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Discounting in the Presence of
Scarce Ecosystem Services

Abstract

Discounting has to take account of ecosystem services in consumption and production. Previous
literature focuses on the first aspect and shows the importance of the relative price effect, for
given growth rates of consumption and ecosystem services. This paper focuses on intermediate
ecosystem services in production and shows that for limited substitutability and a low growth
rate of these ecosystem services, the growth rate of consumption, and thus the discount rate,
declines towards a low value. Using a Ramsey optimal-growth framework, the paper
distinguishes three cases. If ecosystem services can be easily substituted, then the discount rate
converges to the usual value in the long term. Secondly, if ecosystem services can be easily
substituted in production but not in consumption, the relative price effect is important. Finally,
and most interestingly, if ecosystem services cannot be easily substituted in production, the
discount rate declines towards a low value and the relative price effect is less important. Another
part of the previous literature has shown that a declining discount rate is the result of introducing
several forms of uncertainty, but this paper reaches that conclusion from an endogenous effect
on the growth rate of the economy.
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1. Introduction

Discounting is the way in which we relate the fetand the current costs and benefits
in cost-benefit analyses for public policy and pobjevaluation. Since the pioneering
work of Fisher and Krutilla (1975) and later Weitamn(1994), the literature has given
a lot of attention recently to the role and thatige scarcity of the natural environment
in the provision of ecosystem services (e.g., Gelesn2004; Weikard and Zhu, 2005;
Hoel and Sterner, 2007; Gollier, 2010; Traeger,120An important argument is that
the growth rates of the economy and the ecosyseguicses differ. This implies that
the usual assumption of constant relative pricesdwt hold, since the valuation of
environmental benefits relative to produced congionpgoods changes over time.
Cost-benefit analyses should either take the egdechange in relative prices into
account or use different discount rates for congion@and for ecosystem services. The
elasticity of substitution plays, of course, an artpnt role. This literature derives the
discount rate from the Ramsey rukith a reduced form for welfare depending on the
flow of consumption and on the quality of the enmiment. An interesting result is that
the change in relative prices, or the gap betwberdiscount rates, is proportional to
the difference between these growth rates, andrselyerelated to the elasticity of
substitution. Empirical work (Baumgartner et al130Koetse et al, 2016; Drupp, 2018)
shows that this gap is in the order of 1% and saneh the type and the role of the
ecosystem service that is considered.

A reduced form for welfare, with exogenous growdtes for consumption and for the
guality of the environment, does not take the déife roles of ecosystem services into
account. Ecosystem services can have a direct amehiie, but more often ecosystem
services have an intermediate role as an inpubfauio production. It follows that the
growth rate of consumption depends on the avaitglof ecosystem services and on
the possibilities of substitution. More specifigalechnological progress may drive the
economic growth, but growth may be restricted d®stem services in production do
not grow and cannot be easily substituted in prodncThis has an important effect
on the discount rate. The literature on changitafive prices assumes that the growth
rates of consumption and ecosystem services agearas and given. This paper adds
the endogenous effect of limited availability amdbstitutability of ecosystem services
on the growth rate of the economy, and therefortherdiscount rate.

5 The Ramsey rule yields the discount rate as tteeafapure time preference plus the product of the
elasticity of marginal utility and the growth rate.



In order to analyse the roles of ecosystem sendo#isin utility and in production, we
use a full Ramsey optimal-growth framework. Intedaée ecosystem services are a
factor of production and final ecosystem serviaesaa argument in welfare. In order
to allow for substitution, we use bothGES utility function and aCES production
function. We derive the steady-state conditionsbfmianced growth. If the elasticities
of substitution are high, we get the standard gnowte and discount rate in the long
run. However, if the elasticity of substitutionproduction is low, we get a low growth
rate in the long run, with a low discount rate giv®/ the Ramsey rule. If the elasticity
of substitution is high in production but low in M&e, we get a high growth rate in the
long run, but also the relative price effect thatsveonsidered in the extant literature.
Moreover, the full Ramsey framework allows consiaigthe paths of the growth rate
and the discount rate towards the balanced-grotetidg state. In this way, we can
show the effects of the limited availability andstitutability of ecosystems services
on the term structure of the discount rate.

An important conclusion is that when the restricti®@f the natural environment start
to kick in, the path of the discount rate is daalgtowards a very low level in the long
run. The term structure of the discount rate witlgrit the negative slope from the term
structure of the growth rate (Gollier and Hamn#@14). A declining discount rate also
results from various effects of uncertainty (Gol|l2002, 2010, 2013; Newell and Pizer,
2003; Weitzman, 2007, 2010). Several countries imapéemented this in their official
policy (Groom and Hepburn, 2017). The main idehat increasing uncertainty about
the growth rate of the economy increases the affafctisk aversion and of prudence,
assuming concavity of utility and convexity of miaa utility. We leave uncertainty
out in this paper, but it is clear that all argutsgooint in the same direction: a lower
discount rate in the long term. This is very impattfor cost-benefit analyses with a
very long time horizon, such as the costs and lisradfclimate change mitigation and
adaptation. A flat discount rate effectively metreat the benefits in the long run hardly
count, but a declining discount rate changes tbeia.

This paper provides a framework for analysing tifecés on the discount rate that are
caused by a possible low growth rate and limitdasstutability of ecosystem services.
It is, of course, an empirical question to detemrtime sectors for which this is relevant,
and to quantify the effects by determining grovdtes and elasticities of substitution.



Section 2 analyses the role of ecosystem servicpsoduction, using the full Ramsey
optimal-growth framework. Section 3 adds the rdleasystem services in utility, in
order to get the full picture with the three di#fat cases. Section 4 provides numerical
simulations to show the paths of the growth ratd the discount rate for the different

cases. Section 5 concludes.

