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Abstract 
 
We document five effects of providing individuals with crowdsourced spending information 
about their peers (individuals with similar characteristics) through a FinTech app. First, users 
who spend more than their peers reduce their spending significantly, whereas users who spend 
less keep constant or increase their spending. Second, users’ distance from their peers’ spend-
ing affects the reaction monotonically in both directions. Third, users’ reaction is asymmetric - 
spending cuts are three times as large as increases. Fourth, lower-income users react more than 
others. Fifth, discretionary spending drives the reaction in both directions and especially cash 
withdrawals, which are commonly used for incidental expenses and anonymous transactions. 
We argue Bayesian updating, peer pressure, or the fact that bad news looms more than (equally-
sized) good news cannot alone explain all these facts. 

JEL-Codes: D120, D140, D910, E220, G410. 
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1 Introduction

Low savings limit the wealth accumulation of US households, who often reach the time of re-

tirement holding inadequate financial resources to maintain their pre-retirement lifestyle (e.g.,

see Banks, Blundell, and Tanner, 1998; Bernheim, Skinner, and Weinberg, 2001; and Lusardi

and Mitchell, 2007). Channels that contribute to this phenomenon – whether neoclassical

or not – include liquidity constraints (Zeldes, 1989; Jappelli and Pagano, 1994), hyperbolic

discounting (Laibson, 1997), limited attention (Madrian and Shea, 2001; Carroll, Choi, Laib-

son, Madrian, and Metrick, 2009), expectations-based reference-dependent preferences (Pagel,

2017), and the lack of financial literacy (Van Rooij, Lusardi, and Alessie, 2012; Chalmers and

Reuter, 2012; Lusardi and Mitchell, 2014).

Most US households have little information about the income, spending, and savings rates

that would guarantee the appropriate wealth accumulation before retirement – they are often

financially illiterate and/or have no access to financial advice (Lusardi and Mitchell, 2017).

In principle, households could obtain information about saving norms while observing the

overall spending of peers (D’Acunto, Malmendier, Ospina, and Weber, 2018). But although

consumption is sometimes conspicuous (Charles, Hurst, and Roussanov, 2009), the overall

spending of peers is mostly unobserved, and hence households can barely learn about the

prevailing savings rates of those with similar incomes and demographic characteristics (Lieber

and Skimmyhorn, 2018).

If this information friction was material, disclosing the spending of peers with similar income

and other demographic characteristics might change individuals’ beliefs about the appropriate

spending and savings rates. This update would happen irrespective of whether or not peers’

savings rates are optimal, as long as agents believe the signal they receive is credible and

valuable (Gargano and Rossi, 2018; Gargano, Rossi, and Wermers, 2017). Moreover, this

information might affect individuals’ beliefs and choice both directly – through learning about

others’ spending – and indirectly – through peer pressure, that is, the concern of lagging behind

with respect to peers. For the case of households’ and investors’ financial decisions, existing
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research is split on whether peer effects are material (e.g., see Duflo and Saez, 2003; Bursztyn,

Ederer, Ferman, and Yuchtman, 2014; Chalmers, Johnson, and Reuter, 2014; Ouimet and

Tate, 2019; Maturana and Nickerson, 2018; Maturana and Nickerson, forthcoming) or not

(Beshears, Choi, Laibson, Madrian, and Milkman, 2015; Lieber and Skimmyhorn, 2018).

In this paper, we study the effects of providing households with crowdsourced information

about their peers’ spending through a free-to-use FinTech application (app) called Status.

Upon subscribing to the app, users provide a set of demographic characteristics, which include

their annual income, age range, homeownership status, location of residence, and location

type. Status also obtains credit scores via credit reports. Using transaction-based data from

a large sample of US consumers, Status computes the average monthly spending of consumers

with similar characteristics as the users (peers). Moreover, users link their credit, debit, and

other financial accounts to the app. Using users’ past and present transactions from their own

financial accounts, Status computes users’ own recent average monthly spending. Status then

produces easy-to-grasp graphics that compare the evolution of the users’ monthly spending

with the evolution of the peers’ spending.

Figure 1 is an example of the graphics Status users see on their homepage. 1 These graphics

give users simple and immediate feedback on whether their spending is higher, similar, or lower

than peers’ spending. Displaying this crowdsourced information in an easy-to-understand set-

ting is a crucial feature of Status, which aims to avoid the potential ineffectiveness of financial-

literacy trainings for unsophisticated individuals (Duflo and Saez, 2003). Note that, as we show

in section 7, users do not appear to react to information about their own average monthly in-

come, which they also observe when they log in, as shown in Figure 1.

We find being exposed to peers’ spending changes users’ own spending decisions depending

on whether users spend more or less (over- and underspend in the following) than their peers.

On average, users who overspend relative to peers reduce their seasonally-adjusted spending

by $237 per month around the adoption of the app. Instead, users who underspend increase

their seasonally-adjusted spending by $71.

1Figure A.1 and Figure 3 show other graphics, and section 2 describes details about the setting.
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Figure 1. Graphics Comparing Users’ and Peers’ Spending on Status’ Homepage

We lever the granular data to assess the potential channels and mechanisms that drive this

average effect of information about peers, which masks substantial heterogeneity. First, all

the users who overspend relative to peers reduce their monthly spending, whereas all the users

who underspend relative to peers keep constant or increase slightly their monthly consumption

spending.

A second robust fact is the distance of users’ spending from the peers’ average spending

affects households’ reactions monotonically in both directions – the further away the user is

from the peers’ spending, the stronger the convergence of the users to peers’ spending. A

one-standard-deviation increase in the distance from peers’ spending for the overspenders is

associated with about a 9.3% drop in monthly spending in the two months after adoption of

the app.

These two results paired with the fact that users converge to the levels of peers’ spending

both above and below the threshold suggest users find the crowdsourced information Status

diffuses valuable and relevant, and learn from it. Note Status does not say the average behavior

of peers is optimal in any respect. Users might assume the average behavior of peers includes

information about optimal spending behavior conditional on demographics and that Status
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lets them harness this “wisdom of the crowds” (e.g., see Galton, 1907; Wolfers and Zitzewitz,

2004; Da and Huang, forthcoming).

The third fact we document is that the reaction to information about peers is severely

asymmetric across the positive and negative domains – users who spend more than their peers

cut their monthly spending normalized by income by 3% in the two months around adoption,

whereas underspenders increase it on average by 1%. This asymmetric sensitivity of users to

peers’ information based on their spending relative to peers is a robust feature of the data.

We also show in a fourth fact that the cut in spending is substantial for overspenders in the

lowest quartile of the distribution by income, whereas the size of the change is smaller by a

factor of 7 for overspenders in the highest quartile by income.

The asymmetries of the reaction of overspenders relative to underspenders, and especially

of low-income overspenders, suggests that, on top of learning about savings rates, users might

face pressure when they are compared directly to peers. Receiving bad news about spending

relative to peers looms more than receiving same-size good news, which is hard to reconcile

with Bayesian updating.

We then move on to assess which spending categories users adjust more after they obtain

information about peers’ spending. Consistent with the presence of frictions in spending, the

whole margin of adjustment comes from discretionary spending relative to non-discretionary

spending, which households can barely reduce.2 Cash withdrawals show a dramatic drop

after sign up for households that overspend with respect to their peers relative to food and

drink expenses, utilities, or fees and tuitions. Because cash is mainly used for incidental

expenses (Bagnall, Bounie, Huynh, Kosse, Schmidt, Schuh, and Stix, 2014) and for transactions

consumers want to keep anonymous (Acquisti, Taylor, and Wagman, 2016), the change in

spending behavior we document might reduce expenses that are the least likely to provide

goods and services to the benefit of the whole household as opposed to the benefit of one

member of the household.

