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Abstract 
 
We frame sustainability problems as bargaining problems among stakeholders who have to 
agree on a common development path. For infinite alternatives, the set of feasible payoffs is 
unknown, limiting the possibility to apply classical bargaining theory and mechanisms. We 
define a framework accounting for the economic environment, which specifies how the set of 
alternatives and payoff structure underlie the set of feasible payoffs and disagreement point. A 
mechanism satisfying the axioms of Independence of Non-Efficient Alternatives and 
Independence of Redundant Alternatives can be applied to a reduced set of alternatives 
producing all Pareto-efficient outcomes of the initial problem, and produces the same outcome. 
We exhibit monotonicity conditions under which such a subset of alternatives is computable. 
We apply our framework to dynamic sustainability problems. We characterize a “satisficing” 
decision rule achieving any Pareto-efficient outcome. This rule is renegotiation-proof and 
generates a time-consistent path under the axiom of Individual Rationality. 
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dynamics, sustainability, intergenerational equity, maximin. 
 
 
 

Vincent Martinet 
Université Paris Saclay 

Economic Publique, AgroParisTech, INRA 
France - 78850 Thiverval-Grignon 

vincent.martinet@inra.fr 

Pedro Gajardo 
Departamento de Matemática 

Universidad Técnica Federico Santa María 
Avenida España 1680 Casilla 110-V 

Valparaíso / Chile 
pedro.gajardo@usm.cl 

 
Michel De Lara 

Université Paris Est - CERMICS 
6-8 avenue Blaise Pascal, Champs-sur-Marne 

France - 77455 Marne la Vallée Cedex 2 
delara@cermics.enpc.fr 

 
 
 
January 16, 2019 
We are thankful to Geir Asheim, Marc Fleurbaey, and participants of numerous seminars and 
conferences where we have presented the paper, for comments. This research was supported by 
international and national grants, through the STIC-MATH AmSud cooperation programs MIFIMA and 
18-MATH-05, ECOS-CONICYT C07E03, and FONDECYT N 1120239 - N 1160567. 



1 Introduction

Ongoing debates on global changes, such as biodiversity erosion and climate change,

illustrate tensions among environmental, social, and economic issues, on the one hand,

and between short and long terms, on the other hand. The ambition of sustainability

is to tackle such social choice problems and to propose development paths that trade

off these issues.

As two sides of the same coin, the axiomatic bargaining theory and welfare eco-

nomics are two different ways to describe social choice problems and characterize

their solutions (Kaneko, 1980). The formalization of the problem differs, however,

and brings different views. In welfare economics, an emphasis is put on the welfare

function used to rank alternative options. In the axiomatic bargaining approach, an

emphasis is put on the set of feasible payoffs for a group of stakeholders and on the

characterization through axioms of mechanisms selecting specific solutions.

A striking point is that actual sustainability problems have been largely addressed

in welfare economics (e.g., for climate change, refer to Nordhaus, 2007; Stern, 2008),

but not in the axiomatic bargaining theory.1 A reason may be that the classical bar-

gaining theory is mainly based on the set of feasible payoffs, with the usual assumption

that this set is given. Thus, it is necessary to characterize this set before applying an

axiomatic bargaining approach. This abstract framework may be too restrictive to

address complex social choice problems, which do not aim at selecting a payoff vector

directly, but an alternative among a set of feasible ones (e.g., decisions to drive the

economic development path). The set of feasible payoffs may even be unknown when

formulating the social choice problem, as it may be the case for sustainability problems

involving complex dynamics.

Bargaining problems on dynamical systems have received little attention.2 Fershtman

(1983) introduced “dynamic bargaining problems” in which stakeholders have to agree

on a time path of decisions for the system, with intertemporal payoffs depending on

the resulting economic path. In such problems, computing the set of feasible payoffs is

a formidable challenge as it would require exploring an infinity of possible sequences of

decisions and associated economic dynamics. This constitutes an obstacle to the anal-

ysis of these problems in the bargaining approach. The axiomatic bargaining theory

can, however, be mobilized to provide interesting insights to the social choice problem

of trading off environmental, economic, and other issues over time, in particular when

defining a sustainability criterion (i.e., a representation of social preferences for sus-

tainability) is difficult and controversial (Fleurbaey, 2015). Stakeholders can be seen

as the carriers of separate environmental, social, and economic issues. The shape of

1In the sustainability literature, axioms have been used to define welfare functions (see Asheim,

2010, for a survey). In this framework, economic and environmental issues are first encompassed within

the utility of each generation, which are subsequently aggregated by the (axiomatized) intertemporal

welfare function to give a present social value to alternative development paths. We adopt a different

approach, considering that each issue is represented by a stakeholder, and the bargaining takes place

at the current time among stakeholders each having their own intertemporal objective.
2In the dynamic framework, attention has been devoted to i) repeated or iterative static bargaining

(Abreu, 1988), possibly with an endogenous status quo (e.g., Anesi and Duggan, 2018), ii) the timing

of the bargaining protocol and its influence on the timing of payoffs and the cost of delay (e.g.,

Schweighofer-Kodritsch, 2018), or iii) dynamic games in which each player has a decision parameter

(which is not the case when stakeholders bargain over a common set of decisions for a dynamic

system). Fleurbaey and Roemer (2011) proposed a dynamic justification of the axiomatic bargaining

theory, without accounting for the economic dynamics. These frameworks differ from ours.
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the Pareto frontier of the set of feasible payoffs provides important information on the

tension among these issues. Axioms can be used to characterize solutions that satisfy

meaningful properties.

We lay out a formalism to study bargaining problems over alternatives (and not

directly over payoffs), which can be used to study sustainability problems and charac-

terize their Pareto frontier. For this purpose, we proceed in two steps. In Section 2 and

3, we propose a general framework, and related results, to discuss bargaining problems

in economic environments. In Section 4, we formalize sustainability problems in this

framework and discuss bargaining solutions and their time-consistency.

Roemer (1986, 1988) criticized the classical axiomatic bargaining approach as it

does not account for the economic environment, that is, the nature of the goods to be

shared and the preferences of the stakeholders. A bargaining problem can be enriched

by specifying how the set of alternatives being bargained over and the payoff structure

underlie the set of feasible payoffs and the disagreement outcome (Roemer, 1988).3

The central element of the classical bargaining theory, the set of feasible payoffs, must

be characterized from the set of feasible alternatives. Thus, we focus on this set of

alternatives and the selection of alternatives satisfying some desirable properties.

In the axiomatic bargaining literature, a problem can have different possible solu-

tions, depending on the axioms assumed (Border and Segal, 1997). Our purpose here

is not to characterize a particular mechanism but to provide conditions, in the form

of axioms, under which a bargaining mechanism can be applied to sets of alternatives.

We introduce two axioms specific to our framework, Independence of Non-Efficient Al-

ternatives (INEA) and Independence of Redundant Alternatives (IRA). We show that

a bargaining mechanism satisfying these axioms can be applied to any reduced set of

alternatives yielding the Pareto-efficient outcomes of the initial bargaining problem,

and produces the same outcome. We formulate monotonicity conditions for economic

environments under which such a subset of efficient alternatives can be computed.

This provides a practical tool to apply the axiomatic bargaining theory to bargaining

problems in economic environments.

Subsequently, we study dynamic bargaining problems that can represent sustain-

ability problems.4 Each sustainability issue (e.g., environmental, social, and economic)

is embodied by a stakeholder who aims at sustaining an ad hoc indicator over time

(e.g., consumption, GDP, employment rate, the atmospheric concentration of green-

3In this framework, the problem is not to allocate utility among stakeholders, but commodities

(distribution problems). Characterizing a particular mechanism is then relatively more demanding

than on the unrestricted domain of outcomes (Roemer, 1988). Nieto (1992) characterized a resource

egalitarian solution corresponding to the lexicographic extension of the maximin criterion defined on

economic environments. Chen and Maskin (1999) enriched the economic environment of the bargain-

ing problem by considering the possibility of production, focusing on the egalitarian mechanism. We

aim at describing a problem in which the bargaining is not over the division of a fixed aggregate

endowment of goods, but over the common decisions driving the economy. For this purpose, the

whole economic dynamics should be accounted for in the description of the economic environment.

As such, our definition of the economic environment slightly differs from that of the literature.
4While sustainable development is a natural field of application for the described dynamic bargain-

ing problems, the scope of application is not limited to sustainability or environmental economics.

Other bargaining problems may involve stakeholders who want to “sustain” something over time,

that is, to keep it above the highest possible level. For example, stakeholders involved in a firm’s

management may have conflicting preferences over sustaining profits, market shares, employment,

and shareholders’ dividend. In a political-economy setting, administrations may be interested in sus-

taining their budget, citizens may be concerned about the sustained level of public services, and tax

payers would focus on the tax level.
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house gases (GHG), or the abundance of an endangered species). The various indica-

tors, which depend on the economic state and decisions at each time, differ and are

expressed in different units. The stakeholders bargain over a common sequence of de-

cisions (for instance, the intertemporal path of consumption and investment), thereby

influencing the evolution of the economy through the dynamics representing produc-

tion possibilities. Intertemporal payoffs depend on the resulting economic trajectory.

If no agreement is reached, then stakeholders would get a reference payoff given by the

status-quo or business-as-usual economic trajectory (disagreement point). Fershtman

(1983) studied the case of intertemporal payoffs defined as discounted utility. Dis-

counted utility has been criticized and qualified as a “dictatorship of the present”

in the sustainability literature (Chichilnisky, 1996). Maximin is an alternative crite-

rion that treats all generations with anonymity and expresses the idea to “sustain”

something over time (usually consumption or utility but possibly environmental indi-

cators; see Cairns and Long, 2006).5 Thus, we consider intertemporal maximin payoffs

to capture the tension between short- and long-term, the payoff of each stakeholder

being defined as the minimal level over time of the corresponding indicator.6 This

is consistent with the way environmental issues are addressed in practice, with the

social choice of thresholds environmental indicators should not overshoot.7 As “any

social decision is the ultimate outcome of some kind of collective bargaining process”

(Kalai et al., 1976, p.233), the definition of such thresholds can be seen as the result

of a dynamic bargaining problem with maximin intertemporal preferences, in a society

in which stakeholders are concerned by the extremal levels of indicators.