2. Ecosystem servicesin production

Ecosystems are natural capital. Services from ates)s provide essential inputs (e.qg.
pollination, water quantity and water quality) ingioduction processes and thus have
production value. Ecosystems follow the dynamickiophysical processes. These are
influenced by human activities, but we abstraatfthis and take an exogenous growth

rate g. (positive or negative) for the ecosystems. Ecesystervices are either a stock

or a flow variable. For example, pollination th&tmportant for agricultural production
processes can be measured by the number of baeagighbouring wild area at some
point in time, which is a stock variable. A changé¢he wild area changes the number
of bees and therefore the pollination capacity. ey, extractions of water and other
resources to be used in production are flow vaemblVe simply assume here that the
availability or the quality of the stodk affects the production. We want to investigate

how the constant ratg. of growth (or de-growth) of this stodk affects the growth

rate of the economy.

We use the Ramsey optimal-growth framework, withsgstem services as an input in
the production function. This allows us to consiter effect of intermediate ecosystem
services on the growth rate of the economy andherdiscount rate.

In the Ramsey growth model the optimal allocatibm@estment and consumption is
determined by maximizing the integral of discountexifareU of consumptiorC over

time, subject to the accumulation of capKal

o max]z e ”U (C(1))dt,

K(t) = F(K(t), E(t), H (1)) - C(1), K(0)= Ky,



whereF denotes the (net) production functidgecosystem services, apdhe pure
rate of time preference. Effective labour inpl labour input scaled by human capital
and labour-augmenting technology. It grows at erogs constant ratg,, . Ignoring
population growth and human capital, we may sinmipfer to the growth ratg,, as

the rate of technical change. In order to captuedricreasing scarcity of the ecosystem

services, we assume throughout the paperdpat g,, .

The (consumption) discount factDris the marginal contribution to welfare of future
consumption relative to the marginal contributiorwtelfare of current consumption,

or the marginal rate of substitution:

(@) D(t) =e”U'(C(D)/ U'(X0)).

The (consumption) discount rates therefore the rate at which the discount fafztis,

r(t) =-D(t)/D(t), which implies:

3) rt) =p-U'(C(1))/U'(C(Y).

The discount rate reflects the additional minimumoant of consumption the society
requires at timé in exchange for giving up one unit of consumptbtimet — dt(with

dt arbitrarily small), without suffering a declinewelfare®

In problem (1), with the current-value Hamiltoni@mction G,

4) G(C,K,A)=U(C)+ A(F(K,E, H)- C),
the optimal allocation requires

U'(C) = A,

5 .
© A(t) = pA(t) = —F (K (1), E(t), H(1)A (1),

8 For the more general welfare functioifC,E), cf. below, we can write the consumption discaaité
asr(t) = p-U.(C(t),E(t)) /U.(C(t), E(t)), and we can similarly define an environmental disto

rate asr¥(t) = p U . (C (1), E(1)) / U (C(), E(1).



wherel denotes the shadow value of capital &#QdK (t), E(t), H (t)) the (net) marginal
product of capital. By comparing (3) and (5), iessy to see that optimality requires

that the discount rate, is exactly equal to the (net) marginal productapital, F, .

With a constant relative risk aversioBRRA utility function U(C)=C"" /(1-y),

wherey denotes the inverse of the elasticity of interterapsubstitution, substitution
of the first part of (5) into the second part of I&ads to the Keynes-Ramsey rule for

the optimal consumption path

(6) C(t) = y (R (K0, E(1), H(1) - p)C(1),

where a transversality condition has to hold. In order tothedptimal path of all the

variables, we have to solve the system:

K(t) = F(K(t), E(t), H(t)) - C(t), K(0)= K,,
C(t) =y (F (K(1), E(t), H(1) - p)C(1),
H(t) = g, H(t),H(0) = H,,

E(t) = g E(9, §0)= E.

(7)

The solution of (7) allows us to identify the tippath of the discount rate= F.

2.1 Cobb-Douglas production system with ecosyseemices

For a Cobb-Douglas production function, it is emsghow that the economy converges
to a steady state with balanced growth in whichgtioevth rateg depends on the growth
rates of technological change and ecosystem sestvice

Suppose that the production function is given by

(8) F°(K,E,H)= AK“E H™7,

whereA denotes total factor productivity ands and 1 « - f§ the respective shares of

capital, ecosystem services and labour-augmergtghnblogical change in production.



Defining the composite inpuX = EA#/“ ) H*#/®9) e can write production function

(8) as a Cobb-Douglas function withandX as inputs:

9) FP(K,X) = AK? X",

whereX grows at a constant exogenous atie weighted average of the growth rates

of ecosystem services and effective labour input:

(10) 0=(1-:2 Ja+ 12 e

1-a -a

It follows immediately that on a balanced growttihp@utputF°P and capitak grow

at rateg. Brock and Taylor (2010) have a comparable apprdaut they consider the
growth rate of the abatement technology in a probMéth environmental pollution.
Moreover, since the problem is now isomorphic ®¢tandard Ramsey growth model
with a Cobb-Douglas production function and an exuys constant rate of technical
change (where our composite inputeplaces the effective labour input in the staddar
model, e.g. Acemoglu (2009)), we can state th@wahg proposition:

Proposition 1 For the Cobb-Douglas production function (8), daenomy converges
to a balanced growth path along which output, coniion and capital grow at growth
rateg, given by (10), and the discount rate is constant.

If K, <(>)X,(aAl(p+yg)'* ™, the discount rate de(in)creases monotonically ove

time along the transition towards balanced growth.

Proof. It is convenient to define the variables= C/ X andk = K/ X and to rewrite

problem (1), usingX (t) = X, €', as follows:

c
1-y°
k()= f(k(D)- gk D~ ), f(R= AR, KO)= K/ X.

[ ~(o+(y-1D)o)t y 1y _
(11) max{ € X, U (c(t))dt,U(0)

The Keynes-Ramsey rule becomes



(12) ) =y (F'(k(®-p-yadi.

