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Abstract 
 
We analyze optimal wealth management, within a global setting, where accumulation of GHGs 
caused by extraction of fossil resources affects the probability distribution for hitting a threshold 
or tipping point, indicating a climate change. We derive an optimal strategy for overall wealth 
management, within a Ramsey-Hotelling-framework. We have two assets; one being 
reproducible (reversible capital equipment) and another being non-reproducible (stock of 
exhaustible natural resources – fossil fuels). Resources, along with capital equipment, are inputs 
in the production of an aggregate output allocated to consumption and net investment. Resource 
extraction adds to a stock of GHGs that affects the likelihood for a catastrophic event. If, and 
when, such an event occurs there is a downscaling of production opportunities. We derive a 
first-best precautionary global tax on using fossil fuel, which internalizes the present value of 
(conditional) expected welfare loss of hitting a threshold, as well as a set of risk-modified 
optimality conditions for overall wealth management, as long as no catastrophe has occurred. 

JEL-Codes: E210, O440, Q320. 
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1. Introduction 
What is the impact of a possible, manmade random catastrophe on the overall 

decision rules for saving? As a benchmark for answering this question we apply the 
“Ramsey-Hotelling”- condition (in continuous time) for optimal saving with two capital 
categories – reproducible and malleable real capital equipment and non-renewable 
fossil fuels (natural resources), both entering as inputs in a neoclassical macro 
production function. Without taking the environmental cost of stock pollution into 
account, and no risk, we know that at the intertemporal optimum the required rate of 
return from deferring consumption (“saving”), should be equal to the rate of return on 
any type of asset or investment (the investment discount rate).1 

To this model, we add another element. We incorporate emissions of GHGs from 
resource extraction and in such a way that a global planner’s probability beliefs for a 
climate change will depend on the stock of GHGs in the atmosphere. With this 
supplement, we should be able to assess the impact on optimal saving (from a global 
point of view), and how the social cost of resource extraction should be internalized 
through an emission tax or a “carbon” tax. 

A large number of scholars has discussed the climate issue, especially in relation to 
the “Stern Review” from 2007 (Stern (2007)). The present paper adds another argument 
to this important question by combining the standard Ramsey-model for optimal 
saving, with one including exhaustible resources; the Hotelling-model, along with a 
stochastic future climate change caused by accumulated emissions of GHGs or fossil 
fuels. At a very high level of aggregation, we then derive conditions for an 
intertemporal optimum or optimal wealth management. We find that the standard 
optimality conditions; cf. footnote 1, is modified so as to take into account the current 
(conditional) probability beliefs for a catastrophic event, caused by accumulated 

                                                           
1 With a neoclassical macro production function ( , )F K R , with real capital services( )K  and use of fossil 
fuels ( )R , as inputs (no extraction costs), with r being a positive utility discount rate, ( )c , the absolute 
value of the elasticity of marginal utility of consumption, c , and  , the rate of capital depreciation, 
intertemporal optimum obeys the “Ramsey-Hotelling”-condition, expressed as 

( )
( ( )) ( ( ), ( )) ln ( ( ), ( ))

( ) K R

c t d
r c t F K t R t F K t R t

c t dt
     



 . This result has been shown in numerous 

places; e.g., by the early contributions by Samuelson and Solow (1956), Dorfman et al. (1958) and by 
Dasgupta and Heal (1979; chapter 10). 
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extraction of the non-renewable natural resource, as well as the expected downgrading 
beliefs the global planner holds for the post-catastrophic regime or the continuation 
period. From our model, we derive a precautionary tax on resource extraction or the use 
of fossil fuels. An upward shift in the hazard rate of passing a threshold for a 
catastrophic event, given that no such event has happened so far, will shift the tax 
upwards. This shift will induce less extraction of fossil fuels and may imply less capital 
investments, depending on the substitution possibilities between fossil fuels and capital 
in the production of goods and services. The consumption path is affected; in fact, it 
becomes steeper, indicating less consumption “now”.  

The paper proceeds as follows: In Section 2 we review some of the literature we find 
most relevant for our problem. In Section 3 we present a model, whereas we in Section 4 
outline conditions for an optimal saving strategy. In Section 5 we discuss the 
catastrophic-risk modified Ramsey-Hotelling condition (cf. footnote 1), whereas Section 
6 concludes. 

  

2. A brief review of some relevant literature 
There is a large and still growing literature on the economics of climate change and 

tipping points.2 In this section, we will review some of the literature most relevant for 
us.  

A seminal contribution to analyzing stochastic thresholds in environmental 
regulation is Cropper (1976). In her paper, both temporary and irreversible catastrophes 
are studied, with the latter one being relevant to our study. When some stock pollution 
(like atmospheric concentrations of CO2 and other GHGs) exceeds (or some resource 
stock falls below) some critical threshold, a catastrophe is triggered, leading to a new 
regime with lower utility, say with zero consumption. Cropper characterizes an optimal 
consumption path (identical to an extraction path of a non-renewable resource of 
unknown size), as long as no catastrophe yet has been triggered.3 Optimal long-run 
(steady state) consumption-pollution with irreversible stochastic catastrophic outcome, 

                                                           
2 Reed and Heras (1992) provide a very useful survey of an optimization technique (based on the seminal 
paper by Kamien and Schwartz (1971)), for a derivation of optimal exploitation of a biological or 
renewable resource vulnerable to a catastrophe. See also the special issues on tipping points of 
Environmental and Resource Economics 2016, and Journal of Economic Behavior and Organization 2016. 
3 Se Loury (1978) for an analysis of this question. 
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caused by stock pollution (with some decay and pollution control), has been 
characterized by Clarke and Reed (1994), with a focus on the role playing by the 
conditional probability (the hazard rate) as well as the exogenous size of the 
catastrophe. Gjerde et al. (1998) take this problem a step further, and formulate a multi-
region simulation model with a stochastic relationship between temperature, 
accumulated emissions and a catastrophic outcome.   

