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Multigenerational Transmission of Culture 
 
 

Abstract 
 
This paper explores intergenerational transmission of culture and the consequences of a 
plausible assumption: that people care not only for their children’s culture but also for how their 
grand-children are raised. This departs from the previous literature which, without exception, 
assumes parents either do not care about, or fail to consider, the effect their actions have on all 
future generations. The current paper models a sequential game where parents take actions 
trading off being close to their own preferences and influencing their children, and where 
parents take into account that the children face a similar trade-off when raising their children. 
Predictions regarding endogenous extremism, the effect of societal socialization, parents. 
discounting, social pressure and interaction between groups are derived. In equilibrium, parents 
behave more extremely than their own preferences and this effect is intensified the more 
extreme preferences the parent has. There may be perpetual extremizing whereby an arbitrarily 
long sequence of generations will behave more extremely than the first ancestor’s preferences. 
Furthermore, interaction of groups implies more extreme initial behavior but also faster 
integration. 
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1 Introduction

In the literature on intergenerational transmission of culture it is gener-
ally assumed that parents, when raising their children, do not take into
account how their children in turn will raise the grandchildren (see, e.g.,
Bisin and Verdier, 2001; Vaughan, 2013; Buechel et al. 2015; Patacchini
and Zenou, 2016; Cheung and Wu, 2017). This paper explores the con-
sequences of an evolutionarily and empirically motivated observation:
that humans care how their grandchildren are raised.1

There are at least two reasons why parents in reality would care about
how their grandchildren are raised. 1) Parents may care directly about
the preferences, values and more broadly the culture that the grandchil-
dren adopt and similarly about the culture of the grand-grandchildren
and so on. 2) Parents may care indirectly about how their grandchildren
are raised since they care for the behavior of their children as parents.
For instance, a parent may want her adult child to visit the temple reg-
ularly, but since visiting the temple is a family activity the adult child’s
decision is made with the purpose of affecting the grandchild.
The key complexity that arises in such a setting is that parents need

to take into account that their children will solve a similar problem as
themselves —the parent takes an action to influence the action of the
child, but the action of the child is determined with the purpose of in-
fluencing the action of the grandchild which is meant to influence the
action of the grand-grandchild and so on. This paper presents a simple
and tractable framework for analyzing such decisions of multigenera-
tional transmission of culture.
The baseline setting analyzes a parent from a minority culture and

how it raises her child vis-à-vis a majority culture. The parent has a (for
her exogenous) bliss point that she wants her action to be close to. This
action along with the (fixed) culture of mainstream society determine the
preference of the child. The child’s preference in turn affects the child’s
action which affects the preferences and thus actions of the grandchild
etc. The parent wants the actions of all future generations (her child,
grandchild, grand-grandchild etc.) to be close to her own blisspoint.
It is shown in this setting that parents will extremize their behavior:

they will take actions which are more extreme (in distance to mainstream
society) than their own blisspoints. This extremizing is the strongest
for intermediate values of parental influence: if the child’s blisspoint is
mainly determined by mainstream society then it is pointless for the

1For evolutionary motivations see, e.g., Hawkes (2003), Lahdenperä (2004) and
Silverstein (2007). For anecdotal empirical evidence that grandparents care about
how their grandchildren are raised see nearest family. For more scientifically oriented
empirical support see, e.g, Kaptijn (2010).
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parent to behave extremely; and if the child’s blisspoint is mainly de-
termined by the parent then it is needless for the parent to behave
extremely. Furthermore, extremizing is stronger the more extreme pref-
erences the parent has.
When extremizing is at its strongest, also the child’s (and possibly

also the grandchild’s, grand-grandchild’s etc.) actions are more extreme
than the original parent’s blisspoint. Perpetual extremizing — an ar-
bitrary number of future generations behave more extremely than the
original parent’s blisspoint — arrives as a limit result as the minority
group becomes suffi ciently patient (caring suffi ciently about the actions
of future generations).
Also social sanctioning is analyzed: actions that deviate from main-

stream society are sanctioned. Parents then take into account that not
only they themselves are sanctioned the more their actions deviate from
mainstream society, but also that this sanctioning will affect the actions
of the children, grandchildren etc. Is the fact that the actions of future
generations may be pulled towards mainstream a source for further ex-
tremizing of the parent? No, it is shown that such social sanctioning has
an unambiguous effect of making all generations behave less extremely.
Finally, interaction between two groups with differing cultures is ana-

lyzed. Parents from each group take into account that their children are
influenced by their own group’s action and by the actions of the other
group which in itself is a strategic choice. Parents also take into account
that the actions of their children are determined by a similar strategic
interaction with the children of the other group. It is shown that such
interaction makes actions of the parents more extreme: parents compen-
sate for the actions of the other group which fuels further extremizing by
the other group, thus more extremizing by the parent. However, while
strategic interaction fuels extremism within one generation, long-run in-
tegration between the groups (convergence of blisspoints) is still faster
than if the parent would interact with a fixed (non-strategic) mainstream
society.

2 Related literature

The novelty of this paper is in analyzing multigenerational transmission
of culture —parents that take into account how their actions affect not
only the next generation (like in for instance Bisin and Verdier, 2001;
Buechel et al. 2015; Patacchini and Zenou, 2016; Cheung and Wu, 2017)
but also later generations. The three most closely related papers are by
Buechel et al. (2015), by Cheung andWu (2017) and by Vaughan (2013).
Buechel et al. (2015) present a model where parents purposefully

raise their children to become like them and, importantly, where the
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parent’s choice variable and the children’s culture are continuous vari-
ables.2 The important and novel feature of their model, which is also
used in the current paper, is that the action and traits are (control and
state) variables along the same dimension. The interpretation is that
parents are role models. For instance, how often the parent prays (ac-
tion) affects how often the child wants to pray (trait). If one is interested
in questions such as whether a person’s behavior is more extreme than
her own preferences this feature is essential. This is since in the basic
binary-trait model (first developed by Bisin and Verdier, 2001, and then
extended by many, for instance, Saez-Marti and Zenou, 2012, see Bisin
and Verdier 2011 for an overview) the action (a continuous choice of ef-
fort in raising children) is along a different dimension than the parent’s
cultural trait. Hence actions and tastes cannot be compared in those
models.
However, unlike the current paper, in Buechel et al. (2015) the par-

ents care only about the cultural trait of the next generation and not
about their actions or about traits of subsequent generations. Hence,
their model boils down to a series of disconnected static decisions. In the
current paper a parent cares about her child’s action (and possibly later
generations’actions too) but this action is determined strategically as
the child tries to affect the grandchild. Hence, the game is truly dynamic
in the sense that the parent has to take into account the (sub-)games all
future generations are facing. Naturally, such a game is more complex to
solve (the game is solved recursively and a Markov-perfect equilibrium is
identified) hence the functional forms chosen and the network structure
used are less general than in Buechel et al. (2015).3 Nevertheless, the
current framework is tractable in allowing analysis of various extensions.
The current paper echoes some of the results of Buechel et al. (2015) but
also adds to them, for instance, by showing when perpetual extremizing
will arise and the effect of social pressure.4

Cheung and Wu (2017) present a framework similar to Buechel et

2Predecessor papers are Bisin and Topa (2003) who suggest a continuous model
but do not solve it; Brueckner and Smirnov (2007, 2008) who show dynamics in a
continuous-trait model but where parents are not making choices; and Pichler (2010)
and Panebianco (2014) where the child’s trait is determined by the own parent’s
effort (which is made along a different dimension than the trait) but not by other
parents’actions (only their types).

3See also Hellman and Panebianco (2018) for a model where the parents choose
the network.