We formalize these bargaining problems in our general framework and introduce

monotonicity properties, called MonDAI (Monotonicity of the dynamics and indica-

tors). In essence, these properties correspond to a requirement that i) capital stocks

are “productive” (higher capital stocks produce more and do not reduce the payoff of

stakeholders) and ii) some (not all) indicators depend on the decisions in a monotonic

way (i.e., these indicators increase with “lower” decisions). The stakeholders whose

payoffs depend on these monotonic indicators belong to an interest group; the others

are called outsiders. When there is such an interest group, we show that the Pareto

frontier of the set of feasible payoffs can be parametrized by as many variables as

there are outsiders. Hence, in a sense, this Pareto frontier is of a lower dimension

than the number of stakeholders. Finally, as these dynamic problems are subject to

5Maximin may represent preferences with extreme aversion to inequalities or complementarity. It

has been used to address justice and distributive concerns both in static (Engelmann and Strobel,

2004; Mármol and Ponsat́ı, 2008) and dynamic frameworks (Solow, 1974; Burmeister and Hammond,

1977).
6Without loss of generality, it is always possible to take the negative level of an indicator repre-

senting a “bad” (e.g., pollution) to be able to consider that the payoff is the minimal level over time

of the indicator.
7The climate change issue is addressed by defining an upper limit on the atmospheric concentration

of GHG (UN, 1998). A similar approach is applied for biodiversity, with the creation of reserves to

protect natural habitats (UN, 2010). These reserves put constraints on the development of alternative

land-uses such as agriculture or urban development. Other examples include minimal stock sizes for

fisheries (FAO, 2005) or thresholds for air or water pollution. Although these thresholds often have

a scientific basis (as the Intergovernmental Panel on Climate Change provides a view on the climate

change issue), they also account for economic and social issues. A clear argument showing that

sustainability thresholds are socially chosen is that they differ among countries, particularly with the

level of development. Environmental standards are higher in developed countries with high income

than in developing countries (Dasgupta et al., 2001).
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time-consistency concerns (Fershtman, 1983), we discuss the evolution of the bargain-

ing solution over time. We characterize a parametrized decision rule that achieves

any Pareto-efficient outcome, and is renegotiation-proof under the axiom of Strong

Individual Rationality, resulting in a time consistent sustainable development path.

To the best of our knowledge, such dynamic bargaining problems with intertem-

poral maximin payoffs have never been studied. We believe that this study offers a

useful framework for formalizing sustainability problems, and is an original contribu-

tion to the bargaining literature, with clear potential applications. Some studies are

loosely related to our study. Fershtman (1983) introduced and studied problems of

dynamic bargaining on a sequence of decisions, but with payoffs defined by discounted

utility. Lu (2016) examined negotiations over the sharing of a given, infinite stream of

surplus, focusing on the timing of acceptance within an alternating proposals proto-

col, but without considering production dynamics. Long (2006) considered a dynamic

game with intertemporal maximin preferences in which each player can select own

action and the solution would depend on the strategic interactions between players.

Another interesting connection with the bargaining literature appears in the analysis

of Mármol and Ponsat́ı (2008). They examined bargaining problems involving several

issues when preferences are maximin – for example, a bargain over ingredients of some

recipes wherein all stakeholders use different proportions of these ingredients in their

own recipe and the individual output is given by the limiting ingredient of each recipe.

Our work can be considered the intertemporal, dynamic counterpart of this problem;

however, our study involves more complexity because it requires to account for the

production of the various assets and economic dynamics.

2 Bargaining in economic environments

In standard bargaining theory, a bargaining problem involving H stakeholders is char-

acterized by a set of feasible payoffs O ⊂ R
H and a disagreement outcome θd ∈ R

H .

A bargaining mechanism (sometimes called solution) is a correspondence that defines

a subset of desirable outcomes to a bargaining problem.8

We introduce bargaining in economic environments to study problems in which the

economic information underlying O and θd is explicitly considered. In this framework,

a bargaining mechanism selects alternatives within a set of feasible alternatives char-

acterizing the economic environment, instead of allocating utility among stakeholders

directly.

The framework that we propose can be described as follows. A bargaining domain

is a set of bargaining problems sharing common properties; a bargaining mechanism

can be applied to any problem in this domain. This domain is defined by a given,

finite number of stakeholders who have well-defined preferences over a set of potential

alternatives, so that a vector of payoffs is associated with any alternative. A specific

bargaining problem within this domain is characterized by a subset of feasible alter-

natives and a disagreement alternative, which define the economic environment of this

problem. A bargaining mechanism assigns a subset of alternatives to any economic

environment within a domain. To illustrate this overall architecture, let us refer to a

8Formally, in the standard framework, a mechanism is a correspondence µ defining a subset

µ(O, θd) ⊂ O to a problem characterized only by a couple (O, θd). A mechanism can reduce to

a mapping defining a solution vector µ(O, θd) = θ∗ ∈ O.
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simple example. Consider the choice of an apartment (an alternative) by the members

of a household (stakeholders). This is a common choice that will impact the payoff

of all the members of the household. An apartment can be described by different

characteristics, including its location, surface, natural environment, and price. These

characteristics would be valued differently by different members of the household, ac-

cording to their preferences. Even if each member of the household has well-defined

preferences for these characteristics and can rank any possible pair of apartments, in

practice, the household will not be faced with the choice of an apartment within the

(virtual) set of all possible apartments, but only within a subset of feasible alterna-

tives corresponding to the current offers on the real estate market. This choice set is

associated with a set of feasible payoffs and a disagreement outcome (e.g., staying in

the current apartment). This constitutes the economic environment of the bargaining

problem. The household can, however, be soon confronted with a slightly different

bargaining problem when the goods on the real estate market change. As the two

bargaining problems are characterized by the same stakeholders with given prefer-

ences and the some object, they can be considered to correspond to two economic

environments belonging to the same bargaining domain. The same bargaining mech-

anism (that is, the decision-making pattern within the household) can apply to both

problems and be characterized by axioms.

Notations: Let N be the set of natural numbers, N∗ be the set of positive natural

numbers, and R the set of real numbers. We denote the power set (i.e., the set of

subsets) of a set S by 2S . When needed, the set R
q, where q ∈ N

∗ is equipped with

the following componentwise order: y′ = (y′1, . . . , y
′
q) ≥ y = (y1, . . . , yq) ⇐⇒ y′i ≥

yi , ∀i = 1, . . . , q.

All proofs of Theorems and Propositions are in the Appendix.

2.1 The bargaining problem

Let H ∈ N
∗ and n ∈ N

∗ ∪ {∞} be fixed. A is a subset of Rn when n ∈ N
∗, or a subset

of R∞ = R
N (the set of all mappings from N to R).

Consider H stakeholders whose preferences over a set of potential alternatives A

are characterized by the payoff function π : A → R
H . By convention, for A

′ ⊂ A,

π(A′) = {π(a) | a ∈ A
′} ⊂ R

H .

With this payoff function π and its underlying elements (the set A and the number

of stakeholders H), we define the bargaining domain Ξ = {H}×{π}× 2A ×A. Within

this bargaining domain, the stakeholders may be faced with different bargaining situ-

ations, called economic environments.

An economic environment ξ = [H;π;Aξ; a
d
ξ ] ∈ Ξ is characterized by a set of feasible

alternatives Aξ ⊂ A and a disagreement alternative adξ ∈ A. As H and π are fixed

within a bargaining domain, we simplify the notation of economic environments and

write ξ = 〈Aξ; a
d
ξ〉 = [H;π;Aξ; a

d
ξ ] ∈ Ξ.

In our analysis, we will consider reduced economic environments ξ′, which differ

from a given environment ξ only by their set of considered alternatives, with Aξ′ ⊂ Aξ.

Definition 1 (Reduced economic environment)

An economic environment ξ′ ∈ Ξ is said to be a reduced economic environment with

respect to environment ξ = 〈Aξ; a
d
ξ〉 if ξ

′ = 〈Aξ′ ; a
d
ξ〉, with Aξ′ ⊂ Aξ.
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Within this framework, the set of feasible payoffs of a bargaining problem in the

economic environment ξ = 〈Aξ; a
d
ξ〉 is π(Aξ) and the disagreement outcome is π(adξ).

The explicit characterization of the set of feasible payoffs π(Aξ) is a difficult task if Aξ

is a large (possibly infinite) set. There may be no straightforward way to determine

the set of feasible payoffs from the description of the economic environment, except by

exploring the whole alternatives, which may not be feasible.

In the traditional axiomatic bargaining theory, a bargaining mechanism allocates

utility among stakeholders. In our framework, outcomes are associated with alterna-

tives through the payoff function. Thus, we define a bargaining mechanism as a process

to select alternatives.

Definition 2 (Bargaining mechanism)

A bargaining mechanism is a correspondence µ : Ξ → 2A, which assigns to any eco-

nomic environment ξ = 〈Aξ; a
d
ξ〉 ∈ Ξ a subset of acceptable solutions µ(ξ) ⊂ Aξ within

the set of feasible alternatives Aξ of the environment.

We provide conditions on mechanisms making the bargaining problem tractable.

To do so, we consider the following properties and axioms.

2.2 Efficient outcomes and efficient alternatives

We introduce the properties of (weak and strong) Efficiency for outcomes (i.e., vectors

of payoffs in R
H , for bargaining problems in economic environments in Ξ). These

properties are formulated as correspondences, which can be used either to reduce the

set of payoff vectors worth considering (i.e., presolutions ; see Thomson, 2001, p. 354) or

to characterize mechanisms with corresponding axioms. Such axioms will be specified

later.9

Definition 3 (Weakly Pareto Efficient outcomes)

Let H ∈ N
∗ and O ⊂ R

H . An outcome θ = (θ1, . . . , θH) ∈ O is weakly Pareto efficient

– weakly efficient for short – on O if, for any θ̃ = (θ̃1, . . . θ̃H) such that θ̃h > θh for all

h = 1, . . . , H, one has θ̃ /∈ O.

We denote by Ew(O) ⊂ O the set of all weakly efficient outcomes of O, and call it

the weak Pareto frontier of O.

Definition 4 (Strongly Pareto Efficient outcomes)

Let H ∈ N
∗ and O ⊂ R

H . An outcome θ = (θ1, . . . , θH) ∈ O ⊂ R
H is strongly Pareto

efficient – efficient for short – on O if, for any θ̃ = (θ̃1, . . . θ̃H) such that θ̃h ≥ θh for

all h = 1, . . . , H and θ̃h > θh for some h, one has θ̃ /∈ O.

We denote by E(O) ⊂ O the set of all efficient outcomes of O, and call it the Pareto

frontier of O. We have E(O) ⊂ Ew(O). An outcome (θ1, . . . , θH) ∈ Ew(O)\E(O) is

dominated in the sense that one can increase the payoff of at least one stakeholder

without decreasing that of the others.

Efficient outcomes are generated by efficient alternatives. We define the set of

efficient alternatives for an economic environment ξ as follows.

9The properties of (weak and strong) Individual Rationality and corresponding axioms will be

introduced in Section 4.3. These properties are not introduced here because they are used only to

study time-consistency in dynamic problems.
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Definition 5 (Efficient Alternatives)

For the economic environment ξ = 〈Aξ; a
d
ξ〉 ∈ Ξ, the set of efficient alternatives

is the subset A
⋆
ξ of alternatives in Aξ yielding efficient outcomes, that is, A

⋆
ξ =

{

a ∈ Aξ | π(a) ∈ E
(

π(Aξ)
)}

. We define the corresponding reduced economic environ-

ment ξ⋆ = 〈A⋆
ξ ; a

d
ξ〉, which contains only efficient alternatives A⋆

ξ ⊂ Aξ.

The Appendix gathers propositions characterizing such efficient alternatives (Propo-

sition 4), their existence (Proposition 5), and the properties of efficient alternatives for

reduced economic environments (Proposition 6). These properties are used to prove

our main Theorems.

