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Abstract 
 
We analyze the impact of earthquakes on nighttime lights at a sub-national level, i.e. on grids of 
different size. We argue that existing studies on the impact of natural disasters on economic 
development have several important limitations, both at the level of the outcome variable – 
usually national income or growth – as well as on the level of the independent variable, e.g. the 
timing of an event and the measuring of its intensity. We aim to overcome these limitations by 
using geophysical event data on earthquakes together with satellite nighttime lights. Using panel 
fixed effects regressions covering the entire world for the period 1992-2013 we find that 
earthquakes reduce both light growth rates and light levels significantly. The effects are 
persistent for approximately 5 years, but we find no long run effects. The effects are strong and 
robust in a small grid and gets weaker the larger the unit of observation. National institutions 
and economic conditions are relevant mediating factors. 

JEL-Codes: O440, Q540. 
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1 Introduction

Natural disasters are likely to be harmful for economic activity. Disasters often cause
many deaths, which, apart from personal tragedies, imply a loss of human and intangible
capital. Moreover, natural disasters destroy parts of the physical capital stock, such as
infrastructure, housing or factories, causing a loss in productive capacities, which may
result in short-term and long-term income losses.

Many studies deal with the effect of natural disasters on economic development. Although
one might intuitively expect a negative effect of disasters on development and growth,
the results of early studies are quite ambiguous and depend on country samples, data,
and estimation methods. Early cross country studies consider data on insured damages
or the death toll to measure the intensity of natural disasters (see, e.g., Kahn (2005),
Loayza et al. (2012)). The methodological problem is that the data on the disasters is
highly endogenous, since income and growth themselves determine the degree of insurance
or the number of deaths (Toya and Skidmore (2007)). Therefore, more recent studies
such as Strobl (2012) and Felbermayr and Gröschl (2014) measure events and intensities
with exogenous geophysical or meteorological information, such as Richter scale or wind
speed. These studies find a negative impact of disasters on country level growth rates. In
Felbermayr and Gröschl (2014) and Barone and Mocetti (2014) the effects differ between
countries depending on income and institutions. High income countries and democracies
show no significant negative effects of disasters, while the opposite is true for low and
middle income countries with poor institutions. However, it is still questionable whether
there are no negative effects in high developed countries. Those countries might just go
into debts to finance reconstruction because of their better access to capital markets. But
still the money spent on reconstruction will be missing elsewhere and, thus, the disaster
affects growth’s prospects as well.

One reason for the inconclusiveness of existing studies could be that the aggregation of
income data at national levels averages out the effects of natural disasters at the regional
level. In the earthquake setting, a disaster of a given intensity on the Richter scale in
a small country such as Haiti may have completely different effects on national growth
compared to a large country such as the USA. In order to deal with this issue, the literature
usually scales disaster intensities by the overall land area (Skidmore and Toya (2002)).
However, given the internal geographical heterogeneity of countries in terms of terrain,
weather conditions, and soil quality, which in turn cause differences in the population
distribution and therefore the potential number of affected people, this approach may be
judged to be rather crude. Therefore, the consideration of exact geographical data might
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increase accuracy and explanatory power. For example, Haddad and Teixeira (2015) use
the exact positions of floods in Sao Paulo to identify affected firms and infrastructure in
order to analyze the damage. We contribute to the literature by adopting this approach
to earthquakes, extending the analysis to all countries in the world.

Our main innovation is that we study the effects of earthquakes at the regional level, i.e.
based on grid-cells. For this purpose, we combine geocoded physical event data on earth-
quakes with geocoded satellite nighttime light data. Recent studies, such as Henderson
et al. (2012) and Chen and Nordhaus (2011), demonstrate that nighttime lights are a suit-
able proxy for income and growth at the country level. Other researchers, such as Hodler
and Raschky (2014), Alesina et al. (2016), Lessmann and Seidel (2017), and Henderson
et al. (2017), use the data to measure income and income differentials at the regional level.
Overall the studies find that light is a suitable proxy for regional development. Raschky
(2013) is the first study that uses luminosity data in order to analyze the regional effects
of the earthquake in West Sumatra in 2009. Based on a regression discontinuity design he
finds that insurance schemes positively affect recovery rates. Closely related to our work
is Klomp (2016) who also combines night time lights as proxy for economic activity with
data on natural disasters. The intensity of geophysical events is measured through the
EM-DAT data base using information on fatalities, injuries, etc. and he aggregates all
variables at the country level. He finds a positive effect of geophysical events on growth in
luminosity that is attributed to recovery investments. We depart from this study by focus-
ing at the regional level (grids) and by using geophyiscal data on the exact position and
intensity of earthquakes. A recent study by Felbermayr et al. (2018) also uses night lights
combined with geophysical event data on natural disasters. They find negative effects of
extreme weather (storms, precipitation, droughts, and colds) but disregard earthquakes,
which are our focus.

In our analysis, we exploit several advantages night light data have over (regional) income
data. First of all, this physical data is available for all countries and regions of the world.
In particular, in developing countries, there is a lack of capacities in statistical authorities,
therefore national accounts suffer from serious measurement errors and regional data is
often completely unavailable. Excluding those countries from the analysis might cause a
serious selection bias and yield misleading conclusions on the effects of natural disasters.
Second, the night light data is available on a grid of approximately 1× 1km2. This allows
us to analyze the effects of earthquakes at various spatial units without being bound by
any administrative or national border. This is particularly important given that regional
economic accounts are based on administrative regions, which are very heterogeneous in
terms of size. Moreover, boundaries may be endogenous to income. The night light data
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allows us to consider grids at different resolutions, which are homogeneous by construction.

Our approach extends the existing literature in several dimensions. First, using geocoded
physical data for both the dependent and the independent variables offers highly objective
data. Second, we get a full picture of the world and probably reduce a potential selection
bias in the estimates of previous studies. Third, the approach of using physical event
data allows us to use the full earthquake information on epicenter, intensity, location and
intensity of aftershocks. In contrast to other studies that focus on Richter scale to measure
an earthquakes intensity at the country level (e.g. Felbermayr and Gröschl (2014)), we
distribute the incoming seismic energy of an event and all its aftershocks in space. We use
the exact position of the epicenter and the radius in which damages are likely to appear
to construct potential damage areas for each single event in a fine grid of 0.01◦ × 0.01◦

degree. Our approach allows damage areas of different shocks to intersect. Based on this,
we aggregate the incoming energy of different events and distribute it across larger units.
Fourth, we consider national institutions and economic conditions as potential moderating
factors (Barone and Mocetti (2014)).