Because our objective is to analyze overall optimal savings, we will relate our work 
to other Ramsey-like models. One approach, close to ours, is Aronsson et al. (1998). 
They study a standard model for optimal economic growth, with nuclear power waste 
that will generate a risk for a catastrophic outcome causing utility to drop to zero 
permanently, but with no extraction of exhaustible resources. They characterize an 
optimal consumption path, as we do, and identify factors that can push consumption 
(saving) upwards or downwards, as compared to the risk-free case. Hence, there is a 
precautionary effect as well as an opposing impatience effect on saving due to 
catastrophic risk. They derive a dynamic Pigouvian tax on nuclear energy so that a 
decentralized economy implements the optimal solution. This tax will capture all 
sources through which the use of nuclear energy will affect the probability for a 
catastrophe. Similar questions are raised by Tsur and Zemel (2008) within a model with 
clean and dirty energy, with the last one giving rise to emissions that accumulate to a 
stock that affects the probability distribution for a regime shift (climate change). By 
assumption, there is no current damage from emissions or from the stock itself; a 
feature shared by our model. A paper that has several features in common with ours, is 
van der Ploeg and Withagen (2014), but without modelling stochastic thresholds. They 
present a Ramsey growth model for the global economy, with capital accumulation and 
extraction of exhaustible oil reserves (as well as having some clean renewable energy 
available), but with current environmental cost determined by the stock of accumulated 
emissions. They characterize optimal saving regimes, and derive a carbon tax. (See also 
the DSGE-model by Golosov et. al (2014).) In a recently published paper van der Ploeg 
and de Zeeuw (2018) explicitly model stochastic tipping points within the framework of 
the Ramsey growth model, along the line suggested by Tsur and Zemel (op. cit.).4 
However, they do not incorporate extraction and, hence, the intertemporal management 
of exhaustible oil reserves into their overall saving decisions, but focus on capital 

                                                           
4 See also Lemoine and Traeger (2014). 
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accumulation, with the use of abundant fossil fuel along with clean renewable energy, 
and how emissions from using fossil fuel will impact on catastrophic risk. Within a 
model with a specified utility function, they derive detailed decision rules for capital 
accumulation that incorporates the additional required rate of return on saving due to 
catastrophic risk, which bears strong resemblance to our decision rule. They also 
characterize the catastrophic-adjusted social cost of carbon (SCC) when taking into 
account the Present discounted value (PDV) of expected marginal and non-marginal 
damages, close to our precautionary tax on fossil fuels. Their SCC has a rich flavor 
capturing a large number of parameters characterizing the environment, preferences 
and technology. Explicit formulation of an exhaustibility constraint on natural 
resources, within a context similar to van der Ploeg and de Zeeuw, is to our knowledge 
analyzed rather sparsely. One recent contribution is however, a paper by Engström and 
Gars (2016) – in the discrete DSGE-tradition – identifying a “Green paradox effect” 
caused by a lower post-catastrophic value of remaining resources. Without a carbon tax, 
a similar “Green paradox effect” is identified within our continuous-time framework, 
but without imposing the ordinary DSGE-assumptions on utility and production 
functions.  

 
3. A model 

Below we present a model for optimal saving, with consumption, capital 
accumulation and resource extraction (fossil fuels), and combine this model with the 
possibility of an irreversible regime switch, induced by hitting a threshold or tipping 
point of random position. Our main contribution, in addition to the derivation of a 
precautionary tax on fossil fuel, is the explicit formulation of an intertemporal 
optimality condition – a synthesis of the Keynes-Ramsey condition for optimal saving 
and the Hotelling Rule for optimal management of an exhaustible natural resource – 
along with a catastrophic risk-adjusted social rate of discount.  

In order to find an optimal strategy, we have to distinguish between the periods 
before after a catastrophe. A catastrophe can take place through a substantial rise in sea 
level caused by ice melting due to a rise in global temperature, with the loss of land and 
other essential resources. This will normally take a long time, but we ignore, for ease of 
exposition, any lags in the model, as discussed by van der Ploeg and de Zeeuw (op. 
cit.).) If a catastrophe should occur, the economy will adapt to the new situation, and 
start from “scratch” (the outset of a continuation regime) with a new set of downgraded 



6 
 

stocks of reproducible real capital (k ) and non-reproducible natural resources (s ), with 
no further environmental consequences caused by emissions of GHGs. This is of course 
a very simplified representation of the continuation regime, but makes the model 
transparent, and helps to focus on the main problem for human mankind: what to do 
before a threshold is hit, and how to avoid it.  

For values of capital equipment and natural resources at the start of a 
continuation period, given by a pair ( , )k s , the expected continuation payoff is  simply 

( , )W k s , which is the stationary value function derived from an ordinary dynamic 

optimization problem after a catastrophe has occurred, from that date to infinity. 
Within a convex environment as ours, we know that this value function is increasing 
and concave in ( , )k s . We ignore all demographic aspects, despite the fact that 

population growth and fighting poverty around the world will have a significant 
impact on emissions in the future; see Hoel and Holtsmark (2012) for a discussion. We 
also rule out any abatement activity and no technical progress; of course highly 
unrealistic, but will help making the model more tractable. 