2.3 Bargaining mechanisms: Axiomatic properties

We are now ready to discuss bargaining mechanisms and the possibility to apply them

to bargaining problems in economic environments. We introduce the axiom of Pareto

efficiency as a well-known benchmark, and consider the following two axioms specific

to our framework: Independence of Non-Efficient Alternatives and Independence of

Redundant Alternatives.10

Axiom 1 (Pareto Efficiency)

A bargaining mechanism µ : Ξ → 2A satisfies the axiom of Pareto Efficiency if, for

any ξ = 〈Aξ; a
d
ξ〉 ∈ Ξ, one has π

(

µ(ξ)
)

⊂ E
(

π(Aξ)
)

, which is equivalent to µ(ξ) ⊂ A
⋆
ξ .

The axiom of Pareto Efficiency has the usual interpretation – a bargaining mechanism

is Pareto-efficient if all the alternatives it selects are associated with Pareto-efficient

outcomes.

Characterizing the efficient outcomes of a bargaining problem in economic envi-

ronments as well as some alternatives to achieve these outcomes are challenging and

non-trivial tasks. We will show that these tasks can be simplified if the bargaining

mechanism satisfies the axioms of Independence of Non-Efficient Alternatives (INEA)

and Independence of Redundant Alternatives (IRA), defined as follows.

Axiom 2 (Independence of Non-Efficient Alternatives – INEA)

A bargaining mechanism µ : Ξ → 2A satisfies the axiom of Independence of Non-

Efficient Alternatives if, for any couple of economic environments ξ = 〈Aξ; a
d
ξ〉 ∈ Ξ

and ξ′ = 〈Aξ′ ; a
d
ξ〉 ∈ Ξ, we have A

⋆
ξ ⊂ Aξ′ ⊂ Aξ ⇒ µ(ξ′) = µ(ξ).

The INEA axiom requires that the mechanism acts independent of alternatives that

do not yield efficient outcomes in the sense that dropping any subset of alternatives

that are not efficient does not change the bargaining solution.

The axiom is more demanding than Pareto Efficiency in the sense that INEA

implies Pareto Efficiency11 while imposing independence to some alternatives. This

is, however, a much less demanding axiom than the usual axiom of Independence

of Irrelevant Alternatives (IIA).12 Any bargaining mechanism satisfying IIA in the

classical bargaining theory framework also satisfies INEA when considering economic

10In Section 4.3, we will also consider the axioms of weak and strong Individual Rationality.
11A mechanism satisfying INEA would satisfy µ(ξ) ⊂ A⋆

ξ
as by applying the definition of the axiom

to the subset ξ′ = 〈Aξ′ ; a
d
ξ
〉, where Aξ′ = A⋆

ξ
implies µ(ξ) = µ(ξ′) ⊂ Aξ′ = A⋆

ξ
.

12A mechanism is IIA if, whenever Aξ′ ⊂ Aξ and µ(ξ) ⊂ Aξ′ , it follows that µ(ξ′) = µ(ξ).
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environments (e.g., the Nash mechanism or the egalitarian mechanism). Some clas-

sical mechanisms, that do not satisfy IIA, can satisfy INEA as long as they depend

only on efficient outcomes and the disagreement outcome (e.g., the Kalai-Smorodinsky

mechanism). Under INEA, the mechanism may be sensitive to some non-optimal alter-

natives (Karni and Schmeidler, 1976) if these alternatives are associated with efficient

outcomes.

When a bargaining mechanism satisfies INEA, bargaining over the efficient alter-

natives A
⋆
ξ (Definition 5) leads to the same result as bargaining over the full set of

alternatives.

Remark 1 (Bargaining over efficient alternatives)

If a mechanism µ : Ξ → 2A satisfies the axiom of Independence of Non-Efficient

Alternatives, then for any ξ = 〈Aξ; a
d
ξ〉 ∈ Ξ, one has µ(ξ⋆) = µ(ξ), where ξ⋆ = 〈A⋆

ξ ; a
d
ξ〉

is the reduced environment containing only efficient alternatives A⋆
ξ ⊂ Aξ.

We now introduce the axiom of Independence of Redundant Alternatives.

Axiom 3 (Independence of Redundant Alternatives – IRA)

A bargaining mechanism µ : Ξ → 2A satisfies the axiom of Independence of Redundant

Alternatives if, for any couple of economic environments ξ = 〈Aξ; a
d
ξ〉 ∈ Ξ and ξ′ =

〈Aξ′ ; a
d
ξ〉 ∈ Ξ, we have Aξ′ ⊂ Aξ and π(Aξ′) = π(Aξ) ⇒ π

(

µ(ξ′)
)

= π
(

µ(ξ)
)

.

This axiom requires that the mechanism acts independent of redundant alternatives in

the sense that dropping any subset of alternatives without reducing the set of feasible

payoffs does not change the bargained outcomes. This may, however, modify the set of

alternatives selected by the mechanism.13 It is satisfied by all the mechanisms defined

in the classical bargaining theory framework as they depend only on the set of feasible

payoffs.

The following theorem states that, if the mechanism satisfies the INEA and IRA

axioms, the bargaining can take place over a subset of efficient alternatives only.

Theorem 1 (Bargaining over a subset of efficient alternatives)

Let µ : Ξ → 2A be a bargaining mechanism satisfying the axioms of Independence of

Non-Efficient Alternatives and Independence of Redundant Alternatives. Suppose that

the set of alternatives A is a metric space and the payoff mapping π = (π1, . . . , πH) :

A → R
H is composed of upper semicontinuous functions πh : A → R, h = 1, . . . , H.

Consider any economic environment ξ = 〈Aξ; a
d
ξ〉 ∈ Ξ such that Aξ ⊂ A is compact.

Then, for any reduced economic environments ξ′ ∈ Ξ satisfying Aξ′ ⊂ Aξ, we have

E
(

π(Aξ)
)

⊂ π(Aξ′) ⇒ π
(

µ(ξ′)
)

= π
(

µ(ξ)
)

.

If the bargaining mechanism satisfies the INEA and IRA axioms, a bargaining prob-

lem can be reduced to a simpler bargaining problem over any subset of alternatives

generating the Pareto frontier of the set of feasible payoffs. Within a given bargaining

domain, the outcome of the bargaining mechanism depends only on the set of effi-

cient payoffs.14 This result can be used to simplify bargaining problems in economic

environments. This is the case in monotonic economic environments.
13Under the axiom of IRA, the mechanism µ does not need to select all the alternatives that achieve

the solution outcomes.
14Our framework implies a form of welfarism within a bargaining domain (i.e., within a set of

problems characterized by economic environments sharing several features). The domain, however,

depends on the type of alternatives (through the definition of A) and on the preferences of the
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3 Bargaining problems in monotonic economic en-

vironments

In this section, we focus on specific bargaining problems in economic environments

satisfying some monotonicity properties. For these problems, we provide a computa-

tional method to determine the set of efficient outcomes and a set of alternatives that

produce these outcomes.

3.1 Monotonic economic environments

The payoff of some stakeholders may satisfy some monotonicity properties, in the

sense that when alternatives can be ranked, the payoff of these stakeholders is higher

for “lower” alternatives. We qualify such stakeholders as an interest group, the other

stakeholders being outsiders (of the interest group).

Definition 6 (MonEE)

Suppose that the set {1, . . . , H} of stakeholders is partitioned15 in an interest group i

and outsiders o, yielding sub-groups payoff functions π = (πi, πo) , πi : A → R
|i| , πo :

A → R
|o|, where |i| and |o| indicate the cardinality of subsets i and o. An economic

environment ξ = 〈Aξ; a
d
ξ〉 ∈ Ξ is said to be (i, o)-monotonic if

I. the set Aξ is equipped with an order ≤,

II. the sub-groups payoff functions are such that

a. the mapping πi : Aξ → R
|i| is non-increasing, that is, a♭ ≤ a♯ ⇒ πi(a♭) ≥

πi(a♯),

b. for all θo ∈ R
|o|, the set {a ∈ Aξ | πo(a) ≥ θo} is either empty or admits a

minimum, that is, an ā ∈ Aξ such that

πo(ā) ≥ θo and (a ∈ Aξ , πo(a) ≥ θo) ⇒ a ≥ ā . (1)

Item I means that, to define a monotonic economic environment, we must be able to

partially order its alternatives, in the sense that some of them can be ranked. Item IIa

means that if an alternative is lower than others, it is preferred by all the members

of the interest group. Item IIb is a strong assumption (refer to the discussion in

subsection 4.2); it means that, for any payoff θo that can be guaranteed to the outsiders

(in the sense that their actual payoff can be at least equal to that level), there is a

lowest alternative among the subset of alternatives yielding at least this payoff.

3.2 Bargaining over an efficient reduced economic environment

For monotonic economic environments satisfying the MonEE properties, it is possible

to identify a subset of alternatives Ao
ξ ⊂ Aξ yielding efficient outcomes, consistent with

Theorem 1. This set of satisficing alternatives is defined as follows.

stakeholders over these alternatives (through the definition of π), and not only on the set of feasible

payoffs, as in classical bargaining theory. The definition of the bargaining domain can be restrictive,

and some mechanisms can be designed to produce different solutions to two bargaining problems with

the same set of feasible payoffs but belonging to different domains. This makes it possible to avoid

welfarism across domains.
15(i, o) is a partition of {1, . . . , H} if i and o are subsets of {1, . . . , H}, i 6= ∅ 6= o, i∪o = {1, . . . , H},

and i ∩ o = ∅.

10



Definition 7 (Satisficing alternatives)

For a (i, o)-monotone economic environment ξ = 〈Aξ; a
d
ξ〉, we define

I. the set of satisficing payoffs for outsiders by

Oo
ξ = {θo ∈ R

|o| | {a ∈ Aξ | πo(a) ≥ θo} 6= ∅} ⊂ R
|o| , (2)

II. the satisficing alternative associated to a satisficing payoff as

∀ θo ∈ Oo
ξ , aξ(θ

o) = min{a ∈ Aξ | πo(a) ≥ θo} ∈ Aξ , (3)

III. the reduced economic environment ξo = 〈Ao
ξ; a

d
ξ〉, where the set of alternatives A

o
ξ

is the set of all satisficing alternatives

A
o
ξ = {a ∈ Aξ | ∃θo ∈ Oo

ξ , a = aξ(θ
o)} ⊂ Aξ . (4)

A satisficing payoff for outsiders is a payoff level that can be guaranteed to outsiders in

the sense that there is one (or more) alternative(s) yielding at least that payoff for them.

The set of such payoffs is defined by eq. (2). The satisficing alternative associated with

a satisficing payoff (eq. 3) is the “lowest” alternative among those yielding at least

the given payoff for outsiders. Item IIa of the Definition 6 of monotonic economic

environments specifies that the payoff of the stakeholders in the interest group is non-

increasing in the alternatives. This means that the satisficing alternatives maximize the

payoff of the members of the interest group given a satisficing payoff for the outsiders.

This satisficing alternative is defined for any feasible satisficing payoff for outsiders.