Our original data set is based on more than 700 million satellite-year observations for night
lights, and the earthquake data distributed by the US Geological Survey covers more than
360,000 events for the considered years (1992 – 2013). We aggregate data on different
spatial levels: a 1◦ × 1◦ grid, a 2◦ × 2◦ gird, and the country level, which yields final data
sets of about 185,000, 70,000, and 3,000 unit-year observations, respectively. Applying
panel fixed effects regressions, we find a highly significant negative impact of earthquakes
on both night light emissions and light growth rates. Effects are quite large at the local
level. An earthquake of 8.0 at the Richter scale reduces light intensity by 2.5% in grid cells
of size 1◦× 1◦. The effects are persistent for about 5 years. The rougher grid and country
level data show smaller an less robust effects. Good national institutions, a high income
level, a larger government and high saving rates reduce the negative effects of earthquakes
in support of Felbermayr and Gröschl (2014) and Barone and Mocetti (2014).

The remainder of the paper is organized as follows. Section 2 explains our data and
methodology. The crucial point of our analysis is the measurement of an earthquake’s
intensity and the distribution of the energy across grid cells. Section 3 explains two
different econometric models and presents the estimation results on different grid sizes
and the country level. Section 4 sums up and concludes.
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2 Data

2.1 Nighttime lights

Since recently, literature focuses on satellite nighttime lights data as a proxy for economic
development, e.g. Elvidge et al. (1997) and Henderson et al. (2012) at the country level,
Chen and Nordhaus (2011) and Henderson et al. (2017) on grid level or Lessmann and
Seidel (2017) on level of sub-national administrative units. The major advantage of night-
time lights over national or regional account data is that it covers the whole world at a high
resolution of about 1km2. Given the high resolution of the data, it could be aggregated
at different spatial levels, e.g. grids, administrative units, ethnic groups, etc. We refer to
the stable lights product distributed by the National Oceanic and Atmospheric Adminis-
tration. Please see the overview by Donaldson and Storeygard (2016) for the properties
of the data.

In economic geography, the ’modifiable areal unit problem’ (or MAUP) deals with two
important space-related features: 1. the borders are drawn in different ways (zoning), and
b) the size of spatial units varies (scaling) (see, e.g., Openshaw and Taylor (1979)). These
heterogeneities may affect econometric results significantly, therefore it is important to
study the relationship between disasters and economic outcomes at different spatial levels.

Following Henderson et al. (2017), we aggregate nighttime lights at a 1◦× 1◦ grid, but we
also take a broader perspective considering a 2◦×2◦. In the fine grid, a unit of observation
has the size of approximately 110×110km2, which corresponds to the size of the U.S. State
Connecticut or approximately a 1/800 part of total U.S. land mass. For each cell, we build
the sum of lights, i.e. the sum of DN values of all inherent pixels. We also compare the
grid cell level regressions with outcomes at the national level using data of the Global
Administrative Areas Project (GADM). The forthcoming panel fixed effects regressions
use the log sum of lights and light growth rates as dependent variables, alternatively.

In our particular context, it needs to be discussed whether light emissions are a suitable
proxy for economic activity in the aftermath of an earthquake. Most stable light emissions
are caused by street lights, light emissions of buildings and industrial facilities. These
emissions require the access to the power grid that is often disconnected following a natural
disaster. Naturally, most man-made light emissions cannot emerge without electricity. The
question arises, whether we measure only short-run effects caused by an interrupted access
to electricity, or a medium- or long-run effect on economic activity.

The access to the power grid is not the most serious bottleneck for economic activity
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in an earthquakes’ aftermath. In high developed countries, the power supply is quickly
restored even after large events. Liu et al. (2017) show for an earthquake in New Zealand of
magnitude 7.8 in 2016 that the power grid connections have been restored within 24 hours.
Kammouh et al. (2018) estimate restoration curves for both developed and developing
countries finding that the power system is restored with a probability of close to 100%
within 60 days right after the event. Note that is takes significantly longer to restore water,
gas and telecommunication systems. Therefore, the partial effect of a disaster on night
lights coming just from missing electricity for unproductive light emitters like street lights
tends to be rather small. In the empirical analysis, we deal with this issue in two ways.
First, in addition to contemporary values of the event variable we consider several time
lags. This allows us to investigate the change in night lights that is not caused simply by a
temporary disconnection to the power grid. Second, we provide robustness test where we
include the country level rate of access to electricity as control variable in order to capture
parts of the effects related to missing electricity.

One issue we cannot resolve with the night light data is the weak relationship between light
and income in rural, sparsely populated areas (Keola et al. (2015)). Earthquakes have a
lower seismic risk in rural compared with urban areas, since there is a lower concentration
of vulnerable structures and complex functions. Nevertheless, earthquakes harm the people
living in remote villages and there is an additional risk of isolation that delays disaster
relief and reconstruction. Given that the rural economic activity is not well reflected in our
light data, we cannot derive any conclusions on the effects of disasters here. Our analysis
is more representative for regions with a higher population density and a relatively high
share of gross value added in manufacturing and services. Rural regions with a high share
of agriculture – that occur to be dark in the satellite images anyway – are not appropriately
covered by our approach.

Finally, we discuss alternative data which might be used as outcome variable instead
of night lights. There are mainly two alternatives: the Geographically based Economic
data (Nordhaus and Chen (2016)) and regional economic accounts provided by national
statistics and international organisations that have been used by Gennaioli et al. (2014),
Lessmann (2014), and others. The G-Econ data provides gross cell output on a 1◦ × 1◦

grid in four waves (1990, 1995, 2000, 2005). The data combines regional GDP estimates
with gridded population data. Under the assumption that output is equally distributed
within sub-national administrative regions, the population data is used to distribute GDP
across grid cells. Note that GDP data for the lowest available sub-national division is
used, which is – in many developing countries – the national level itself. In this case,
the population distribution is the main driver of gross cell output. For our purpose, this
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data set has some disadvantages which is why we prefer night lights. First, the frequency
and period coverage is not as rich as in the night lights data. Given that we expect
different effects of earthquakes in the short, medium, and long term perspective, we need
the high variation in the annual data. Second, while we have to decide in the annual data
what share of an earthquake energy happening in a certain month has to be shifted to
the following year, the decision becomes quite sensitive when using data in waves with
4-year gaps. Third, GDP based regional data has often a low quality in less developed
countries for reasons of low capacity of statistical offices (Chen and Nordhaus (2011)) or
due to strategic misreporting (Martinez (2019)). Moreover, in the aftermaths of a disaster,
GDP estimates a highly uncertain and output data revisions are frequent, in particular in
developing countries (Ley and Misch (2014)). Therefore, we prefer night lights over GDP
based data, since night lights are objectively measured and comparable across countries,
even in times of crisis. However, as a robustness check, we present regressions using
population as dependent variable, which is the main determinant of gridded output in the
G-ECON data for developing countries.