4Social pressure cannot really be studied in the framework of Buechel et al. (2015)
since there the parent only cares about her own child’s type while social pressure is
something that plausibly will affect the child’s actions. Perpetual extremizing does
not arise in their framework except for under a somewhat special case where in
equilibrium the child adopts the opposite culture of the parent.
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al. (2015) with the main difference being that in Cheung and Wu’s
(2017) model a child’s trait will be precisely equal to the action of one
individual from the previous generation (instead of a weighted average
like in Buechel et al., 2015, and in the current paper). This departure is
important as it may lead to divergence of traits in society. In that sense
it is related to the current paper which shows a different mechanism for
limited convergence —parents caring about more than one generation.
Another main contribution of Cheung and Wu (2017) is showing the
effect of preference curvatures (the cost of deviating from the blisspoint
may be convex or concave) similar to Michaeli and Spiro’s (2015, 2017)
study of social norms. The current paper is less general in that sense.
The model is solved for less general functional forms since the dynamics
of the game are more complex than Cheung and Wu’s (2017) model
which, like all previous models, boils down to a sequence of disconnected
static games.5

Finally, in Vaughan’s (2013) model the child’s preferences are decided
in a conformity game she plays against other children and the parent
can affect how much the child resists conforming to others. As such,
the model provides an elegant micro-theoretic foundation for how trans-
mission of preferences may actually take place. In that model, however,
the child plays the game against the peers without taking into account
how this will affect her own future actions. Hence, the agents in the
model are myopic or naive in the sense that they make choices without
taking into account how they affect their own future welfare. Vaughan’s
(2013) game therefore boils down to a sequence of disconnected two-
period games. The current paper departs from this by specifically let-
ting all generations take into account how their actions affect future
generations.

5It is noted that in Cheung and Wu (2017) the parent cares about the child’s
action in a game the child plays later in life. However, this game does not affect the
actions or traits of subsequent generations hence the parent does not need to take
into account what grandchildren and grand-grandchildren will do and indeed does
not directly care about their actions or traits. Hence, each parent essentially plays a
static game against other parents in the same generation.
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3 Basic framework and results

“Actions are what count, not merely thoughts”Rabbi Boruch Leff6

“Thought is the parent of the deed”Thomas Carlyle

The basic model consists of a dynasty with an infinite sequence of
overlapping generations indexed by i ∈ N. Each generation consists
of one individual (thus indexed by i as well). This individual is “the
parent”of one individual (i+ 1) referred to as “the child”. Each i in the
dynasty is associated with a type ti ∈ R and takes an action si ∈ R.
The game is sequential so that i takes her action before i+ 1 who takes
her action before i+ 2 etc. Parent i has the objective function

min
si

Li (si; ti) = min
si

∞∑
j=0

βj
(ti − si+j)2

2
(1)

subject to the following constraints. For j = 1, ...,∞

ti+j =αsi+j−1 + (1− α) s̄i+j−1 (2)

si+j = arg minLi+j (si+j; ti+j) . (3)

That is, following (1), parent i gets a disutility when taking an action (si)
that differs from her type (ti), when her child’s action (si+1) differs from
i’s type, when the grand-child’s action (si+2) differs from i′s type and
so on for the actions of all future generations.7 The parent cares more
about the actions of close-by generations as represented by β ∈ ]0, 1[.
Following (2), the type of an individual (ti+j) is determined by a

weighted average of her parent’s action (si+j−1) and some other action
in society (s̄i+j−1). That is, the parent instills preferences in her child by
being a role model in her actions. α ∈ ]0, 1[ is exogenous and captures
what influence the parent has on her child vis-à-vis the rest of society.8 In

6Interpretation of weekly Torah portion, Matot (Numbers 30:2-32:42),
http://www.aish.com/tp/i/ky/48959001.html, accessed May 18 2018.

7Thus, unlike most previous models, the parent cares about the actions of future
generations (and not about their types). However, in line with previous models, the
parent has “imperfect empathy”and evaluates deviations (of actions in this model
and types in previous research) from her own type instead of from the point of view
of future generations —the parent wants future generations to follow the customs she
herself likes. Furthermore, unlike previous models, the parent cares about all future
generations, not just the next.

8It may be noted that (as in Buechel et al., 2015) the child’s preferences do not
attain exactly the same value as the action of any one individual from the previous
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this section, it will be assumed that s̄i+j−1 is constant in all generations
and (w.l.o.g.) that it equals zero. This will be relaxed in Section 5, but
is here meant to capture a situation where a small group is integrating
in a much larger and stable society. For notational ease it will be further
assumed that t0 > 0.
As stated, the parent cares about the actions of future generations

and not directly about their types. However, the only thing the parent
can directly influence is her own child’s type. The child’s preferences
in turn affect the child’s actions since she solves an equivalent prob-
lem as the parent, as stated in (3), but, of course, taking her own and
not the parent’s preferences into account. Thus, the parent can instill
preferences in the child which affect the actions of the child, hence also
preferences and actions of later generations. Naturally, the parent takes
into account this chain of intergenerational transmission of preferences
when trying to affect future generations. This is clearly seen in the
first-order condition (in case of an interior solution)

− (ti − si)− β (ti − si+1)
dsi+1
dsi

− β2 (ti − si+2)
dsi+2
dsi

− ... = 0

where the transmission to future generations is captured by the deriva-
tives.
The problem is complex and it is generally hard to show the universe

of equilibria. Hence, the treatment is constrained to Markov Perfect
equilibria. Denote the equilibrium action of an individual s∗i . A Markov
Perfect Nash Equilibrium (MPNE) is one where the strategy of each
generation is a stationary function of its type: s∗i = s∗ (ti) for all i.
The quadratic nature of the objective function is tractable and en-

ables guessing and verifying that an MPNE exists where the equilibrium
strategy of each individual is linear in her type:

s∗i (t) = Cti ∀i

where C is a constant. The first step in showing the existence of an
equilibrium is to derive the parent’s best response if later generations
follow such a strategy and verify that the best response is linear. If later
generations follow a linear strategy then dsi+1

dti+1
= C and by (2) (recall

s̄i+j−1 = 0) follows that dti+1
dsi

= α with the chain of derivatives up to

generation i+j being dsi+j
dsi

= (Cα)j. Using this, the first-order condition

generation. Rather it is a weighted average. Thus, the parent’s action affects how
similar the child will be to the parent, but the type of the child is not dichotomous
as in the basic Bisin-Verdier framework (1998).
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for an interior solution becomes

(si − ti) + β (Cαsi − ti)Cα + β2
(
(Cα)2 si − ti

)
(Cα)2 + ... = 0 (4)

↔
∞∑
j=0

βj
(

(Cα)j si − ti
)

(Cα)j = 0. (5)

Differentiating this with respect to si yields a second—order condition for
an interior solution

∞∑
j=0

βj (Cα)2j > 0. (6)

Since the power on the parenthesis is an even number, the SOC is sat-
isfied globally9 implying that, for each C used in the strategy of later
generations, there exists a unique and interior solution to parent i’s min-
imization problem —a unique best response s∗i (ti) that solves (5).

Lemma 1 If generations i + j for j = 1...∞ follow a linear strategy
si+j = Cti+j where C 6= 0, then the parent in generation i has a unique
linear best response given by

s∗i =Citi where

Ci≡
∑∞

j=0 β
j (Cα)j∑∞

j=0 β
j (Cα)2j

(7)

Proof. Follows from the SOC (6) holding and by rewriting the FOC (5)
and noting that the expression for Ci only consists of constants.

For the best response to be part of an MPNE (stationary strategies)
it is necessary and suffi cient that Ci = C. Denote by C∗ a C that solves
the implicit expression in (7). Analyzing it yields:

Lemma 2 In any MPNE with linear strategies, C∗ ∈ ]0, 1/α[.
Proof. See Appendix A.