The baseline facts we discussed above do not rule out the possibility that users who signed

2As we discuss below, non-discretionary spending includes groceries, fees, mortgage payments, and tuitions. Dis-
cretionary spending includes outside food and drink spending, clothes, entertainment, travels, and cash withdrawals.
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up to Status had already decided they would cut or increase their spending based on what

they correctly knew or guessed about their peers (e.g., see D’Acunto, Prabhala, and Rossi,

forthcoming). These users might have signed up to Status to enjoy other features of the

app, such as the income-aggregation function or the possibility of setting dynamic targets

for consumption and savings. They might have changed their spending irrespective of the

information they received about peers.

To tackle this endogeneity concern, we propose an identification strategy that exploits the

fact that Status constructs peer groups based on pre-set ranges of demographic values. Status

computes the average monthly spending based on the transactions of peers whose income falls

in the same range as the user’s. Because of this feature, two users with similar incomes, but

one with income slightly below the threshold and one with income at the threshold, will be

provided with different information about the average peer’s monthly spending even if their

incomes are almost indistinguishable. Importantly, users do not know the thresholds Status

uses to construct peer groups, and hence they cannot strategically manipulate their position

on one side of the discontinuities or the other to avoid receiving negative news about their

consumption spending relative to peers.

For an example of the identification design, consider two adjacent yearly income ranges

Status uses to compute peers’ spending are $25K-$49K and $50K-$75K. Suppose user A de-

clares he/she earns $49K, whereas user B rounds his/her yearly income to $50K. Although

these reported incomes only differ by $1K – which is likely to represent the mere tendency

of B to round, and hence potentially underlying the same yearly income for A and B – users

A and B will observe substantially different information about their peers’ spending. In this

example, user B will observe a peer-spending value that is the average of the transactions of US

consumers earning between $25K-$49K, whereas A will observe a higher peer-spending value

– the average of the transactions of US consumers earning between $50K-$75K. Because users

do not know the thresholds Status uses to compute the peers, we argue users who fall around

the income thresholds for the peer groups are assigned quasi-randomly to alternative pieces of

information about peers.
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This strategy confirms our baseline results – users who happen to be assigned to a peer

group whose spending is lower cut their spending more than users who are almost identical in

terms of income levels but are assigned to a peer group whose average spending is higher. A

remaining caveat relates to the external validity of our identification-strategy results. Because

Status is marketed explicitly as a tool that provides information about peers, the population

that selects into using this service might be more sensitive than the average US consumers to

the differences between their spending and peers’ spending and hence might react more to the

information that Status provides than the average US consumer.

Note Status is marketed as an app that improves saving decisions by providing accessible

information about peers’ spending, as well as other services. In particular, Status users are not

only exposed to information about peers, but also to information about the national average

spending in the US as well as users’ own average monthly income. One might wonder whether

the average effect we attribute to reaction to information about peers is at least partly driven

by reaction to other types of information users obtain at the time of sign up. We address this

concern in the last part of the paper, where we discuss the economic channels in play.

We consider the whole set of information users observe to assess three economic channels

through which exposure to information on Status might affect users’ spending decisions. The

first channel – wisdom of the crowds – implies users update their beliefs about the optimal

spending rate after observing information about peers. For this channel to be relevant, users

need to believe the information that Status provides is an informative signal about their optimal

spending rate irrespective of whether it is or not. Although this channel can explain some of

the facts we documented, it can barely explain the asymmetric reaction of overspenders relative

to underspenders.

The second channel we consider is peer pressure – individuals might obtain disutility from

behaving worse than their peers. In this case, overspending might be perceived as a negative

behavior because it reduces users’ financial health with respect to peers. This channel can

explain the reaction of overspenders but can barely explain why underspenders – who are not

behaving worse than their peers – would react at all.
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The third channel we consider is overreaction to negative news. Under this channel, users

learn from peers’ spending, but negative news about the difference between own and peers’

spending looms larger than positive news. Although this channel has the potential to explain

all our facts, we find it is unlikely to drive our results fully. In direct tests of this channel, we

find users react more to negative information about peers than to negative information about

average US consumers or about overspending with respect to their own income.

In terms of economic channels, we conclude only a combination of the three channels we

consider can explain fully the five facts we document.

Overall, our results suggest providing households with crowdsourced information based on

micro data that households could have barely accessed on their own allows them to learn about

peers’ spending/saving choices and affects their own spending/saving choices systematically.

Our results appear consistent with a role for both Bayesian learning and peer pressure as

the economic channels that might help explain households’ reactions. FinTech apps thus

can provide a cost-effective and vivid, salient way to transmit financial literacy and financial

information to households and affect their choices. Further research should be devoted to study

the optimal design of FinTech tools based on crowdsourced information to provide tailored

advice for each user. For instance, whether constructing peer groups based on more categories

than the ones we studied (e.g., amount of mortgage debt or student debt outstanding) might

change consumers’ response and outcomes is an interesting avenue for future research.

The persistence of the effects of providing information about peers is also an aspect further

research should assess. Within the time frame we observe, which includes about three months

around the adoption of Status for our working sample, we do not detect any dissipation of the

effect or any reversal of users’ choices after the first reaction. Whether the information that

Status provides will have far-reaching implications for savings throughout the users’ working

life and up to retirement will require observing longer time series than are currently available.
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2 Institutional Setting

In this section, we discuss the characteristics of Status, the procedures users face in order to

sign up, and the information they observe after sign up.

2.1 Purpose of the app we study (Status)

Status is an app designed to help individuals make more informed decisions in the personal

finance space. The app shows users how individuals comparable to them manage their finances,

that is, how they spend their money, what interest rates they earn on their savings and pay

on their loans, and what credit cards they use—among others.

2.2 Procedures at enrollment

To sign up, users provide their date of birth, their annual income, and their housing type—

whether they own or rent the home in which they live. Users are then prompted to insert

their address and the last four digits of their social security number. This information allows

the app to connect to the credit bureau that returns all of the user’s credit-score-related

information.3 Finally, the app asks users to link their checking and savings accounts, their

credit-card accounts, as well as taxable and non-taxable accounts.

For each user, the app constructs a peer group based on the user’s age, income, location,

credit score, and housing type. Peer groups are constructed to be as precise as possible subject

to the constraint that each group should have at least 5,000 individuals. The trade-off is

that coarse groups may not be too informative, because they might contain individuals to

whom users do not relate. On the other hand, spending patterns constructed using too few

individuals may be too noisy and provide non-credible information. Note that for the sake of

testing whether users react to information about peers’ spending, whether such information

is accurate or inaccurate is not relevant as long as users think the information they obtain

contains an informative signal about their optimal spending rate.

3We as researchers do not observe any individually-identifiable information about Status’ users.
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In Figure 2, we provide an example of the screenshot that Status users observe about their

own characteristics (Panel (a)) and the characteristics based on which the peer group is defined

(Panel (b)). In this fictitious example, the user is 42 years of age, has an annual income of

$140K, lives in New York, has a credit score of 769, and is a renter. The peer group constructed

for this user contains individuals whose age ranges between 40 and 49, whose income ranges

from $100K and $150K, who live in New York City, pay rent, and have a credit score that

ranges between 720 and 779.