2.2 Earthquakes

Data on earthquakes are reported by the U.S. Geological Survey. The data include the ex-
act date, location at a resolution of 0.001◦ and magnitude of every earthquake. During our
observation period from 1992 to 2013, which is limited by the availability of the luminosity
data, the geoscientists recorded 364,317 earthquakes, whose range per year varies between
6,733 and 26,016 without systematic trend. The countries with the largest number of
earthquakes are USA (19,774), Chile (12,383), and Mexico (8,299). The strongest events
inside a country have been recorded in Indonesia with magnitude 8.2. The strongest two
events were measured with magnitude 9.0. One was near to the east cost of Japan in March
2011 causing the Fukushima nuclear accident, and the other one was off to the northern
west coast of Sumatra in December 2004 with more than 250,000 deaths in 14 countries.
Note that these examples imply that it is important to distribute the earthquake energy in
space. Although the epicenter may be located far away from economically active regions,
there might still be effects on those. In particular, if the epicenter is offshore.

We transform the raw data on earthquakes in different not-trivial ways. Our major aim
is to measure the exact energy of an earthquake and its aftershocks received by one cell.
Different approaches are possible. The easiest, but rather crude one, would be to consider
only the strongest event and to use its magnitude on the Richter scale. However, this
is naive for different reasons. This approach ignores the exact position of an earthquake
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within a cell and the reasonable destruction caused by aftershocks and their timing. One
single, relatively large event might be less harmful than a sequence of slightly smaller
events. For example, the earthquake in Morocco on February 24th, 2004 with a magnitude
of 6.4 had 164 recorded aftershocks in just 24 hours; the strongest aftershock had a mag-
nitude of 5.3 which has also a relevant destructive power and, of course, its own epicenter.
Note that aftershocks are often the cause of the collapse of previously damaged buildings.
There are also countries such as Greece which are hit by many earthquakes of similar size
in one year. For example, the Greek island Zakynthos was hit by one earthquake with
magnitude 5.7, three with magnitude 5.5 and one with magnitude 5.4 in the year 2006.
In these cases, considering only the event with the highest magnitude does not reflect the
total destructive energy of earthquakes and their distribution across regions appropriately.
Therefore, it is necessary to develop a new methodology which allows us to combine several
earthquakes and to take their exact location within a cell into account.

In order to distribute the physical energy of an earthquake and its aftershocks within and
across cells, we create a very fine grid of 0.01◦×0.01◦. Based on this fine grid, we calculate
the incoming physical power for each cell depending on the distance to the epicenter and
the magnitude of the event. Geoscience Australia1 provides estimations of the damage
radius for every magnitude. An earthquake of magnitude 9 on the Richter scale has a
damage radius of approximately 735km, while a weaker event with a magnitude of 6 has a
damage radius of 37km. Based on this information, we draw circles around each epicenter
and distribute the energy linearly decreasing in the distance of a cell to the epicenter.

Another important issue we have to take into account is that the Richter scale does not
measure the intensity of an earthquake on a linear scale, but on a common logarithmic
basis for the amplitude of waves recorded by seismographs. Thus, a one-unit increase in
magnitude is associated with a tenfold increase in measured amplitude and about 30 times
more seismic energy (Spence and Sipkin (1989)). Consequently, a linear interpretation of
the Richter scale is inappropriate in this matter.

Figure 1 illustrates our approach. Panel (a) is a 3D plot with earthquake intensity on the
vertical axis; panel (b) is a bird’s eye view on the distribution of the earthquake intensity
in space. The epicenter cell gets the value 10M , where M is the reported magnitude on
the Richter scale. The radius of the cone is determined by the damage coverage estimates
reported by Geoscience Australia. In our illustrative example, we refer to three hypothet-
ical events with magnitude 6.0, 6.6 and 7.0. The radius of the event with magnitude 6.0 is
37 km, which corresponds to about 0.3◦ at the equator. The epicenter pixel of this event

1 An Institute of the Australian Goverment. For more information, see www.ga.gov.au.
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(a) 3D plot

(b) 2D plot

Figure 1: Incoming seismic energy in space
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receives a value of 106 as measure for the earthquake’s maximum intensity. The values
of the other pixels decrease linearly with the distance to the epicenter until the value is
zero at the border of the circle. Analogously we construct the two other events. Based on
these three intersecting events, we sum up the energy from the distinct events for each cell
in the fine 0.01◦ × 0.01◦ grid which is hit by more than one shock. Note that this way of
aggregation would have been meaningless using the original Richter scale data. Panel (b)
shows a 2D plot for this example where different values are expressed by different colors.

Our approach has two major advantages. First, if there are many earthquakes in one
region whose damage radii intersect, we can simply sum up the calculated energy at the
grid level. Second, if an earthquake affects more than one region on the rougher 1◦ × 1◦

that we use in our econometric models as main unit of observation, we can distribute the
damage across the different units according to the energy values we compute at the fine
0.01◦ × 0.01◦ grid.

This new feature is illustrated in figure 2. The map shows two big earthquakes and their
aftershocks which took place in Peru and Chile in 2007. The epicenter of the Tocopilla
earthquake was located between the localities of Quillagua and Tocopilla, affecting the
Tarapacá and the Antofagasta regions in northern Chile. The earthquake had a moment
magnitude of 7.7 and was followed by a number of strong aftershocks with a magnitude
of up to 7.1. The earthquake in Peru had a magnitude of 8.0 and affected the Ica region.
Aftershocks were recorded with a magnitude of up to 5.9.

The green grid lines reflect the 1◦ × 1◦ grid we use to study the impact of earthquakes on
night lights. The circles are the damage areas of the earthquakes where the radius depends
on the magnitude. We choose the colors within the circles according to the magnitude of
the earthquake as discussed above and distribute the energy across the area according to
the distance to the epicenter. Considering the case of Peru, the highest magnitude in the
epicenter is dark orange and energy decreases linearly with the distance to this location
from light orange to yellow (cooling down effect).

Obviously, an earthquake is first and foremost a local shock, therefore is seems to be
somewhat misleading to study the effects at the country level as it is common in the
literature. However, looking only at the epicenter would also be problematic, given that
damages also occur in neighboring cells. Taking the earthquake in Chile as example, we
can simply consider the cells which are affected. Disregarding grid cells over water, we
find that twelve grid cells are in the damage area. Therefore, our methodology allows
us to distribute the energy of an earthquake across space, which is a new feature in the
literature.
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Figure 2: Analyzing earthquake impact with grids

A final aspect we have to take into account is the exact date of an earthquake. The
satellite night light data report annual-average luminosity values of cloud free evenings.
It is obvious that an earthquake in January has a different effect on the average light
intensity in a year compared with an earthquake in October. To deal with this issue,
we follow the time correction method suggested by Klomp (2016). If, for example, an
earthquake happens in May 2004, we will split the event’s energy and move 7/12 and 5/12
to the corresponding 2004 and 2005 values, respectively.

Note that we apply a simple scaling to the final energy values at the grid cell level. Since
we aggregate energy values of the fine 0.01◦× 0.01◦ grid, the maximum of energy assigned
to a 1◦ × 1◦ grid cell is of order 1E13.2 Consequently, the coefficients in our forthcoming
regression analysis would be very small. For reasons of exposition, we divide all values by
1013. Please see table 4 in the appendix for descriptive statistics of all variables considered
in our analysis.