We apply the utilitarian welfare criterion, given as the present discounted utility 
of all future consumption flows, with a felicity function of current flow consumption for 
a representative consumer with infinite lifetime. Instead of incorporating current 
disutility from a stock pollutant, as was done in the seminal paper by Keeler et al. (1971) 
and by Hoel and Kverndokk (1996), we let this stock affect the probability distribution 
for hitting a threshold triggering a regime shift. From an ex ante perspective, what 
matters is if and when the threshold is hit as well as the expected downgrading of future 
production and consumption possibilities. Thus, the stock pollutant does not itself 
cause any direct harm prior to a catastrophe, but affects the probability beliefs of hitting 
a threshold, causing a more or less severe switch in living conditions, given by the 
expected downgrading of future production capacity.  

To derive an optimal strategy we solve the problem as a standard contingency 
planning problem in continuous time, similar to what we find in Dasgupta and Heal 
(1974), Kamien and Schwartz (1978), Davison (1978), and Dasgupta (1982).  We specify a 
state variable, ( )Z t , as the stock of accumulated emissions of GHGs at point in time t, 

obeying the state equation ( )
( ) : ( ( ))

dZ t
Z t D R t

dt
  , where D  is the emission technology, 

and with D  being twice differentiable, increasing and convex in the rate of extraction of 
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a non-renewable resource (fossil fuel like oil or coal) at t , given by ( )R t . In the 

following we choose units of measurement so that the D - function is linear. Hitting a 
threshold is modelled as reaching a specific level of Z  that triggers an irreversible 
switching of the economy from one regime to another, as represented by a realization of 
a random downgrading variable, a . However, in time space, the position of a threshold 
is random, but it will of course depend on the level ofZ .  

Define the stochastic threshold by a random position Y , in the state space. Then 
we can derive a probability distribution ( ( )) : Pr( ( ))G Z t Y Z t  , with (0) 0G   and 

lim ( ) 1
Z

G Z  . From this a priori distribution we get the probability distribution for 

when the threshold is hit, as represented by the random variable in time space, as 
defined by 1: ( )T Z Y . We rule out any natural decay. The state variable Z  will be 

everywhere increasing; so 1( ( )) Pr( ( )) Pr( ( ) ) : Pr( ) : ( )G Z t Y Z t Z Y t T t t        ,  

with the unconditional density for the event T to occur in a short time interval of length 
dt , being ( ) ( ( )) ( ) : ( )G Z dZ G Z t Z t dt t dt      . From this distribution we get a 

conditional density or a hazard rate in time space, for the threshold to be hit during a 
short period of time, ,t t dt    , given non-occurrence prior to t, when having a stock of 

GHGs equal to ( )Z t , as  ( ) ( ( )) ( )
: ( ( )) ( )

1 ( ) 1 ( ( ))
t dt G Z t Z t

h Z t R t
t G Z t

 
 

 



.  

 
The overall ex ante planning problem is then: 
 

( , )
0 0

( ) ( ( )) ( ( ), ( ))rt r
c R

Max e U c t dt e W S K d


   


 
 
   
  

   

. .s t  

( ) ( ( ), ( )) ( ) ( )K t F K t R t c t K t   , 
0

(0) 0K K  , lim ( ) 0
t

K t   

( ) ( )S t R t  , 
0

(0)S S , ( ) 0S t t   

( ) ( )Z t R t  with 
0

(0) ,Z Z no conditions on lim ( )
t

Z t   
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We have a standard felicity function, ( )U c ; increasing and strictly concave, and a 
standard neo-classical production function ( , )F K R  , with K  being a reversible and 

fully malleable capital stock, with a constant rate of decay,  . The felicity rate of 
discount is r . We assume that 

0
( )lim

c
U c
    and ( ) 0lim

c
U c
  , and that F obeys 

the Inada-conditions. In addition, we assume that each input is essential. At any point 
in time t, the remaining stock of the exhaustible natural resource is ( )S t .  

The last term in the objective function is the expected continuation welfare – see 
Appendix 1 – written as a function of remaining reserves of the exhaustible resource 
and capital equipment, at the end of the pre-catastrophic regime. If, and when we hit a 
threshold, one downgrading outcome will be realized with one specific production 
possibility set for the corresponding continuation regime. What to do from that date on 
is given as the solution of the continuation program for any realized set of state 
variables, as shown in Appendix 1, with necessary conditions for the full program given 
in Appendix 2. In the next section, we consider in detail the strategy to follow, 
according to our welfare criterion, as long as no threshold is hit, given the planner’s 
expectations or beliefs about the initial state of the continuation program. 

4. An optimal saving strategy 
As shown in Appendix 2, an optimal strategy to follow at t, given no threshold so 

far, must obey the following conditions: 
First, define the spot price (measured in units of utility) of consumption at some 

point in time t, conditional on a regime switch not having occurred so far, as 
( )

( ) :
1 ( ( ))

p t
P t

G Z t



 with ( )p t  as the current shadow value of the capital stock. In 

Appendix 2, we have that prior-to-a-shift-consumption, at some point in time t , must 
obey: 

* * *

*

( )
(1) (1 ( ( )) ( ( )) ( ) ( ( )) ( ) :

1 ( ( ))

p t
G Z t U c t p t U c t P t

G Z t
      


  

As seen from the start of the planning period ( 0t  ), ( )rte p t  is the present value 
price of consumption, in units of utility. For a program to be optimal this present value 
price should be equal to the expected present value of marginal utility of consumption, 
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* *(1 ( )) ( ( ))rte G Z U c t   . One might regard ( )rte p t as the price to be paid at 0t  , for 

delivery of one unit of consumption at t, given the non-occurrence of a catastrophe by t.  