We can use it to define a subset of alternatives parametrized by the vector of satisficing

payoffs for outsiders, and the associated reduced economic environment (eq. 4).

We show in Theorem 2 that, for a monotonic economic environment ξ, the set of

payoffs associated with satisficing alternatives includes the Pareto-efficient outcomes

of π(Aξ).

Theorem 2 (Efficient alternatives for (i, o)-MonEE)

For a (i, o)-monotonic economic environment ξ = 〈Aξ; a
d
ξ〉, we have E

(

π(Aξ)
)

⊂

π(Ao
ξ) ⊂ Ew

(

π(Aξ)
)

, where the set Ao
ξ of satisficing alternatives is defined in eq. (4).

According to Theorem 2, the reduced environment ξo = 〈Ao
ξ; a

d
ξ〉 satisfies the assump-

tions of Theorem 1. We conclude that a bargaining mechanism satisfying the INEA

and IRA axioms can be applied to this reduced economic environment, and produces

the same outcome as the initial problem.

Interest group and low dimensional Pareto frontier. These results have prac-

tical implications. In large dimension bargaining problems in monotonic economic en-

vironments, if the bargaining mechanism satisfies the INEA and IRA axioms, the satis-

ficing alternatives of Definition 7 can be used to construct a computable, parametrized

set of alternatives that yield all the efficient outcomes of the bargaining problem, and

thus defines a reduced problem to which the bargaining mechanism can be applied.

When θo ranges over Oo
ξ , the outcomes π(Ao

ξ) = π ◦aξ(O
o
ξ) include the Pareto frontier

E(π(Aξ)) of the outcomes of the bargaining in the economic environment ξ (Theo-

rem 2). As Oo
ξ ⊂ R

|o|, we obtain a parametrization of the Pareto frontier with a

11



dimension of at most |o| = H − |i|, the number of outsiders. This kind of group of

interest is somehow similar to alliances, as described by Manzini and Mariotti (2005),

in which stakeholders have the same preferences over the control parameters even if

their payoffs are different. As in the case of alliances, the payoffs of the |i| stakeholders

in the interest group are co-monotonic, making it possible to represent them in the set

of Pareto outcomes by a single dimension. The larger the interest group, the smaller

will be the dimensions to explore to characterize the reduced environment ξo.

Figure 1 illustrates how to generate this set, for H = 3 stakeholders, i = {1, 2},

and o = {3}. The Pareto-frontier is parametrized by the payoff of stakeholder 3.

θ1

θ2

θ2

θ1

θ3

π
(

A
o
ξ

)

Figure 1: “One-dimensional” Pareto frontier, parametrized by θo, with

(θ1, θ2, θ3) = π(aξ(θ
o)) for any θo ∈ Oo

ξ ⊂ R

Until now, we presented a framework to account for the economic environment

(and, particularly, for alternatives) in bargaining problems. We provided two axioms

under which a bargaining mechanism can be applied to a reduced bargaining problem

over a subset of alternatives; we also identified a way to compute such subsets for

monotonic economic environments. We now investigate how Theorems 1 and 2 pro-

vide some operational way to study dynamic bargaining problems with intertemporal

maximin payoffs.

4 Dynamic bargaining problems with intertemporal

maximin payoffs (IMP)

To formalize dynamic bargaining problems with IMP in our framework, we first char-

acterize the domain of economic environments on which Theorem 1 will be applied.

Subsequently, we specify monotonicity properties that some dynamic problems satisfy,

in association with Theorem 2. This allows us to propose a computable characteriza-

tion of dynamic bargaining problems with IMP under monotonicity properties. Finally,

12



we address a specific concern related to the temporal nature of dynamic problems: time

consistency.

4.1 Economic environments with IMP

To characterize the bargaining domain, we must specify the nature of alternatives as

well as the payoff function.

Consider a finite number H ∈ N
∗ of stakeholders (H ≥ 2), identified as h =

1, . . . , H, who are bargaining over the trajectory of the economy. They must agree on

a path of common decisions, which will drive the evolution of the economic state from

current state, according to the economic dynamics. The resulting economic trajectory

will determine the individual payoffs. This may represent the kind of bargaining prob-

lems at stake in the conference of the parties (COP) for climate change negotiations.

The evolution of the economy is described by a non-linear discrete-time dynamical

control system, given by the following ingredients:

• the time t ∈ N;

• the state variable x(t) belongs to the finite dimensional state space X ⊂ R
nX ;

• the control variable c(t) is an element of the control set C ⊂ R
nC ;

• the dynamics is a mapping G : X× C → X.16

The economic model is general. The state variable can encompass usual economic vari-

ables (capital and labor) as well as natural resources stocks and environmental quality.

The decision variable can encompass consumption decisions, resource extraction, and

pollutant emission. The dynamics can correspond to production technologies or to the

dynamics of natural resources and the environment.

The dynamics of the economy is given by the system

{

x(t+ 1) = G
(

x(t), c(t)
)

, t = t0, t0 + 1, . . .

x(t0) = x0 given,
(5)

for any initial time t0 ∈ N and any initial state x0 ∈ X. In this context, given an

initial state x(t0) = x0, the trajectory of the economy if fully defined by a sequence of

decisions c(·) =
(

c(t0), c(t0 +1), . . .
)

. The bargaining problem aims at defining such a

common sequence of decisions.17

We assume that the stakeholders have IMP: An indicator Ih : X × C → R is

a function of the economic state and decisions that represents the measurement of

the hth stakeholder’s interest. Indicators may have different units (e.g., utility, the

concentration of GHG, or a biodiversity index), which makes direct transfers between

stakeholders impossible. Stakeholders aim to maximize their intertemporal payoff,

16If the image G(x, c) is not defined for some state-control couples (x, c), then cemetery points can

be added to both state and control sets, and the dynamics can be extended adequately – any cemetery

state or cemetery control is mapped to a cemetery state by the dynamics.
17A bargained sequence c(·) of decisions can be defined either directly as open-loop, that is, by

a function of time t → c(t), or indirectly as closed-loop, that is, by a state-dependent decision rule

(policy), namely a mapping C : X → C giving controls as a function of the state in eq. (5) by

c(t) = C
(

x(t)
)

.
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which is the minimal value over time of their indicator.18 Given an initial time t0 ∈ N,

an initial state x0 ∈ X, and a sequence c(·) of decisions, the intertemporal payoff of

the hth stakeholder is defined by

Jh
(

x0, c(·)
)

= inf
t≥t0

Ih
(

x(t), c(t)
)

, h = 1, . . . , H , (6)

where x(·) is defined by the dynamic system (5), with the sequence of decisions c(·).

Payoffs are not directly transferable between agents and/or over time, and are entirely

given by the bargained economic trajectory. If there is no agreement, then the economy

would remain in the business-as-usual trajectory, generated by a given sequence cd(·)

of decisions.

Bargaining domain and economic environments. To express this problem in

our general framework, we define the bargaining domain Ξ = {H} × {π} × 2A × A

where

• H is the number of stakeholders,

• the set of all potential economic trajectories given the dynamics (5) is defined

by A = X× C
N.

• the function π : X × C
N → R

H defines the payoff of all stakeholders for any

trajectory, with π
(

x, c(·)
)

=
(

J1
(

x, c(·)
)

, . . . , JH
(

x, c(·)
))

, where the Jh
(

x, c(·)
)

are defined by eq. (6).

Within this bargaining domain, stakeholders can be faced with different bargaining

situations, constrained by the current state of the economy x ∈ X and the correspond-

ing feasible development paths. As our problem is dynamic and time autonomous, we

can define the corresponding economic environments, which we index by the current

state x ∈ X, as ξx = 〈Ax; a
d
x〉, where the set of feasible alternatives Ax is the set of

development paths starting from state x, i.e., Ax = {x} × C
N ⊂ A. The disagreement

alternative corresponds to the trajectory starting from the current state x and gener-

ated by the business-as-usual sequence of decisions adx =
(

x, cd(·)
)

∈ Ax. The set of

feasible payoffs π(Ax) ⊂ R
H corresponds to the set of achievable intertemporal payoffs

for an economy starting from x.

According to Theorem 1, in such economic environments, whenever the mechanism

satisfies the INEA and IRA axioms, a bargaining mechanism could be applied to a

reduced subset of economic development paths producing all the efficient outcomes.

4.2 Monotonic economic environments with IMP

Now, we consider specific dynamic bargaining problems with IMP satisfying some

monotonicity properties, called MonDAI (MONotonicity of Dynamics And Indicators).

Under these monotonicity assumptions, the economic environment is monotonic in the

sense of Definition 6.

18This corresponds to a maximin problem (Solow, 1974; Burmeister and Hammond, 1977). In

any case, the best payoff that the stakeholder h can get is the maximin level J̄h(x0) =

supc(·)
(

inft=t0,t0+1,... Ih
(

x(t), c(t)
))

.
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4.2.1 Monotonicity assumptions

Some discrete-time dynamical models have the following qualitative properties (ceteris

paribus): (i) the higher the state vector at a period, the higher it will be at the following

period; (ii) the higher the decisions at a period, the lower the state vector will be at

the following period. This is the case for economic problems in which capital stocks

are productive19 and the decisions reduce the capital stocks. As we put a particular

focus on environmental issues, let us emphasize that these properties are satisfied for

problems of air quality dynamics and pollutant emissions20 and for problems of natural

resources extraction/harvesting.21 More generally, economic models in which decisions

(e.g., consumption) reduce investment satisfy these properties.

Indicators may also exhibit monotonicity properties. If all capital stocks are de-

fined as “goods,” then indicators will usually increase with the state: the larger the

state vector, the higher will be the indicators.22 Some indicators may monotonically

respond to the decisions too. This is the case for environmental indicators that are

monotonically non-increasing with the decisions, such as pollutant emissions or re-

source extraction.

Formally, we say that a mapping23 f : X×C → R
q — defined for state and decision

variables with values in R
q — is

• non-decreasing with respect to the state if x′ ≥ x ⇒ f(x′, c) ≥ f(x, c), for all

(x, x′, c) ∈ X× X× C,

• non-increasing with respect to the decision if c′ ≥ c ⇒ f(x, c′) ≤ f(x, c), for all

(x, c, c′) ∈ X× C× C.

A function that does not depend on the state or the decision is both non-decreasing

and non-increasing with respect to that variable.

At this point, we can formalize the monotonicity properties that we consider for

dynamic bargaining problems with IMP.

MonDAI property: Monotonicity of the dynamics and of |i| indicators. In

what follows, we will consider vectors c = (c1, . . . , cnC
) of bounded decisions, with

cj ∈ Cj = [c♭j , c
♯
j ] for every j = 1, . . . , nC. We also assume that the decision set C is a

bounded product set of the form C = C1 × · · · × CnC
= [c♭1, c

♯
1]× · · · × [c♭nC

, c♯nC
].