2 The strongest event is of magnitude 9.0 and a 1◦ × 1◦ cell contains 104 fine cells, leading to a maximum
energy of 109 · 104 = 1013.

11



2.3 The case of Pakistan 2005/2006

Before we move to the main analysis, we do some eyeball econometrics on the relationship
between earthquakes and night lights. Figure 3 shows satellite pictures of the Northern
part of Pakistan. The region was hit by an earthquake of magnitude 7.6 on October 8th,
2005 and caused 73,000 victims on Pakistani territory.
Panel (a) shows the average light intensity in 2005, and panel (b) for the subsequent
year. The blue point is the epicenter of the main event and the purple points are the
aftershocks. We observe a strong reduction in night light emissions in the affected areas,
especially inside the yellow circles. A village in the north of the epicenter is completely
unlit one year after the shock. Also in the north-western parts of the region, the luminosity
decreased significantly. To analyze the differences in light emissions between 2005 and 2006
we construct a 1◦×1◦ rectangle with the epicenter in the middle of the cell. Our data shows
a decrease of 6.6% in total luminosity.3 This corresponds to estimations on damages. The
total costs of reconstruction were calculated to 3.5 billion US$, of which 416 million US$
were needed to reconstruct transport infrastructure including roads and bridges.4

3 The sum of lights measured in DN values is 13,901 for the year 2005 and 13,045 for 2006.
4 See PRELIMINARY DAMAGE AND NEEDS ASSESSMENT prepared by the World Bank and the

Asian Development Bank in 2005 for more details.
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(a) Night light emission 2005

(b) Night light emission 2006

Figure 3: Earthquake Northern Pakistan in 2005
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3 Estimation results

3.1 Empirical Framework

In this section, we estimate the impact of earthquake intensity on satellite night lights.
We concentrate on a fine 1◦ × 1◦ grid and a rough 2◦ × 2◦ grid. We also compare the
outcomes with country level aggregates. The fine grid has potentially 64,800 cells. Follow-
ing Henderson et al. (2012), we focus on regions between 65 degree south and 75 degree
north latitude, which reduces the data set to 50,400 cells. Next, we remove all cells that
are completely dark and uninhabited (in particular cells over water), which yields our
final data set of 8,839 cells, which we study over the sample period from 1992-2013. The
amount of considered 2◦ × 2◦ cells is 3,177. Our data set considers 190 countries in total.

Our econometric analysis has to take three important issues into account: 1. unobserved
heterogeneity, 2. spatial dependency, and 3. satellite configuration. Ad 1) Our unit of
observation is homogeneous in terms of size, but heterogeneous in terms of other charac-
teristics such as geography, climate, etc. By using grid-cell fixed effects, we take observable
and unobservable time-invariant heterogeneities into account. Ad 2) The economic activ-
ity, i.e. the light-intensity within one cell, depends on the conditions in surrounding cells.
Low- and high-output density regions are clustered in space, which has to be taken into
account, in particular if fine grids are studied. We, therefore, consider the sum of light
values in the eight directly neighboring cells as spatial control variable to account for the
spatial spillover effects. Ad 3) The satellite configuration and sensor technology changes
over time and sensors degenerate during its typical 5-year activity period. Thus, we make
use of satellite configuration dummy variables in addition to year fixed effects.

Given that each cell is inhabited by a different number of people, we control for the
(logarithmic) population. Population data are provided by the Center for International
Earth Science Information Network. Since the data is published in 5-year waves, we
interpolate missing values in order to get annual data.

The literature makes use of two different general estimation approaches. (1) Some studies
consider growth rates as dependent variables and control for initial levels just like in
the well-established growth literature (see, e.g., Skidmore and Toya (2002), Noy (2009),
Strobl (2011), Loayza et al. (2012), Felbermayr and Gröschl (2014)). (2) Other studies
analyze levels and include lagged dependent variables to account for the inter-temporal
dependencies (see, e.g., Raddatz (2007), Felbermayr and Gröschl (2013), Cavallo et al.
(2013), Klomp (2016)). We apply both approaches in order to be comparable to the
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different strands of the literature.

(1) Growth model:
In the growth specification, we regress light growth on initial lights, earthquake energy,
and controls. Our model for N grid cells and T time periods, cells indexed by i and time
by t, respectively, has the following form:

log
(

yi,t

yi,t−1

)
= α·log(yi,t−1)+

2∑
j=0

βj ·log(Di,t−j)+γ1·log(pi,t)+γ2·log(ỹi,t)+δt+µt+αi+ui,t

(1)

where yi,t is a grid cell’s sum of lights, ỹi,t is the average light of the neighboring cells,
Di,t is the impact energy of earthquakes, pi,t is cell i’s population size, δt are time fixed
effects, µt are satellite configuration fixed effects, αi are grid cell fixed effects, and ui,t is
the error term. For the investigation of countries instead of grids, we aggregate all data
from the 1◦ × 1◦ grid to the country level and we use country fixed effects instead. Note
that we add 1 before applying the logarithmic transformation of the variables in order to
eliminate negative values.

(2) Level equation:
As alternative specification, we regress light levels on (lagged) earthquakes, and controls.
The model has the form:

log(yi,t) =
4∑

j=0
βj · log(Di,t−j) + γ1 · log(pi,t) + γ2 · log(ỹi,t) + δt + µt + αi + ui,t. (2)

This specification aims to analyze the mid-term effects of earthquakes, since we can in-
vestigate the number of years for which we find significant coefficients of lagged values of
disasters’ energy.

3.2 Estimation results

We first turn our attention to the growth model. The regression results are reported in
Table 1. Column (1)-(3) report the results we obtain on the fine 1◦ × 1◦ grid; column
(4)-(6) report results for the 2◦× 2◦ grid. The last two columns (7) and (8) report results
at the country level. Note that we use the original annual data thereby concentrating on
a short-run relationship between the variables of interest.
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Table 1: Results of the growth model (a) using annual data

Dependent variable: light growth (annual)
1◦ × 1◦ 2◦ × 2◦ Country

(1) (2) (3) (4) (5) (6) (7) (8)
log(yi,t−1) -0.386*** -0.496*** -0.496*** -0.365*** -0.456*** -0.456*** -0.419*** -0.420***

(-61.07) (-66.23) (-66.21) (-32.98) (-37.28) (-37.28) (-7.832) (-7.834)
log(pt) 0.201*** 0.316*** 0.316*** 0.200*** 0.347*** 0.347*** 0.316*** 0.315***

(15.32) (19.20) (19.20) (10.05) (14.59) (14.59) (4.437) (4.436)
ỹi,t 0.384*** 0.384*** 0.368*** 0.368***

(43.39) (43.39) (26.96) (26.96)
Dt -0.0452*** -0.0316*** -0.0305*** -0.0117*** -0.00666*** -0.00666*** -0.102*** -0.0891***

(-6.409) (-4.430) (-4.698) (-5.580) (-3.119) (-3.338) (-2.995) (-2.973)
Dt−1 -0.00963 -3.89e-05 -0.0765