On using (a-4) in Appendix 2, we can state the following modified Keynes-
Ramsey result: 

Proposition 1: For an optimal extraction (and emission) path and for a given output, the planner 
should, as long as no catastrophic event has occurred, trade off current consumption and capital 
accumulation according to the catastrophic risk-modified Keynes-Ramsey condition, as given by:  

*

*

* * * * * * *( )

( )

( )
( ( )) ( ) ( ( )) ( ( ), ( )) ( ( )) ( )

( ) ( )
(2) K

K

c t

c t

Wp t
r h Z t R t c t r F K t R t h Z t R t

p t P t
        

 

 , 

The common rate equalizing the two sides is the social rate of discount at t (with output as 

numeraire), denoted in the following as ( )
( ) :

( )
p t

t r
p t

  


. 

On the LHS of (2) we have a time-dependent risk-adjusted consumption rate of 
interest (a required rate of return from deferring consumption at some point in time as 
long as we have not entered the continuation regime). The term on the RHS, on the 
other hand, is a risk-adjusted real rate of return on capital, with the last term, according 
to Dasgupta (op. cit.), being interpreted as a risk premium term.  

Here ( ( ), ( ))
:

K

W S K
W

K
 




 gives the expected marginal value of capital at the outset of 

the continuation regime.  

We observe that, compared to the risk-free optimality condition given in footnote 
1, the pure rate of impatience (the utility discount rate, r ), is supplemented by a hazard 
rate in time space due to accumulation of GHGs from extraction of fossil fuels, which, 
on its own, should induce less saving and more consumption. This upwards adjustment 
captures a pure “risk-magnified impatience effect”, also found in Aronsson et al. (op. 
cit.). This additional term can be justified by taking into account that a positive pure rate 
of impatience was introduced into dynamic modelling so to capture a fear of extinction. 
From that point of view, adding this hazard rate, as done on the LHS of (2), due to 
catastrophic risk, will make sense; cf. Yaari (1965). 
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How capital accumulation is affected by a catastrophic risk, depends on a risk 

premium term, as given by the marginal rate of substitution, K
W

P
, on the RHS of (2), as 

well as the hazard rate (in time space) which is affected by the history of resource 
extraction or accumulation of GHGs. The risk premium term is in some way related to 
what van der Ploeg and de Zeeuw (op. cit.) have called “the precautionary return on 
capital accumulation”, which operates as a counteracting “be prepared”- motive for 
increased saving.  

To see how manmade catastrophic risk should affect the current optimal 
consumption-saving decision, as long as no catastrophe yet has occurred, we can 
alternatively look at the contingent consumption path, as characterized by: 

*
* * * * *

*

( )( )
(3) ( ( )) ( ( ), ( )) ( ( )) ( )

( )( )
K

K

W P tc t
c t F K t R t r h Z t R t

P tc t
 

          



   

This condition is similar to one derived by Dasgupta (op. cit.), and by van der Ploeg and 
de Zeeuw (op. cit.). The last term on the RHS of (3) is the additional risk element 
required for taking account of the prospect of a future catastrophe. Suppose that we can 
keep the elasticity of marginal utility of consumption constant (say, with an absolute 
value around two). Then, for a given extraction path, the consumption path will be 
more positively sloped the higher is the last term on RHS of (3). In particular, if 

*( )
K

W P U c  , along with a higher value of the hazard rate ( ( )) ( )h Z t Z t , the “steeper” 

is the consumption path, because there is an upwards adjustment of the rate of return 
on capital. This feature will indicate a motive for pushing down or lowering current 
consumption (as long as no threshold has been hit), accompanied by higher capital 
accumulation. In this case, we have a further precautionary saving motive.  

On the other hand, if *( )
K

W U c , then the last term will make the consumption path 

less steep, indicating a motive for less capital accumulation. In that case, the 
precautionary saving motive becomes weaker (stronger impatience effect). 

A special case of the model is the “Doomsday Scenario”; as stated below in 
Proposition 2: 

Proposition 2: Under the assumption that any input is essential; with 
(0,0) ( , 0) (0, ) 0W W K W S   , for positive values of either K  or S , and with 
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( , 0) (0, ) 0
K S

W K W S  , as well, a “Doomsday”- scenario, with complete destruction of the 

production possibilities should a threshold be hit, the only risk correction in the consumption-
saving trade-off (2), is through increasing the impatience effect (“a higher probability of 
extinction”).  

In this special case, the saving incentive becomes significantly weaker, because 
we are now in an ex-ante situation where a natural question to ask is “why save if we 
cannot expect to reap the future or post-catastrophic benefits?” This is also in 
accordance with the results derived by van der Ploeg and de Zeeuw (op. cit.).  