In the steady statg*, c*), consumptiorC, capitalK and outpuF*P grow at the same

rateg, and the discount rate is constant and given éyRilimsey rule

(13) f'(k) =p+yg

The specification of the production functibim (11) implies thatf'(k*) = a A k) 7
It follows from (13) thatK(t)/ X(t) =k* =(a AN (p+y9d)'“* along the balanced
growth path. The transitional dynamics is monotoifik(0) = K, / X, < (>)k*, then

k(t) converges t&* from below (above). It follows that the discouate de(in)creases

monotonically over time on the transition path. @E

Equation (10) for the growth ragghas an easy interpretation. If the ecosystem cesvi

grow at the same rate as the technolaogy, the economy grows at that rate as well,

but if the ecosystem services grow at a lower @nevegative rat@., the economy
grows at a lower ratg. This downsizing effect depends on the shfacé ecosystem
services in the production. We calibrate the madeh that it has a conventional value
of 0.3 for the share of capital and generates @evslightly below 2% for the balanced
growth rate (cf. Jones, 2016). We normalize theiemlofA, K, and X,, choose
conventional values for the utility paramete@ndy (cf. Nordhaus, 2008; Stern, 2006),
and choose a growth rate of the ecosystem sergloss to 0. With the following set

of parameter values:

y=145g, = 0.02p =g, = 0.001,
a=034=02A= 0.1K,= X, =

(14)
the discount ratef '(k) = a Ak is initially equal to 0.03, and it converges t02Z®,

according to (10) and (13). The stable manifolthefsystem consisting of (12) and the
second part of (11) yields the path for the distoater = f '(k) depicted in Figure 1.
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Figure 1 Time path for discount rate: the Cobb-Douglas case

2.2 CES production

The Cobb-Douglas production function of the pregiaub-section implies that the
production elasticities of each of the inputs arestants, i.e. no matter how scarce or
abundant an input is, a 1% increase has alwaysztine proportionate effect on output,
because the elasticity of substitution is oneh&durrent sub-section we generalize the
production function to &ESspecification in which production elasticitieserigr fall
with abundance, depending on whether the elastdigubstitution is above or below

unity. We specify th€ESproduction function as

g

(15) F(K,E,H)= A{ gK7 +BE7 +(1-a- ,B)Hgaljﬁ,

whereA denotes total factor productivity, # and 1 -a - S the respective shares of
capital, ecosystem services and labour-augmergigiblogical change in production,
ando the elasticity of substitution. It is conveniegin to aggregate the exogenously
growing inputs into a composite input, which weiagdenote byX. In this way, we
can write the production function a€&Sfunction of the endogenously evolving state

variableK and the exogenously evolving input variakle



F(K,X) = A{GKT +(1—a)xng_l ,
(16)

X(E, H)=(%]M,xl=ﬁE5, X, = (L-a-B)He .

It is easy to show that

XlgE + X2 g—l

(17) X(®)= g (OX(), g =5~

P ES &< s
where g, is the growth rate of the composite productioruir¥pof ecosystem services

and labour-augmenting technological change. Ttosvtr rateg, is the solution of a

simple differential equation, because it is strifimfward to show from (16) that

’ (t):a—l{xl(t)g?xz(t)gi _(X%(ha+ X0 91)2}:
(18) o L X+ X (X(+ X D)?

5.0 =22 ()~ 58,0~ )

The solution of the differential equation (18) is

o-1
(19) 9x (D) = gHé(g?E—g )t * e h= = g1
1+hes ™ (1-a-pB)H,°

which, of course, also follows directly from (17)6) and (7).

We have assumed that ecosystem services becortiealglacarcer over time, so that

0: < g, - Equation (19) shows that the growth rate of theagosite production input
X of ecosystem services and labour-augmenting téegical changeg, , converges
either to the growth rate of the ecosystem servigegif o<1) or to the growth rate

of the technological changg, (if o>1). If man-made inputs can easily substitute for

10



ecosystem services, the importance of the ecosyséewices in production declines
and technological change drives the economy irtite However, if man-made inputs
cannot easily substitute for ecosystem services|aw growth rate of the ecosystem
services restricts the growth possibilities of deenomy. The path of the growth rate

g, follows an (inverse) logistic growth curve. Itdsabetweerg. and g,, , and moves
down towardsg. or up towardsg,, , depending on the elasticity of substituteon

From (19) it follows that the initial conditiog, (0) is determined byg, and H, . If
o<1, so that the growth ratg, converges tay. in the long run, this initial condition
is close tog,, , if the variableh in (19) is close to O or iE, > H,. This means that if
ecosystem services are initially abundant, the groate g, starts close ta,, and it
only comes down in order to convergede when ecosystem services become scarce.
If o>1, so that the growth ratg, converges ta,, inthe long run, ecosystem services
do not become scarce because of substitution.

In the long run the economy will converge to a haé-growth path with the growth
rate of the economy equal t or to g,, . In order to identify the transient path of the
economy towards this long-run balanced-growth patid, to find the time path of the

discount rate, we have to solve the system (7).

We have the following proposition:

Proposition 2 With CESproduction function (15), the economy convergdabéosteady
state in which output, consumption and capital gabva common growth ratg and
the discount rate converges to the steady-statethht is given by the Ramsey rule

r=p+yg*. If the elasticity of substitutiomw <1, the steady-state growth rate of the
economyg*, equals the growth rate of the ecosystem servigedf the elasticity of

substitutiono >1, the steady-state growth rate of the econagiyequals the growth

rate of the technological changg, .

Proof. It is convenient to define the variables F/ K andv=C/ K, and to rewrite

the system (7). From the capital accumulation )nit7ollows that

11



K _

20
(20) KD

= u(t) - v(1).

The discount ratd-, becomes

ol E o1 1
(21) Fc=aA“ (—j =aA“° .

From the first part of (16), it is easy to showttha

(22) L0 K()K“)( e )X K()K“)

1-¢ (t t),

where the production elasticitsj, of capitalK is equal tos, =KF,/F =F, /u.