(-1.124) (-0.0195) (-1.332)
Constant 2.730*** 1.661*** 1.662*** 2.601*** 1.271*** 1.271*** 2.126*** 2.132***

(49.09) (26.36) (26.36) (24.72) (10.83) (10.82) (5.793) (5.814)
Unit FE yes yes yes yes yes yes yes yes
Time FE yes yes yes yes yes yes yes yes
Sat. FE yes yes yes yes yes yes yes yes
#Obs. 185,619 185,619 185,619 66,717 66,717 66,717 3,738 3,738
R2 0.475 0.557 0.557 0.481 0.546 0.546 0.675 0.675
#Cells/Countries 8,839 8,839 8,839 3,177 3,177 3,177 178 178

Robust t-statistics in parentheses; *** p<0.01, ** p<0.05, * p<0.1;
standard errors clustered at the grid cell level and country level, respectively.
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We run different specifications of equation (1). Column (1) shows a minimum specification
including the initial light level and the population as control variables, and, of course, the
earthquake energy intensity received by a grid-cell in the contemporary period. Column
(2) adds in the light intensity of neighboring cells to account for spatial spillovers. Column
(3) adds a one year lagged value of the earthquake intensity.5 We proceed in a similar
manner for the regressions on the larger 2◦ × 2◦ grid. At the country level, we do not
include a spatial lag therefore we report only two results. We find a strong dependency of
the light growth rate on the initial level. The resulting coefficient is negative and highly
significant suggesting strong convergence effects: relatively rich regions – by means of
regions with high light emissions – tend to grow slower than poor regions. The controls
for the population size and the spatial dependency work pretty satisfying as well with
the expected signs: Higher population densities increase light emissions, and lights are
clustered in space.

The main results concerning the incoming seismic energy is also in line with our expect-
ations. The coefficient of the variable capturing the contemporary effect is negative and
highly significant. The size of the coefficient decreases only slightly while including more
variables into the model. The lagged values have negative signs but are not statistically
significant. Note that we use growth rates as dependent variables and that we control
for the initial light level. Effects of prior earthquakes are therefore partially captured by
initial light emissions (i.e. log(yi,t−1)).

Regression results based on the 2◦ × 2◦ grid are very in line and show no systematic
differences. However, it is important to note that the coefficient of the earthquake variable
is significantly smaller in the rough grid compared with the fine grid. This is, again, a quite
suggestive result. Earthquakes tend to have more local than supra-regional consequences.
Note that we cannot compare the results at the country level with the grid level estimates
in quantitative terms due to the data aggregation method. Importantly, in qualitative
terms, the coefficients point in similar directions.

Altogether, we conclude that the incoming earthquake energy decreases light growth in
affected cells. This should not be interpreted as a similar loss of the capital stock or
damage. Lights are a flow figure, which is correlated with current income, production and
consumption, in particular if those activities involve electric energy. Current economic
activities slow down after an event, but the effect does not have to be persistent.

Our second approach explains the within cell variation of log light levels depending on the

5 We also included additional lags, which do not show significant effects. Results are available from the
authors upon request.
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incoming earthquake energy. The results are reported in Table 2. Column (1)-(3) report
the results we obtain on the fine 1◦×1◦ grid; column (4)-(6) report results for the rougher
2◦ × 2◦ grid; column (7)-(9) report country level results.

Again, we run different specifications of the respective model (c.f. equation (2)). In column
(1) we include the population, the light intensity in neighboring cells, and the contem-
porary earthquake energy. Column (2) and (3) add lags of the earthquake variable. We
proceed in a similar manner for the regressions on the larger 2◦ × 2◦ grid and on the
country level.

The results support our previous findings. Importantly, we find persistent effects of earth-
quakes on night light emissions. Not only the contemporary effect of the earthquake
energy is negative and significant, but also the coefficients of the different lags. Invest-
igating long-term effects – as far as our observation period allows us to do – we find no
significant effects after five years. We find interesting and suggestive differences depend-
ing on the size of our unit of observation. In the fine 1◦ × 1◦ grid, the effects are highly
significant for the first five years after an earthquake has happened even if we consider
seven lags. In the rougher 2◦ × 2◦ grid, the effects are less significant in statistical terms.
Importantly, earthquakes have only short-run effects at the country level. Here, the effect
of a contemporary earthquakes is not significant. Only by adding some lags, the coeffi-
cient becomes statistically significant, but the results are less robust. Thus, earthquakes
are first and foremost a local event. The negative effects on economic activity vanish the
larger the area under consideration is.

Our regressions imply that earthquakes reduce growths rates as well as levels of grid-cell
light emissions. However, the coefficients cannot be interpreted easily with respect to the
size of the effects. In order to quantify the effects, we consider the fine 1◦ × 1◦ grid.
We calculate the seismic energy of two hypothetical earthquakes of size 7.5 and 8.0 on
the Richter scale, respectively, that hit the grid cell in the centroid on January 1st. The
rescaled incoming energy calculated according to subsection 2.2 is approximately 0.023
and 0.084. Multiplying these energies with the D-coefficient reported in column (1) of
Table 1 we obtain an absolute reduction of | − 0.0452 · 0.023| = 0.00104 = 0.1% and 0.4%,
respectively. If we consider an average grid-cell light growth rate of 5%, the effects are of
a relevant order. Given that the regressions of the level model reveal coefficients of similar
magnitudes, the effects on the levels of light emissions are of a corresponding size.
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Table 2: Results of the light level model (b) using annual data

Dependant variable: log light density (annual)
1◦ × 1◦ 2◦ × 2◦ Country

(1) (2) (3) (4) (5) (6) (7) (8) (9)
log(pt) 0.747*** 0.638*** 0.561*** 0.861*** 0.764*** 0.666*** 0.804*** 0.672*** 0.647***

(26.62) (20.78) (16.92) (20.44) (16.71) (13.53) (5.824) (4.751) (4.214)
ỹi,t 0.618*** 0.581*** 0.558*** 0.634*** 0.569*** 0.538***

(52.98) (50.37) (48.69) (34.38) (30.03) (26.00)
Dt -0.0241** -0.0299*** -0.0289*** -0.00240 -0.00543*** -0.00487** -0.166 -0.174** -0.138*

(-2.403) (-3.976) (-3.797) (-0.911) (-2.627) (-2.325) (-1.473) (-2.292) (-1.961)
Dt−1 -0.0294** -0.0282** -0.00536* -0.00505* -0.156** -0.123*

(-2.514) (-2.354) (-1.816) (-1.674) (-2.053) (-1.681)
Dt−2 -0.0208*** -0.0189*** -0.00463** -0.00323 -0.0999 -0.0692

(-3.611) (-3.167) (-2.181) (-1.534) (-1.341) (-1.046)
Dt−3 -0.0288*** -0.0245*** -0.00812** -0.00580* -0.0758 -0.0500