So far, our conclusions confirm the ones being derived in the literature. 
However, the catastrophe-modified Keynes-Ramsey result in (2) is only one element of 
the full set of optimality conditions. We have to consider the multi-role played by 
resource extraction as well; as an essential input in production, as an asset due to 
exhaustibility, but also as a source for the potential environmental damage or 
catastrophic risk. Because the future state of the world is strongly affected by 
accumulated emissions and the corresponding conditional probability distribution for a 
catastrophe, it is not possible to separate the discussion of the consumption-saving 
decision from resource extraction (the “Hotelling-issue”). We might conjecture that if 
the planner anticipates an extreme drop in production capacity should a threshold be 
crossed, the planner will either adopt a more capital-intensive technique or a general 
contraction of output with less use of both inputs to prevent the threshold to be crossed. 
Then we will not have the problem with “Green Paradox”. Hence, there are 
countervailing operating forces in light of a more or less likely catastrophe. If a 
catastrophe is expected to have severe welfare implications – like a “Doomsday” – one 
obvious way is to implement a policy with less resource extraction, and hence less 
emissions. Let us see that this feature follows from our set-up. 

First we have to consider the decision rule for current extraction, related directly 
to the use of fossil fuel as input; thereafter we have to consider the overall asset 
management decision, related to the balancing between extraction and non-extraction 
(resource saving), as well as capital accumulation, as a supplement to (2). These 
decisions are of course closely related. Below we let ( )Q t  be the conditional shadow 

value of the remaining stock of resources at time t, conditional on no catastrophe prior 
to t .   
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An optimal strategy for resource extraction must obey the following condition; 
cf. (a-2), (a-4) and (a-5) in Appendix 2: 

(4)  * *( ) ( ( ), ( )) ( ) ( )
R

P t F K t R t Q t t   

where 
* *

( ) * *

* *

1 ( ( )) ( ( ))
( ) : ( ( )) ( )

1 ( ( )) ( )
r t

t

G Z U c rW
t e h Z R d

G Z t R
  

  


 
   

    
 .  

The LHS of (4) is the conditional (on not having crossed a threshold) valuation, in terms 
of utility, of using a marginal resource unit as input as viewed from the vantage point in 
time t, whereas the RHS shows the corresponding conditional expected social marginal 
cost, in units of utility. The first term, ( )Q t , is the conditional expected shadow value of 

the remaining reserves – see below – or the conditional expected resource rent, whereas 
the second term, ( )t , is the present value of the conditional expected environmental 

marginal cost of extraction. This term is linked to what Tsur and Zemel (op. cit.) have 
called “the Pigouvian hazard” tax; see also Aronsson et al. (op. cit.).  

Let us take a closer look at ( )t . Suppose that current extraction is increased by 

one unit during a short interval of time ,t t dt    , given that we have not yet reached 

the continuation regime at t , and we follow an optimal strategy thereafter. On 
following the elegant interpretation provided by Loury (op. cit.), we then have that the 
rate of increase in accumulated stock Z  will be higher during this interval, implying 
that the critical level of accumulated emissions that will trigger a regime shift is realized 
sooner. If the critical level were to be reached at some t  , when  ( )Z Z  , a unit 

increase in previous extraction as suggested, will make that point in time to come 

sooner, by 1
( )R 

 time units. The rate of utility loss from hitting the threshold at  , is 

*( ( ))U c rW  , with a corresponding total loss, discounted back to t , as given by 
*

( )

*

( ( ))

( )
r t U c rW

e
R

 



   . However, as seen from t , the critical instant   is stochastic with 

a conditional density function 
* * *

* *

* *

( ( )) ( ) 1 ( ( ))
( ( )) ( )

1 ( ( )) 1 ( ( ))

G Z R G Z
d h Z R d

G Z t G Z t

  
   

 
 

 
; as the 

product of “the odds ratio”, 
*

*

1 ( ( ))
1

1 ( ( ))

G Z

G Z t





, declining in  , and the hazard rate in 
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time space, * *( ( )) ( )h Z R d   . Hence the last term on the RHS of (4), ( )t , is simply the 

present value of the expected welfare loss caused by the shortening the time until the 
threshold is hit due to a marginal increase in emissions or extraction at t . 

One might interpret ( )t  in (4) as a conditional precautionary tax on fossil fuels or 

simply a carbon tax, in units of utility, imposed at t as long as no catastrophe has 
occurred. The marginal tax rate internalizes, as should be the case, future expected cost 
of current emissions (due to extraction) as long as no climate change has yet occurred. 
The tax formula depends on traditional discounting, on the conditional probability 
beliefs of a climate change, and hence on the current stock of GHGs in the atmosphere, 
on the utility loss from a regime switch, and on the emission technology. Dividing 
through by ( )P t , gives the tax, in units of output, per unit extraction. The tax differs 

from the one derived by Golosov et al. (2014), within their DSGE-framework, and also 
from the carbon tax derived in the non-stochastic framework studied by Acemoglu et al. 
(2012). The marginal tax at t  is higher the higher is the welfare loss from hitting a 
threshold, as expected.  

However, it is not obvious how the tax rate itself behaves over time and its dependence 

on accumulated stock of emissions: The discounted odds ratio 
*

( )

*

1 ( ( ))

1 ( ( ))
r t G Z

e
G Z t

   


 is 

declining with  , whereas *( ( ))h Z   is increasing in  , with a rate of welfare loss 

depending on the consumption path. 