19In the sense that more “capital” induces more “production.” It requires that the various compo-

nents of the capital vector have no negative effect one on the others.
20The better the air quality at one period, the better it will be at the following period (ceteris

paribus). The higher the pollutant emission at one period, the worse the air quality will be at the

following period. This works for the climate change issue and greenhouse gases emissions, taking the

negative level of CO2 atmospheric concentration as a state.
21The larger the resource stock at one period, the larger it will be at the following period (ceteris

paribus). The larger the extraction or harvesting, the lower will be the resource stock at the following

period. Note that these assumptions are not satisfied for multispecies ecological models when there

is a prey-predator relationship; this is because a larger predator stock may reduce the prey stock in

the next period.
22This is true for economic indicators, which may depend for instance on capital stocks, knowledge

/ human capital, or infrastructures. This is also true for ecological indicators as long as the environ-

mental capital stocks are properly defined, by accounting for “bads” (pollution stock for instance) by

their negative level.
23Such a mapping can represent either the dynamics or the indicator functions, with q = nX in the

case of the dynamics, and q = 1 in the case of an indicator.
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Definition 8 (MonDAI)

Suppose that the set {1, . . . , H} of stakeholders is partitioned in an interest group i

and outsiders o, of cardinality |i| and |o|. In a dynamic bargaining problem with IMP,

an economic environment is MonDAI if:

• the dynamics G : X × C −→ X is non-decreasing in the state variable and non-

increasing in the decision;

• for h = 1, . . . , H, all the indicators Ih : X × C −→ R are continuous and non-

decreasing in the state variable;

• the indicators of the stakeholders of the interest group Ih∈i are non-increasing

in the decisions;

• the indicators of the outsiders Ih∈o depends on at most one decision component

among {c1, . . . , cnC
}.

The first three conditions correspond to the monotonicity features broadly described

above – capital stocks are “good” and productive, decisions correspond to foregone

investments, and the interest group favors “lower” decisions. Let us be more ex-

plicit about the last property required for the outsiders. For every decision compo-

nent j = 1, . . . , nC, we can define the subgroup of outsiders whose indicator depends

on decision cj as Λ(j) = {h ∈ o | Ih depends on cj}. The last assumption in the

MonDAI definition requires r 6= j ⇒ Λ(j) ∩ Λ(r) = ∅. A model of pollutant emission

sharing, in which the interest group is composed of environmental stakeholders (who

favor low emissions) and the outsiders are individual polluters who are solely concerned

about their individual emission rights, satisfies these properties.

The stakeholders of the interest group have an interest in keeping the decisions at

low levels for two reasons. First, their indicators are non-increasing when the decision

variables increase. Second, as the dynamics is non-increasing in the decision, lower

decisions favor higher capital stocks, and all the indicators are non-decreasing with the

state variable. The stakeholders of the interest group have an interest in reducing the

level of the decision variables at all periods. Conversely, the indicators of outsiders do

not depend on the decisions in a particular way (even if some of the indicators may

be increasing with the decisions, unlike the indicators of the interest group).

A dynamic bargaining problem with IMP satisfying the MonDAI properties also

satisfies the assumptions of Theorem 1 and the monotonicity assumptions MonEE of

Definition 6 (see Appendix A.4).

Proposition 1 (MonDAI implies MonEE)

In a bargaining problem with IMP, if the dynamics and the indicators satisfy the

MonDAI monotonicity properties (Definition 8), economic environments ξx are (i, o)–

monotonic (Definition 6).

Thus, the result of Theorem 2 applies to these bargaining problems. As such, it is

of interest to define a set of alternatives (development paths) generating the efficient

payoffs of the bargaining problem.

4.2.2 Satisficing decision rule and efficient outcomes

The following family of decision rules, which are parametrized by outsiders payoffs,

can be used to characterize the efficient outcomes of a MonDAI economic environment.
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Definition 9 (Satisficing decision rule)

Consider a MonDAI economic environment and a vector of satisficing payoff for out-

siders θo ∈ R
|o|. For each decision component index j = 1, . . . , nC and every state x for

which the following expression is well-defined,24 we define the feedback decision rule

C
θo

j (x) = inf{cj ∈ Cj | IΛ(j)(x, cj) ≥ θΛ(j)}, where Λ(j) ⊂ o is the group of outsiders

whose indicator depends on decision j, IΛ(j)(x, cj) is the vector of their indicator’s

value, and θΛ(j) is the corresponding vector of satisficing payoffs in θo. Then, we

define the satisficing decision rule C
θo

by

C
θo

=
(

C
θo

1 , . . . ,Cθo

nC

)

. (7)

Given this decision rule, one can define a corresponding set of alternatives Ao
x, parametrized

by outsiders satisficing payoffs, in the spirit of eq. (4) for the general case. Indeed, if

for x ∈ X and θo ∈ R
|o| we define cθ

o

x (·) ∈ C
N by cθ

o

x (t) = C
θo

(x⋆(t)) for t ≥ t0, where

x⋆(t) is given by

x⋆(t0) = x , x⋆(t+ 1) = G
(

x⋆(t),Cθo

(x⋆(t))
)

, t = t0, t0 + 1, . . . (8)

then the set

A
o
x =

{

(x, cθ
o

x (·)) ∈ Ax

∣

∣

∣
θo ∈ R

|o|
}

(9)

will correspond to the set defined in (4) for our dynamic problem. The corresponding

reduced environment is ξox = 〈Ao
x; a

d
x〉, with A

o
x ⊂ Ax.

According to Theorem 2, the set of payoffs π
(

A
o
x

)

associated with the reduced

economic environment Ao
x satisfies the following condition

E(π(Ax)) ⊂ π
(

A
o
x

)

⊂ Ew(π(Ax)) . (10)

The set π(Ao
x) ⊂ R

H of payoffs of the satisficing alternatives is parametrized by

the satisficing payoff θo ∈ R
|o| of outsiders, and is at most of dimension |o|. This

corresponds to a low dimensional Pareto frontier when there is an interest group. As

the set of satisficing alternatives A
o
x and the corresponding payoffs π(Ao

x) are easier

to characterize than the set of feasible payoffs π(Ax), bargaining in the reduced en-

vironment ξox is easier than bargaining in the environment ξx for problems satisfying

MonDAI monotonicity properties. We get the following Corollary of Theorem 1.

Corollary 1

If a bargaining mechanism µ satisfies the axioms of INEA and IRA, for dynamic

bargaining problems with IMP satisfying MonDAI monotonicity properties, one has

π(µ(ξx)) = π(µ(ξox)), where ξox = 〈Ao
x; a

d
x〉, with A

o
x ⊂ Ax defined by eq. (9) and

E(π(Ax)) ⊂ π
(

A
o
x

)

.

4.3 Time consistency

Finally, we address a concern that is specific to the dynamic nature of the studied

problem: time-consistency.

Contrary to static bargaining problems, breaking the agreement does not bring

the stakeholders back to the initial situation as the state of the economy and thus

24Indeed, Cθo

j (x) is not defined for states x such that {cj ∈ Cj | Ih(x, cj) ≥ θh, h ∈ Λ(j)} = ∅.
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the set of feasible payoffs evolve over time. Fershtman (1983) is concerned with the

stability of the bargaining solution for dynamic bargaining problems. In his model,

where stakeholders have intertemporal payoffs corresponding to discounted utility, one

stakeholder may reconsider the agreement at some time t > t0 if he has received most

of his planned payoff at that time. In our model, the stability concern also arises –

stakeholders may want to bargain again after some time. We examine how the payoff

of stakeholders evolve over time and show that, in MonDAI economic environments, a

bargained solution based on a satisficing decision rule is renegotiation-proof if the bar-

gaining mechanism satisfies (a strong version of) the axiom of Individual Rationality.

4.3.1 Axiomatic: Individual rationality and its consequences

We complete the axiomatic discussion of Section 2.3 by introducing the properties of

(weak and strong) Individual Rationality and related axioms, along with some results.

Definition 10 (Individually Rational outcomes)

Let O ⊂ R
H and θd ∈ R

H be the disagreement outcome vector. A vector of outcomes

θ = (θ1, . . . , θH) ∈ O is individually rational with respect to θd if θh ≥ θdh for all

h = 1, . . . , H.

We denote by R(O, θd) ⊂ O the set of all individually rational outcomes. It

contains all the outcomes with a payoff that is at least as large as the disagreement

outcome for all stakeholders.

We also introduce a stronger version of the individual rationality property.

Definition 11 (Strongly Individually Rational outcomes)

Let O ⊂ R
H be the set of feasible outcomes, and θd ∈ R

H be the disagreement outcome

vector. A vector of outcomes θ = (θ1, . . . , θH) ∈ O is strongly individually rational

with respect to θd if θh > θdh for all h = 1, . . . , H.

We denote by Rs(O, θd) ⊂ O the set of all strongly individually rational outcomes.

It contains all the outcomes with a payoff that is strictly larger than the disagreement

outcome for all stakeholders.

The following results are obtained directly by combining efficiency and individual

rationality properties (proofs are omitted).

Lemma 1 (Efficient status quo)

θd ∈ E(O) if and only if R(O, θd) = {θd}.

If the disagreement outcome is efficient, there is no other Individually Rational outcome

than the disagreement outcome.

Lemma 2 (Lack of bargaining incentives)

θd ∈ Ew(O) if and only if Rs(O, θd) = ∅.

If the disagreement outcome is weakly efficient, then there will be no Strongly Indi-

vidually Rational outcome.

Individual rationality properties can characterize bargaining mechanisms through

the following axioms.
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Axiom 4 (Individual Rationality)

A bargaining mechanism µ : Ξ → 2A satisfies the axiom of Individual Rationality if,

for any ξ = 〈Aξ; a
d
ξ〉 ∈ Ξ, π

(

µ(ξ)
)

⊂ R(π(Aξ), π(a
d
ξ)).

Axiom 5 (Strong Individual Rationality)

A bargaining mechanism µ : Ξ → 2A satisfies the axiom of Strong Individual Ratio-

nality if, for any ξ = 〈Aξ; a
d
ξ〉 ∈ Ξ, π

(

µ(ξ)
)

⊂ Rs(π(Aξ), π(a
d
ξ)).

Under Individual Rationality, no stakeholder should accept an alternative that

would result in a payoff lower than the disagreement outcome. A mechanism satisfying

Strong Individual Rationality implies that only solutions that strictly improve the

payoffs of all stakeholders with respect to the status quo are considered. Otherwise,

some stakeholders have no incentive to bargain over alternatives to the status quo. We

shall see that, regarding time-consistency, Individual Rationality may not be sufficient

to ensure renegotiation-proofness in all cases, while Strong Individual Rationality is

sufficient.

4.3.2 Dynamic efficiency of bargained solutions and renegotiation-proofness

In our dynamic problem, the economic environment ξx(t) evolves over time as the state

x(t) of the economy changes. The set of feasible alternatives Ax(t) = {x(t)} ×C
N ⊂ A

changes over time in a well-defined way. The disagreement alternative also changes

in a way we need to specify. As we are interested in studying the time-consistency of

a bargained dynamic path, we consider the case in which the outcome of the current

bargaining situation would become the status quo for future bargaining situations.

This feature is used by Kalai (1977) in the axiomatic bargaining framework, and is

common in the literature on legislative bargaining in which “today’s status quo policy

is the policy enacted in the last period” (see Bowen and Zahran, 2012).25 This leads

to defining the following dynamic disagreement outcome.