(-3.350) (-3.006) (-2.442) (-1.723) (-0.623) (-0.521)
Dt−4 -0.0389*** -0.0368*** -0.0110*** -0.00910** -0.402* -0.244

(-2.704) (-2.680) (-3.531) (-2.577) (-1.824) (-1.447)
Dt−5 -0.00467 -0.000646 -0.0356

(-0.358) (-0.216) (-0.314)
Dt−6 0.00575 0.00198 -0.00861

(0.367) (0.396) (-0.0560)
Dt−7 0.0117 0.00667 0.195***

(0.682) (1.276) (2.728)
Constant 3.195*** 4.165*** 4.595*** 2.593*** 3.744*** 4.399*** 4.187*** 5.749*** 5.881***

(26.54) (29.35) (29.67) (11.50) (14.40) (15.69) (6.046) (7.715) (7.267)
Unit FE yes yes yes yes yes yes yes yes yes
Time FE yes yes yes yes yes yes yes yes yes
Sat. FE yes yes yes yes yes yes yes yes yes
#Obs. 194,458 159,102 132,585 69,894 57,186 47,655 3,916 3,204 2,670
R2 0.539 0.549 0.545 0.549 0.557 0.557 0.667 0.665 0.679
#Cells/Countries 8,839 8,839 8,839 3,177 3,177 3,177 178 178 178

Robust t-statistics in parentheses; *** p<0.01, ** p<0.05, * p<0.1
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3.3 Moderating factors

Next, we explore the role of national institutions and economic conditions on the impact
of earthquakes on grid-cell light emissions. We consider the second specification which
explains the within grid-cell variation of light levels with (lags of) earthquakes adding
sequentially interaction terms of earthquakes and institutional as well as economic vari-
ables to equation (2). At this, we follow the general framework of Felbermayr and Gröschl
(2014).

Note that we use period averages for the years 2006 to 2013 for the moderating variables
instead of annual values. First, this allows us to consider our whole observation period from
1992-2013 for which we do not have balanced information on the moderating factors for
all countries in the world. Second, it is likely that the moderators themselves are affected
by disasters. For example, the trade to GDP ratio declines after a shock (Felbermayr
and Gröschl (2013)), therefore some part of the variation in the interaction term might
come from simultaneous changes in both variables. Using a period average combined with
fixed effects restricts the econometric model to exploit only the variation in the earthquake
intensity conditional on a fixed value of the moderating variable. Nevertheless, also the
general level of the conditioning variables might be affected by the seismic risk (e.g. higher
saving rates). Therefore, we do not make a causality claim concerning the effects. The
results should be interpreted as correlations.

Table 3 reports the results. We consider an index of institutional quality (column 1),
the log of GDP p.c. (column 2), a trade openness indicator (column 3), a measure of
government size (column 4), and the savings rate (column 5) as conditioning variables.6

The results show negative coefficients for the earthquake intensity and its lags just like
in the estimations presented above. Importantly, we find variable interactions to be im-
portant in case of institutional quality, development level, government size, and savings.
The coefficients have positive signs and are statistically significant for at least two lags.
Our results are in line with our expectations. Good institutions may accelerate the recon-
struction efforts, rich countries are likely to be more resilient to natural disasters, large
governments have more budgetary and administrative capacities to manage reconstruc-
tion, and high savings allow for more investment after the shock. Trade openness does not
turn out to be a relevant mediating factor, although one might expect a positive effect,
6 Data is taken from the World Development Indicators. The institutional quality index is the mean of the

components CPIA fiscal policy, public sector management, and transparency, accountability, corruption;
trade openness is measured by the sum of exports plus imports as share of the GDP; government size is
measured by the share of government final consumption expenditures to GDP; savings are net savings
as share of the GNI.
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Table 3: Moderating factors: Interaction models

Dependant variable: log light density (annual, 1◦ × 1◦)

Institutional Log GDP trade government savings
quality per capita openness size rate

(1) (2) (3) (4) (5)
log(pt) 0.692*** 0.636*** 0.635*** 0.627*** 0.620***

(17.07) (20.39) (20.47) (20.01) (19.65)
ỹi,t 0.526*** 0.583*** 0.583*** 0.575*** 0.573***

(37.79) (49.94) (50.03) (48.93) (48.39)
Dt -0.132*** -0.0395*** -0.0358 -0.0850*** -0.0346***

(-2.837) (-3.563) (-1.326) (-2.657) (-4.156)
Dt−1 -0.128* -0.0449** -0.0679 -0.121** -0.0347**

(-1.817) (-2.414) (-1.526) (-2.071) (-2.467)
Dt−2 -0.124*** -0.0299*** -0.0192 -0.0792*** -0.0273***

(-3.754) (-4.569) (-1.041) (-4.529) (-5.122)
Dt−3 -0.109 -0.0452*** 0.0186 -0.415*** -0.0550***

(-1.268) (-3.600) (0.367) (-4.103) (-4.355)
Dt−4 0.934 -0.0561*** -0.0664 -0.150 0.0353

(1.309) (-2.847) (-0.800) (-1.067) (0.755)
Dt × Condition 0.0345*** 1.97e-06* 7.68e-05 0.00384** 0.00133**

(2.609) (1.777) (0.306) (1.992) (2.407)
Dt−1 × Condition 0.0319* 3.12e-06* 0.000423 0.00642* 0.00173**

(1.797) (1.783) (1.070) (1.885) (1.988)
Dt−2 × Condition 0.0373*** 1.87e-06** -5.74e-06 0.00405*** 0.00149***

(3.660) (2.295) (-0.0286) (3.248) (3.997)
Dt−3 × Condition 0.0302 2.19e-06** -0.000435 0.0224*** 0.00238***

(1.427) (2.007) (-0.961) (3.941) (4.022)
Dt−4 × Condition -0.357 2.35e-06* 0.000248 0.00678 -0.0132

(-1.500) (1.757) (0.354) (0.813) (-1.563)
Constant 4.265*** 4.160*** 4.168*** 4.240*** 4.277***

(24.30) (28.92) (29.06) (29.34) (29.47)
Cell FE yes yes yes yes yes
Time FE yes yes yes yes yes
Sat. FE yes yes yes yes yes
#Obs. 88,146 155,196 156,996 153,018 148,824
R2 0.498 0.550 0.549 0.547 0.544
#Cells 4,897 8,622 8,722 8,501 8,268

Robust t-statistics in parentheses; *** p<0.01, ** p<0.05, * p<0.1
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since open economies have better access to financial markets and imports of investment
goods needed for reconstruction.