To complete the characterization of an optimal strategy, we should consider how 
the conditional resource rent ( )Q t  moves over time. Above we have defined the 

conditional shadow value of the remaining resource as ( )
( ) :

1 ( ( ))
q t

Q t
G Z t




, where q  is 

the unconditional shadow value of the remaining resource stock. Then from Appendix 
2 we can derive a modified no-arbitrage condition in the pre-threshold regime, which 
has the flavor of a risk-modified Hotelling Rule, as given by: 

* *(5) ( ) ( ) ( ( )) ( ) ( )
S

rQ t Q t h Z t R t W Q t     
   

where ( ( ), ( ))
:

S

W S K
W

S
 




.  
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This no-arbitrage condition has a standard interpretation. At any point in time as long 
as no tipping point has been hit, the marginal cost of delaying extraction (resource 
saving), in terms of utility, given by rQ , must be balanced against the expected 

marginal benefit from delaying extraction. The latter is the sum of the instantaneous 
“capital gain”, ( )Q t , and the change in the expected shadow value of the resource, 

should a catastrophe occur in the “very near” future. We can alternatively write (5) as: 

* * * *( )( )
(5) ( ( )) ( ) ( ( )) ( ) 1

( ) ( )
S S

Q t W WQ t
r h Z t R t r h Z t R t

Q t Q t Q

            



 

How this shadow value will move over time, will depend on whether the future 

expected shadow value exceeds or fall below the current conditional one. The term S
W

Q
 

is a marginal rate of substitution between the two states, or a risk premium term. It 
shows how many units of the resource one is willing to save at some point in time t as 
long as no threshold has been in order to have one more unit at the start of a 
continuation regime, should that occur in the “very near future”. If this rate of 
substitution is less than one (i.e., with 

S
Q W ) – or that the expected rate of return from 

resource saving, net of capital gain, 1S
W

Q
 , is negative – then there is a weak incentive 

for saving, with a “low” value of the current (conditional) net price to the resource 
owners. In this case the resource rent will increase at a rate above the utility discount 
rate, with a downwards adjustment of the resource rent. Without a global principal and 
no carbon tax imposed, but with a competitive resource sector having rational 
expectations, then we would have too high extraction and too high emissions now, and 
an increased likelihood for hitting a catastrophe. Hence, in that case, we will identify a 
“Green Paradox”. If, on the other hand, 

S
W Q , there is in itself a motive for further 

resource saving. Even without a global carbon tax as suggested above, this will reduce 
the “Green Paradox” feature.  

In the full, regulated optimum, with an optimal precautionary tax on emissions, 
resource extraction is determined from the consumer price, 

R
PF Q  . For instance, 

if expectations are extremely pessimistic, as in Proposition 2, the resource rent will be 
low, but to counteract the private incentive to increase extraction, the carbon tax is high, 



15 
 

with both terms affected by the rate of extraction itself. Hence, there is not obvious that 
the model features the problem with “Green Paradox”. In fact, the global principal’s 
objective is expected to prevent a catastrophe through lowering extraction and hence 
emissions. 

5. The risk-modified Ramsey-Hotelling condition 
The shadow price Q  defined above is in units of utility. To reconcile the 

dynamics of the resource rent with the Ramsey-condition in (3), we have to measure the 

resource rent in units of output. Defined in this way we get ( )
( ) : ( )

( ) R

Q t
t F t

P t
    , 

where ( )
( ) :

( )
t

t
P t


    is the expected marginal environmental cost of resource extraction 

(“carbon tax”) in units of output.  

From (a-3) and (a-4) in Appendix 2, we then have ( ) ( ) ( )
( ) ( ) ( )
t q t p t
t q t p t




 
  

, while, on using (2) 

above, we get 

* *( )
(6) ( ) ( ( )) ( )

( ) ( )
S

Wt
t h Z t R t

t Q t





 
   

From the resource owners’ point of view, what matters, as long as no catastrophe 
has occurred, is how the newly defined conditional rent or producer price,  , will move 
over time. As noted above, a high post-catastrophic shadow value 

S
W , relative to the 

conditional current one, Q , gives an incentive to delay current extraction; but if 
S

W  is 

small relative to the current resource rent, then there is the opposite incentive. We can 
therefore state the following proposition: 
 
Proposition 3: Let ( )t  be the social rate of discount (with output as numeraire), and ( )t being 

the expected resource rent in units of output. Then, when the global planner faces a stochastic 
catastrophe induced by extraction of fossil fuels, the Hotelling-rule or, the conditional no-
arbitrage condition for managing the resource as an asset, will be given by 

* *(6) ( ) ( ) ( ) ( ( )) ( )
( )
S

W
t t t h Z t R t

P t
       
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We observe that the higher is the last term on the RHS of (6)’, the higher is, cet. par., the 
expected benefit from delaying extraction. Hence, the incentive to delay extraction, is 
stronger the higher is the hazard rate, for a given expected shadow value, and/or, the 

higher is the post-threshold shadow value, S
W

P
, for a giver hazard rate. Because all 

terms on both sides of (6)’ are in fact determined simultaneously, we must be careful 
when interpreting the condition.  

In the Doomsday scenario, with 0
S

W  , the incentive to delay extraction 

becomes weaker, as seen from (6)’, where the last term now will vanish. From before we 
have, however, that pre-catastrophic extraction should obey

* *( ( ), ( )) ( ) ( )
R

F K t R t t t   , with ( )t  as a marginal precautionary tax on fossil fuel in 

units of output. Hence the dynamics of the resource rent, as seen from (6), shows how 
the difference between the consumer (or market) price of energy and the tax (both in 
units of output), given by the resource rent, :

R
F   , should behave over time, i.e., 

according to ( )
ln[ ]

( ) R

t d
F

t dt



 


.  