Using (20), (22) and (18), it follows that the ®yst(7) becomes

u(t) =[@- R )/ u®)(g (D+ A D- U] U,
(23) v(t) =[yH(Ru(®) =)+ U9 - Ud |\,
gx(H) = (U_l =D)(9x (1) = ge)(gx (D= gu),

where (19) gives the explicit solution of the thdlifferential equation. Accordingly, in

the long run, the growth ratg, converges to:

gc if o<1
(24) 1imgx(t):g*: g if o=1.
g, if o>1

The initial conditionu(0) is equal toF (K,, E,, H,) / K,, the initial condition ofg, (0)
is given by (19),E, andH,, but the initial condition of/(0) is not predetermined. The

u=0, v=0 and g, =0 isoclines are given by

12



(25) v=u-g,v=u-y(R(Y-p), g = ¢,

respectively. It follows that the steady statelod system (23) becomds?*, V¥, )

where

(26) Fe(U) =p+yd, v =1 -8

This means that the steady-state discount raiges @py the Ramsey rule. In the steady

state (U*, V¥, ¢) , output, consumption and capital grow at the seateg*, which is

given by (24). Q.E.D.

The path of the growth ratg, is fully characterized by (19), so that the sys(éB8) is

essentially a two-dimensional two-point boundarjueaproblem with an exogenous

time-dependent input. The phase diagram in the){plane is depicted in Figure 2.

e =0 2 _i=0 v=C/K

Yt

-
gy A
]

u=F/K usF/K

E Uy u, u,

Figure 2 Phase diagramsfor system (23)

The u=0 isocline is either the ling=u—-g. or v=u-g,. Thev=0 isocline cuts the
line v=u-g in (U, V), with u. =F*(0+yg.), and the linev=u-g, in (u,,v),
with u, = F*(p+yd,). In case the growth rate was fixed at eitggror g,, , we would

find standard stable manifolds throu@ly,v.) and (u,, Vv, ), respectively (see Figure

2). It is helpful to make the following thought etpnent. Suppose that the growth rate
is first equal tog,, but suddenly and unexpectedly dropgito(an unexpected tipping

point). It follows that the economy first jumpsthe stable manifold that is approaching

13



(u,, V) but when tipping is observed, the economy jumpihi¢ostable manifold that

is approachindug, v¢). In our case, we do not have an unexpected tigpamy so that
the economy will prepare for a decline in the gtowdte. As we have seen above in
(19): if the elasticity of substitutioor <1 and ecosystem services are initially abundant,
i.e. E;> H,, the growth rateg, starts close tay, and at some point comes down
and converges t@. . In Figure 2, this implies that the stable mamifof the system

(23) starts close to the upper stable manifolchenfigure and at some point, it comes
down and converges to the lower stable manifolthénfigure. In any case, the stable
manifold of (23) lies between those upper and thneel stable manifolds.

In order to derive results about the time pattdrthe discount rate, we take a closer

look at the phase diagram in Figure 2. We condigercase witho <1, in which the

economy converges in the long run to the balanceuddty steady stat¢u.,vc). For
any point in time, we can draw th& =0 isocline in the phase diagram in Figure 2 as
the linev=u- g, (9. This line is parallel to, and in between, the steepest lines in
Figure 2, which represem=u-g. andv=u-¢g,. We also know that over time this
lien is moving to the left, becausy, declines over time. If the stable manifold of the
system (23) starts to the right of this line, imoat cross this line, becauséas to move
down. This happens fau(0) > u,, but also foru(0)<u, in case the lines=u- g, (9

has already moved sufficiently to the left. However u(0)<u,, in case the growth
rate g, (t) is still close tog, , so that the linev=u- g, (1) is only very slowly moving

to the left, the stable manifold of (23) jumps Upse to the upper stable manifold, and
the economy starts moving up and to the right. Beedhe economy ultimately has to

converge to the balanced-growth steady sfatev;), it has to cross the=0 isocline,
so thatv starts moving down, and then it has to meet aosiscthe linev=u- g, (1), so

thatu starts moving to the left.

We can derive the slope of the stable manifold ftbensystem (23):

dv_v_ [V(F(u=-p)+v-u]v
(27) —=—= :
du U [A-FR(W/u(g+ v 9] u

14



It is immediately clear that when the stable mdditmosses the =0 isocline, the slope

is 0, and when it crosses the lime u— g, (1), the slope is infinite. In the last poirt,
and thus the discount ratg (u), changes direction and starts decreasing aftenpav
increased first (Figure 2, right-hand side parielyr >1, so that the economy converges
in the long run to the balanced-growth steady statev, ), the analysis is basically

the same, and a mirror of the analysis above.

We can derive an important qualitative conclusiamt the phase diagram in Figure 2.
If the economy starts with sufficiently abundanpuis X relative to capitaK, so that
u(0)= u,, and if substitution of ecosystem services is ppero <1, then the discount
rate declines monotonically over time, i.e. thentetructure is declining.

In order to find the precise time path of the distorate F, (u), we have to solve the
system (23), in order to find the time pathuofit is not possible to solve the system
(23) analytically, so that we have to resort to Bdoal methods. The time paths of the

growth rateg, and the exogenous inputsandE are given by (19) and (7), with the
initial conditions E;, and H,. Our algorithm fixes and, if necessary, adjustsne T,
where the growth ratg, has converged close §F. Then the algorithm calculates
H(T) and E(T), and uses the steady-state valuésand v* from (26) and (21) to
calculate the approximations &f(T), C(T) and F(T), with (15) and the definitions

u=F/K andv=C/ K. With these final values, a standard algorithntlier Ramsey
optimal-growth model yields the time paths forandF, and thus fou, and thus for
the discount rate, given by (21). We could alsolypp algorithm directly to the two-
point boundary value problem, but that would amdarthe same thing.

