standard and is omitted here. The reader
is referred to Hellwig [18].

Proof of Proposition 5.5. If (qC , {chC1 , chC2 }Hh=0, η
C) is a Cournot

rational-expectations equilibrium, condition (iii) in Definition 5.2 implies
the equal-treatment property (chC1 , chC2 ) = (c1C1 , c

1C
2 ) for h = 1, ...,H. By

the feasibility condition (i), it follows that

(c1C1 , c
1C
2 ) = (w

1, w1) +
1

H
(w0 − c0C1 , w

0 − d− c0C2 ). (A.11)

Condition (ii) of Definition 5.2 and Proposition 4.3 imply that the triple
(c0C1 , c

0C
2 , η

C) satisfies the first-order conditions

(1− p2(η
C)) u′(c0C1 )−

λ

H
(1− p2(η

C)) v′(c1C1 ) +
λ

H2
(1− p2(η

C)) v′′(c1C1 )(c
0C
1 −w0)

−λ(−p′2(η
C))[v′(c1C1 )(c

0C
1 −w0)− v′(c1C2 )(c

0C
2 − (w0 − d))]

∂η

∂c01
= 0,

(A.12)

p2(η
C) u′(c0C2 )−

λ

H
p2(η

C) v′(c1C2 ) +
λ

H2
p2(η

C) v′′(c1C2 )(c
0C
2 − (w0 − d))

−λ(−p′2(η
C))[v′(c1C1 )(c

0C
1 −w0)− v′(c1C2 )(c

0C
2 − (w0 − d))]

∂η

∂c02
= 0,

(A.13)

and ηC = η(c0C1 , c
0C
2 ) where (c

1C
1 , c

1C
2 ) satisfies (A.11).

I claim that p2(ηC) < 1. For suppose that p2(ηC) = 1. Then (4.11)
implies c0C2 = w0− d. Then also (A.12) implies c0C1 = w0. By Lemma 2.1, it
follows that ηC = η(c0C1 , c

0C
2 ) > 0, hence p2(η

C) < 1. The assumption that
p2(η

C) = 1 thus leads to a contradiction and must be false.
Next I claim that c0C1 < w0. For suppose that c0C1 ≥ w0. Then (4.11)

implies c0C2 ≤ w0 − d. Then Lemma 2.1 implies ∂η
∂c01

> 0 and ∂η
∂c02

< 0. The

first-order conditions (A.12) and (A.13) yield

(1− p2(η
C)) u′(c0C1 ) ≥

λ

H
(1− p2(η

C)) v′(c1C1 )

and

p2(η
C) u′(c0C2 ) ≤

λ

H
p2(η

C) v′(c1C2 ),
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hence

1 >
u′(w0)

u′(w0 − d)
≥
u′(c0C1 )

u′(c0C2 )
≥
v′(c1C1 )

v′(c1C2 )
.

By the concavitiy of v(.), it follows that c1C1 > c1C2 . By (A.11) therefore,
w0− c0C1 > w0− d− c0C2 , which is impossible if c

0C
1 ≥ w0 and c0C2 ≤ w0− d.

The assumption that c0C1 ≥ w0 thus leads to a contradiction and must be
false.
By (4.11), c0C1 < w0 also implies c0C2 > w0 − d. Therefore (A.12) and

(A.13) imply that

(1− p2(η
C)) u′(c0C1 ) <

λ

H
(1− p2(η

C)) v′(c1C1 ) (A.14)

and

p2(η
C) u′(c0C2 ) >

λ

H
p2(η

C) v′(c1C2 ), (A.15)

hence
u′(c0C1 )

u′(c0C2 )
<
v′(c1C1 )

v′(c1C2 )
, (A.16)

which is (5.8). By (A.11), the inequalities c0C1 < w0 and c0C2 > w0 − d
imply (5.7), hence v′(c11) < v′(c12). By (A.16) therefore, u

′(c0C1 ) < u′(c0C2 )
and c0C1 > c0C2 , which completes the proof of (5.6). (5.5) follows by Lemma
2.1.