 
In one special case, with no prospect of any regime switch, the resource rent as 

measured above is simply given by ( , )
R

F K R , which along an intertemporal optimal 

plan should increase at a rate equal to the social rate of discount; cf. footnote 1. In the 
opposite case, if the catastrophe should turn out to be of the Doomsday-type, with

0
S

W  , the resource rent, 
R

F   , should increase at a rate equal to the social rate 

of discount, but with a net price ( )t  adjusted downwards. In this case, a high 

precautionary tax should be imposed in order to induce less resource extraction, and 
hence lower the likelihood for a catastrophic outcome. 

By putting all these elements together, we can characterize the catastrophe-
modified (Ramsey-Hotelling) optimality conditions for the global economy by the risk-
modified social rate of discount at some point in time as long as no catastrophe has 
occurred; cf. the conditions as given in footnote 1: 
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*
* * *

*

* *

* * * *

( )
( ) ( ( )) ( ) ( ( ))

( )

(7) ln[ ] ( ( )) ( )
( )

( ( ), ( )) ( ( )) ( )
( )

S
R

K
K

c t
t r h Z t R t c t

c t
Wd

F h Z t R t
dt Q t

W
F K t R t h Z t R t

P t

 



          





  

In the first line, we have the risk-modified social rate of discount or risk-modified 
consumption interest rate (or required rate of return on saving). Along an optimal 
contingency plan, this social rate of discount should be equal to the risk-modified rate 
of return on both assets. In the third line we have the one related to capital equipment; 
in the second line we have the risk-modified rate of return on resource saving. On each 
asset, we have to add a risk premium term to the “ordinary” rate of return, which will 
capture a “be-prepared-motive” for saving. The modified Hotelling rule in the second 
line will also take into account the hazards of resource extraction through an optimal 
carbon tax, affecting the net price to resource owners. This adjustment captures the 
hazardous features of resource extraction or a precautionary motive for resource saving 
to prevent a climate change. The strength of this precautionary motive depends, as we 
have seen, on the expected consequences of a regime switch. In the Doomsday-scenario, 

with 0
S K

W W W += = = , only pure discounting (impatience) will be affected, but of 

course, the carbon tax will be high as well, so as to lower extraction and emissions, and 
by so postpone Doomsday to come.   

At last let us consider the dynamics of the carbon tax or social cost of carbon in 

units of output, ( )
( )

( )
t

t
P t


  . On using our previous findings, we get, as long as 0  , 

that: 

*

*
* *

( ( ))

( )
(8) ( ) ( ) ( ) ( ( )) ( )

( )

U c t rW

R t
t t t h Z t R t

P t




      

The rate at which this carbon tax changes over time, will capture the correct rate of 
discount, ( )tρ , as given in (7), minus the expected welfare loss from a regime shift. 

Again, there are strong similarities between the properties of the dynamics of the social 
cost of carbon as derived by van der Ploeg and de Zeeuw (op. cit.) and our carbon tax. 
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The higher is the expected welfare loss from hitting a threshold, the lower is the rate of 
change in the carbon tax, but the higher is the tax itself. To prevent a catastrophe, 
emissions have to go down, which should, in our model, be implemented by having a 
high tax “early”. 
 
 

6. Conclusion 
The contribution of the present paper has been to derive a modification of the 

conditions for optimal wealth management in a global economy with several assets, 
when one of the assets (natural fossil resources) has a double-edged character. Fossil 
fuel from extracting a non-renewable resource provides services as input in current 
production, along with reproducible capital equipment. However, fossil fuel is also the 
source for accumulation of GHGs in the atmosphere. This stock of GHGs affects the 
likelihood for a future catastrophe or regime switch. Should a catastrophe occur, when a 
tipping point of uncertain location is hit, the overall production capacity of the economy 
is stochastically downgraded. Therefore, to reduce the future costs of a catastrophe, 
precautionary or mitigating actions should be taken today through increasing current 
saving. The implied saving behavior will depend on current beliefs, as given by the 
anticipated consequences of hitting a threshold. In the extreme pessimistic case, a 
Doomsday scenario, the precautionary actions taken by the global planner (the “climate 
protocol”) should be to impose a sufficiently high tax on fossil fuel to reduce the 
consumption of the resources as well as emissions of GHGs. An upward shift in the 
hazard rate of passing a threshold for a catastrophic event, given that no such event has 
yet occurred, will shift the tax upwards. This shift will induce less extraction of fossil 
fuels and may imply less capital investments as well, dependent on the substitution 
possibilities between fossil fuels and capital in the production of goods and services. 
The consumption path will be affected making the path steeper, which means lower 
consumption level “now”.   

An important result is that we derive an overall investment criterion, with a risk-
adjusted social rate of discount. However, the estimation of this social rate of discount 
will require information that may be hard to acquire. We have a highly aggregated 
global model, with only one (ideally) overall planner or global principal, operating in an 
economy with a single production activity without any substitute for fossil fuel, facing 
at most one catastrophe, and with no pollution abatement. However, despite the 
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crudeness of the model, the conclusion of the paper is clear: To avoid a catastrophe in 
the future from hitting a threshold of unknown position, precautionary actions seem 
highly necessary, and – not surprisingly – to reduce current emissions of GHGs 
worldwide. The paper has shown how this target may be reached, by imposing a tax on 
fossil fuel. 
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Appendix 1: The continuation payoff 
For some given point in time 0  , when the threshold is hit, with a new set of initial 
state variables ( ( ) ( ), ( ) ( )K k aK S s aS          , with a realization of the 

random fraction 0,1a       of the two assets from the pre-threshold regime being left 

over to the continuation regime, the planner’s problem is (when we assume that the 
integral will converge and that a solution exists): 
 

( )
( , )

( , ) ( ( ))

( ) , lim ( ) 0, ( ) ( ( ), ( )) ( ) ( )
. .