For o<1, g* is equal tog. . This is the case of limited substitutability afosystem

services in production. This is the most imporizage, since estimates of substitution
between different factors of production indicatatthatural resources and man-made
inputs are usually poor substitutes, with substituelasticities between 0.17 and 0.65
(van der Werf, 2008). We take the same parameteesas in (14). In order to calibrate

the model to the stylized fact that the averagecstral) growth rate has been trendless

over the past decades (e.g., Jones, 2016), wartdike values forE andH such that
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X, =1, according to (16), and, (0) = 0.99g,,, according to (19). Then it follows that
u(0) = F(K,, X,)/ K,= A= 0.1, so that the discount ratg (u) is again initially equal
to 0.03 (for allv) according to (21), and converges to 0.00245, raueg to (26). In the

phase diagram in Figure 2, this means that we istar0) = u, and that we jump to
the stable manifold close to the po(nt,, v, ), because the initial growth ratg (0) is
close tog,, . As long as the growth ratg, stays close t@,, , the optimal path hardly

moves but when the growth ragg, starts to decline, the line=u- g, (9 moves to

the left and the optimal path moves to the left aathes down, following the stable

manifold. The growth rateg, of the composite inpuX converges from the initial
0.0198 to the steady-state value, which is equatdi.e., 0.001). Consequently, the

discount rate follows the same pattern, startir@@3, staying just below 0.03 for some
time, and converging to 0.0245. Figure 3 and Figushiow the graphs for the growth
rate g, and the discount raté, (u), for different values of the elasticity of substion
o <1. For comparison, we also show the growth ratethadliscount rate for a value
of o>1. For this value, the growth ratg, of the composite input converges tay,,

(i.e., 0.02), according to (19), and the discoate converges to 0.03, according to (26).

Since we start withg, (0) close tog,, , the growth rate remains high, and the discount

rate is almost flat. If man-made inputs can easlilystitute for ecosystem services, the
standard flat discount rate is the right choica geterministic setting, but if man-made
inputs cannot easily substitute for ecosystem sesyviit is more appropriate to choose
a declining discount rate.

The patterns in Figure 3 and Figure 4 are intergsind intuitively clear. If the growth
rate and the discount rate decrease towards theisteady-state value, they decrease
faster in case the elasticity of substitutiors small. In that case, the effect of the low
growth rate of the ecosystem services is strongdrdaives down the growth rate of
the economy and the discount rate faster. Foryalis implies that if the substitution
possibilities are very limited, one can start vatldiscount rate of 3% but this number
decreases relatively fast in the long term. Ifghbstitution possibilities are better, but
with the elasticity of substitutiosm still smaller than 1, the decrease of the discoatet

in the long term is slower.
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Figure4 Time pathsfor discount rate: the CES case

An important conclusion is that we can get a daafjrdiscount rate. Uncertainty is the
usual argument for the declining discount rate [[©l2002, 2010, 2013; Newell and
Pizer, 2003; Weitzman, 2007, 2010), but in thidysiait is the effect of the low growth

rate of ecosystem services that are used in pratuahd cannot easily be substituted.
3. Ecosystem servicesin utility and production

We extend the model in the previous section in or@eonsider ecosystem services in

both the utility function and the production fureti We assume that the ecosystem
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services providing an amenity value in the utifitpction grow at the same exogenous

rate g . Therefore, we can denote both types of ecosystrmces bye. The Ramsey

optimal-growth model (1) changes into:

[ oot
(28) max] & U C (0, ED)dt

K(t) = F(K(1), E(t), H(1) - C(1), K(0)= K,
and the optimal allocation requirements (5) become

U.(C,E) =24,

(29) .
A1) = PA(L) = —F (K (1), E(t), H (D))A (1),

so that the Keynes-Ramsey rule for the optimal gomtion path (6) becomes
(30) C(1) = yae(Fe (K1), (), H(1) ~ Ve 9 — £) C(D),

where y.. =-CU../U. and y.. =—EU. /U denote the elasticities of the marginal

utility of consumption. Again, a transversality cition has to hold.

Note that (30) implies that the discount rate camiitten as
(31) Fe =0+ VecOc t Vee9e

where g. denotes the growth rate of consumption (see Wetikad Zhu, 2005; Hoel
and Sterner, 2007).

We want to allow for substitution between consumptind the amenity of ecosystem
services in consumer utility, and therefore wedwlHoel and Sterner (2007) and use
the CESutility function:

1-y{
{1 ¢

(32) U(C,E):ﬁ{(l—ﬂ)cf +E? } ,
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wherey is again the inverse of the elasticity of interparal substitutionz denotes the
relative shares, angdis elasticity of substitution between consumptma ecosystem

services in utility. It is straightforward to deeithe two elasticitiey,.. and ... The

result is:
(33) ycc:y_VCE’VCE:O-(y_Z_l)’
where
-1
7TE 4
(34) 0= e e

This ¢ can be interpreted as the value share of the stayservices in the consumer
expenditure. It is generally not constant over twien there is substitutability between
consumption and ecosystem services in utility. teHand Sterner (2007) and Traeger
(2011) the growth rates & andE are fixed, so that converges to 0 or 1, depending
on the elasticity of substitutiofi However, if the growth rate & converges to the

growth rate oE, thend converges to a number between 0 and 1.

In order to understand the results below, we fastis on the adjusted Ramsey rule for

this problem, given by (31). Using (33), we cantethis as:
(35) Fe (1) = o+ y[(1- ()9 () + () ge] + ¢ O] ac (D - o],

whered is given by (34).

Hoel and Sterner (2007) have essentially the sasdty but we regroup the terms in
order to facilitate a clear interpretation. Equat{85) clearly shows the determinants
of the discount rat&, (see also Traeger, 2011). The three terms atghehand side
represent “impatience”, “(full) consumption smoattyi, and “relative price effects”,
respectively. Note that the welfare at a pointnmett not only depends on the produced
consumptionC but on “full consumption”, i.eC and ecosystem servicgs weighted

by (1 —6) ando, respectively. The second term shows that if tilecbnsumption grows
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fast, the discount rate becomes high, because #ngimal value of full consumption
falls. This is the standard story. The strengtthaf effect is governed by the elasticity
of intertemporal substitutiop™ (the intergenerational inequality aversiynThe third
term shows that if consumpti@hbecomes more abundant than ecosystem seifgZjces
the relative price of consumpti@hgets lower, provided it is an imperfect substifiote
ecosystem servicds The (consumption) discount rate becomes highseréfore, the
growing relative scarcity of ecosystem servicejoles an additional reason to value
the future consumption lower and to use a highengamption) discount rate. The
strength of this effect is governed by the elatstiof intra-temporal substitutiofi

For a given growth rate of consumptiggp, a decline in the growth rate of ecosystem
servicesg, has two opposing effects. On the one hand, itskbown full consumption

growth, and thus lowers the discount rate. On therchand, it makes consumpti@n
relatively more abundant, and therefore incredsegdonsumption) discount rate. The

second effect dominates, if the elasticity of irteenporal substitutiodiis smaller than

the elasticity of intertemporal substitutign'.