Main features of the app

Once the user is enrolled, the app automatically retrieves information from the users’ savings

and investment accounts. The app stores all transactions and investment returns and computes

the user’s net worth as the difference between assets and liabilities. To give the reader a sense

of the information users observe, we describe the content of the home page below.

The main feature of the home page is comparing the user’s spending with their peers’

spending. Figure 1 in the introduction displays the vivid graphics that compare the users’ own

daily spending based on daily transactions with the projected average daily spending of the

peer group and the national US average. The screenshot is taken as of October 30. On the

top, the plot shows the user’s total spending, which turns out to be $17,799, together with the

average peer spending, $8,651, and the national average, $4,222. The blue line presents the

user’s cumulative spending over the course of the month until October 30. It also presents a

forecast of total spending until the end of the month. On the same graph, the light and dark

red lines presents the peers and national average cumulative spending over the month. The

app also displays as a grey dotted line the user’s average income, $10,204. As a final piece of

information, the app explicitly tells the users how they are doing in terms of spending for the

current month. Note the users’ spending is based on their actual daily transactions. Peers’ and

US national average information are computed using a proprietary algorithm that aggregates

spending information for a large sample of US consumers whose transactions Status observes.

Note this discrepancy in the way users’ and peers’ data are treated is not relevant to the
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scope of our inquiry – whether users react to peers’ information – unless the difference in

frequency and timing of the pieces of information makes certain users believe the information

Status gives them is not credible. But in this case, we would observe no reaction of users to

peers’ information irrespective of their distance from peers’ spending. If anything, this feature

of the app might reduce the average reaction on the side of users.

The bottom of the home page reports more comprehensive statistics regarding users’ debts,

assets, net worth, and credit score (see Figure 3). Our fictitious user has a debt of $37,393,

which is compared to peers’ debt of $13,429 and a national average debt of $50,297. On

top of this information, the app tells the user that the interest rate he/she is charged is

competitive with the national average. The user has $40,839 in assets, compared to $45,759

for the peers and $119,934 for the national average. The interest rates earned on the accounts

are competitive for two of the three accounts, but not for the third. The third quadrant reports

the information for net worth, which is simply computed as the difference between assets and

liabilities, and the fourth quadrant reports information for the user’s credit score. He/she has

a credit score of 769, the peers average is 754, and the national average is 630.

3 Data

Status collects and displays large amounts of information from and to their users. Some of

this information is calculated on demand based on users’ requests and is not stored on their

servers. For this study, we accessed a subset of the information that Status collects.

First, we observe a set of demographic characteristics as of the time users sign up to Status.

We do not observe these characteristics over time. In addition to users’ unique identifiers,

we observe the date on which the user joined Status. As far as demographics are concerned,

we observe several self-reported dimensions including users’ age, credit score, gross income,

whether the user owns or rents the house in which he/she lives, as well as the zip code and

city in which the user lives.

The second set of characteristics we observe refers to users’ peers. For each user, we observe

the characteristics of the peer group that Status computes as an average of the individual
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characteristics of individuals with demographic characteristics similar to the user’s. Note

Status does not use the characteristics of other users to construct peer groups, but instead

uses external proprietary data on a representative set of US consumers. This procedure allows

us to avoid the possibility that any selection in the types of consumers that sign up might

be captured in the average demographics of peer groups. The peer demographics we observe

include the average credit score of the peer group, the average debt, the average value of assets,

the average net worth, and the average income. We also observe the range of credit scores

and income for the peers. Moreover, peer groups are constructed separately across geographic

locations and rural versus urban areas. For each peer group, we also observe the number of

individuals that enter the group.

Third, we observe a set of variables that capture the usage of Status accounts by account

holders. These variables include the number of account logins by users during the first, second,

and third month after signing up, the number of external financial accounts users had linked

as of August 21, 2018, the number of external financial accounts users had linked at the time

of sign-up, as well the asset balance, the debt balance, the savings balance, and the balance

from linked investment accounts, all measured as of August 21, 2018.

Finally, we observe data on users’ and peer groups’ spending amounts and spending cate-

gories. Specifically, we observe users’ total spending and peers’ average spending over the first,

second, and third month before users signed up for Status as well as the total spending over

the first, second, and third month after users signed up for Status. Spending is broken down

into categories based on classifying the vendor related to each transaction. The transactions

that cannot be classified are labeled as other expenses. Observed categories include checking-

account withdrawals, auto and gas, education, entertainment, fees, gifts and charity, groceries,

health and medical, home improvement, housing, loans, restaurants, shopping, travel, utilities

and bills, and other expenses. We use these categories to classify each spending amount into

discretionary or non-discretionary spending in each month. Discretionary spending includes

checking-account withdrawals, entertainment, restaurants, shopping, travel, and fees. Non-

discretionary spending includes groceries, utilities and bills, health and medical, auto and gas,
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and education. Because we cannot ultimately classify the remaining categories into discre-

tionary and non-discretionary, we exclude them from the analysis of the effects of information

about peers on spending broken down by spending categories.

3.1 Summary Statistics

Table 1 reports the basic characteristics of the clients in our sample. For each variable, we

report the number of observations, average, and standard deviation. The first three variables

are demographic characteristics: Age, Credit Score, and Home Ownership. The average client

is 30 years old, with a standard deviation of seven years, indicating Status users are rather

young. The average credit score is 728, higher than the average US credit score of 687. Thirty-

eight percent of users are homeowners, which is below the US average, in line with the fact

our sample is, on average, younger than the US average consumer.

The average client earns approximately $90,000 per year, with a large standard deviation of

$61,000, suggesting our sample spans individuals with varying levels of income. The majority

of the Status users have a positive net worth. The average assets are $42,462, whereas the

average debt—including credit-card debt—equals $29,971.

Figure 4 reports the distribution of monthly spending by income quartiles. We highlight two

main facts that suggest our data align with intuition and are reliable. First, monthly spending

increases with income. Across the four income groups, average spending equals $2,200, $3,409,

$4,470, and $6,974. Second, the within-group standard deviation of spending increases with

income. Higher-income individuals have more varied levels of spending than lower-income

individuals, which is consistent with low-income individuals facing spending constraints.

4 Signup and Spending: Baseline Results

Our first set of tests analyzes whether the two pieces of information subscribers receive at sign

up—whether they spend more or less than their peers, and how different their spending is with
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respect to peers’ spending—have any effects on subscribers’ subsequent spending behavior. We

first compute the overall spending for each subscriber for the 60 days before sign up and the

60 days after sign up, and measure the change in aggregate spending across the two periods.

Because spending is cyclical, we deduct the average change in spending across all users from

the change in spending of each user. We refer to this quantity as seasonally adjusted spending

in some cases and simply as spending in other cases.

As reported in Panel A of Table 2, in the raw data, we find the average subscriber who

overspends with respect to his/her peer group reduces his/her spending after signing up to

Status, by an average of $474/2=$237 per month in the first 60 days after sign up. Users who

underspend compared to their peers instead increase their monthly spending by $142/2=$71.

To allow a more appropriate comparison across subscribers with different levels of income,

we normalize the change in aggregate spending by the subscribers’ income to make sure sys-

tematic differences in the propensity to spend across income levels do not drive any results.

The results, reported in Panel B Table 2, suggest overspenders reduce their spending by 3%

of their income, whereas underspenders increase their spending by 1% of their income.