Proof of Proposition 6.1. I first prove the second statement of the
proposition. Suppose that {(qWHk

, {chWHk

1 , chWHk

2 }H
k

h=0, η
WHk

)} is a se-
quence of Walrasian rational-expectations equilibria with limk→∞H

k =∞.
By (5.2), the pairs (c0WHk

1 , c0WHk

2 ) all belong to the compact set [w0−d,w0]2.

By the equal-treatment property of the allocations, ({chH
k

1 , chH
k

2 }H
k

h=0, η
Hk
)

and feasibility, it follows that, for any h, chWHk

1 = w1 + 1
Hk (w

0 − c0WHk

1 )

and chWHk

2 = w1 + 1
Hk (w

0 − d − c0WHk

1 ) both converge to w1 as Hk goes

out of bounds. Therefore limk→∞
v′(c1WHk

1 )

v′(c1WHk

2 )
= 1. By (5.4), it follows that

limk→∞
u′(c0WHk

1 )

u′(c0WHk

2 )
= 1, and hence that limk→∞ c

0WHk

1 − limk→∞ c
0WHk

2 = 0

and limk→∞(u(c
0WHk

1 ) − u(c0WHk

2 )) = 0. By Lemma 2.1, it follows that

limk→∞ η
Hk

= 0. Now (6.2) follows from the participants’ first-order condi-

tions and the fact that qWHk

1 + qWHk

2 = 1 for all k. Given (6.2), the value

(6.1) of the common limit of c0WHk

1 and c0WHk

2 follows from the budget
constraint of household 0.
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Turning to the first statement of the proposition, I note that for any se-
quence {(qWHk

, {chWHk

1 , chWHk

2 }H
k

h=0, η
WHk

)} of Walrasian rational-expectations
equilibria, condition (ii) in Definition 5.1 implies

U(c0WHk

1 , c0WHk

2 , ηWHk

) ≥ U(w0, w0 − d, η(w0, w0 − d))

for all k. If limk→∞H
k = ∞, the argument just given implies that, as

k becomes large, the left-hand side of this inequality converges to u(w0 −
p2(0)d). Thus, if a Walrasian rational-expectations equilibrium exists for
arbitrarily large H, it must be the case that

u(w0 − p2(0)d) ≥ U(w
0, w0 − d, η(w0, w0 − d)). (A.17)

Since Lemma 2.1 implies p2(η(w
0, w0 − d)) < 1, it follows that

u(w0 − p2(0)d) > (1− p2(0))u(w
0) + p2(0)u(w

0 − d)

and hence that p2(0) < 1. Conversely, if p2(0) is close to one, (A.17) is
violated, and, for any sufficiently large H, a Walrasian rational-expectations
equilibrium fails to exist.

The proof of Proposition 6.2 is divided into several steps. For trans-
parency, two of these steps are stated as separate lemmas.

Lemma A.2 Under the maintained assumptions about the data of the model,
for any H, a Cournot rational-expectations equilibrium exists.

Proof. For (c01, c
0
2) ∈ Γ̄, feasibility implies c

0
1 ≤ w0 + Hw1 and c02 ≤

w0− d+Hw1, so Γ̄ is bounded. Proposition 4.3 shows that Γ̄ is also closed.
Given the continuity of U(., ., .) and η(., .), it follows that the maximization
problem of household 0 has a solution, i.e., there exists a pair (c01, c

0
2) that

maximizes U(c01, c
0
2, η(c

0
1, c

0
2)) on Γ̄. By the definition of Γ̄, the associated

price vector q = q∗(c01, c
0
2) validates the market-clearing conditions (4.6)

and (4.7). With (ch1 , c
h
2) = (C11(q), C

1
2(q)), h = 1, 2, ...,H, the allocation

({ch1 , c
h
2}
H
h=0, η) is feasible; moreover, for any h, (c

h
1 , c

h
2) = (C11(q), C

1
2(q))

maximizes V (ch1 , c
h
2 , η

∗(q)) under the budget constraint given by q. The price
vector q and allocation ({ch1 , c

h
2}
H
h=0, η) thus satisfy all the conditions for a

Cournot rational-expectations equilibrium.
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Lemma A.3 For H = 1, 2, ..., let Γ̂H be the set of consumption plans
(c01, c