( ) , lim ( ) 0, ( ) ( )

r t
c R

t

t

w k s Max e U c t dt

K k K t K t F K t R t c t K t
s t

S s S t S t R t





 



 







         






     

 
Because all uncertainty is resolved, this is a standard optimal control problem with a 
solution obeying the standard Pontryagin-conditions, with a current value Hamiltonian, 
where   and   are non-negative costate variables, as given by: 

( , , , , , ) ( ) ( , )H c R K S U c F K R c K R           
 

  . 

Necessary conditions for an optimal solution are: 

 ( ) 0U c     , and when strict inequality implies 0c     

 0
R

F  

  , and when strict inequality implies 0R    

 
K

r F        


   , lim ( ) 0rt
t

e t
   and lim ( ) ( ) 0rt

t
e t K t

    

 , lim ( ) 0rt
t

r e t  
 

    and lim ( ) ( ) 0rt
t

e t S t
    

According to our assumptions 
0

( 0, 0, lim ( )
c

U U U c
       and lim ( ) 0

c
U c
  ) 

and the production function (essential inputs and the Inada conditions satisfied), we 
will have positive and finite values of the two control variables, as well as positive 
costate variables, so that the transversality conditions are satisfied.  
Given our assumptions, it is shown, cf. Weitzman (2003); pp. 215), that ( , )w k s , which is 

a time-independent value function for some given downgrading, is increasing and 

concave in ( , )k s , with ( )
w
k

 





  and ( )
w
s

 





 . For any given pair of the co-state 

variables, the maximized Hamiltonian 
( , )

ˆ( , , , ) max ( , , , , , )
c R

H K S H c R K S    

   is 
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concave in the state variables. Hence, Arrow’s sufficiency theorem holds and we have 

found an optimal program. But then we have as well that 
2

2
0

w
kk

 
 





 and 

2

2
0

w
ss

 
 





.  

At the point in time when the threshold is hit the assets are downgraded by a factor that 
is random as seen from ex ante. Let the downgrading factor be given by the random 
variable A  (independent of time itself, by assumption), distributed on 0,1    , according 

to a differentiable and strictly increasing probability distribution ( ) Pr( )G a A a  , 
with density ( ) ( )dG a g a da , and with an expected downgrading EA .  

Since there is one value function for each possible downgrading factor, 
( ( ), ( ))w aK aS   , we can define the expected continuation payoff as 

1

0

( , ) : ( ( ), ( )) ( )W K S w aK aS g a da    , and with a corresponding pair of expected 

shadow values or costate variables for the capital stock, and remaining reserves of the 

exhaustible resource, respectively as given by ( ) :
K

W
W

K
 


 


 and ( ) :

S

W
W

S
 


 


.  

Appendix 2: Optimality of the Full Program  
Integrating the objective function by parts, the current value Hamiltonian can be 
written as: 

(1 ( )) ( ) ( ) ( , ) ( , )H G Z U c G Z R W S K p F K R c K qR mR               

where ( , , )p q m are current shadow prices for the state variables( , , )K S Z , while ( , )c R  is 

the pair of control variables. Let * * * * *( , , , , )c R K S Z  be the vector characterizing the 

solution to the full program, and let W   be a short-hand expression for the expected 
continuation payoff. It is straightforward to show that an interior solution must obey: 

*

*

( )
( 1) ( ( )) : ( )

1 ( ( ))

p t
a U c t P t

G Z t
  


  

* * *( 2) ( ) ( ( ), ( )) ( ) [ ( ) ( ( )) ]
R

a p t F K t R t q t m t G Z t W       

* *( 3) ( ) ( ) ( ) ( ( )) ( )a rq t q t t G Z t R t        

* * * *( 4) ( ) ( ) ( ) ( ( ), ( )) ( ) ( ( )) ( )
K

a rp t p t p t F K t R t t G Z t R t              
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* * * *( 5) ( ) ( ) ( ( )) ( ( )) ( ( )) ( )a rm t m t U c t G Z t G Z t R t W         

With no end-point constraint imposed on the stock pollutant, one transversality 

condition is lim ( ) 0rt
t

e m t
  . Using this in (a-5), we can solve for the conditional 

shadow cost of the stock pollutant to get: 

* * *
* ( )

* * *

( ) ( ( )) ( ) ( ( ))
( 6) ( ( ))

1 ( ( )) 1 ( ( )) ( )
r t

t

m t G Z R U c rW
a h Z t W e d

G Z t G Z t R
   




 
    

    
    

where we have used the hazard rate for the threshold to be hit during a short period of 
time, ,t t dt    , with a stock of emissions Z , as given by 

( ) ( ( )) ( )
: ( ( )) ( )

1 ( ) 1 ( ( ))
t dt G Z t Z t

h Z t R t
t G Z t

 
 

 



. In addition we have a set of transversality 

conditions: 

lim ( ) 0, lim (1 ( ( ))) ( ) 0, lim (1 ( ( ))) ( ) ( ) 0rt rt
t t t

K t e G Z t P t e G Z t P t K t 
       , and 

lim ( ) 0, lim (1 ( ( ))) ( ) 0, lim (1 ( ( ))) ( ) ( ) 0rt rt
t t t

S t e G Z t Q t e G Z t Q t S t 
       .  
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