As in the previous section, we assume that theauogns driven by labour augmenting
technological changH, with growth rateg,, , but that the ecosystem services, which
provide intermediate inputs in production, grovadobwer rateg; . Instead of (7), we

have to solve the system

K(t) = F(K(t), E(t), H (1)) - C(1), K(0) = Ky,

C(8) = (¥ = Vee (D) (R (KD, E(), H(1) = Vee(t) 9 = ) C(Y
H(t) = g, H(1), H(0)= Hy,

E(t) = g: E(), E(0)= E,

(36)

where . is given by (33) and (34). Note thgt. is function ofC(t) and E(t).

In this system, some ecosystem serviE@gsovide an amenity value to consumers, and
therefore affect the elasticities of the margindity of consumption. Other ecosystem
servicesE are a production factor, and thus affect the gnorate of consumption. It

follows that the ecosystem servidesffect the discount rate in two ways.
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In order to investigate the long-run propertiethaf system, we can follow the analysis
of the previous section. In the right-hand sidehaf second equation of system (23),
however, the growth rate of consumption in equa@nchanges into the growth rate

of consumption in equation (36). Furthermoyg, in equation (36) can be replaced by

o(y—-7™), according to (33). This leads to the more conapéid system

act) =[(1- R )/ u®)(g (9+ W(J- U] U,

u(t _[ =30 - N R ) - oy -7 g — o)
+v(t) — u(t)

Ox ()= (02_1 _1)(gx (H- gE)(gX(t)_ gH),

(37) v(t),

whereé is given by (34), as a function QFE. It is a tedious, but straightforward, to

express the variablé/E in the variables, v and g, (see the Appendix), so that (37) is

a well-defined system.

As in the previous section, the=0 isocline is the linev=u- g, (9, which is located
in between the lines =u- g. andv=u- g, in the (@, v)-plane. We can characterize

the v=0 isocline by two extreme positions as well. F¥ox 0, the v=0 isocline is the
same as in the previous section, and dorl, the v=0 isocline reaches the other

extreme (because<d<1):

v=u-y(F(y-p), 0=0,

(38)
v=u-J(R(W-(y-{MHa-p), o=1

Note that the two curves in (38) coincide for ™, and that both curves in (38) cut
the linev=u- g in (U, V), with u. = F*(p+yg.) . For y>Z™, the second curve in
(38) cuts the linev =u— g, in a point withu<u, , and fory<¢™, the second curve in
(38) cuts the linev=u- g, in a point withu>u,, whereu, = F*(p+ydgd,). Since it

is reasonable to assume that 7™ (Drupp, 2018), we can depict the basic elements

of the phase diagram in the, {)-plane as in Figure 5.
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Figure5 Steady statesfor system (37) with y>7™

The steady-state version of the extended Ramseybardomes:

(39) F (W) =p+0*(y=-0) g Hy-F(y-¢)) 8

whered* denotes the steady-state valud.of
Depending on the elasticities of substituticando, we can distinguish three cases that
correspond to the three possible steady stategume=5.

Case 1If { >1 ando>1, g, converges ta,, andd converges to 0. The steady state
is the intersection of the first curve in (38) d@hd linev=u- g, , and the discount rate

becomes

(40) Fe (U) =0+ Y0y,

which is the case in which it is simply assumed tha economy can substitute away
from ecosystem services.

Case 2If { <1 ando>1, g, converges ta,, andd converges to 1. The steady state
is the intersection of the second curve in (38) enedlinev=u- g,, and the discount

rate becomes

(41) FeW) =p+(y-¢ g+l gy =p+yg—(y-79a - @),
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which is the case in which consumers cannot easibgtitute produced consumption
goods for the amenity value of ecosystem serviakisough the producers can easily
substitute away from the intermediate use of edesyservices in the production. As

we have shown in Figure 5, for> ™, the second curve in (38) cuts the line u- g,
in a point withu* <u, , whereu,, = F.'(p+yg,), so that the steady-state discount rate
is lower than in case 1. Fgr< ™, the second curve in (38) cuts the lne u- g, in

a point withu* > u, , so that the steady-state discount rate is hittaer in case 1 (see
also Hoel and Sterner, 2007).

Case 3If o<1, g, converges tag. ands converges to a numbét between 0 and
1. The numbeb* is determined by ands and by the steady-state value¢sandv*
(see the Appendix). The steady state is the intéseof the linev=u- ¢g. and av=0

isocline in between the two curves in (38). Thadyestate discount rate becomes

(42) Fi (W) = 0+ )G,

which is the case where the limited substitutapdit ecosystem services in production
restricts the economic growth. At the end, the stulability in utility does not matter,

because the growth rate of the economy in the fangonverges t@. .

In order to study the development of the discoate pver time, we consider the phase
diagram in Figure 5 more closely. For fixed valoég between 0 and 1, we consider

the v=0 isoclines given by

(43) v=u-(y=3(y-¢ N (R(W-3(y-7 & - p),

which are positioned between the extremesdar0 and d =1 in equation (38). In

Figure 6, we have depicted thie 0 isoclines for a fixed(0) and two different values

of {. It is easy to show that the=0 isocline in equation (43) rotates downwards for an

increasing’.
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Figure 6 Dynamicsof v=0isoclinesfor y*<¢,<land {,>1