Note that the coefficients of single variables cannot be interpreted properly in interaction
models without calculating marginal effects. Even if regression coefficients are signific-
ant, this does not necessarily imply that the marginal effects are significant for reasonable
values of the conditioning variable. Therefore, we calculate the marginal effects of earth-
quake energy on grid-cell lights using a reduced specification without lags of variables.
Figure 3 illustrates the findings including 95% confidence bands. The results suggest, that
the effects of earthquakes are only negative in poor institutional or economic settings.
Importantly, the effect does not reverse in good settings, where we barely find significant
marginal effects.
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Figure 4: Marginal effects of moderating factors
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3.4 Robustness tests

In this section, we provide different robustness tests. First, we turn our attention to
5-year period averages instead of annual data in order to shift the focus to a mid-term
perspective. Table 5 and 6 in the Appendix present the results of similar specifications to
those discussed above. Note that we can investigate only 5 periods, therefore we cannot
add a similar amount of lags compared to the estimations using annual data. Concerning
the growth model, we find a significant negative effect for both grid sizes. Country level
estimates also show negative coefficients, but lower significance levels. In the model that
explains changes in light levels, we find significant effects in the small grid for disasters of
the same period, but only weak and insecure effects if we consider the rough grid and the
country level.

Second, we include electrification data in our model. As discussed in section 2.1, night
light data also captures man-made light emissions that do not directly relate to economic
activity (e.g. street lights). Earthquakes disconnect regions from the power grid for up to
60 days, therefore a part of the variation in night lights may be caused just by temporary
changes in electrification without a strong effect on output. To tackle this issue at least
partially, we include the country level rate of electrification as control variable. The results
are presented in Table 7 in the Appendix and confirm our main findings.

Third, we use the log of the population density as alternative dependant variable. As
mentioned above, the G-Econ data base relies on population raster data in order to dis-
tribute output across cells. Population density is a major determinant of night lights
and economic activity, since agglomeration indicates favorable geographic and economic
conditions. In our robustness test, we run the level model (equation (2)) using output
as dependant variable and (lags) of the earthquake intensity as independent variable(s).
The results are reported in Table 8 in the Appendix. We find highly significant negative
effects in the 1◦ × 1◦ grid for the contemporaneous earthquake shock and the next two
lags. Higher order lags show positive coefficients. The result is in line with our expecta-
tions. Earthquakes cause a decrease in population because of fatalities and displacement.
However, emigration from affected areas is only temporary and people migrate back ones
the reconstruction reached a certain level. The effects are smaller both in terms of size
and statistical significance in the rougher 2◦ × 2◦ grid suggesting that the migration dis-
tance is limited to surrounding areas. At the country level, these effects vanish completely
implying that displaced persons search protection predominantly in their home country.
Altogether, this supports our main finding that economic activity is significantly negat-
ively affected by earthquakes. It also points at temporary disaster displacement being an
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important channel.

4 Summary and conclusion

We examine the impact of earthquakes on satellite nighttime lights at the regional level,
i.e. based on grids. Our approach extends the existing literature on the effect of natural
disasters on economic development in several dimensions:

First, by using satellite nighttime lights as indicator of economic development, we are able
to study almost all regions of the world. Studying the full population of countries instead
of particular samples helps to avoid a potential sample selection bias. Second, the satellite
nighttime light data can be aggregated at different territorial levels. Therefore, we bring
the discussion on the effects of natural disasters to the regional level, thereby focusing on
artificially drawn grids of different sizes. We also compare the results with regressions at
the country level. Third, we follow recent literature by using geophysical event data on
the intensity of earthquakes instead of reported damages. This strategy has the advantage
that the size of the shock could be treated as exogenous to the income. Using geophysical
event data is, however, not a trivial task in our framework. We therefore develop a new
method that allows us to distribute the seismic energy of an earthquake in space and
time. Our approach is much more accurate compared to others that, e.g., simply divide
earthquake magnitudes by a country’s surface. Fourth, we consider national institutions
and economic conditions as potential mediating factors.

Our calculations provide a new data set on the earthquake energy received at the regional
(grid) level and corresponding satellite nighttime lights. Considering the 1◦ × 1◦ grid, the
final data set contains 8,839 regions for the period 1992–2013. Based on this new data set,
we estimate the effect of earthquakes on lights using panel fixed effects regressions and
find a significant negative effect. The effects are also significant in economic terms. An
earthquake of magnitude 8.0 reduces light’s growth rate by approximately 0.4%. Import-
antly, space matters in this context, too. The effect is significantly smaller considering a
rougher grid or the country level. Earthquakes are, therefore, first and foremost a regional
event, which should also be studied at the regional level. Concerning national institutions
and economic conditions, we find that good institutions and economic condition alleviate
the negative effects of earthquakes.
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Variable Obs. Mean Stand. Dev. Min. Max.
log light 388,894 5.301825 4.425212 0 13.52509
delta log light 371,217 .0530783 1.109741 -12.15651 12.12189
log population 388,894 2.012928 3.615591 -20.72327 11.58441
Earthquake intensity 388,894 .0020212 .0796447 0 10.9
Neighbor light 388,894 2.925692 2.222108 0 11.80675
Institutional quality 210,298 3.199528 .4087319 2.198413 4.218053
GDP p.c. 376,684 19605.64 26057.13 607.6609 87958.07
Trade to GDP 380,578 81.6031 31.08527 7.383489 290.8997
Government size 372,350 18.09401 7.166708 5.083892 58.30986
Savings 365,816 13.73488 15.02366 -45.3999 53.46132

Table 4: Descriptive statistics
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Table 5: Robustness: Results of the growth model (a) using 5-year period averages

Dependent variable: light growth
1◦ × 1◦ 2◦ × 2◦ Country

(1) (2) (3) (4) (5) (6) (8) (9)
log(yi,t−1) -0.546*** -0.667*** -0.667*** -0.521*** -0.625*** -0.625*** -0.573*** -0.573***

(-61.88) (-72.82) (-72.81) (-33.88) (-42.74) (-42.73) (-13.47) (-13.43)
log(pt) 0.0700*** 0.316*** 0.315*** 0.0540 0.377*** 0.377*** 0.240** 0.240**

(2.886) (11.77) (11.77) (1.504) (9.979) (9.967) (2.132) (2.129)
ỹi,t 0.516*** 0.516*** 0.539*** 0.539***

(38.97) (38.97) (25.31) (25.31)
Dt -0.205*** -0.122*** -0.118*** -0.0550*** -0.0269*** -0.0247*** -0.522** -0.528**

(-8.393) (-5.038) (-4.517) (-6.416) (-2.991) (-2.763) (-2.465) (-2.402)
Dt−1 0.0401 0.0183 -0.0929

(0.640) (1.305) (-0.169)
Constant 4.650*** 2.595*** 2.596*** 4.828*** 2.041*** 2.042*** 3.850*** 3.850***

(47.76) (24.03) (24.03) (26.21) (10.07) (10.07) (6.323) (6.320)
Unit FE yes yes yes yes yes yes yes yes
Time FE yes yes yes yes yes yes yes yes
Sat. FE yes yes yes yes yes yes yes yes
#Obs. 35,356 35,356 35,356 12,708 12,708 12,708 712 712
R2 0.507 0.626 0.626 0.498 0.609 0.609 0.666 0.666
#Cells/Countries 8,839 8,839 8,839 3,177 3,177 3,177 178 178