The lemma specifies bounds on the equilibrium strategies. The bounds
imply that Cα ∈ ]0, 1[ and hence that the implicit expression for C∗ in
(7) can be rewritten to

C∗ =
1− β (C∗α)2

1− β (C∗α)
. (8)

Any C∗ ∈ ]0, 1/α[ that solves this expression constitutes an MPNE with
linear strategies. Solving it for C∗ yields the following proposition.

9Except when C = 0 whereby the best response is si = ti.
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Proposition 1 There exists a unique Markov-Perfect Equilibrium with
linear equilibrium strategies s∗i = C∗ti ∀i. In this equilibrium C∗ =
1−
√
1−4βα(1−α)
2βα(1−α) and

1. agents behave more extremely than their own type (C∗ > 1);

2. the more extreme a type is the more she extremizes (s∗i (ti) − ti is
increasing in ti);

3. there is dynastic integration (ti+1 = αC∗ti < ti);

4. the most extremizing is attained for intermediate values of parental
influence (C∗ is hill-shaped in α);

5. the more influential the parents are the slower is the integration
(αC∗ is increasing α);

6. the more patient the agents are the more they extremize (C∗ is
increasing in β).

Proof. See Appendix B.

The proposition shows that agents extremize their behavior (point
1) in the sense they will take an action which is further away from the
rest of society (normalized to zero) than their own type is. The reason
for this is that, while extremizing implies the parent deviates from her
blisspoint, she does so to mitigate the influence of society so that the
actions of her children and grandchildren will be closer to her type. The
most extreme types extremize their actions the most (point 2) since for
any given level of extremizing (si − ti) types far from the mainstream
will see their children end up having types and thus also actions further
away from them (in absolute level). Hence, extreme parents need to
compensate for the pull of mainstream society more than more moderate
parents. Despite this extremizing, the equilibrium displays integration
over time (point 3) since limi→∞ ti = limi→∞ (αC)i t0 = 0. The logic
behind this result is easiest understood by considering the payoffs if this
result did not hold, that is, if the child would be more extreme than the
parent. Then the child would spawn even more extreme grandchildren
whose children would again be even more extreme. This way the actions
would diverge implying that the original parent would want to mitigate
it by behaving less extremely.
As is stated in point 4, extremizing is most pronounced for interme-

diate values of α. To understand the intuition for why this is the case,
consider first the polar case of α→ 1. Here it is needless for the parent
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to extremize since the child will anyway grow up to be like the parent
—there is no influence from society to mitigate. In the other polar case
(α→ 0) society has a large impact on the child which the parent would
want to mitigate, but extremizing is pointless for the parent since her
influence is small. That is, she would need to take an action far from
her blisspoint in order to have an effect on the child, but that is too
painful. Roughly speaking, for intermediate values of α there is both
a reason for the parent to try to mitigate the influence of society and
the parent’s attempts will also have an effect. Hence, extremizing will
be high. The prediction is thus, for instance, that newly arrived immi-
grants will behave the most extremely in societies which neither force
assimilation nor abdicate from influencing children. However, while the
extremizing in the first generation is strongest for intermediate values of
α, the cross-generational resistance to integrate, that is αC∗, is stronger
the larger is α (point 5). Hence, while parents can offset the influence
of society, this only happens partially and the more influential society is
(the smaller is α) the faster the integration will go.
Finally, parents that care more about how much future generations’

actions deviate from ti (high β) will extremize more (point 6). At an
intuitive level this is of course natural since they will put a relatively
higher weight on later actions than on their own action’s deviation. Also,
they will put a relatively higher weight on generations very far into the
future compared to closer generations, hence extremize more since the
far-away generations are those who will potentially be deviating the most
from the original parent’s type. Now, while the comparative statics with
respect to β may seem intuitive it should be noted that it does, in its
details, not follow trivially from the assumption that parents care more
about later generations. The reason is that a high β of the parent (which
has a direct effect of extremizing) is accompanied by a high β also of its
offspring implying that they will extremize more too hence (the indirect
effect) that the parent does not need to extremize as much in the first
place. As is shown, the direct effect is always stronger for the logical
reason that the indirect effect on the parent is contingent on a direct
effect of β on the child. Hence, if the direct effect is small, then the
indirect effect need to be small as well.
Now, while point 3 states that over time the actions will converge

to the mainstream, this is only an asymptotic property. In practice
integration may take a long time which is illustrated in Figure 1. The
action of generation 0 relative to its type is given by C∗ which we know
is greater than 1. The action of the next generation is C∗2α relative to
generation zero’s type; the action of the generation after this isC∗3α2 and
so on. The figure illustrates that, depending on parameter conditions, it

10



Figure 1: Action of individual of generation i relative to type of gener-
ation 0. In the illustration α = 3/4 and β = 0.9.

may take many generations (in this case six) before the actions are less
extreme than the type of generation zero. Extremizing may in fact be
virtually without end.

Corollary 1 Suppose α > 1/2. For any finite j there exists a suffi -
ciently large β such that s∗i+j > ti.
Proof. Follows by noting that limβ→1

√
1− 4βα (1− α) = |1− 2α| =

2α−1 when α > 1/2 implying that (from Proposition 1) limβ→1C
∗ = 1/α

and limβ→1 s
∗
i+j = limβ→1 (C∗α)j C∗ti = ti/α > ti for any finite j.

The corollary says that extremizing may be perpetual in the sense
that it may take arbitrarily many generations before actions are closer to
mainstream society than the original ancestor’s preferences. This result
only holds if α > 1/2 so that parents have a larger influence on their
children than society has. The intuitive reason for it not holding when
α < 1/2 is that, for perpetual extremizing, “all”future generations have
to take an action si+j = ti+j/α in order to mitigate the influence of
society. But, when society is very influential (α < 1/2), si+j − ti+j =
ti+j(1/α − 1) > ti+j. That is, the action needed, by the current and
future generations, to uphold perpetual extremizing is further from the
parent’s blisspoint than if she and her offspring fully integrated. Hence,
the parent has a profitable deviation to immediate integration so that
perpetual extremizing cannot be an equilibrium.10 When, on the other

10The actual equilibrium when α < 1/2 does not actually display immediate con-
vergence. Under the knife’s-edge case α = 1/2 the intuition is somewhat different.
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hand, the parent is more influential (α > 1/2) the perpetually-extreme
action (si+j = ti+j/α) is always closer to her own blisspoint than full
integration is. Hence, if she cares suffi ciently about the culture of future
generations she will ensure that this integration takes an arbitrarily long
time. Appendix F discusses the (im-)possibility of reputation equilibria
using trigger strategies.

4 The effect of social pressure

I now move to analyze the effect of social sanctioning from mainstream
society. To this end I incorporate the element that the individual in-
curs a direct loss when her behavior deviates from the majority culture
(si 6= s̄). This element makes it more diffi cult to analyze the equilibrium
properties. Hence a simplification is made here that the parent only
cares about the behavior of her children and not of later generations.
Discounting is also abstracted from by setting β = 1. The objective
function of the parent thus is

min
si

Li (si; ti) = min
si

(ti − si)2 + (ti − si+1)2 +K (si − s̄i)2

2
(9)

s.t. ti+j =αsi+j−1 + (1− α) s̄i+j−1 and (10)

si+j = arg minLi+j (si+j; ti+j) for j = 1...∞ (11)

where K is the weight of social sanctioning which is a quadratic function
of the deviation from mainstream society. Children are socialized in the
same way as before by a convex combination of the parent’s action and
the fixed mainstream society (which is kept constant and normalized so
that s̄i = 0 ∀i). As before, the parent takes into account that her action
affects the child’s type and thus action where the child is in turn taking
into account the type and action of the next generation. Hence, despite
the parent here not caring directly about what her grandchildren and
later generations do, she still has to take their actions into account since
these considerations affect the child’s behavior.
I again look for an MPNE guessing and verifying that the equilibrium

strategy of each individual is linear in her type. Similar steps as in the
previous section yield the following proposition.