0
2) satisfying w

0 − d ≤ c02 ≤ c
0
1 ≤ w

0 as well as

(1− p2(η(c
0
1, c

0
2))) v

′(w1 +
1

H
(w0 − c01)) (c

0
1 −w

0)

+p2(η(c
0
1, c

0
2)) v

′(w1 +
1

H
(w0 − d− c02)) (c

0
2 − (w

0 − d)) ≤ 0. (A.18)

As H goes out of bounds, the sets Γ̂H converge in the Hausdorff topology to
the set Φ∗ of consumption plans (c01, c

0
2) satisfying w

0− d ≤ c02 ≤ c
0
1 ≤ w

0 as
well as (6.4),

(1− p2(η(c
0
1, c

0
2))) c

0
1 + p2(η(c

0
1, c

0
2)) c

0
2 ≤ w

0 − p2(η(c
0
1, c

0
2)) d.

Proof. The proof follows the same lines as the corresponding argument
in the proof of Proposition 3.2. For any H, Γ̂H is a closed subset of the
compact set [0, w0]2 and is itself compact. Any sequence {(c0H1 , c0H2 )}∞H=1 of

elements of Γ̂H , H = 1, 2, ..., must therefore have a convergent subsequence.
Since v(.) is a concave function and, for any H, (c0H1 , c0H2 ) ∈ Γ̂H satisfies
w0−c0H1 ≥ 0 ≥ w0−d−c0H2 , the validity of (A.18) implies that (c0H1 , c0H2 ) ∈
Γ̂H satisfies (6.4). Since p2(.) and η(., .) are continuous, it follows that
any limit point (c01, c

0
2) of a sequence {(c

0H
1 , c0H2 )}∞H=1 of elements of Γ̂

H ,
H = 1, 2, ..., must satisfy (6.4) as well. Trivially, such a limit point also
satisfies w0 − d = c02 ≤ c

0
1 ≤ w

0, and hence is an element of Φ∗.
Conversely, I also show that for any point (c01, c

0
2) ∈ Φ

∗ there exists a
sequence {(c0H1 , c0H2 )}∞H=1 of elements of Γ̂

H , H = 1, 2, ... , that converges
to (c01, c

0
2).

If w0 − d = c02 ≤ c
0
1 ≤ w

0, then trivially the pair (c01, c
0
2) itself belongs to

Γ̂H for all H, and there is nothing left to prove.
Suppose therefore that w0− d < c02 ≤ c

0
1 ≤ w

0. Using precisely the same
construction as in the proof of Lemma A.1, for any sufficiently large integer
n, define (c0n1 , c

0n
2 ) so that w

0 − d < c0n2 ≤ c0n1 = c01 −
1
n ≤ w

0, c0n2 ≤ c02, and
η(c0n1 , c

0n
2 ) = η(c

0
1, c

0
2). The argument following (A.3) in the proof of Lemma

A.1 shows that for the given n, there exists Hn such that any H ≥ Hn, one
has

(1− p2(η))v
′(w1 +

1

H
(w0 − c0n1 ))

1

H
(w0 − c0n1 )

+p2(η)v
′(w1 +

1

H
(w0 − d− c0n2 ))

1

H
(w0 − d− c0n2 ) ≥ 0,

and hence that (c0n1 , c
0n
2 ) ∈ Γ̂

H . Upon setting (c0H1 , c0H2 ) = (c0n1 , c
0n
2 ) if H

n ≤
H ≤ Hn+1, one obtains a sequence of elements of Γ̂H ,H = 1, 2, ... that
converges to the given (c01, c

0
2) ∈ Φ

∗.
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Proof of Proposition 6.2. For any H, the existence of a Cournot
rational-expectations equilibrium (qCH , {chCH1 , chCH2 }Hh=0, η