Next, we ask whether users’ distance from peers’ spending affects their reaction in terms

of change in spending. To address this question, we first rely on the raw data and plot the

average change in spending at the level of groups of users as a function of the groups’ distance

from peers’ spending for both groups of users that overspend and underspend. Figure 5 reports

the results of this analysis. Subfigure (a) reports the results for changes in spending, whereas

subfigure (b) reports the results for changes in spending, normalized by income. Each binned

scatterplot divides the 17,500 users in 100 groups. Figure 5 documents two features of the raw

data. First, the distance of each group of users from their peers’ spending is monotonically

related to users’ change in spending – the further the group is from the peers’ spending level,

the higher the change in their spending, irrespective of the sign. The second fact is a substantial

asymmetric sensitivity of users’ change in spending to their distance from peers’ spending based

on whether the group of users spend more or less than their peers.

As an aside, note the average subscriber underspends compared to his/her peers. This
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detail is likely driven by the fact that peers’ spending is computed in one specific month,

July 2017. Because our regressions include a constant, the constant captures any systematic

difference between the change in spending of all subscribers and peers, and hence this feature

of the data does not confound our baseline results.

We repeat the analysis described above more formally by estimating the following set of

linear equations by ordinary least squares:

∆Spendingi = β0 + β1 Distance from Peersi + εi, (1)

We standardize the distance to peers so that the β1 coefficient can be interpreted as the

association between a standard-deviation increase in Distance from Peersi and the change

in spending after users sign up to Status. We estimate this specification separately for users

above and below the spending of their peer group.

The results for estimating equation (1), reported in Table 3, show the distance to peers’

spending impacts users’ change in spending in both directions. Subscribers far away from the

average spending of their peer group are the ones that change their spending by more relative

to other users. The relationship between distance and change in spending is monotonic in both

directions.

Table 3 also confirms the asymmetric sensitivity to peer spending based on whether the user

over- or underspends before signing up for Status. Users who learn they underspend compared

to the peers barely change their spending attitude. They increase their consumption by $183

(Panel A), which corresponds to an income-normalized increase in spending of only 1% (Panel

B). To the contrary, subscribers who learn they over-consume cut their spending by $1,126

(Panel A) and their income-normalized spending by 9.3% (Panel B), compared to their pre-

subscription spending.

Overall, our analysis suggests subscribers who learn they are overspending compared to

their peers cut their monthly spending substantially by an average of 3% of their monthly

income, and the cut is proportionally larger the more subscribers overspend compared to

peers. Subscribers who learn they underspend compared to their peers (barely) react to this
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news by increasing their spending by 1% of their monthly income.

4.1 Multivariate Analysis

The baseline results reported in Table 3 do not partial out user characteristics. In Table 4, we

repeat the analysis of Panel B of Table 3 including demographic controls on the right-hand

side. We estimate:

∆Spendingi = β0 + β1 Distance from Peersi + γ ′xi + εi, (2)

where the vector of controls xi contains asset balance, income, home ownership, credit score,

age, age-squared, and debt balance. The coefficient estimates on Distance from Peersi remain

largely unchanged relative to the univariate counterpart. The below-peer-spending coefficient

changes from -1.01 to -1.20. The above-peer-spending coefficient changes from -9.34 to -11.95—

both statistically significant at the 1% level. Among the controls, the only regressor significant

at the 5% level across all specifications is Asset Balance, which suggests the higher the amount

of assets available to users, the more users increase their spending after signing up for Status.

4.2 Heterogeneous Effects across Income Levels

After having tested for the baseline effects of peer-spending information on subscribers’ spend-

ing decisions, we move on to assess the potential heterogeneity of the effects across user char-

acteristics. Take income level as an example. One could think of arguments suggesting the

effects might both be stronger and weaker at lower levels of income. On the one hand, individ-

uals with lower income might react more to overspending because they have fewer resources

to hire financial advisors, and hence the information about peers might be more useful to

them. On the other hand, lower-income individuals might have less discretionary spending

than others, making it hard for them to change their spending in the short run irrespective of

the information they receive regarding their peers.

Figure 6 reports the results for estimating the baseline regression of the change in nor-
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malized spending over income on indicator variables for whether the subscriber overspends

with respect to his/her peers. Each subfigure reports the results for estimating the coefficients

separately across four quartiles of income. Lower-income subscribers react more when they

learn they overspend relative to higher-income subscribers that learn they overspend.

To test more formally whether the sensitivity of spending differences to the distance from

peer spending changes systematically across income groups, we estimate the following linear

regression by ordinary least squares:

∆Spendingi = β0 + β1 Distancei +

3∑
j=1

δj Distancei × Incomei,j + γ ′xi + εi, (3)

where ∆ Spending i is the change in spending of individual i after signing up for Status;

Distancei is the difference in spending between individual i and the average spending of his/her

peer group at the time of sign-up and xi is a vector of control variables. The vector of control

variables contains Asset Balance, the total asset quartile dummy of the client at the time of

signup; Income, the income quartile dummy; Credit Score, the credit score quartile dummy to

which the user belongs at the time of signup; Debt Balance, the debt balance quartile dummy

at the time of signup; Age and Age2, the user’s age and squared age; Home Ownership, an

indicator variable for whether the user is a homeowner. We report the estimated coefficients

for Distancei and the interaction between Distancei and the quartile dummies of the control

variables. In all cases, the base case is the fourth quartile.

Table 5 reports the results. The estimates computed across all customers show the ones

in the higher-income quartile react the least. The coefficient on the distance to peers is −2.28

and significant at the 1% level. The coefficient estimate on the interaction between spending

with respect to peers and income decreases monotonically with income. It equals −2.73, for

the third income quartile, −4.66 for the second income quartile, and −6.32 for the first income

quartile—all significant at the 5% level. As a result, the sensitivity to peer spending equals

−6.32 − 2.28 = −8.60 for the lowest income quartile, −4.66 − 2.28 = −6.94 for the second

16



income quartile, and −2.73− 2.28 = −5.01 for the third income quartile. For users below peer

spending at signup, none of the interactions are significant, indicating very little heterogeneity

in the response across various income groups among underspenders.

For the users above peer spending at signup, on the other hand, we find the coefficient on

distance is economically large: −5.20 (top income quartile) and significant at the 5% level. The

coefficient on the interaction between spending distance and an indicator for the lowest income

quartile is also economically large: −29.59 significant at the 1% level. Also, the estimate for

the second income group is economically large: −7.26 significant at the 1% level. These results

indicate the two lowest income quartiles have a higher sensitivity to excess spending than

wealthier individuals.

4.3 Heterogeneous Effects across Spending Categories

The results computed so far are estimated using clients’ total spending. We now exploit the

richness of the categorization of transactions into spending categories we observe in the data.

As a first pass, we categorize spending into discretionary and non-discretionary spending,

as described in section 3. Intuitively, we would expect that most of the users’ reaction in

terms of change in spending involves discretionary spending, because users can barely reduce

non-discretionary spending and might have no reason to increase it.

We re-estimate the baseline results separately for the two types of consumption. The results,

reported in Figure 7, suggest that, as conjectured, the vast majority of spending changes are

related to changes in discretionary spending. As shown in subfigure (a), overspending users

cut their discretionary spending substantially more than underspenders. Subfigure (b) shows

instead that individuals barely react in terms of non-discretionary spending. The regression

line is flat both above and below zero, indicating investors do not adjust their non-discretionary

consumption.