Proposition 2 There exists a unique Markov-Perfect Nash Equilibrium
with a linear equilibrium strategy s∗i = D∗ti ∀i where D∗ ∈]0, 1/α[ is
implicitly given by D = 1+αD

1+(αD)2+K
. In this equilibrium extremizing is

reduced by social sanctioning (D∗ is decreasing in K).
Proof. See Appendix C.
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This proposition focuses on the effect of social sanctioning.11 Now,
given the previous finding that parental influence (α) has a non-monotonic
effect on extremizing, it is ex-ante not obvious whether the effect of so-
cial sanctioning (K) will have similar or some other effect. A first direct
effect of social pressure is that the parent (i) will choose a behavior more
similar to mainstream society. However, since this will induce also the
children to show more mainstream behavior, the indirect effect is that
the parent will want to compensate for this by behaving more extremely.
Is the direct or the indirect effect stronger? As the proposition expresses,
the effect of social sanctioning is unambiguous —it reduces extremizing
—hence the direct effect is stronger. The intuition for this is similar to
why β has an unambiguous total effect despite there being a direct and
indirect effect (see previous section). The existence of the indirect effect
is contingent on the existence of the direct effect hence can never surpass
it.
A brief discussion about the generality of this result may be in place.

In this model it has been assumed that the parent cares about the behav-
ior of her child as manifested when the child is affecting the grandchild.
Hence, this is essentially a model of parents that care about the behav-
ior of their children when the children become parents themselves. As
shown, the effect of social pressure is then to unambiguously reduce ex-
treme behavior. An alternative model choice could, however, have been
made so that parents care about the actions of their children when they
are still young and where these actions would not have a direct effect on
the grandchildren’s type (similar to Vaughan, 2013). In such a model
there would have been a disconnect between actions that agents take as
children and the actions they take as adults and the effect of social pres-
sure could well have been reversed so that peer pressure makes parents
more extreme.

5 Two interacting groups

I now move to analyzing interaction between groups. To this end, the
simpler framework of the previous section will be used as a base but
including two groups (A and B) influencing each other. W.l.o.g., the
types in the first generation (i = 0) are normalized so that t0,B = −t0,A
and t0,A ≥ 0. Each group consists of one parent. An A-parent in gener-
ation i cares about the behavior of the next A-generation only, without
discounting and without social pressure. That is, the A-parent does not
directly care about B-children or later generations of A-children. The

11The other properties of the equilibrium are the same as in Proposition 1, short
of those regarding β which does not exist here.
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A-parent thus solves

min
si,A

Li,A (si,A; ti,A, si,B) = min
si,A

(ti,A − si,A)2 + (ti,A − si+1,A)2

2

subject to the following constraints. For j = 1...∞

ti+j,A =αsi+j−1,A + (1− α) si+j−1,B, (12)

si+j,A = arg minLi+j,A (si+j,A; ti+j,A, si+j,B) (13)

ti+j,B =αsi+j−1,B + (1− α) si+j−1,A, (14)

si+j,B = arg minLi+j,B (si+j,B; ti+j,B, si+j,A) . (15)

By (12), the child’s type (tA,i+1) is influenced both by her own parent’s
behavior (with weight α) but also by the behavior of the parent in the
other group (with weight 1 − α). I will restrict α > 1/2 so that the
own parent influences the child more than the other group’s parent.
Furthermore, by (13), the parent (like before) takes into account that the
child’s behavior is determined by an equivalent tradeoff as the parent’s
behavior. Finally, (14) and (15) capture that the A-parent takes into
account the influence on the B-child which will affect the behavior of the
A-child in (13). By (15) the A-parent is aware, and takes into account in
her own actions, that the B-children are solving a similar problem. (12)
and (14) jointly contain the assumption that the A-parent has en equal
effect on the B-child as the B-parent has on the A-child. The A-parent
takes her action simultaneously with the B-parent (thus takes the action
of the B-parent si,B as given).
The B-parent is solving an equivalent problem:

min
si,B

Li,B (si,B; ti,B, si,B) = min
si,B

(ti,B − si,B)2 + (ti,B − si+1,B)2

2

s.t. (12)-(15).

This way there is direct strategic interaction between the groups. More-
over, since the A-parent takes into account that there will be equivalent
strategic interaction also between her child and theB-child, the A-parent
also needs to take into account that her own actions influence the type
of the B-child through expressions (14)-(15).
An implicit assumption underlying this structure is worth comment-

ing. The fact that each group only consists of one parent can be inter-
preted in two main ways. Firstly, that the groups are small so that each
parent in each group is a sizeable player. Secondly, and perhaps more
interestingly, it can be interpreted as if the actions represent the leader-
ship in each group, for instance, religious clergy in a society consisting
of two religions.
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In this model structure an MPNE is an equilibrium where the strat-
egy of each generation in group A is a stationary function of its own
type and the type of group B

s∗i,A = s∗A (ti,A, ti,B) ∀i;

and where the strategy of each generation in group B is a stationary
function of its own type and the type of group A

s∗i,B = s∗B (ti,B, ti,A) ∀i.

The first- and second-order conditions for interior solutions for the
A-parent are

− (ti,A − si,A)− (ti,A − si+1,A)
dsi+1,A
dsi,A

= 0 and (16)

1− (ti,A − si+1,A)
d2si+1,A
ds2i,A

+
dsi+1,A
dsi,A

dsi+1,A
dsi,A

> 0. (17)

The last element in the first-order condition (16) represents that the
parent takes into account the effect her behavior has on the child’s be-
havior. I guess (and later verify) that A-parents of all generations use a
strategy

si,A = ti,A + E (ti,A − ti,B) ∀i,
that is, that each parent will use her own type as baseline (first term
on the right-hand side) and then extremize her actions by an amount
proportional to the distance between herself and the B-group type of the
same generation. An additional guess is that the equilibrium strategies
for group A and group B are symmetric so that

si,B = ti,B + E (ti,B − ti,A) ∀i. (18)

To verify that such strategies are part of an MPNE one has to show
that, if the B parent, B-child and A-child use such a strategy then it is
a best response for an A-parent to use this strategy.
Under the supposed strategy, the action of the A-child is

si+1,A = ti+1,A + E (ti+1,A − ti+1,B) (19)

=αsi,A + (1− α) si,B + E (αsi,A + (1− α) si,B − αsi,B − (1− α) si,A) .
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The second line utilizes the A- and B-parents’influence on both child
types (equations (12) and (14)). Using (19) yields

dsi+1,A
dsi,A

=α + (2α− 1)E

d2si+1,A
ds2i,A

= 0

which verifies that the second-order condition (17) is fulfilled globally.
Hence, given that future A- and B-generations and the B-parent use a
linear strategy the A-parent has a unique best response which is given
by the solution to the first-order condition. Using the guess of the linear
strategies in the first-order condition (16) and rewriting gives the best-
response function of the A-parent:

s∗i,A =
ti,A [1 + (α + (2α− 1)E)]− si,B [(1− α) + E (1− 2α)] (α + (2α− 1)E)

1 + α (α + (2α− 1)E) + (2α− 1)E (α + (2α− 1)E)
.