Robust t-statistics in parentheses; *** p<0.01, ** p<0.05, * p<0.1
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Table 6: Robustness: Results of the light level model (b) using 5-year period averages

Dependant variable: log light density
1◦ × 1◦ 2◦ × 2◦ Country

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
log(pt) 0.754*** 0.768*** 0.661*** 0.557*** 0.812*** 0.893*** 0.817*** 0.695*** 0.829*** 0.519***

(25.08) (26.82) (21.70) (15.43) (18.04) (20.65) (17.41) (12.65) (5.854) (3.171)
ỹi,t 0.686*** 0.656*** 0.621*** 0.758*** 0.694*** 0.648***

(46.37) (43.32) (40.99) (33.34) (26.68) (20.99)
Dt -0.166*** -0.0745* -0.0894*** -0.0946*** -0.0448*** -0.00621 -0.0148 -0.0176* -0.528 -0.459*

(-3.786) (-1.912) (-2.696) (-3.169) (-2.937) (-0.477) (-1.406) (-1.757) (-1.229) (-1.730)
Dt−1 0.0369 0.0232 0.0143 0.0137 0.297

(0.407) (0.350) (0.579) (0.614) (0.619)
Dt−2 0.270 0.0234 -0.127

(1.444) (0.267) (-0.0699)
Constant 5.648*** 2.893*** 3.513*** 4.179*** 5.313*** 2.013*** 2.717*** 3.613*** 4.180*** 6.236***

(46.34) (22.86) (24.32) (23.82) (23.18) (8.524) (9.968) (11.02) (5.862) (7.392)
Cell FE yes yes yes yes yes yes yes yes yes yes
Time FE yes yes yes yes yes yes yes yes yes yes
Sat. FE yes yes yes yes yes yes yes yes yes yes
#Obs. 44,195 44,195 35,356 26,517 15,885 15,885 12,708 9,531 890 534
R2 0.440 0.618 0.628 0.630 0.482 0.634 0.639 0.643 0.735 0.729
#Cells/Countries 8,839 8,839 8,839 8,839 3,177 3,177 3,177 3,177 178 178

Robust t-statistics in parentheses; *** p<0.01, ** p<0.05, * p<0.1
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Table 7: Robustness: Results light level model (b) including electrification rates (log(Et))

Dependent variable: log light density
1◦ × 1◦ 2◦ × 2◦ Country

(1) (2) (3) (4) (5) (6) (7) (8) (9)
log(pt) 0.769*** 0.728*** 0.558*** 0.769*** 0.728*** 0.558*** 0.854*** 0.835*** 0.663***

(24.59) (23.28) (15.54) (24.59) (23.28) (15.54) (5.651) (5.732) (4.035)
ỹi,t 0.590*** 0.577*** 0.531*** 0.590*** 0.577*** 0.531***

(46.72) (46.00) (43.84) (46.72) (46.00) (43.84)
log(Et) -0.0205* -0.0168 -0.0157 -0.0205* -0.0168 -0.0157 -0.00137 -0.00732 -0.0173

(-1.739) (-1.391) (-0.899) (-1.739) (-1.391) (-0.899) (-0.0933) (-0.492) (-0.896)
Dt -0.0298*** -0.0285*** -0.0321*** -0.0298*** -0.0285*** -0.0321*** -0.187* -0.158** -0.136*

(-2.946) (-3.593) (-4.200) (-2.946) (-3.593) (-4.200) (-1.952) (-2.306) (-1.940)
Dt−1 -0.0332** -0.0313*** -0.0332** -0.0313*** -0.186** -0.125*

(-2.527) (-2.600) (-2.527) (-2.600) (-2.000) (-1.735)
Dt−2 -0.0226*** -0.0226*** -0.0784

(-3.773) (-3.773) (-1.217)
Dt−3 -0.0275*** -0.0275*** -0.0447

(-3.367) (-3.367) (-0.499)
Dt−4 -0.0389*** -0.0389*** -0.253

(-2.810) (-2.810) (-1.502)
Dt−5 -0.00874 -0.00874 -0.0277

(-0.661) (-0.661) (-0.242)
Dt−6 0.00350 0.00350 0.0665

(0.222) (0.222) (0.646)
Dt−7 0.00766 0.00766 0.174**

(0.444) (0.444) (2.345)
Constant 3.281*** 3.585*** 4.793*** 3.281*** 3.585*** 4.793*** 4.024*** 4.378*** 5.371***

(22.85) (24.56) (26.09) (22.85) (24.56) (26.09) (5.377) (6.012) (6.394)
Unit FE yes yes yes yes yes yes yes yes yes
Time FE yes yes yes yes yes yes yes yes
Sat. FE yes yes yes yes yes yes yes yes
#Obs. 155,489 148,621 106,749 155,489 148,621 106,749 3,158 3,020 2,172
R2 0.531 0.527 0.542 0.531 0.527 0.542 0.684 0.678 0.693
#Cells/Countries 7,126 7,126 7,126 7,126 7,126 7,126 145 145 145

Robust t-statistics in parentheses; *** p<0.01, ** p<0.05, * p<0.1;
standard errors clustered at the grid cell level and country level, respectively.
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Table 8: Robustness: Population density as dependant variable (log(pt))

Dependent variable: log population density
1◦ × 1◦ 2◦ × 2◦ Country

(1) (2) (3) (4) (5) (6)
log(yi) 0.0723*** 0.0599*** 0.0928*** 0.0776*** 0.0807*** 0.0664***

(23.51) (19.31) (17.87) (16.75) (4.547) (3.657)
Dt -0.00549*** -0.00670*** -0.00179** -0.00217** -0.0431 -0.0405

(-3.067) (-3.909) (-2.164) (-2.572) (-1.587) (-1.371)
Dt−1 -0.00584*** -0.00489*** -0.00177* -0.00153** -0.0522 -0.0349

(-2.917) (-3.148) (-1.908) (-1.964) (-1.596) (-1.519)
Dt−2 -0.00458*** -0.00136* -0.0415

(-2.630) (-1.688) (-1.344)
Dt−3 0.00610*** 0.00127 0.0104

(3.110) (1.616) (0.314)
Dt−4 0.00564*** 0.00166* 0.0701

(2.725) (1.706) (0.805)
Constant 3.610*** 3.886*** 4.519*** 4.870*** 4.332*** 4.515***

(170.6) (170.6) (113.5) (121.4) (28.88) (29.26)
Unit FE yes yes yes yes yes yes
Time FE yes yes yes yes yes yes
Sat. FE yes yes yes yes yes yes
#Obs. 185,619 159,102 66,717 57,186 3,738 3,204
R2 0.195 0.171 0.257 0.240 0.582 0.561
#Cells/Countries 8,839 8,839 3,177 3,177 178 178

Robust t-statistics in parentheses; *** p<0.01, ** p<0.05, * p<0.1;
standard errors clustered at the grid cell level and country level, respectively.
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