Although many of the individual spending categories do not display much of a reaction

– some categories are noisy – at least two categories display intriguing results. The first is

checking-account withdrawals. As shown in subfigure (a) of Figure 8, checking withdrawals
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respond dramatically to information about peer spending in both directions. This phenomenon

might occur for a number of reasons. Cash is mainly used for incidental expenses (Bagnall,

Bounie, Huynh, Kosse, Schmidt, Schuh, and Stix, 2014) and for transactions consumers want

to keep anonymous (Acquisti, Taylor, and Wagman, 2016). The latter group might include

both legal and illegal entertainment expenses. One interpretation of this result might be that

individuals limit their spending on vices once they discover they overspend relative to their

peers, although the data at hand do not allow us to ultimately pin down how users employed

the cash they withdrew before signing up to Status.

The second spending category we consider is the amount spent to service loans and credit-

card debt, reported in subfigure (b) of Figure 8. Individuals seem more reluctant to take

out loans and might reduce their borrowing through credit cards when they find they are

overspending relative to their peers.

5 Is the Effect of Information about Peers Causal?

In addition to the baseline results reported so far, we now present the estimates from an

identification strategy that tests whether the effects we uncover are causal. This concern is

relevant because subscribers might decide to sign up to Status Money only after they have

already realized they are overspending. In this case, subscribers could use Status Money as

an app that allows them to track their aggregate spending simply by consolidating all the

spending accounts. If the latter interpretation is true, overspending subscribers might be

completely uninterested in the information regarding peers, and they might start to cut their

spending after sign up merely because they had already decided to do so before subscribing.

To tackle this potential issue, we move on to analyze a set of “identification subsamples,”

that is, subsamples of subscribers for which the potential external motives to cut spending

on top of peer information are identical. For this reason, any systematic difference in the

change in spending across subscribers in the identification samples cannot be attributed to

external motives and should be attributed to the causal effect of peer-spending information.

To construct our identification samples, we exploit a feature of the design of peer groups on
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Status Money that allows for a regression discontinuity identification design (RDD).

The intuition behind the design is that subscribers’ income is a continuous variable, and

small differences in income capture similar subscribers. For instance, if a subscriber reports

an annual income of $99K and another subscriber reports an annual income of $100K, the

two subscribers are similar. At the same time, though, the design of peer groups follows

discontinuous thresholds based on subscribers’ income. For instance, one threshold is set

between $75K and $99K, and the adjacent threshold is set between $100K and $150K. Based

on this design, subscribers who report an income of $99K will receive information about the

average spending of peers whose income is between $75K and $99K, whereas similar subscribers

who report an income of $100K will receive information about the average spending of peers

whose income is between $100K and $150K.

Although the two subscribers are similar, one of them faces a peer group that spends, on

average, substantially less than the other, and hence the extent of the information treatment

will be larger for overspenders with $99K income than for overspenders with $100K income.

We extend this intuition to subscribers just below and at each of the income thresholds that

Status Money uses to define peer groups, that is, $35K, $50K, $65K, $75K, $100K, and $150K.

For each threshold, we only keep the clients who are at the lower threshold of the group, as

well as those clients who are in the lower income group but are within $3K of the threshold.

Taking the $100K threshold as an example, we only keep those who declare $100K in annual

income, as well as those with an income between $97K and $100K. We then undertake a

two-stage-least-squares strategy. In the baseline strategy, we estimate the following first-stage

specification:

Peer Spending i = α+ β Dummy Above i+ εi, (4)

where Peer Spending i is the peer-spending value for user i, Dummy Above i is a dummy

variable for whether the income is exactly equal to the lower-bound of a threshold. In the

second stage, we use the instrumented Peer Spending i in equation 4 as the main covariate
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in the following specification:

∆Spendingi = α+ β Peer Spending i
∧

+ εi, (5)

where ∆Spendingi is the change in consumption before and after signing up.

The results—reported in Panel A of Table 7—show the instrument in the first step is not

weak, because the t-statistic associated with Above dummy exceeds 18 across all specifications.

The second-stage results reported in Panel B show the causal effect of a higher threshold is

positive and significant across all specifications. The t-statistics are always greater than 2.5

and stable across specifications. Economically, the coefficients range from 0.77 (associated with

the $5K threshold) to 0.98 (associated with the $3K threshold), indicating a unit increase in

peer-group spending causes an increase of between 77 and 98 cents in the users’ spending.

6 Do Users Really React to Peer Information? Es-

timating the Kink’s Location

A limitation of the results reported so far is that we imposed the threshold between those

reacting positively and those reacting negatively to information at the point of no distance

from the average peer’s consumption. But if individuals were not basing their reaction only on

the value of peers’ consumption that Status shows them, the actual threshold might fall at a

value different from 0. For instance, because Status provides information not only about peers’

spending, but also about users’ own average monthly income as well as average US consumer

spending, users might react to a combination of these pieces of information. Although this

possibility would still entail an effect of providing users with information on their spending, in

this case, we would not be able to conclude users react to information about peers. Moreover,

our results so far do not allow testing whether the regression slope coefficients are statistically

different below and above the threshold.

We address these concerns in two ways. In this section, we estimate the location of the
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threshold non-parametrically using two complementary approaches. In the next section, we

estimate the effect of the distance of users’ spending from points other than peer spending

(average monthly income and average US consumer spending) on users’ spending change after

signup.

To estimate the location of the threshold non-parametrically, the first approach builds

on Hansen (1996, 2000). It estimates a threshold model with unknown threshold. To build

intuition, consider the case of one regressor. The threshold regression estimates the optimal

threshold for a linear model that has different intercept and slope estimates below and above

the threshold. Hansen (1996) also proposes a test for whether the coefficient estimates below

and above the threshold are statistically different from each other.

For the second approach, we follow Hansen (2017) and estimate a regression kink model

with unknown threshold. This model is similar to the one described above, but does not allow

for discontinuities. The approach is thus similar to estimating a linear spline model that has a

single endogenously determined node. Hansen (2017) also develops the asymptotic theory to

make statistical inference about the threshold.

6.1 Threshold Regression Results

We estimate the threshold regression model on the full set of 17,673 observations and report

the results in Panel A of Table 6. The first two columns report the linear regression on the

full sample. Columns 2 and 3 (4 and 5) repeat the estimates below (above) the endogenously

determined threshold.

The threshold is precisely estimated to be 0.235, with a 95% confidence interval of [0.233;

0.237]. The heteroskedasticity-consistent Lagrange multiplier test for a threshold developed

by Hansen (1996) rejects the null of no threshold with a p-value of 0.00.

The regression estimates below and above the threshold are similar to the ones reported in

Panel B of Table 3. The coefficient equals -1.01 (significant at the 1% level) for the customers

below peer consumption. The coefficient is instead -11.09 (significant at the 1% level) for

those above peer consumption. Subfigure (a) of Figure 9 presents a binned scatterplot of the
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threshold regression estimates.

Kink Regression Results

Panel B of Table 6 reports the results for the regression with endogenous kink.The threshold is

estimated at 0.546, with a 95% confidence interval of [0.34; 0.77], and the null of no-threshold

is rejected with a p-value of 0.00. The constant is not statistically different from zero.

The coefficient on the spending difference equals -0.726 below the threshold and is sta-

tistically different from 0. The coefficient above the threshold is instead 15 times larger (in

absolute value), as the coefficient equals -11.197. This result indicates, once again, that in-

vestors who overspend are much more responsive to peer-group-spending information relative

to individuals who underspend.

7 Understanding the Mechanisms: Learning, Peer

Pressure, Overreacting to Negative News

In this section, we discuss the economic channels that might help explain the facts we have

documented so far. As we discussed in the introduction, three non-mutually-exclusive channels

might contribute to the results.