Note thatd(0) in (34) is not predetermined, becauS@) is not predetermined. It is

reasonable to assume that initially the value sbh&ecosystem services in consumer

expenditure is small, so th&(0) is close to 0, and both correspondingO0 isoclines
in Figure 6 are close to the one @=0. It is clear from (34) that is decreasing over
time if the elasticity of substitution in utility >1, and thab is increasing over time if
¢ <1. Itimplies that in the dynamical process, notydhk linev=u- g, (1 is moving
to the right or to the left but also the=0 isocline is rotating upwards (in cage>1)
or downwards (in casé <1). In cases Jand2, the linev=u- g, (1 starts close to the
line v=u-g,, and moves towards this line. If we startu(0) = u, = 0.1, with the
discount rate equal to 0.03, we cannot immedigtehp close to the pointu,,V,), as
in the previous section, because we have to stayibe v=0 isoclines. This implies
that the optimal path moves a bit to the left uibi blocked by the linev=u- g, (9,

so that the discount rate initially decreases sonaewf the elasticity of substitution in
utility ¢ >1, 6 converges to 0 and the=0 isocline rotates upwards, so that the optimal
path changes direction, and the discount rate ¢gegeto 0.03. Easy substitution of
ecosystem services in utility implies that the patthe discount rate is close to the one
we found in the previous section. However, if thasgcity of substitution in utility

{ <1, o converges to 1 and the=0 isocline rotates downwards, so that the optimal
path moves down and to the left, and the discoatet declines in the long run to the

steady-state value given by (41). This shows tlegive price effect as was introduced
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in the previous literature (Weikard and Zhu, 2086gl and Sterner, 2007). tase 3
the linev=u- g, () starts close to the line=u- g, and moves to the left. The=0
isocline rotates upwards (in cage>1) or downwards (in casé <1), but not all the
way to the extreme positions in (38). The valueslohecosystem services in consumer
expenditure) converges to a long-run valde in betweend(0) and O (in cas& >1),

or to ad* in betweend(0) and 1 (in cas& <1). These values @ can be calculated
with the expressions in the Appendix. The mainedéhce withcases land?2 is that

the linev=u- g, () moves to the left, so that the optimal path wolre down at some
point and converge to the steady state v;). This implies that the relative price effect

almost disappears in the long run, because thetgrmate of consumption converges
to the growth rate of ecosystem services. In tlwetstan, however, the growth rate of

consumption is higher than the growth rate of estesy services, and a similar effect

occurs as ircases land2. If we start inu(0) = u, = 0.1, with the discount rate equal

to 0.03, we have to stay below thie=0 isoclines. This implies that the optimal path
starts to move a bit to the left, until it is tema@aly blocked by the linev=u- g, (9,

so that the discount rate initially decreases aflhis effect is small, but it is a little bit

larger in case >1 than in cas& <1, because the initial position of thee=0 isocline

is a bit lower in the first case. Otherwise, thémpl paths are not much different from
the one described in the previous section. Theymtiah effect leading to a declining
discount rate dominates the relative price effeattility. In the next section, we will

present an example.

We can formulate the following proposition:

Proposition 3 For theCESproduction function (15) an@ESutility function (32), the
economy converges to the steady state in whichubutpnsumption and capital grow
at a common growth rage. If the elasticity of substitution in the prodwtio <1, the
steady-state growth rate of the econogty, equals the growth rate of the ecosystem

servicesg; , and the discount rate converges to the steadg-gtdue that is given by
the standard Ramsey rute= p + )9, . If the elasticity of substitution in the produosti

o >1, the steady-state growth rate of the econogriyequals the growth rate of the

technological changg,, . The discount rate converges to the steady-stdte\that is
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given by the standard Ramsey rule p + yg,, , if the elasticity of substitution in utility
{ >1, and converges to the steady-state value thates @y an adjusted Ramsey rule
r=p+yg, —(¥-7<7)g, - 9.), if the elasticity of substitution in utility’ <1.

If the economy starts with sufficiently abundanpuis X relative to capitaK, so that
u(0)=u,, and if o<1 andy>7™, then the discount rate declines monotonicallyrove

time, i.e. the term structure is declining.

In order to present the precise time path of tisealint rate in all these cases, we have
to resort to numerical methods again. We use time sdgorithm as in section 2. In the
next section, we give an example that charactetieeslifferent possible paths for the

discount rate.

4. Numerical example
In this section, we present a numerical examplehferpaths of the discount rate in the
three cases that we identified in the previousieecEor each case, we take the same

set of parameter values and initial values asdtige 2, that is

y=1459, = 0.02p=9g. = 0.00= 0.B= 0.

(44) K, =X,=1,u(0)= A=0.1g, (OF 0.99, .

We choose the shaten the utility function (32) such that the initighlue share of the

ecosystem services in the consumer expendd(®@= 0.2. Note that this requires an
iterative process, becaud€) is not predetermined. The discount rate is iltytequal

to 0.03, according to (21). We take different valéer  ando in order to distinguish
the three cases of the previous section.d-@re return to the central values of Section
2.2:. 0=25>1and oc=0.4<1. For{, we take the mean value and the lowest value

from the empirical literature (Drupp, 2018}:=2.31> 1and { =0.86< 1, respectively.
Combining ¢ =2.31 and o = 2.5 yieldscase 1 In this case, the ecosystem services are
perceived to be substitutable in production andsaomption. Combining =0.86 and

o =2.5 yieldscase 2 and combinings =0.4 with ¢ =0.86 and ¢ =2.31 yieldscases
3aand3b, respectively. The iterative process in orderdbtge initial valued(0) =0.2

yields 7=0.563in case 1 7=0.132in case 2 7=0.351in case 3aand 7=0.016¢€ in
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case 3bUsing the Appendix, it is easy to show that witie last two values of that
yield the initial valued(0) = 0.2, the steady-state valugs become 0.304 fo{ =0.86

and 0.034 for{ =2.31. In the phase diagram in Figure 6, theO isocline rotates
downwards for{ =0.86 and upwards fog =2.31. It is interesting to note thatdoes

not become larger than 0.304dase 3abso that the relative price effect is small. In
the long run, the relative price effect almost disears, because the growth rate of
consumption converges to the growth rate of ecesyservices.
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Figure7 Time pathsfor the discount rate for different elasticities of substitution

0.45
0.4
0.35
0.3
0.25
0.2
0.15 ~
0.1 S

0.05

=
e lp—
—_——

0 50 100 150 200 250 300 350

— — —Casel: (=2.31 & 0=2.5 Case2: (=0.86 & 0=2.5
------------- Case3a: (=0.86 & 0=0.4 Case 3b:=2.31 & 0=0.4
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Figure 7 shows the time paths of the discount fatpures 8 shows the time paths of
the value share of ecosystem services in consuxpeneitures in cases 3and3b.