(20)
Inserting the guessed strategy for what the B-parent does in equilibrium
(18) into A′s best response (20) and rearranging yields

s∗i,A
[
1 + (α + (2α− 1)E)2

]
= ti,A

[
1 + (α + (2α− 1)E)2

]
(21)

+ (ti,A − ti,B) (1 + E)
[
(α + (2α− 1)E)− (α + (2α− 1)E)2

]
.

It can be noted that the square brackets on the left-hand side is the
same as the square brackets multiplying ti,A on the right of the first line.
Furthermore, the second square brackets on the right consist of only
parameters and multiply (ti,A − ti,B). From this follows:

Lemma 3 If generations i + j for j = 1...∞ of the A-group follow a
linear strategy si+j,A = ti+j,A + E (ti+j,A − ti+j,B) and generations i + j
for j = 0...∞ of the B-group follow a linear strategy si+j,B = ti+j,B +
E (ti+j,B − ti+j,A), then the A-parent in generation i has a unique linear
best response given by

si,A = ti,A + Ei (ti,A − ti,B)

where

Ei ≡
(1 + E)

[
(α + (2α− 1)E)− (α + (2α− 1)E)2

]
1 + (α + (2α− 1)E)2

. (22)

Proof. Follows from the previous text and by rearranging (21).
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For the best response to be part of an MPNE (stationary and sym-
metric strategies) it is necessary and suffi cient that Ei = E. That is, any
E that solves the equation is part of an MPNE with symmetric strate-
gies which are linear in the distance between the groups’types. Let E∗

denote such a solution to (22). By the properties of (22) a proposition
follows.

Proposition 3 Consider the model with interaction between two groups.
There exists a unique Markov-Perfect Nash Equilibrium with linear and
symmetric equilibrium strategies given by si,A = ti,A + E∗ (ti,A − ti,B)
and si,B = ti,B +E∗ (ti,B − ti,A) ∀i, where E∗ > 0 is given by the unique
solution to (22). In this equilibrium:

1. agents behave more extremely than their own type (E ∈ ]0, 1/4[);

2. the more influential the other group is, the more extremely parents
behave (dE/dα < 0);

3. there is dynastic integration (0 < ti+1,A < ti,A).

Proof. See appendix.

The proposition establishes the existence of the equilibrium as stipu-
lated above. It also establishes that the groups extremize their behavior
(point 1). This extremizing takes place to mitigate the actions of the
other group as can be interpreted by point 2. Nevertheless the two
groups will converge over time (point 3). The equilibrium has two ad-
ditional properties which are particularly interesting but are diffi cult to
show analytically. They are shown numerically in Appendix E hence
should, strictly speaking, be seen as conjectures.

Conjecture 1 i) Integration is faster the more influential the groups
are on each other (for any ti,A, ti+1,A is increasing in α). ii) The model
of interaction between groups displays more extremizing but faster inte-
gration than the simple model without interaction from Section 4.

These properties are shown to hold for a tight grid of α ∈]1/2, 1[.
To illustrate the first part consider α → 1/2. When this is the case,
extremizing is at its strongest since each group needs to mitigate the
other group the most. Yet, in this case integration is very fast since the
equal influence of the groups on the children implies that in the next
generation the children of both groups will have fully converged. Hence,
somewhat counterintuitively, the interaction model predicts a correlation
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in equilibrium between extreme behavior on the part of the parents and
fast integration between the groups.
Point (ii) of the conjecture suggests that strategic interaction between

groups has the effect of making both groups more extreme (compared to
if a small group would face a large mainstream society). The reason is
that an A-parent, in order to mitigate the effect from group B, behaves
more extremely. But since the action taken by the A-parent affects the
B-child as well, the B-parent counters this by behaving more extremely
in her own direction which in turn induces more extreme behavior by
the A-parent and so on —a vicious circle of extreme behavior. However,
as the ending of point (ii) suggests, despite the strong extremizing, in-
tegration is faster than if there was only interaction with mainstream
society. The intuitive reason for this is twofold. First, even though the
A-parent is extremizing, so is the B-parent and this pulls the A-child to-
wards the center. Second, the B-child is moving towards the center too
implying integration from both sides (unlike in the mainstream-society
model where one side —mainstream society —is fixed).

6 Concluding remarks

This paper has presented a tractable model of transmission of culture
where parents take into account how their actions influence the culture
of all future generations, not just the next generation as in the previous
literature. This leads to a dynamic game between subsequent gener-
ations and predictions are derived regarding endogenous and perpetual
extremism, the effect of societal socialization, parent’s discounting, social
pressure and interaction between groups. While this paper has consid-
ered a number of questions and extensions, the tractable nature of the
model allows for more extensions and questions to be asked. In particu-
lar, it would be interesting to analyze a richer network structure, groups
consisting of many parents and other functional forms.
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A Proof of Lemma 2

We need to show that the best response si = Citi that solves the first-
order condition (5) and meets the requirement Ci = C in (7) has no
solution outside the range ]0, 1/α[. If C ≥ 1/α (also implying C > 1→
si > ti), then si

∑∞
j=0 β

j (Cα)2j > ti
∑∞

j=0 β
j (Cα)j violating the FOC. If

C ≤ −1/α < −1 then (Cα)2j si − (Cα)j ti = ti

(
(Cα)2j C − (Cα)j

)
< 0

since either both terms are negative or the second term is smaller in
absolute value than the first which is always negative. This violates the
FOC. If C = 0 then all terms containing C in (4) disappear hence for
(4) to hold si = ti implying C = 1 6= 0. Suppose C ∈ ]−1/α, 0[. Then
adding terms from the sum for pairs of j in (5) we get for j = 0 and 1:

βj
[
(Cα)2j si − (Cα)j ti

]
+ βj+1

[
(Cα)2(j+1) si − (Cα)j+1 ti

]
= ti [C − 1] + βti

[
(Cα)2C − (Cα)

]
= ti

[
C − 1 + β (Cα)2C − βCα

]
< 0

since all but the last term are negative (with C < 0) and −1 < βCα.
For j = 2 and 3

βj
[
(Cα)2j si − (Cα)j ti

]
+ βj+1

[
(Cα)2(j+1) si − (Cα)j+1 ti

]
= β2

[
(Cα)4Cti − (Cα)2 ti

]
+ β3

[
(Cα)6Cti − (Cα)3 ti

]
= ti (Cα)2 β2

[
(Cα)2C − 1 + β (Cα)4C − βCα

]
< 0

since again all terms but the last are negative and −1 < βCα. This
pattern of negative additions continues for higher values of j. Hence∑∞

j=0 β
j
[
(Cα)2j si − (Cα)j ti

]
< 0 which violates the FOC. In total this

implies that no MPNE with linear strategies exists where C /∈]0, 1/α[.