CH) is estab-
lished in Lemma A.2. By the first-order conditions for households 1, ...,H,
equilibrium prices satisfy

qCH1
qCH2

=
(1− p2(η

CH))

p2(ηCH)

v′(w1 + 1
H (w

0 − c0CH1 ))

v′(w1 + 1
H (w

0 − d− c0CH2 ))
. (A.19)

As H goes out of bounds, 1H (w
0 − c0CH1 ) and 1

H (w
0 − d− c0CH2 ) both go to

zero, and the ratio of marginal utilities on the right-hand side of (A.19) goes
to one. Any limit point (q∗, η∗) of the sequence {qCH , ηCH} must therefore
satisfy (6.3).
I next claim that for any H the pair (c0CH1 , c0CH2 ) maximizes (A.4), i.e.,

U(c01, c
0
2, η(c

0
1, c

0
2)) over the set Γ̂

H defined in Lemma A.3. By assumption,
(c0CH1 , c0CH2 ) belongs to the set of pairs satisfying (4.11), and hence (A.18),
for the given H. By Proposition 5.5, (c0CH1 , c0CH2 ) also satisfies (5.6). There-
fore (c0CH1 , c0CH2 ) belongs to Γ̂H . By Proposition 4.3, (c0CH1 , c0CH2 ) maxi-
mizes (A.4) under the constraint (4.11), so if (c0CH1 , c0CH2 ) does not maxi-
mize (A.4) over Γ̂H , there must exist (ĉ01, ĉ

0
2) such that U(ĉ

0
1, ĉ

0
2, η(ĉ

0
1, ĉ

0
2)) >

U(c0H1 , c0H2 , η(c0H1 , c0H2 )) and (ĉ01, ĉ
0
2) satisfies (A.18) with a strict inequality.

But then, there exists a pair (c01, c
0
2) >> (ĉ

0
1, ĉ

0
2) such that (i) u(c

0
1)−u(c

0
2) =

u(ĉ01) − u(ĉ
0
2) and therefore, by Lemma 2.1, η(c

0
1, c

0
2) = η(ĉ01, ĉ

0
2), and (ii)

(c01, c
0
2) satisfies (A.18) as an equation and hence (4.11). By strict monotonic-

ity then,

U(c01, c
0
2, η(c

0
1, c

0
2)) > U(ĉ

0
1, ĉ

0
2, η(ĉ

0
1, ĉ

0
2)) > U(c

0CH
1 , c0CH2 , η(c0CH1 , c0CH2 )),

contrary to the assumption that (c0CH1 , c0CH2 ) maximizes (A.4) subject to
(4.11). The assumption that (c0CH1 , c0CH2 ) does not maximize (A.4) over Γ̂H

thus leads to a contradiction and must be false.
By Lemma A.3, the sets Γ̂H converge to the set Φ∗ of pairs (c01, c

0
2)

that satisfy w0 − d ≤ c02 ≤ c01 ≤ w0 as well as (6.4). By the maximum
theorem (see, e.g., Hildenbrand [20], pp. 29f.), it follows that any limit point
(c0∗1 , c

0∗
2 , η

∗) of the sequence {(c0CH1 , c0CH2 , ηCH)}∞H=1 is a solution to the
problem of maximizing (A.4) over the set Φ∗. As discussed in the Proposition
3.2, (c0∗1 , c

0∗
2 , η

∗) is then also a solution to the problem of maximizing (A.4)
under the constraint (6.4).