The discount rate starts at 0.03 in all casesase 1 the discount rate remains close to
this level, and the time path is almost flat, besegilne growth rate is high and ecosystem
services can be easily substituted in productiahiarutility. As we have seen in our
discussion of the phase diagram in Figure 6, ifytthe discount rate moves down a
bit, but then it moves up again and convergesdcthady-state value 0.03. This is the
case in which the ecosystem services are percéovée substitutable in production
and consumption.

In case 2the growth rate also remains high, because etmyservices can be easily
substituted in production. In utility, however, theosystem services become relatively
scarce and since we assume on the basis of enhpibisarvations that the elasticity of

intra-temporal substitutiod is larger than the elasticity of intertemporal stitiition

y', the discount rate decreases further. It is istarg to note that it takes a long time
before the decrease becomes substantial. We hadepicted the full convergence to
the steady state in this case, whichFgu*) =0.025 according to (41). However, it is

clear that the relative price effect is small, &raks in only after a long time.

In case 3the discount rate declines because the growghdextlines. Theases 3and

3b hardly differ. As we have seen in our discussibthe phase diagram in Figure 6,
initially the discount rate moves down a bit, anbitamore incase 3hthan incase 3a
because of the different starting positions. Therelative price effect causes the paths
to move closer to each other. Figure 8 shows hewdtue share of ecosystem services
in consumer expendituredevelops in the two cases, with different steadyesvalues

6% (i.e., 0 =0.304 in case 3aand 0* =0.034 in case 3. When the paths for the two
discount rates meet in these cases, the effet¢teo$ctarcity of ecosystem services in
production dominates the relative price effectftitity, and the paths come down and
stay close together. In the long run, the discoat& converges to the steady-state value
0.00245, according to (42).

5. Conclusion
This paper considers the discount rate in caseyst@m services are important for the
production but cannot grow at the same rate asishal drivers of economic growth,

such as technological change. The literature ordibeount rate mostly assumes that
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the growth rate is given but in case ecosystenm@Esare important for production and
cannot be easily substituted, growth of the econuasfiybe restricted and the discount
rate will decline.

This paper considers the ecosystem services iruptiah and directly in utility, with

in both cases high or low elasticities of substut If substitution is easy, the discount
rate in the long term follows the standard Rams#s with a high growth rate. On the
balanced-growth path, discounting over any timazoor occurs at a constant rate. If
substitution in production is easy but substituiiontility is not easy, the relative price
effect from the previous literature shows up. Grogyvscarcity of ecosystem services
requires an adjusted Ramsey rule for the discatet Most importantly, however, if
substitution in production is not easy, the disd¢aate declines towards a low value
given by the standard Ramsey rule with a low grokatle. Moreover, in this context
the relative price effect is small and almost dggy's in the long run.

In order to analyse these issues, this paper uBResrsey optimal-growth framework,
with both aCESutility function and eéCESproduction function. The balanced-growth
steady states are derived, the system dynamicharacterized in phase diagrams, and
a numerical procedure is used to calculate thespaftthe growth rate and the discount
rate in a calibrated model. In this way, the pagmenpares, across different scenarios,
not only the steady-state values of the discouat bbat also the paths towards these
steady-state values.

The main result of the paper is that the appropriggcounting rule crucially depends
on the role of ecosystem services in productiothdfecosystem services can be easily
substituted, growing scarcity will not slow dowre tirowth from technological change,
and the discount rate can be based on the curaéarided-growth rate of consumption.
However, if the ecosystem services cannot be eagbgtituted, and if the growth rate
of ecosystem services is low, future growth withgldown and the discount rate will
decline towards a low value. This main result implihat the role of ecosystem services
in utility is not very strong. In the case in whitte economy can achieve a high growth
rate in the long term, the previous literature Alsady pointed out the relative price
effect that occurs if the growth rate of the ectmysservices and the elasticity of
substitution in utility are low. However, we shokat this effect is not large and only
occurs after along term. In the case in whictett@nomy cannot achieve a high growth
rate in the long term, we show that this relativiegeffect hardly plays a role. These

are theoretical results. In practice, it is necgssaidentify production sectors where
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ecosystem services are essential, and to detethengrowth rates and the elasticities
of substitution. This is a topic for further resgar

The previous literature has shown extensively ghdeclining discount rate may also

result from the introduction of several forms otartainty. This paper has left out this

uncertainty, but it is clear that many argumentsppim the same direction, and thus

support the idea of a declining discount rate. Paiger has specifically focused on the
role of a limited availability and substitutabilibf ecosystem services in production. A
declining discount rate is very important for tlestbenefit analyses with a long time

horizon, because a flat discount rate would maketsts and benefits in the far future
hardly count.

This paper assumes an exogenous (low) growtheatrbsystem services, but ignores
a possible feedback effect of production and comdiam (and thus emissions into the

natural environment) on the availability of ecosystservices. This is a topic for further

research as well. Moreover, this paper contains@sting simulations to extend and

illustrate the theoretical results, but calibraomith real data are needed in order to
guantify the policy advice. This is also a direntior future research.
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Appendix: Specification of é asafunction of the variables of system (37)

According to (34)¢ is a function ofC/ E:

7

(A.1) 5= -

(1-m)(C/E)¢ +m

SinceC/E=(C/ K)(K/ F)(F/ B=(vl y( F/ B, we have to show théeft / E is a

function of the system variables. From (15), itdals that:

1 g

o1 - 1-o
(A2) FE:ﬁAa(Ej L F [ LER)
E E L F

and from (16) and (15), it follows that:
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F KFK£+(1_ KFK)X _

F F K F )X
(A.3) ) : .
KR K, ERE, [, KR _ER)H
FK FE F F JH

With (21) and the definitions of the growth ratéss implies that:

(A.4) (1——FKl§u))gx - EFFE O +(1— O EFE) 9.

Combining (A.2) and (A.4) yields:

A5) szizﬂ[i(@h- @j(l_ FK(OBH_
E uE u(plg-g¢g u

Q.E.D.
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