B Proof of Proposition 1

We first prove the statement on existence of precisely one equilibrium
with a linear strategy and then Points 1-6.
The existence, uniqueness and linearity of the best response (given

that later generations play linear strategies si+j = Cti+j∀j > 0) was
established in Lemma (1). The best response constitutes an MPNE if
and only if (8) has a solution and, by Lemma 2, C∗ ∈]0, 1/α[. If this
solution is unique then the linear MPNE is unique. We now investigate
the properties of the left-hand side (LHS) and right-hand side (RHS) of
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(8).

lim
C→0

LHS= 0 < lim
C→0

RHS = 1

lim
C→1/α

LHS= 1/α > lim
C→1/α

RHS = 1

This implies at least one intersection (or an odd number of intersections).
This establishes existence of an MPNE with linear strategies. The first
intersection is one where the RHS intersects the LHS from above. Now
rewrite (8):

1− β (Cα)2 =C − βC2α which has the solution

C =
1±

√
1− 4βα (1− α)

2βα (1− α)
(23)

where we note that 1−4βα (1− α) > 0 since maxα 4βα (1− α) = β < 1
(for α = 1/2). We know there is an odd number of solutions C∗ ∈]0, 1/α[
to (8) hence (since (23) has two roots) C∗ is unique. This establishes
that there exists precisely one MPNE with linear strategies. We now
check which of the two roots in (23) is permissible (C ∈ [0, 1/α[).12 The

larger root is positive hence permissible iff
1+
√
1−4βα(1−α)
2βα(1−α) < 1/α↔√

1− 4βα (1− α) < 2β (1− α)− 1

which is violated if 2β (1− α)− 1 is negative, hence is true only if

1− 4βα (1− α) < (2β (1− α)− 1)2 ↔ ...↔ 0 < (1− α) (β − 1)

which is not true, hence this root is not permissible. We now verify that

the smaller root C =
1−
√
1−4βα(1−α)
2βα(1−α) is permissible, i.e., is in the range

]0, 1/α[. We have already established that 1− 4βα (1− α) > 0 and it is
immediate that it therefore also is smaller than 1. Hence the C-root is

positive hence permissible iff
1−
√
1−4βα(1−α)
2βα(1−α) < 1/α ↔ 1 − 2β (1− α) <√

1− 4βα (1− α). If the LHS of this inequality is negative then the
inequality holds. If the LHS is positive then the inequality holds iff

1−
√

1− 4βα (1− α) < 2β (1− α)↔ ...↔ 0 < (1− β) (1− α)

which is true. Hence this root is permissible and unique. We get that
the unique MPNE with linear strategies has

C∗ =
1−

√
1− 4βα (1− α)

2βα (1− α)
.

12Recall that the step from (7) to (8) hinges on C∗ ∈ [0, 1/α]. Hence any solution
to (8) outside this range violates the first-order condition.
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Point 1: Use the implicit expression for C∗ in (8) where we note
that Cα < 1 (by Lemma 2) hence the RHS numerator is larger than the
denominator implying that the C solving this equation must be greater
than 1.
Point 2: In the equilibrium just proven s∗i (ti)− ti = Cti − ti which

is increasing in ti since C was shown to be greater than 1.
Point 3: From Lemma 2 we know αC < 1.
Point 4: In (8) the fact that RHS(0) = 1 > LHS(0) implies the

RHS intersects the LHS from above (slope smaller than 1) at C∗. Using
the implicit function theorem applied to (8)

dC∗

dα
= −

∂RHS
∂α
− ∂RHS

∂C
∂RHS
∂C
− ∂LHS

∂C

= −
βC

(βC2α2−2Cα+1)
(1−βCα)2

∂RHS
∂C
− ∂LHS

∂C

.

We know ∂RHS
∂C
− ∂LHS

∂C
< 0 at C∗ since RHS intersects LHS from above

at C∗. Hence the denominator is negative, hence dC∗

dα
> 0 iff

αβ
(βC2α2 − 2Cα + 1)

(1− βCα)2
> 0 ↔

F (α)≡
(
βC2α2 − 2Cα + 1

)
> 0

which is a U-shaped function of α with F (0) > 0, F (α = 1/C) <
0, F ′ (0) = −2C < 0 hence there is exactly one intersection with the
zero-line within the relevant range. This means dC∗

dα
is positive for small

α and negative for larger α within the range. Hence C∗ (α) is a first
increasing then decreasing function of α. Hence we get that C∗ is a hill-
shaped function of α. Note also that the implicit function for C∗ gives
limα→0C

∗ (α) = 1, limα→1C
∗ (1) = 1.

Point 5: In the equilibrium ti+A/ti = αC∗ = α
1−
√
1−4βα(1−α)
2βα(1−α) . Dif-

ferentiate

d (αC∗)

dα
=

(
2β − 2αβ +

√
4βα2 − 4βα + 1− 1

)
2β (α− 1)2

√
4βα2 − 4βα + 1

.

We need to show that this expression is positive. Since the denominator
is positive (established earlier) the whole expression is positive iff the
numerator is positive, that is, iff√

4βα2 − 4βα + 1 > −2β + 2αβ + 1 .

The inequality holds if the right-hand side is negative (as established ear-
lier the left-hand side root is positive). If the right-hand side is positive
then the inequality holds if

4βα2 − 4βα + 1 > (−2β + 2αβ + 1)2 ↔ ...↔ 1 > β
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which is true. Hence dαC∗

dα
> 0 and Point 6 follows.

Point 6: In (8) the fact that RHS(α = 0) = 1 > LHS(α = 0)
implies the RHS intersects the LHS from above (slope smaller than 1)
at C∗. Using the implicit function theorem applied to (8) to analyze the
effect of β we get

dC∗

dβ
= −

∂RHS
∂β

∂RHS
∂C
− ∂LHS

∂C

= −
−(Cα)2(1−βCα)+(1−β(Cα)2)Cα

(1−βCα)2

∂RHS
∂C
− ∂LHS

∂C

= −
−(Cα)2+Cα
(1−βCα)2

∂RHS
∂C
− ∂LHS

∂C

.

We know ∂RHS
∂C
− ∂LHS

∂C
< 0 at C∗ since RHS intersects LHS from above

at C∗. Hence the denominator is negative. The numerator is positive
(since Cα < 1). Thus, dC

∗

dβ
> 0.�

C Proof of Proposition 2

The proof will be performed for t0 ≥ 0. Equivalent steps would follow
for t0 < 0. The first- and second-order conditions for an interior solution
for the problem in (9)-(11) are

− (ti − si)− (ti − si+1)
dsi+1
dsi

+Ksi = 0 (24)

1− (ti − si+1)
d2si+1
ds2i

+

(
dsi+1
dsi

)2
+K> 0 (25)

We guess and verify that there exists an MPNE with linear strategy
si = Dti ∀i which, using (10) implies

si+1 = Dti+1 = Dαsi

which further implies

dsi+1
dsi

=Dα

d2si+1
ds2i

= 0.

Using these in (25) shows that the second-order condition is fulfilled
globally for any D 6= 0 hence there exists a unique interior best response
for parent i given that later generations have a linear strategy. If D = 0
then the best response is ti = si which implies D = 0 is not part of an
MPNE.Using the derivatives in the FOC (24) yields

− (ti − si)− (ti −Dαsi)αD +Ksi = 0↔ (26)

si = ti
(1 + αD)(

1 + (αD)2 +K
)
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which shows that parent i’s best response is linear (the right-hand side
of the last expression contains one t and constants) given by si = Diti
where Di = (1+αD)

(1+(αD)2+K)
. For these linear strategies to constitute an

MPNE (stationary strategies) they have to be the same, that is, there
has to exist a Di = D that solves

Di =
1 + αD

1 + (αD)2 +K
. (27)

and this D has to fulfill the first-order condition in (24). Denote it by
D∗. Note that the solution to (27) implies D∗ < 1/α. This is since
(by construction) α < 1 which implies that when D∗ ≥ 1/α then the
LHS ≥ 1 while the RHS < 1. Note also that D∗α /∈ ]−1, 0] since then
in (27) the LHS ≤ 0 while RHS > 0. Finally note that αD∗ � −1 since
then the left-hand side of (26) is

−ti (1−D∗)− ti (1−D∗αD∗)αD∗ +KD∗ti

= ti [− (1−D∗)− (1−D∗αD∗)αD∗ +KD∗] < 0

since − (1−D∗) ≤ 0, − (1−D∗αD∗)αD∗ < 0 (since D∗αD∗ > 1) and
KD∗ < 0. This violates the first-order condition. Hence any D∗ that
solves (27) and meets the first-order condition has D∗ ∈ ]0, 1/α[.
We now analyze the right-hand side (RHS) and left-hand side (LHS)

of (27)

dRHS

dD
=α

1 +K − 2Dα− (αD)2(
1 + (αD)2 +K

)2
d2RHS

dD2
=α

(−2α− 2Dα2)
(
1 + (αD)2 +K

)2 − (1 +K − 2Dα− (αD)2
)