Proof of Lemma 7.1. If the lemma is false, there exists a price system
q ∈ Σ for which conditions (7.9) - (7.11) have two solutions {(ẑ0i1 , ẑ

0i
2 )}

m
i=1

and {(z̄0i1 , z̄
0i
2 )}

m
i=1, with associated effort vectors η̂ = η({(ẑ

0i
1 , ẑ

0i
2 )}

m
i=1) and
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η̄ = η({(z̄0i1 , z̄
0i
2 )}

m
i=1). Distinctness of {(ẑ

0i
1 , ẑ

0i
2 )}

m
i=1 and {(z̄

0i
1 , z̄

0i
2 )}

m
i=1 in

combination with the budget constraint (7.9) implies η̂ �= η̄, hence π(e, η̂) �=
π(e, η̄) for at least one e ∈ E. Let e∗ ∈ E be the elementary event for which

the ratio π(e,η̂)
π(e,η̄) is highest. By (7.5), it must be the case that, for each i, one

has
psi(e∗)(η(ẑ

0i
1 ,ẑ

0i
2 ))

psi(e∗)(η(z̄
0i
1 ,z̄

0i
2 ))

≥ 1, with strict inequality for some i. By Lemma 2.1, it

follows that ẑ0isi(e∗) ≥ z̄
0i
si(e∗)

for all i, with strict inequality for some i. Hence,

m∑

i=1

ẑ0isi(e∗) >
m∑

i=1

z̄0isi(e∗).

By (7.10), it follows that

z(e∗| q, η̂) < z(e∗| q, η̄).

By the first-order conditions for the determination of z(e| q,η), for any e,q,
and η, one also has

π(e∗, η̂) v′(w1 + z(e∗| q, η̂))

π(e, η̂) v′(w1 + z(e| q, η̂))
=
q(e∗)

q(e)

and
π(e∗, η̄) v′(w1 + z(e∗| q, η̄))

π(e, η̄) v′(w1 + z(e| q, η̄))
=
q(e∗)

q(e)

for all e ∈ E, hence

v′(w1 + z(e∗| q, η̂))

v′(w1 + z(e∗| q, η̄))
=
π(e∗, η̄)

π(e∗, η̂)

π(e, η̂)

π(e, η̄)

v′(w1 + z(e| q, η̂))

v′(w1 + z(e| q, η̄))

for all e ∈ E. By the definition of e∗, it follows that

v′(w1 + z(e∗| q, η̂))

v′(w1 + z(e∗| q, η̄))
<
v′(w1 + z(e| q, η̂))

v′(w1 + z(e| q, η̄))
.

Since z(e∗| q, η̂) < z(e∗| q, η̄), this in turn implies

1 <
v′(w1 + z(e| q, η̂))

v′(w1 + z(e| q, η̄))
,

hence z(e| q, η̂) < z(e| q, η̄) for all e ∈ E. But then

∑

e∈E

q(e) z(e| q, η̂) <
∑

e∈E

q(e)z(e| q, η̄) = 0,

43



which is incompatible with the assumption that the net-trade plan {z(e| q, η̂)}e∈E
maximizes (7.7) subject to (7.8). The assumption that the lemma is false
thus leads to a contradiction.

The proofs of Lemma 7.2, Proposition 7.3, and Proposition 7.5 are
straightforward extensions of the proofs of Lemma 4.2, Proposition 4.3, and
Proposition 6.2 and are left to the reader.

Proof of Proposition 7.6. Fix H. For any m and any pair (x1, x2) ∈
[−d, 0]× [0, d], consider the problem of maximizing U(w0+z01, w

0
2−d+z

0
2, η)

under the constraint

p1(η(w
0 + z01 , w

0
2 − d+ z

0
2)) ϕ(z

0i
1 , (x1, x2)

m−1,η−i) z
0i
1

+p2(η(w
0 + z01 , w

0
2 − d+ z

0
2)) ϕ(z

0i
2 , (x1, x2)

m−1,η−i) z
0i
2 = 0, (A.20)

where (x1, x2)m−1 is the m − 1-fold replication of (x1, x2) and η−i is the
m− 1-fold replication of η(w0 + x1, w02 − d+ x2). Let ζ

m(x1, x2) be the set
of solutions to this maximization problem, and note that {z0C1 , z0C2 , ηC}mi=1,
with price system qC given by Lemma 7.2, is a symmetric Cournot rational-
expectations equilibrium for the economy with m insurance buyers and mH
insurers if and only if (z0C1 , z0C2 , ηC) ∈ ζm(z0C1 , z0C2 ). The proposition is thus
equivalent to the assertion that for any sufficiently large m, the projection
of ζm to the space of net-trade plans has a fixed point.
Let (z0∗1 , z