The first is a neoclassical channel – Bayesian updating. Users might believe crowdsourced

information about peers’ spending contains valuable information regarding the optimal spend-

ing rate and might update their beliefs accordingly. Even if any individual peer might not

be optimizing their spending based on the users’ own characteristics, users might think the

average spending of a large group of peers provides a valuable signal. We label this channel

wisdom of the crowds (e.g., see Da and Huang, forthcoming). This channel does not involve

any non-standard assumptions about users’ preferences or beliefs and could explain both the

convergence of users’ spending to peers’ spending, as well as the monotonic relationship be-

tween the distance of users from their peers and the size of the reaction – convergence requires

a stronger reaction the further away users’ spending is from the spending of their peers.

At the same time, the wisdom-of-the-crowds channel can barely explain the asymmetry of
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the reaction based on whether users overspend or underspend relative to their peers. Under the

wisdom-of-the-crowds interpretation, the reactions of users should be similar in absolute value

and symmetric with respect to the kink – the point of zero distance from peers’ consumption –

whereas we observe a substantially stronger reaction by users who overspend relative to users

who underspend. Thus, the wisdom-of-the-crowds channel cannot fully explain all our results.

Note one could consider a non-Bayesian alternative of this channel – conformism. Under

conformism, individuals obtain utility from mixing with the crowd and reducing their idiosyn-

crasies relative to their peers. But in this case, to explain the asymmetric reaction around the

kink, we would need to assume conforming to peers from a worse starting point looms larger

to individuals than conforming to peers from a better starting point.

The second channel we consider is peer pressure. By peer pressure, we mean individuals

dislike to perform worse than their peers. In the context of spending, if users were told they

overspent relative to peers, they might want to amend this behavior and cut their spending,

because they obtain utility from perceiving their financial health is not worse than that of their

peers. Note the version of peer pressure we propose can help explain the stronger reaction by

users who overspend relative to peers, but is unlikely to explain the (slight) convergence of

underspenders to their peers’ level of spending. Underspenders perform better than their peers

in terms of financial health, and hence if peer pressure were the only channel at play, they would

not change their behavior after they sign up to Status.

The third channel we consider is overreaction to negative news. This channel is a modi-

fication of the wisdom-of-the-crowds channel that adds a non-Bayesian assumption regarding

individuals’ reaction to learning from information to account for our results in both the over-

spending and underspending domains. Overreaction to negative news suggests individuals

learn from the information we provide them, as if peers’ spending is a valuable signal, but

negative news loom larger for them than equally-sized positive news. This channel would pre-

dict both overspenders and underspenders react to obtaining information about their peers,

but overspenders react more than underspenders at the same distance from their peers. In

principle, this channel could explain all our baseline facts.
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Disentangling the three channels above in field data, which include no randomized exposure

to different pieces and types of news, is challenging. We propose a set of tests and arguments

to assess the potential role of one or more of the channels and their relative magnitude.

First, recall that Bayesian learning seems the only plausible channel to explain the reaction

of underspenders. We could thus conjecture that the size of the reaction we document in

the underspending domain is the effect of Bayesian learning. At the same time, the wisdom-

of-the-crowds channel predicts a symmetric reaction around the kink for overspenders and

underspenders. We could thus use the size of the reaction in the underspending domain to

obtain a lower bound for the size of the reaction of overspenders due to non-Bayesian channels.

This lower bound is the difference between the size of the reaction we document and the size

of the reaction of underspenders. Although we do not have a structural model to interpret the

magnitudes of the reactions in our paper, Panel B of Table 2 documents the absolute value of

the normalized change in users’ monthly spending is three times larger for overspenders than

for underspenders. Under our conjecture, this result would suggest non-Bayesian channels

might explain most of overspenders’ reaction.

We propose a set of direct tests aimed at disentangling the two non-Bayesian channels we

propose – peer pressure and overreaction to negative news. These tests exploit a feature of

Status we have not exploited so far. As Figure 1 in the introduction shows, Status users observe

information not only about their own spending and the spending of peers, but also about the

(i) average spending of all US households and (ii) their own average monthly income.

Under the peer-pressure channel, we should find that overspending users’ reaction in terms

of reducing their spending should be most sensitive to the distance of their spending from their

peer group. The reaction should be less sensitive to the distance between overspending users

and the average US household or users’ own average monthly income. This prediction stems

from the fact that reacting to overspending with respect to one’s own income has nothing to do

with comparing oneself with peers. Moreover, the information about peers is explicitly labeled

as such, and Status is marketed as providing crowdsourced and tailored information about

one’s own peers based on similar demographic characteristics. Users should thus interpret this
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piece of information as more representative of peers’ spending than the information about the

average US household.

Under the overreaction-to-negative-news channel, instead, users should react most to the

worst piece of news they obtain from Status, that is, the information that is furthest away

from their spending among peers’ spending, average US households, and average income.

Across the four panels of Table 8, we regress overspending users’ change in spending on

the distance of their pre-sign up spending from four different points – peers’ spending (Panel

A), the average US household’s spending (Panel B), users’ average income (Panel C), and the

maximum distance among these three (Panel D). Across columns, we start with the results

for the full sample and exclude alternatively the top decile, quintile, or tercile of the sample

to ensure none of our results are driven by outliers or extreme reactions. Across the board

and for each subsample, the coefficients attached to the distance between users’ spending and

peers’ spending are systematically larger than any of the other coefficients. In particular, the

coefficients on the distance from peers are about three times as large as those on the distance

from the average US household and more than 50% larger than those on the average users’

income and the maximum distance across any three values.

8 Conclusions

We document five effects of providing individuals with crowdsourced information about their

peers’ spending through a FinTech app. First, all the users who overconsume with respect to

peers reduce their spending, and all the users who underconsume keep constant or increase

their spending. Second, users’ distance from their peers’ spending affects the reaction mono-

tonically in both directions. We interpret these facts as consistent with convergence after

learning about peers’ spending. Third, users’ reaction is severely asymmetric – overconsumers

cut spending substantially more than underconsumers increase it. Fourth, the reaction is sub-

stantially larger for lower-income users. We argue these two results are not consistent with

Bayesian updating but might be driven by peer pressure or the fact that bad news looms

larger than (equally-sized) good news. Fifth, discretionary spending drives the reaction in
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both directions and especially cash withdrawals, commonly used for incidental expenses and

transactions for which individuals want to maintain anonymity. Users thus cut the potentially

unnecessary expenses to the benefit of their whole household.
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(a) User Profile (b) Peer Group Information

Figure 2
Peer Group for a Sample Account
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Figure 3
Status Home Page
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Figure 4
Distribution of Monthly Spending by Income Quartiles
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(a) Changes in Spending (b) Changes in Spending Normalized by Income

Figure 5
Distance from Peers’ Spending and Changes in Spending after Signup

This figure shows binned scatterplots of changes in overall consumption after signing up for Status
and differences in consumption between individuals and their peer group at the time of sign-up. The
x-axis measures the difference in consumption with respect to peers, normalized by its standard
deviation. The y-axis in subfigure (a) reports results for dollar changes in spending, computed
using two months before and after signup. The y-axis in subfigure (b) normalizes the changes in
consumption by income. The binned scatterplot divides the 17,500 users in 100 groups. In addition
to the scatterplot, we report in red the fitted values of a threshold regression that estimates different
linear regression coefficients below and above the zero threshold.
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(a) First Income Quartile (b) Second Income Quartile