2α2D
(
1 + (αD)2 +K

)(
1 + (αD)2 +K

)4
The second derivative is positive only if

(
1 +K − 2αD − (αD)2

)
<

0 which happens iffthe first derivative is negative. That is, when the first
derivative is positive then the second derivative is negative. Note further
that

(
1 +K − 2αD − (αD)2

)
is strictly decreasing in D ∈]0, 1/α[ and

positive when D → 0 hence the first derivative has only one switch from
positive to negative. Put together this implies the RHS is first concavely
rising then possibly falling. Finally note that RHS(0) = 1

1+K
> 0 while

LHS (0) = 0. This with the concave form of the RHS implies a unique
intersection with the LHS of (27) (furthermore, at the intersection the
RHS intersects the LHS from above). This implies that there exists a
unique MPNE with linear strategies where D∗ ∈]0, 1/α[ is given by (27).
This proves the first statement of the proposition.
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To prove the second statement of the proposition we analyze the
properties of D∗. Applying the implicit function theorem to (27) yields

dD∗

dK
= −

∂RHS
∂K
− ∂LHS

∂K
∂RHS
∂D
− ∂LHS

∂D

= −
∂RHS
∂K

∂RHS
∂D
− ∂LHS

∂D

.

Since we know that there is a unique intersection of the RHS and LHS
where the RHS intersects the 45-degree line from above it must be that
∂RHS
∂D

< ∂LHS
∂D

at that point. Hence the denominator is negative. It
is furthermore immediate from (27) that ∂RHS

∂K
< 0 in total implying

dD∗

dK
< 0 which proves the second statement of the proposition.�

D Proof of Proposition 3

That the best response of parent A (given that the B-parent and later A-
and B-generations use linear strategies of the form stipulated) is unique
and has the stipulated linear properties was established in Lemma 3.
To show existence of an MPNE it is suffi cient to show that (22) has a
solution. Rewriting (22)

E =
(1 + E)

[
(α + (2α− 1)E)− (α + (2α− 1)E)2

][
1 + (α + (2α− 1)E)2

] ↔ ...↔

0 =
(
8α2 − 8α + 2

)
E3 +

(
12α2 − 10α + 2

)
E2 (28)

+
(
6α2 − 5α + 2

)
E − (1− α)α ≡ F

Note that (8α2 − 8α + 2) > 0 for all α > 1/2 (it is increasing in α when
α > 1/2, and it equals zero when α = 1/2) likewise for (12α2 − 10α + 2)
and (6α2 − 5α + 2). Hence this expression is increasing convexly in E
when E ≥ 0 hence (since it is negative when E = 0) in the range where
E ≥ 0 there is a unique intersection with the zero line. To prove the
first statement (a unique MPNE) it is thus suffi cient to rule out that
(28) has a solution where E < 0.
Since − (1− α)α < 0, a necessary condition for an intersection when

E < 0 is (8α2 − 8α + 2)E3 + (12α2 − 10α + 2)E2 + (6α2 − 5α + 2)E >
0↔(

8α2 − 8α + 2
)
E2 +

(
12α2 − 10α + 2

)
E +

(
6α2 − 5α + 2

)
< 0.

As established earlier, all parenthesis in this expression are positive.
Hence, the left-hand side of this expression is U-shaped in E when E < 0
and it is positive as E → −∞ and as E → 0. For the inequality to hold
it is therefore necessary that the min point (which is the unique inner
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extreme point) of the left-hand side is negative.

d (·)
dE

= 2
(
8α2 − 8α + 2

)
E +

(
12α2 − 10α + 2

)
= 0→

Emin =−1

2

(12α2 − 10α + 2)

(8α2 − 8α + 2)
.

Plugging this back gives

LHS (Emin) =
(
8α2 − 8α + 2

)(1

2

(12α2 − 10α + 2)

(8α2 − 8α + 2)

)2
−1

2

(
12α2 − 10α + 2

) (12α2 − 10α + 2)

(8α2 − 8α + 2)
+
(
6α2 − 5α + 2

)
= ... = −1

4

(12α2 − 10α + 2)
2

(8α2 − 8α + 2)
+
(
6α2 − 5α + 2

)
,

which is negative iff

4
(
6α2 − 5α + 2

) (
8α2 − 8α + 2

)
<
(
12α2 − 10α + 2

)2 ↔
...↔ 4 (2α− 1)2

(
3α2 − 4α + 3

)
< 0↔ 3α2 − 4α + 3 < 0.

The left-hand side of this final expression is U-shaped in α > 0 and takes
on a min point when α = 4/6 with value

(
3 (4/6)2 − 4 (4/6) + 3

)
= 5

3
>

0. Hence, there is no E < 0 that solves(
8α2 − 8α + 2

)
E3+

(
12α2 − 10α + 2

)
E2+

(
6α2 − 5α + 2

)
E−(1− α)α = 0

implying there is a unique E > 0 that solves (22). This concludes the
first statement of the proposition.
We nowmove to proving the numbered statements of the proposition.

Note first from (28) that F (0) < 1 hence F intersects the zero line from
below at E∗ implying dF/dE > 0 at that point. Using the implicit
function theorem

dE

dα
= − ∂F/∂α

∂F/∂E
= −(2E + 1) (2α− 3E + 8Eα + 8E2α− 4E2 − 1)

∂F/∂E

where the denominator is positive due to the previous argument. ∂F/∂α >
0 since it is increasing in α (note that since we are here analyzing the par-
tial derivative ∂F/∂α we do not need to consider the indirect effect of α
onE) and since, evaluated at α = 1/2, ∂F/∂α =

(
1− 3E∗ + 4E∗ + 4 (E∗)2 − 4 (E∗)2 − 1

)
=

(−3E + 4E) > 0. Therefore, dE
dα
< 0 which proves Point 2.

Evaluating F at α→ 1/2 yields

lim
α→1/2

F (α) =
(
8 (1/2)2 − 8 (1/2) + 2

)
E3 +

(
12 (1/2)2 − 10 (1/2) + 2

)
E2

+
(
6 (1/2)2 − 5 (1/2) + 2

)
E − (1− (1/2)) (1/2) = 0↔ ...↔ E =

1

4
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and at α→ 1 yields

lim
α→1

F (α) = (8− 8 + 2)E3 + (12− 10 + 2)E2 + (6− 5 + 2)E

= 2E3 + 4E2 + 3E = 0↔ E = 0.

Hence, since dE
dα
< 0, E∗ ∈ ]0, 1/4[ which proves Point 1.

For dynastic integration use the equilibrium strategies si,A = ti,A +
E∗ (ti,A − ti,B) and si,B = ti,B +E∗ (ti,B − ti,A) in the transmission equa-
tion (12) and symmetry of the types ti,B = −ti,A.

ti+1,A =αsi,A + (1− α) si,B

= (2E∗ + 1) (2α− 1) ti,A (29)

Since E∗ > 0 and α > 1/2 ti+1,A > 0 for any ti,A > 0. Now, suppose
dynastic integration does not hold, then

(2E + 1) (2α− 1)≥ 1↔ ...↔

E≥ 1− α
2α− 1

.

Now note that the coeffi cients multiplyingE in (28) are positive implying
F is increasing in E ≥ 0. Since F = 0 in equilibrium and no dynastic
integration happens iffE∗ ≥ 1−α

2α−1 it follows that no dynastic integration
happens iff F

(
1−α
2α−1

)
≤ 0.