0∗
2 , η

∗) be the unique solution to the problem of maximiz-
ing U(w0 + z01, w

0
2 − d + z02 , η) under the constraint (7.20). By an ar-

gument similar to the one used in the proof of Proposition 6.2, for any
sequences {(xm1 , x

m
2 )}

∞
m=1 and {(z

0m
1 , z0m2 , ηm)}∞m=1 such that (x

m
1 , x

m
2 ) ∈

[−d, 0]×[0, d] and (z0m1 , z0m2 , ηm) ∈ ζm(xm1 , x
m
2 ) for allm, the maximum the-

orem implies limm→∞(z
0m
1 , z0m2 , ηm) = (z0∗1 , z

0∗
2 , η

∗), i.e. the best-response
correspondences ζm converge uniformly to the constant function with value
(z0∗1 , z

0∗
2 , η

∗).
I claim that for any sufficiently large m, ζm must actually be single-

valued, i.e. the best-response correspondence is actually a function. Exis-
tence of a fixed point - and hence of a Cournot rational-expectations equi-
librium - then follows from the observation that for anym, by the maximum
theorem, the correspondence ζm is upper hemi-continuous.
To prove that for any sufficiently large m, ζm must actually be single-

valued, suppose the contrary. Then there exist sequences {(xm
′

1 , x
m′

2 )}, {(z
0m′

1 , z0m
′

2 , ηm
′
)},

and {(ẑ0m
′

1 , ẑ0m
′

2 , η̂m
′

)} such that, for any m′, (xm
′

1 , x
m′

2 ) ∈ [−d, 0] × [0, d],
(z0m

′

1 , z0m
′

2 , ηm
′
) ∈ ζm

′

(xm
′

1 , x
m′

2 ), (ẑ
0m′

1 , ẑ0m
′

2 , η̂m
′

) ∈ ζm
′

(xm
′

1 , x
m′

2 ), and more-
over {(z0m

′

1 , z0m
′

2 , ηm
′
)}, and {(ẑ0m

′

1 , ẑ0m
′

2 , η̂m
′

)} are distinct. Because, for any
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m′, both, (z0m
′

1 , z0m
′

2 , ηm
′
) and (ẑ0m

′

1 , ẑ0m
′

2 , η̂m
′

) maximize U(w0 + z01 , w
0
2 −

d+ z02 , η) on the constraint set, there must also be a triple (z̄
0m′

1 , z̄0m
′

2 , η̄m
′
),

between (z0m
′

1 , z0m
′

2 , ηm
′
) and (ẑ0m

′

1 , ẑ0m
′

2 , η̂m
′

), which generates a local min-
imum of U(w0 + z01 , w

0
2 − d+ z

0
2, η) on the constraint set.

As mentioned above, the maximum theorem implies that both (ẑ0m
′

1 , ẑ0m
′

2 , η̂m
′

)
and (ẑ0m

′

1 , ẑ0m
′

2 , η̂m
′

) converge to (z0∗1 , z
0∗
2 , η

∗) as m′ becomes large. There-
fore the sequence {(z̄0m

′

1 , z̄0m
′

2 , η̄m
′
)} of local minimizers of U(w0 + z01 , w

0
2 −

d+z02 , η) subject to (A.20) must also converge to (z
0∗
1 , z

0∗
2 , η

∗) asm′ becomes
large. But then, at (z0∗1 , z

0∗
2 , η

∗), the second-order conditions for maximiza-
tion of U(w0 + z01, w

0
2 − d + z

0
2 , η) under the constraint (7.20) cannot hold

with strict inequality, contrary to the assumptions made. The assumption
that ζm fails to be single-valued if m is sufficiently large thus leads to a
contradiction and must be false.
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