(c) Third Income Quartile (d) Fourth Income Quartile

Figure 6
Distance from Peers’ Spending and Changes in Spending after Signup—by Income
Quartiles

This figure shows binned scatterplot of changes in overall consumption after signing up for Status
and differences in consumption between individuals and their peer group. In all subfigures, the
x-axis measures the difference in consumption with respect to peers, normalized by its standard
deviation. The y-axis reports results for dollar changes in spending normalized by income, computed
using two months before and after sign-up. Each subfigure reports the results for an income quartile
and the binned scatterplot divides the users in each income quartile in 100 groups. In addition to
the scatterplot, we report in red the fitted values of a threshold regression that estimates different
linear regression coefficients below and above the zero threshold.
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(a) Discretionary Spending (b) Non-Discretionary Spending

Figure 7
Distance from Peers’ Spending and Changes in Spending after Signup—Discretionary
and Non-discretionary Spending

This figure shows binned scatterplots of changes in discretionary and non-discretionary consumption
after signing up for Status and differences in consumption between individuals and their peer group.
In all subfigures, the x-axis measures the difference in consumption with respect to peers, normalized
by its standard deviation. The y-axis reports results for dollar changes in spending normalized by
income, computed using two months before and after sign up. Subfigure (a) reports the results
for discretionary consumption. Subfigure (b) reports the results for non-discretionary consumption.
Each binned scatterplot divides the 17,500 users into 100 groups. In addition to the scatterplot,
we report in red the fitted values of a threshold regression that estimates different linear regression
coefficients below and above the zero threshold.
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(a) Checking Account Withdrawals (b) Consumer Loan Fees and Interest (incl. Credit Cards)

Figure 8
Distance from Peers’ Spending and Changes in Spending after Signup—Withdrawal
from Checking Accounts and Consumer Loan Fees

This figure shows binned scatterplots of changes in checking-account withdrawals and changes in
the loans taken out by users after signing up for Status and differences in consumption between
individuals and their peer group. In all subfigures, the x-axis measures the difference in consumption
with respect to peers, normalized by its standard deviation. The y-axis reports results for dollar
changes in spending normalized by income, computed using two months before and after sign-up.
Subfigure (a) reports the results for checking-account withdrawals. Subfigure (b) reports the results
for fees and interest paid on consumer loans the users takes, which includes credit-card debt. Each
binned scatterplot divides the 17,500 users in 100 groups. In addition to the scatterplot, we report
in red the fitted values of a threshold regression that estimates different linear regression coefficients
below and above the zero threshold.
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(a) Threshold Regression with Unknown Threshold

(b) Kink Regression with Unknown Threshold

Figure 9
Distance from Peers’ Spending and Changes in Spending after Signup—Endogenous
Threshold Models

This figure reports the fitted values of a threshold regression model, with the optimal threshold
estimated using the procedure in Hansen (2000) in subfigure (a). Subfigure (b) reports the fitted
values of a kink regression model with the optimal threshold estimated using the procedure in
Hansen (2015). In addition to the fitted values, subfigure (b) reports 90% confidence intervals.
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Table 1. Summary Statistics

Observations Mean St. Dev.

Age 17,673 30 7

Credit Score 16,335 728 84

Home Ownership 17,676 0.38 0.49

Annual Income ($) 17,598 90,055 61,796

Assets ($) 15,325 42,462 68,066

Debts ($) 12,332 29,971 64,637

Monthly Spending (Total) ($) 17,676 4,334 4,073

Monthly Spending (Discretionary) ($) 17,676 2,772 2,906

Monthly Spending (Non-Discretionary) ($) 17,676 680 679

Monthly Spending (Other) ($) 17,676 882 1,475

This table reports summary statistics of the main variables used in the paper. For each variable,
we report the number of observations, the average, and the standard deviation.
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Table 2. Spending Changes after Signing up for Status

Panel A. Dollar-Value Changes in Spending

Below Peers Above Peers
Coeff. t-stat Coeff. t-stat

∆Spending 142.24∗∗∗ (5.84) -474.01∗∗∗ (-7.81)

Observations 13,596 4,080

Panel B. Spending Changes Scaled by Income

Below Peers Above Peers
Coeff. t-stat Coeff. t-stat

∆Spending 0.924∗∗∗ (4.27) -3.079∗∗∗ (-5.25)

Observations 13,596 4,080

This table presents results for changes in spending after signing up for Status. Panel A
reports results for dollar changes in spending, and Panel B scales the changes in spending
by income. Within each panel, changes in spending are computed for clients with below-
peer spending in columns 1 and 2, and for clients with spending above peers in columns
3 and 4. Spending changes are computed using two months before and after sign-up. To
account for cyclicality in monthly spending, we deduct from the change in spending of
each client the average change in spending across all the clients who signup in the same
month.
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Table 3. Distance from Peers’ Spending and Spending
Changes after Signup

Panel A. Dollar-Value Changes in Spending

Below Peers Above Peers
Coeff. t-stat Coeff. t-stat

Difference from Peers -182.6∗∗∗ (-5.56) -1,126.4∗∗∗ (-12.40)

Constant -30.5 (-0.77) 307.4∗∗∗ (3.54)

Observations 13,596 4,077

Panel B. Spending Changes Scaled by Income

Below Peers Above Peers
Value t-stat Value t-stat

Difference from Peers -1.01∗∗∗ (-3.48) -9.34∗∗∗ (-10.57)

Constant -0.03 (-0.10) 3.41∗∗∗ (4.03)

Observations 13,596 4,077

This table reports results for the sensitivity of spending changes to peer consumption.
We estimate the following simple linear regression by ordinary least squares:

∆ Spendingi = β0 + β1 Distance from Peersi + εi,

where ∆ Spendingi is the change in spending of individual i after signing up for Status,
and Distance from Peersi is the difference between the spending of individual i and
the average spending of his/her peer group at the time of signup. Spending changes
are computed using two months before and after signup. To account for cyclicality in
monthly spending, we deduct the average change in spending across all users who signup
in the same month from the change in each user’s spending. Distance from Peersi is
standardized so that the coefficient estimates represent the relation between spending
changes and a standard-deviation increase in Distance from Peersi. Panel A reports
results for dollar changes in spending, and Panel B scales the changes in spending by
income. Within each panel, regression estimates are computed for users with below-peer
spending in columns 1 and 2, and for users with above-peer spending in columns 3 and
4.
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Table 4. Distance from Peers’ Spending and
Spending Changes after Signup: Multivariate Analysis

All Below Peers Above Peers
Value t-stat Value t-stat Value t-stat

Distance -4.24∗∗∗ (-10.85) -1.20∗∗ (-2.14) -11.95∗∗∗ (-5.87)

Asset Balance 0.97∗∗∗ (3.39) 0.87∗∗∗ (2.73) 2.38∗∗ (2.42)

Income -0.40 (-0.40) -0.77 (-0.63) 3.00 (1.21)

Home Ownership 1.95∗ (1.94) 2.63∗∗ (2.15) -0.20 (-0.07)

Credit Score 0.00 (0.29) -0.00 (-0.17) -0.01 (-0.28)

Age 0.04 (0.09) -0.45 (-1.02) 1.19 (0.95)

Age2 -0.00 (-0.04) 0.01 (1.13) -0.01 (-0.88)

Debt Balance 0.42∗∗ (2.46) 0.42∗∗ (2.30) 0.25 (0.46)

Constant -11.52 (-0.88) 6.79 (0.50) -70.59∗ (-1.82)