F

(
1− α
2α− 1

)
=
(
8α2 − 8α + 2

)( 1− α
2α− 1

)3
+
(
12α2 − 10α + 2

)( 1− α
2α− 1

)2
+
(
6α2 − 5α + 2

) 1− α
2α− 1

− (1− α)α ≤ 0

↔ −2
α− 1

2α− 1
≤ 0

which is not true since α ∈]1/2, 1[. Hence the supposition is inconsistent
implying ti+1,A > ti,A. This proves Point 3.�

E Numerical results

This appendix corroborates numerically the claims in Conjecture 1.13

The first claim is that, in the model with interaction between groups,
integration is faster the more influential the groups are on each other,

13The numerical code is available on request. It essentially involves solving the
implicit functions for D∗ and E∗ for a given α and repeating this for many values of
α ∈]1/2, 1[. The numerical analysis does so for 50001 values of α within the range.
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that is, for any ti,A, ti+1,A is increasing in α. Recall from (29) that in
equilibrium

ti+1,A = ti,A (2α− 1) (1 + 2E∗) . (30)

To verify the claim we thus need to show that (2α− 1) (2E∗ + 1) is
increasing in α where E∗, given by (22), is an implicit function of α.
Showing this analytically is hard, but illustrating it numerically is trivial
and is shown in Figure 2, upper left panel (solid line).
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Figure 2: Numerical simulation. Upper panels: The functions
(2α− 1) (2E∗ (α) + 1) and D∗ (α)α (left) and their difference (right) for
different values of α. Lower panels: the functions D∗ (α)− 1 and E∗ (α)
(left)and their difference (right).

The second claim is that the model of interaction between groups
displays more extremizing yet faster integration than the simple model
without interaction. The model without interaction that is comparable
to the one with interaction is the one presented in Section 4 when letting
K = 0.14

14The initial model (from Section 3) is not comparable since the parent there
directly cares about the actions of many generations while in the interaction model
the parent cares only about the actions of the next generation.
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For the part of the statement about extremizing we want to know
the percentage extremizing, that is, s− t divided by the distance to the
other group. In the interaction model s−t = E∗ (tA − tB) = 2E∗tA while
the distance to the other group is tA − tB = 2tA hence the percentage
extremizing is simply E which is implicitly given by (22).
In the model without interaction s− t = D∗t− t and the distance to

the other group (in this case mainstream society) is simply t, hence the
percentage extremizing is D∗− 1 where D∗ is given by the expression in
Proposition 2. In the lower panel of Figure 2 E∗ andD∗−1 are compared
numerically. On the lower left they are plotted separately. On the lower
right the difference (E∗ − (D∗ − 1)) is plotted. As can be seen, E∗ is
larger than D∗ − 1 for all values of α, but when α→ 1 they both equal
zero.
For the statement about the integration speed in Point (ii) note that,

in the interaction model, integration speed is given by ti+1,A−ti+1,B
ti,A−ti,B . In

equilibrium ti+1,B = −ti+1,A hence

ti+1,A − ti+1,B
ti,A − ti,B

=
ti+1,A
ti,A

= (2α− 1) (2E∗ + 1)

where the last step follows from (30). For the model with mainstream
society the integration speed is

ti+1
ti

=
αsi
ti

= αD∗

where the first step follows from (10) and the second step follows from
Proposition 2 where the D is given in that same proposition.
For the second part of Point (ii) to be true it thus must hold that

(2α− 1) (2E∗ + 1) ≤ αD∗ for all α ≥ 1/2. As can be seen from Figure
2 (upper left and right panel) it is indeed the case.

F Reputational equilibria

One can also consider an equilibrium with sustained extremism (s∗ = t/α
for all generations) based on a threat of a trigger strategy of gradual
convergence (a reputational equilibrium). That is, if a parent in one
generation does not uphold the extremeness then the next generations
will gradually converge. Formally, consider the following strategy: gen-
eration 0 plays s0 = t0/α; later generations i play si = ti/α if all previous
generations k < i played sk = tk/α, otherwise play si = C∗ti as given
by Proposition 1. As it turns out, such a strategy is not an equilibrium
for any α and any β < 1. To see why it is not an equilibrium when
α ≤ 1/2 note the following. In the infinitely extreme subgame (super-
script “inf”) sinfi+j = ti+j/α = ti/α for all j ≥ 0. Furthermore, by Lemma
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2 C∗ ∈ ]0, 1/α[. Hence in the punishment (superscript “pun”) subgame
spuni+j < ti/α for all j ≥ 0 so that

∣∣spuni+j − ti
∣∣ < |ti/α− ti| =

∣∣sinfi+j − ti∣∣
when α ≤ 1/2. The intuitive reason is that, for α ≤ 1/2, to uphold
the preferences over time, each generation would need to distance itself
from its own preferences more than what the stances of gradual conver-
gence would imply even in the long run when actions have converged to
mainstream. Hence, a gradual convergence is preferred.
For α > 1/2 the intuition is more complex. It is based on the stan-

dard reasoning that, to sustain an equilibrium with trigger strategies,
each agent needs to care suffi ciently about the long-run outcome com-
pared to the short-run temptation. In the setting here this means that
the prospects of convergence (s → 0) over the long run must be suffi -
ciently intimidating compared to the benefit of having s close to t for
a few generations. That is, the parent needs to care suffi ciently about
the long run to prefer that all generations behave very extremely instead
of far-away generations converging. But, as was illustrated in Corollary
1, when β grows then the gradual convergence slows down so that the
“threat” becomes less intimidating too. In particular, as β → 1, the
parent is indifferent between the trigger punishment and remaining in
the extreme. This is since in effect also the trigger punishment implies
remaining in the extreme when β → 1. To see this more formally note
that

Lpun =
∞∑
j=0

βj
(ti − si+j)2

2
{using spuni+j = C∗ (C∗α)j }

= ... =
t2i
2

[
1

1− β −
2C∗

1− βC∗α +
C∗2

1− β (C∗α)2

]
= {using (8)↔ C∗

1− β (C∗α)2
=

1

1− βC∗α}

=
t2i
2

[
1

1− β −
C∗

1− βC∗α

]
.

Use explicit C∗ =
1−
√
1−4βα(1−α)
2βα(1−α)

Lpun =
t2i
2

 1

1− β −
1−
√
1−4βα(1−α)
2βα(1−α)

1− β 1−
√
1−4βα(1−α)
2βα(1−α) α

 = ...{simplify}...

=
t2i
2

1

1− β
1

2βα2

(
2βα2 − 2αβ −

√
1− 4βα (1− α) + 1

)
.
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Meanwhile

Linf =
∞∑
j=0

βj
(ti − si+j)2

2
=
∞∑
j=0

βj
(ti − ti/α)2

2

=
t2i
2

(α− 1)2

α2
1

1− β .

Comparing the two we get that the punishment phase is more intimi-
dating than staying in the extreme iff

Linf < Lpun ↔ (α− 1)2 <
1

2β

(
2βα2 − 2αβ −

√
1− 4βα (1− α) + 1

)
↔ ...1− 2β (1− α) >

√
1− 4βα (1− α)

↔ {since α > 1/2}...↔ β > 1

which is not true. Hence, the punishment phase is always preferred than
staying in the extreme. This shows that, at least for this punishment
scheme, a reputational equilibrium with constant extremism cannot be
upheld. Whether there is some more severe punishment that could up-
hold it is hard to know. This is since it would require first finding another
class of equilibria than the one established in the main text as otherwise
the punishment phase would not be subgame perfect.
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