Assumption 1 (Dynamic disagreement outcome)

For an economic environment ξx = 〈Ax; a
d
x〉, a bargained sequence of decisions c⋆(·)

with (x, c⋆(·)) ∈ µ(ξx) ⊂ Ax would define the new business-as-usual trajectory and the

corresponding disagreement point.

If bargaining takes place again, it may result in time inconsistent trajectories. The

stability of a bargained development path will depend on how the payoff of the stake-

holders evolves over time with respect to the payoff of alternative options. If the

dynamic disagreement outcome is not on the Pareto frontier of the dynamic set of

feasible outcomes π(Ax(t)), it will be possible to find a new solution that improves the

payoff of all stakeholders with respect to the status quo. In this case, the initially bar-

gained path is not followed, and there is a time-inconsistency. Conversely, if the initial

solution and the associated decision rule result in Pareto efficient dynamic outcomes,

then this solution would be renegotiation-proof under the axiom of Strong Individual

Rationality, in accordance with Lemma 2.

25Alternative features can be considered, but it would require specifying how the disagreement

alternative would evolve with the state of the economy.
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The dynamic disagreement outcome corresponds to the actual payoffs along the

initial bargained trajectory, which is non-decreasing over time,26 but may become

inefficient.27

We prove that, for MonDAI economic environments, the outcome of the trajectory

determined by a satisficing decision rule (Definition 9) is always on the Pareto frontier

of the set of feasible outcomes.

Proposition 2 (Efficient dynamic disagreement outcome)

Consider a bargaining problem in a MonDAI economic environment ξx, with outsiders

o, and a bargained sequence of satisficing decisions c⋆(·) = C
θo

parametrized by some

θo ∈ R
|o|. For t ≥ t0, the dynamic disagreement outcome

θd(t) =
(

J1
(

x(t), c⋆(·)
)

, . . . , JH
(

x(t), c⋆(·)
))

, (11)

where, for all s ≥ t0, c
⋆(s) = C

θo

(x(s)) and x(s+ 1) = G (x(s), c⋆(s)), with x(t0) = x,

is such that θd(t) ∈ Ew(π(Ax(t))) , ∀t ≥ t0.

We can establish renegotiation-proofness under Assumption 1 and the axiom of Strong

Individual Rationality.

Proposition 3 (Renegotiation-proofness)

For bargaining problems in MonDAI economic environments, the satisficing decision

rule C of Definition 9 is renegotiation-proof under Assumption 1 on the dynamic dis-

agreement outcome and the axiom of Strong Individual Rationality.

This proposition is a direct application of Lemma 2. According to Proposition 2, the

dynamic disagreement outcome remains on the (weak) Pareto frontier of the dynamic

set of feasible outcomes at all times. It is not possible to increase the payoff of all

stakeholders, and there is a lack of bargaining incentives if the bargaining mechanism

satisfies the axiom of Strong Individual Rationality. The decision rule is never changed

and results in a time consistent economic trajectory. Whenever the set of feasible

outcomes is such that Ew
(

π(Ax(t))
)

= E
(

π(Ax(t))
)

at all times, renegotiation-proofness

is achieved under the weaker axiom of Individual Rationality (Lemma 1).

5 Final remarks

We developed a framework to discuss bargaining problems when the objects of the

social choice are alternatives rather than outcomes. We showed that, when a bar-

gaining mechanism satisfies the axioms of Independence of Non-Efficient Alternatives

and Independence of Redundant Alternatives, it can be applied to any reduced set of

alternatives yielding the Pareto-efficient outcomes of the initial bargaining problem,

and produces the same outcome. Additionally, we showed that, for monotonic prob-

lems, such a reduced set of alternatives is computable. When there is an “interest

26Unlike in the discounted-utility framework, in which the payoff of some stakeholders may decline

over time (Fershtman, 1983), in the maximin case, the payoff of all stakeholders is always non-

decreasing over time due to the properties of the inf function.
27As the disagreement outcome increases over time along a given trajectory, delaying the bargaining

process may modify the solution. Considering such temporal strategies is out of the scope of this study,

as it would require assuming different time preferences for the stakeholders than the intertemporal

maximin.
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group,” that is, a subset of stakeholders who rank the alternatives in the same order,

the payoffs of the interest group members is co-monotonic and the Pareto frontier of

the set of feasible payoffs is of a lower dimension than the number of stakeholders.

From a practical point of view, this simplifies the computation of the Pareto-efficient

solutions.

Subsequently, we discussed dynamic bargaining problems, in which i) stakeholders

have to agree on a time path of decisions that influence the dynamic state of the econ-

omy, and ii) their payoff is defined as the minimal level over time of some indicators

that depend on the evolution of the economic state and decisions (intertemporal max-

imin payoff). A set of efficient alternatives (i.e., development paths) can be determined

under some monotonicity properties, and we exhibit a common decision rule to achieve

any Pareto-efficient outcome. Under the axiom of Strong Individual Rationality, the

studied decision rule is renegotiation-proof and generates a time-consistent dynamic

economic path.

Our results help characterizing the Pareto frontier of bargaining problems in eco-

nomic environments. This frontier provides information on the necessary trade-offs

among stakeholders or among sustainability issues in a dynamic framework. How so-

ciety makes its final choice among Pareto efficient solutions is beyond the scope of

this study. Imposing other axioms to restrict the set of choices would require strong

assumptions on the comparability of the payoffs of the various stakeholders. How

to interpret, for example, Symmetry between sustained consumption and a minimal

biodiversity level to be preserved? Sustainability raises equity concerns, both among

generations and among different issues. Roemer (1986, 1988) argued that the bargain-

ing theory is not sufficient to address distributive justice mainly because it is, in its

original formulation, “context free” and neglects preferences and needs. We tried to

avoid this drawback.

As emphasized in the Introduction, the axiomatic bargaining theory and welfare

economics are two complementary ways to formalize social choice problems. Any

efficient solution of our bargaining problem can be the optimum of a “social wel-

fare ordering” represented by a strictly increasing real-valued function that obeys the

Pareto principle (Kaneko, 1980; Denicolò and Mariotti, 2000; Mariotti, 2000). The

property of time-consistency is specific to the solution of the bargaining problem. It

may not emerge from a social choice problem based on a stationary welfare function

W (θ1, . . . , θH). In fact, for a decision-maker with stationary preferences, “Individ-

ual Rationality” is not a relevant property. The decision-maker may find it desirable

to reduce the payoff of some stakeholders to increase the payoff of some others if

this decision increases social welfare. In the sustainability context, it would mean

that some environmental thresholds may be modified when the set of feasible payoffs

evolves (Martinet, 2011). In a sense, it may not be a concern as new trade-offs may

be made as the economic context and associated opportunities change. For instance,

the ceiling constraint on the atmospheric concentration of GHG may change over the

next decades. Time-inconsistency is increasingly considered as unavoidable for collec-

tive dynamic choices (Jackson and Yariv, 2015) or when aiming at intergenerational

equity (Asheim and Mitra, 2018).

We examined the case of dynamic bargaining problems with intertemporal maximin

payoffs. Another interesting case would combine stakeholders having different forms

of intertemporal payoffs (e.g., when some stakeholders have discounted utility payoffs
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and others have maximin payoffs). Another possibility for extensions is related to the

dynamic nature of the solution. We focused on bargaining solutions and their time-

consistency, assuming that a solution is selected at an initial time. However, there

may be a strategic interest for some stakeholders to delay the bargaining process and

remain on the status quo trajectory for some time if this strategy places them in a

better position to bargain in the future. This could be the case if their disagreement

payoff or their maximal potential payoff increase in a favorable way relative to that of

other stakeholders. Rubinstein (1982) initiated a stream of literature examining how

the cost of time influences the bargaining solution. More recently, Lu (2016) studied the

timing of bargaining resolution when considering infinite streams of surplus sharing. In

our bargaining problem, which considers the economic environment and its evolution,

the “cost” of delay can be endogenous and measured by the loss (or gain if the “cost”

is negative) of maximal potential outcome for example. Future research can examine

such strategic delay of the bargained solution.
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A Appendix

A.1 Technical results on efficient alternatives

The following results will be useful in the proofs of the Theorems and Propositions of

the paper.

A.1.1 Characterization of efficient alternatives

Proposition 4

The set A⋆
ξ of efficient alternatives of environment ξ has the following properties.

1. The set A⋆
ξ is the largest subset A of the set Aξ such that π(A) ⊂ E

(

π(Aξ)
)

, that

is, for all subset A of Aξ,

A ⊂ Aξ and π(A) ⊂ E
(

π(Aξ)
)

⇐⇒ A ⊂ A
⋆
ξ . (12)

2. The set A⋆
ξ is the smallest subset A of the set Aξ such that π(Aξ\A)∩E

(

π(Aξ)
)

=

∅, that is, for all subset A of Aξ,

A ⊂ Aξ and π(Aξ\A) ∩ E
(

π(Aξ)
)

= ∅ ⇐⇒ A
⋆
ξ ⊂ A . (13)
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3. The set A⋆
ξ is characterized as follows

A ⊂ Aξ and π(A) ⊂ E
(

π(Aξ)
)

and π(Aξ\A) ∩ E
(

π(Aξ)
)

= ∅

⇐⇒ A = A
⋆
ξ .

(14)

4. We have that, for all subset A of Aξ,

A ⊂ Aξ and E
(

π(Aξ)
)

⊂ π(A) ⇒ E
(

π(Aξ)
)

⊂ π(A ∩ A
⋆
ξ) . (15)

5. We have that

π(A⋆
ξ) = E

(

π(Aξ)
)

and π(Aξ\A
⋆
ξ) = π(Aξ)\E

(

π(Aξ)
)

. (16)

Proof

1. The set of subsets A ⊂ A such that π(A) ⊂ E
(

π(Aξ)
)

is closed under union ∪.

By Definition 5, A⋆
ξ contains any such subset A, and hence is the union of all

such subsets A, hence is the largest subset A of the set Aξ of alternatives such

that π(A) ⊂ E
(

π(Aξ)
)

.

2. The set of subsets A ⊂ Aξ such that π(Aξ\A) ∩ E
(

π(Aξ)
)

= ∅ is closed under

intersection ∩. From the definition of A⋆
ξ (Definition 5), one can check that A⋆

ξ

is contained in any such subset A. Therefore, A⋆ is the intersection of all such

subsets A, hence it is the smallest subset A of the set Aξ of alternatives such

that π(Aξ\A) ∩ E
(

π(Aξ)
)

= ∅.

3. This is a direct consequence of the two previous items.

4. Let A ⊂ Aξ be such that E
(

π(Aξ)
)

⊂ π(A). Therefore, any element of E
(

π(Aξ)
)

can be written as π(a), where a ∈ A. Now, by the definition of A⋆
ξ (Definition 5),

we deduce that a ∈ A
⋆
ξ . We conclude that a ∈ A ∩ A

⋆
ξ and that (15) holds true.