Observations 9,597 6,826 2,771

This table reports results for the sensitivity of spending changes to peer consumption.
We estimate the following simple linear regression by ordinary least squares:

∆ Spendingi = β0 + β1 Distance from Peersi + γ ′xi + εi,

where ∆ Spendingi is the change in consumption of individual i after signing up for
Status, Distance from Peersi is the difference in consumption between individual i and
the average spending of his/her peer group at the time of signup, and xi is a vector of
control variables. Spending changes are computed using two months before and after
signup and are scaled by income. To account for cyclicality in monthly spending, we
deduct the average change in spending across all users who signup in the same month
from the change in each user’s spending. Distance from Peersi is standardized so that
the coefficient estimates represent the relation between spending changes and a standard-
deviation increase in Distance from Peersi. The vector of control variables contains the
following: Asset Balance, the user’s total assets at the time of sign-up; Income, the users’
income; Home Ownership, an indicator variable for whether the user is a homeowner;
Credit Score, the user’s credit score at the time of signup; Age and Age2, the user’s age
and squared age; and Debt Balance, the debt balance at the time of sign up. Within
each panel, regression estimates are computed for all users in columns 1 and 2, for users
with below-peer spending in columns 3 and 4, and for users with above-peer spending in
columns 5 and 6.

41



Table 5. Distance from Peers’ Spending and
Spending Changes after Signup: Heterogeneity

All Below Peers Above Peers
Value t-stat Value t-stat Value t-stat

Distance -2.282∗∗∗ (-7.19) -0.884∗ (-1.89) -5.196∗∗ (-2.56)

Distance × Income 1 -6.319∗∗ (-2.20) 2.239 (0.72) -29.591∗∗∗ (-2.69)

Distance × Income 2 -4.662∗∗∗ (-4.25) 0.500 (0.32) -7.257∗ (-1.65)

Distance × Income 3 -2.735∗∗∗ (-3.99) -0.094 (-0.10) -5.379 (-1.64)

Constant -4.742 (-0.65) 6.186 (0.87) -22.891 (-0.88)

Other Controls X X X
Observations 12,256 9,247 3,009

This table reports results for the sensitivity of spending changes to peer consumption. We
estimate the following simple linear regression by ordinary least squares:

∆ Spendingi = β0 + β1 Distancei +
3∑

j=1

δj Distancei × Incomei,j + γ ′xi + εi,

where ∆ Spendingi is the change in spending of individual i after signing up for Status,
Distancei is the difference in spending between individual i and the average spending of his/her
peer group at the time of signup, and xi is a vector of control variables. Spending changes
are computed using two months before and after signup and are scaled by income. To account
for cyclicality in monthly spending, we deduct the average change in spending across all users
who signup in the same month from the change of each user’s spending. Distancei is stan-
dardized so that the coefficient estimates represent the relation between spending changes and
a standard-deviation increase in Distancei. The vector of control variables contains the follow-
ing: Asset Balance, the user’s total asset quartile dummy at the time of signup; Income, the
income quartile dummy; Credit Score, the credit score quartile dummy at the time of signup;
Debt Balance, the debt balance quartile dummy at the time of sign-up. Age and Age2, the
user’s age and squared age; and Home Ownership, an indicator variable for whether the user is
a homeowner. We report the estimated coefficient estimates for Distancei and the interaction
between Distancei and the quartile dummies of the control variables. In all cases, the base
case is the fourth quartile. Within each panel, regression estimates are computed for all users
in columns 1 and 2, for users with below-peer spending in columns 3 and 4, and for users with
above-peer spending in columns 5 and 6.
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Table 6. Distance from Peers’ Spending and
Spending Changes after Signup: Endogenous Threshold models

Panel A. Threshold Regression Results

All Below Threshold Above Threshold
Value t-stat Value t-stat Value t-stat

Distance from Peers -2.52∗∗∗ (-11.79) -1.01∗∗∗ (-3.96) -11.09∗∗∗ (-7.81)

Constant -1.43∗∗∗ (-5.82) 0.07 (-0.19) 5.94∗∗∗ (4.27)

Observations 17,673 14,846 2,827

Threshold Estimate = 0.235; Confidence Interval = [0.233, 0.237]

Hansen (1996) Lagrange Multiplier for threshold: p-value = 0.00

Panel B. Kink Regression Results

Coeff. t-stat Low CI High CI

Constant -0.026 -0.05 -0.95 0.89
Below Threshold -0.726∗∗∗ -3.02 -1.13 -0.32
Above Threshold -11.197∗∗∗ -5.80 -15.15 -7.24

Threshold Estimate = 0.546; Confidence Interval = [0.34, 0.77]

Hansen (2015) Wald test for threshold: p-value = 0.00

This table reports results for endogenous threshold regressions estimating the sensitivity of
spending changes to peer consumption. In Panel A, we report the results for the threshold
regressions of Hansen (2000). The procedure automatically selects the optimal threshold and
estimates unconstrained linear regressions below and above the threshold. In addition to the
regression coefficient estimates, we report results for the threshold estimates, the confidence
interval for the threshold, and the p-value of the Hansen (1996) Lagrange Multiplier test for
the presence of a threshold. Panel B reports the results for the regression kink model with
an unknown threshold proposed in Hansen (2017). The procedure automatically selects the
optimal threshold and estimates a piecewise linear regression model that is continuous at the
threshold. In addition to the parameter estimates, we report results for the threshold estimates,
the confidence interval for the threshold, and the p-value of the Hansen (2017) Wald test for
the presence of a threshold.
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Table 7. Distance from Peers’ Spending and
Spending Changes after Signup: Two-Stage-Least-Squares Estimates

Panel A. First-Stage Estimates

$3K Thresh $4K Thresh $5K Thresh

Above dummy 2068.9∗∗∗ 2087.4∗∗∗ 2064.3∗∗∗

(18.67) (22.77) (24.39)

Constant 5145.1∗∗∗ 5126.6∗∗∗ 5149.7∗∗∗

(56.31) (73.73) (84.04)

Panel B. Second-Stage Estimates

$3K Thresh $4K Thresh $5K Thresh

Peer Spending i
∧

0.984∗∗ 0.825∗∗∗ 0.769∗∗∗

(2.53) (2.64) (2.66)

Constant -6473.8∗∗ -5323.6∗∗∗ -4921.1∗∗∗

(-2.51) (-2.66) (-2.70)

This table reports results for a two-stage-least-squares identification strategy that compares users just
below and users at each of the income thresholds that Status Money uses to define peer groups, that
is, $35K, $50K, $65K, $75K, $100K, and $150K. For each threshold, we only keep users who are at
the lower threshold of the group as well as users who are in the lower-income group, but are within
$3K of the threshold. Taking the $100K threshold as an example, we only keep users who declare
$100K in annual income as well as users with an income between $97K and $100K. We then estimate
the following first-stage specification:

Peer Spendingi = α+ β Dummy Abovei + εi,

where Peer Spendingi is the peer-spending value for user i and Dummy Abovei is a dummy variable
for whether the income is exactly equal to the threshold value. The results for the first stage are
reported in Panel A. In the second stage, we use the instrumented Peer Spendingi of the first stage
as the main covariate in the following specification:

∆ Spendingi = α+ β Peer Spending i
∧

+ εi,

where ∆ Spendingi is the change in consumption computed using two months before and after sign-up.
The results for the second stage are reported in Panel B. Within each panel, we report results for the
specification that uses a $3K threshold as well as two additional specifications that use $4K and $5K
thresholds, respectively.
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Figure A.1. Status Home Page
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