5. Equation (16) is made of two equalities.

(a) We prove that E
(

π(Aξ)
)

= π(A⋆
ξ) by two inclusions. On the one hand, by

the definition of A⋆
ξ (Definition 5), we have that π(A⋆

ξ) ⊂ E
(

π(Aξ)
)

. On

the other hand, the reverse inclusion E
(

π(Aξ)
)

⊂ π(A⋆
ξ) is a consequence

of (15) with A = Aξ.

(b) We prove that π(Aξ\A
⋆
ξ) = π(Aξ)\E

(

π(Aξ)
)

by two inclusions. On the one

hand, we use (13) withA = Aξ and obtain that π(Aξ\A
⋆
ξ) ⊂ π(Aξ)\E

(

π(Aξ)
)

.

On the other hand, consider a ∈ Aξ such that π(a) 6∈ E
(

π(Aξ)
)

. By the

definition of A
⋆
ξ (Definition 5), we deduce that a 6∈ A

⋆
ξ . Therefore, a ∈

Aξ\A
⋆
ξ and π(a) ∈ π(Aξ)\E

(

π(Aξ)
)

. We conclude that π(Aξ)\E
(

π(Aξ)
)

⊂

π(Aξ\A
⋆
ξ).

Hence, we have obtained (16).
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A.1.2 Existence of efficient alternatives

Proposition 5

Let A be a nonempty metric space. Suppose that π = (π1, . . . , πH) : A → R
H

is an upper semicontinuous function (usc) in the sense that πh : A → R is upper

semicontinuous (usc) for all h = 1, . . . , H, that is, for all a ∈ A and for all ak → a, one

has lim supk→∞ πh(ak) ≤ πh(a). Then, for all nonempty compact set Aξ ⊂ A, and

θ ∈ π(Aξ), there exists a∗ ∈ Aξ such that π(a∗) = θ∗ ∈ E
(

π(Aξ)
)

∩ (θ + R
H
+ ), is an

efficient point above θ. As a consequence, the set A
⋆
ξ =

{

a ∈ Aξ | π(a) ∈ E
(

π(Aξ)
)}

(Definition in 5) is not empty.

Proof The proof is in two steps. In the following, for two vectors θ = (θ1, . . . , θH)

and θ′ = (θ′1, . . . , θ
′
H) in R

H , we will use the distance δ(θ, θ′) =
∑H

h=1 |θh − θ′h|.

1. First, we prove that, for every θ ∈ π(Aξ), there exists a∗ ∈ Aξ such that θ∗ =

π(a∗) ∈ π(Aξ) ∩ (θ + R
H
+ ) and

δ(θ, θ∗) = αθ = sup
θ′∈π(Aξ)∩(θ+RH

+
)

δ(θ, θ′) . (17)

For this purpose, consider a sequence (θk)k∈N∗ in π(Aξ) ∩ (θ + R
H
+ ) such that

δ(θ, θk) → αθ as k → ∞ . (18)

Since θk ∈ π(Aξ) ∩ (θ + R
H
+ ), then, for each k ∈ N

∗, there exist ak ∈ Aξ and

vk = (vk1 , . . . , v
k
H) ∈ R

H
+ such that

θk = θ + vk = π(ak) =
(

π1(a
k), . . . , πH(ak)

)

. (19)

As the set Aξ is metric compact, there exist a∗ ∈ Aξ and a subsequence (akj )j∈N∗

such that

akj → a∗ as j → ∞ . (20)

We put

θ∗ = (θ∗1 , . . . , θ
∗
H) where θ∗h = πh(a

∗) , ∀h = 1, . . . , H , (21)

and we now prove that θ∗ ∈ π(Aξ) ∩ (θ + R
H
+ ) and solves (17).

(a) By (21), we have that θ∗ ∈ π(Aξ).

(b) We also have that θ∗ ∈ (θ + R
H
+ ). Indeed, from (20) and the upper semi-

continuity of the functions πh : A → R, for h = 1, . . . , H, we obtain that

lim sup
j→∞

πh(a
kj ) ≤ πh(a

∗) = θ∗h , ∀h = 1, . . . , H . (22)

Therefore, by (19) where vk = (vk1 , . . . , v
k
H) ∈ R

H
+ , we deduce that

0 ≤ lim sup
j→∞

v
kj

h = lim sup
j→∞

πh(a
kj )− θh ≤ θ∗h − θh , (23)

for all h = 1, . . . , H, that is, θ∗ ∈ (θ + R
H
+ ).
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(c) Finally, we show that θ∗ solves (17). We have that

αθ = lim
j→∞

δ(θ, θkj ) by (18)

= lim sup
j→∞

δ(θ, θkj )

= lim sup
j→∞

H
∑

h=1

|θh − θ
kj

h |

= lim sup
j→∞

H
∑

h=1

|v
kj

h | by (19)

= lim sup
j→∞

H
∑

h=1

v
kj

h because vk = (vk1 , . . . , v
k
H) ∈ R

H
+

≤
H
∑

h=1

lim sup
j→∞

v
kj

h

≤
H
∑

h=1

(θ∗h − θh) by (23)

= δ(θ, θ∗) .

Thus, we obtain that δ(θ, θ∗) ≥ αθ = supθ′∈π(Aξ)∩(θ+RH
+
) δ(θ, θ

′). Now, as

θ∗ = π(a∗) ∈ π(Aξ) ∩ (θ + R
H
+ ) by (22), we conclude that (17) holds true.

2. Second, we prove that, for any θ ∈ π(Aξ) and θ∗ ∈ π(Aξ) ∩ (θ + R
H
+ ) such that

αθ = δ(θ, θ∗) (αθ defined in (17)), then θ∗ ∈ E
(

π(Aξ)
)

.

The proof is obtained by contradiction. Suppose θ∗ /∈ E
(

π(Aξ)
)

. Then, there

exists θ̃ ∈ π(Aξ) ∩ (θ∗ + R
H
+ \ {0}). Expressing that θ∗ ∈ (θ + R

H
+ ) and that

θ̃ ∈ π(Aξ) ∩ (θ∗ + R
H
+ \ {0}), we get that θ∗ = θ + v and θ̃ = θ∗ + w for some

v = (v1, . . . , vH) ∈ R
H
+ and w = (w1, . . . , wH) ∈ R

H
+ \ {0} (i.e., wh > 0 for some

h ∈ {1, . . . , H}). We easily deduce that θ̃ ∈ π(Aξ) ∩ (θ + R
H
+ ). Now, we have

that αθ = δ(θ, θ∗) =
∑H

h=1 vh <
∑H

h=1(vh +wh) = δ(θ, θ̃), which contradicts the

definition of αθ (eq. 17).

We have shown that, for every θ ∈ π(Aξ), there exists a∗ ∈ Aξ such that π(a∗) = θ∗ ∈

E
(

π(Aξ)
)

∩ (θ + R
H
+ ). As a consequence, the set A⋆

ξ =
{

a ∈ Aξ | π(a) ∈ E
(

π(Aξ)
)}

is

not empty.

A.1.3 Efficient alternatives of reduced economic environments

Proposition 6

Let (ξ′, ξ) ∈ Ξ2 be a couple of economic environments such that

Aξ′ ⊂ Aξ (25)

E
(

π(Aξ)
)

⊂ π(Aξ′) . (26)

Suppose that the set A of alternatives is a metric space, Aξ ⊂ A is compact, and the

payoff mapping π : A → R
H is upper semicontinuous. Then, we have that A

⋆
ξ′ ⊂ A

⋆
ξ

and π(A⋆
ξ′) = π(A⋆

ξ).
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Proof Consider a couple (ξ′, ξ) ∈ Ξ2 of economic environments such that Aξ′ ⊂ Aξ

and E
(

π(Aξ)
)

⊂ π(Aξ′).

1. First, we prove that

π(Aξ′ ∩ A
⋆
ξ) = π(A⋆

ξ) . (27)

From (16), we have that E(π(Aξ)) = π(A⋆
ξ). As, by assumption (26), E(π(Aξ)) ⊂

π(Aξ′), we deduce from (15) that E(π(Aξ)) ⊂ π(Aξ′ ∩ A
⋆
ξ). Linking these two

results, we obtain π(A⋆
ξ) = E(π(Aξ)) ⊂ π(Aξ′ ∩ A

⋆
ξ) ⊂ π(A⋆

ξ), and we conclude

that all terms are equal, so that π(Aξ′ ∩ A
⋆
ξ) = π(A⋆

ξ) .

2. Second, we prove that

π(A⋆
ξ) ⊂ π(A⋆

ξ′) . (28)

For this purpose, we will use the following property, which follows from the

definition of Pareto sets:

Ō ⊂ O ⊂ R
H ⇒ E(O) ∩ Ō ⊂ E(Ō) . (29)

We have

π(A⋆
ξ) = π(Aξ′ ∩ A

⋆
ξ) by (27)

⊂ π(Aξ′) ∩ π(A⋆
ξ)

= π(Aξ′) ∩ E(π(Aξ)) by (16)

⊂ E
(

π(Aξ′)
)

by (29)

since Aξ′ ⊂ Aξ, by assumption (25), hence π(Aξ′) ⊂ π(Aξ). Therefore, we

conclude that π(A⋆
ξ) ⊂ E

(

π(Aξ′)
)

= π(A⋆
ξ′) by (16).

3. Third, we prove that A⋆
ξ′ = Aξ′ ∩ A

⋆
ξ . For this purpose, we will use the equiva-

lence (14) that requires three conditions. We establish that these three conditions

hold true.

(a) We establish that Aξ′ ∩ A
⋆
ξ ⊂ Aξ′ . This is obvious.

(b) We establish that π(Aξ′ ∩ A
⋆
ξ) ⊂ E

(

π(Aξ′)
)

. Indeed,

π(Aξ′ ∩ A
⋆
ξ) = π(A⋆

ξ) by (27)

⊂ π(A⋆
ξ′) by (28)

= E
(

π(Aξ′)
)

by (16).

(c) We establish that π(Aξ′\(Aξ′ ∩ A
⋆
ξ)) ∩ E

(

π(Aξ′)
)

= ∅. This is where the

assumptions that the set Aξ of alternatives is compact and that the payoff

mapping π : A → R
H is upper semicontinuous play a role, as they make it

possible to use Proposition 5. Consider an alternative a ∈ Aξ′\(Aξ′ ∩ A
⋆
ξ).

By Proposition 5, there exists an alternative ã ∈ Aξ such that π(ã) > π(a),

with π(ã) ∈ E(π(Aξ)). As E(π(Aξ)) ⊆ π(Aξ′), we deduce that there exists

an alternative ā ∈ Aξ′ such that π(ā) = π(ã) > π(a). As a consequence,

a 6∈ E
(

π(Aξ′)
)

.

We have thus proven that π(Aξ′\(Aξ′ ∩ A
⋆
ξ)) ∩ E

(

π(Aξ′)
)

= ∅.
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A.2 Proof of Theorem 1

The proof is in three steps. Consider a couple (ξ′, ξ) ∈ Ξ2 of economic environments

such that Aξ′ ⊂ Aξ and E
(

π(Aξ)
)

⊂ π(Aξ′). We use the environments ξ⋆ and ξ′
⋆
,

and their sets Aξ⋆ = A
⋆
ξ and Aξ′⋆ = A

⋆
ξ′ of efficient alternatives, as introduced in

Definition 5.

1. The assumptions of Proposition 6 are satisfied, as Aξ′ ⊂ Aξ and E
(

π(Aξ)
)

⊂

π(Aξ′) correspond to equations (25) and (26). From Proposition 6, we obtain

that A⋆
ξ′ = Aξ′⋆ ⊂ Aξ⋆ = A

⋆
ξ and π(Aξ′⋆) = π(Aξ⋆). As the mechanism µ is IRA,

we deduce from Definition 2 that

π
(

µ(ξ⋆)
)

= π
(

µ(ξ′⋆)
)

. (32)

2. The mechanism µ is INEA. As Aξ⋆ = A
⋆
ξ ⊂ Aξ, we deduce from Definition 3 that

µ(ξ⋆) = µ(ξ) . (33)

Repeating the argument with the environment ξ′
⋆
, we obtain that

µ(ξ′⋆) = µ(ξ′) . (34)

3. We conclude that

π
(

µ(ξ)
)

= π
(

µ(ξ⋆)
)

as deduced from (33)

= π
(

µ(ξ′⋆)
)

by (32)

= π
(

µ(ξ′)
)

as deduced from (34).

A.3 Proof of Theorem 2

We need a preliminary Lemma.

Lemma 3

Consider a given (i, o)-monotone economic environment ξ = 〈Aξ; a
d
ξ〉, as in Definition 6.

Then, for all (θo, θ̄o) ∈ Oo
ξ ×Oo

ξ and all ā ∈ Aξ, we have

θo ≤ πo(ā) ⇒ πi(ā) ≤ πi
(

aξ(θ
o)
)

, (36a)

θo ≤ πo
(

aξ(θ̄
o)
)

⇒ πi
(

aξ(θ̄
o)
)

≤ πi
(

aξ(θ
o)
)

, (36b)

θo ≤ θ̄o ⇒ πi
(

aξ(θ̄
o)
)

≤ πi
(

aξ(θ
o)
)

. (36c)

Proof of Lemma 3 Let (θo, θ̄o) ∈ Oo
ξ ×Oo

ξ and ā ∈ Aξ.

1. Suppose that θo ≤ πo(ā). By eq. (3) and by definition of a minimum of the set

{a ∈ Aξ | πo(a) ≥ θo} (eq. 1), we deduce that ā ≥ aξ(θ
o). Now, the mapping

πi : Aξ → R
|i| is non-increasing by item IIa in the Definition 6 of MonEE. We

deduce that πi(ā) ≤ πi
(

aξ(θ
o)
)

. Hence, (36a) is proven.

2. Use (36a) with ā = aξ(θ̄
o) to derive (36b)

3. Let θo ≤ θ̄o. As θ̄o ∈ Oo
ξ , by definition of the set Oo

ξ of satisficing payoffs for

outsiders (eq. 2), and by eq. (3), we have that θ̄o ≤ πo
(

aξ(θ̄
o)
)

. Therefore, we

get that θo ≤ πo
(

aξ(θ̄
o)
)

and we use (36b) to obtain (36c).
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Proof of Theorem 2 First, we prove that

(

θi, θo
)

∈ π(Aξ) ⇒ θo ∈ Oo
ξ , θi ≤ πi

(

aξ(θ
o)
)

, θo ≤ πo
(

aξ(θ
o)
)

. (37)

By definition of π(Aξ), there exists an alternative ā ∈ Aξ, such that
(

θi, θo
)

= θ =

π(ā) =
(

πi(ā), πo(ā)
)

. On the one hand, as θo = πo(ā), we deduce from item IIb in

the Definition 6 of MonEE (eq. 2) that θo ∈ Oo
ξ , and that θi = πi(ā) ≤ πi

(

aξ(θ
o)
)

by (36a). On the other hand, by definition of the set Oo
ξ of satisficing payoffs for

outsiders (eq. 2), and by eq. (3), we obtain that θo ∈ Oo
ξ ⇒ θo ≤ πo

(

aξ(θ
o)
)

.

Second, we prove that E
(

π(Aξ)
)

⊂ π(Ao
ξ). Let θ ∈ E

(

π(Aξ)
)

. By Definition 4

of a Pareto set, we have that θ ∈ E
(

π(Aξ)
)

⊂ π(Aξ). By (37), we obtain that θi ≤

πi
(

aξ(θ
o)
)

and that θo ≤ πo
(

aξ(θ
o)
)

. Putting θ̄ =
(

πi
(

aξ(θ
o)
)

, πo
(

aξ(θ
o)
))

, we deduce

that θ ≤ θ̄. As θ̄ ∈ π(Aξ) and θ ∈ E
(

π(Aξ)
)

, we obtain that θ̄ = θ, by definition

of a (strong) Pareto set. By definition of A
o
ξ (eq. 4), we conclude that θ = θ̄ =

(

πi
(

aξ(θ
o)
)

, πo
(

aξ(θ
o)
))

∈ π(Ao
ξ).

Third, we prove that π(Ao
ξ) ⊂ Ew

(

π(Aξ)
)

. The proof is obtained by contradiction.

Let θ ∈ π(Ao
ξ) and suppose that there exists θ̄ ∈ π(Aξ) such that θ < θ̄ (i.e, a strict

inequality component by component). On the one hand, by definition of Ao
ξ (eq. 4),

there exists θ̂o ∈ Oo
ξ such that θ = π

(

aξ(θ̂
o)
)

. On the other hand, we have that

θ̄ ≤ π
(

aξ(θ̄
o)
)

, by (37). We deduce that

π
(

aξ(θ̂
o)
)

= θ < θ̄ ≤ π
(

aξ(θ̄
o)
)

. (38)

As already seen, we have that θ̂o ≤ πo
(

aξ(θ̂
o)
)

. Together with inequality (38), this

yields θ̂o < πo
(

aξ(θ̄
o)
)

. By (36b), we deduce that πi
(

aξ(θ̄
o)
)

≤ πi
(

aξ(θ̂
o)
)

. Now,

using inequality (38), we get that θ̄i ≤ πi
(

aξ(θ̄
o)
)

≤ πi
(

aξ(θ̂
o)
)

= θi. However, this

contradicts θ < θ̄. Therefore, no such θ̄ exists and we conclude that θ ∈ Ew
(

π(Aξ)
)

.

A.4 Proofs for bargaining problems with intertemporal max-

imin payoffs (IMP)

We prove here that the bargaining problem with IMP defined in Section 4 satisfies

the assumptions of Theorem 1. In addition, we prove that if the bargaining problem

is MonDAI (Definition 8), then the monotonicity hypotheses MonEE in Definition 6

hold.

Let C ⊂ R
nC be a nonempty compact set. Consider a finite number H ∈ N

∗

of stakeholders (H ≥ 2), identified by h = 1, . . . , H, bargaining over a sequence of

decisions c(·) =
(

c(t0), c(t0 + 1), . . .
)

∈ C
N that will define the economic trajectory,

given the current economic state x ∈ X.

For a fixed initial state x ∈ X, we define the set of alternatives Ax = {x}×C
N. Thus,

with dynamics (5) and instantaneous indicators Ih : X × C → R, h = 1, . . . , H, we

obtain the intertemporal payoff Jh
(

x, c(·)
)

in (6) for each stakeholder, hence the payoff

mapping π : Ax → R
H , (x, c(·)) 7→ (J1

(

x, c(·)
)

, . . . , JH
(

x, c(·)
)

) where Jh
(

x, c(·)
)

=

inft≥t0 Ih
(

x(t), c(t)
)

, h = 1, . . . , H.

Recall that we are considering continuous dynamics G : X × C → X in (5) and

continuous instantaneous indicators Ih : X× C → R, h = 1, . . . , H.
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A.4.1 Compacity of the set of alternatives and upper semicontinuity of

payoff mapping

Since C ⊂ R
nC is a nonempty compact metric space, considering R

nC is endowed with

a metric defined by any norm, the set of alternatives Ax = {x}×C
N, for a given initial

state of the economy x, will also be a compact metric space.28

On the other hand, for a given h ∈ {1, . . . , H} and t ≥ t0, the mapping (x, c(·)) ∈

Ax 7→ Ih
(

x(t), c(t)) ∈ R is continuous considering the product topology in Ax =

{x}×C
N, due to the continuity of the following functions: c(·) 7→ x(t) (from the conti-

nuity of dynamics G); c(·) 7→ c(t) (from the definition of the product topology in Ax);

and (x(t), c(t)) 7→ Ih
(

x(t), c(t)) (from the continuity of Ih). Therefore, the function

Jh
(

x, c(·)
)

= inft≥t0 Ih
(

x(t), c(t)
)

is upper semicontinuous because it is an infimum

of a collection of continuous functions. Thus, it can be concluded that the bargain-

ing problem with IMP satisfies assumptions of Theorem 1, for the payoff function

π(x, c(·)) = (J1
(

x, c(·)
)

, . . . , JH
(

x, c(·)
)

).

A.4.2 Proof of Proposition 1 (MonDAI implies MonEE properties)

Consider a MonDAI economic environment (Definition 8), with the interest group i

and outsiders o being a partition of the set {1, . . . , H} (Definition 8). Under the

MonDAI assumption of Definition 8, we obtain that the mapping πi is non-increasing

and that, for any θo ∈ R
|o|, the set {a ∈ Ax | πo(a) ≥ θo} = {x} × {c(·) ∈ C

N |

Ih
(

x(t), c(t)
)

≥ θh , ∀h ∈ o , ∀t = t0, t0 + 1, . . .} is empty or it has a minimal

element, which is a⋆θo = (x, cθ
o

x (·)) composed of the initial state of the economy x and

the control trajectory cθ
o

x (·), which is generated by the satisficing decision rule C
θo

(Definition 9).

Since the set Ax = {x} × C
N is equipped with the component-wise order ≤, we

conclude that the economic environment satisfies hypotheses of MonEE in Definition 6.

A.4.3 Proof of Proposition 2

This proof is a direct application of Theorem 2. Indeed, if we consider a bargaining

problem in a MonDAI economic environment ξx, with outsiders o, and a bargained

sequence of satisficing decisions c⋆(·) = C
θo

(see Definition 9) parametrized by some

θo ∈ R
|o|, for t ≥ t0, then the corresponding dynamic disagreement outcome (eq. 11)

is θd(t) =
(

J1
(

x(t), c⋆(·)
)

, . . . , JH
(

x(t), c⋆(·)
))

, where, for all s ≥ t0, c
⋆(s) = C

θo

(x(s))

and x(s+ 1) = G (x(s), c⋆(s)) with x(t0) = x.

Since (x(t), c⋆(·)) ∈ A
o
x(t) (eq. 9), then θd(t) ∈ π

(

A
o
x(t)

)

, and therefore, from Theo-

rem 2 (and eq. 10), one obtains θd(t) ∈ Ew(π(Ax(t))) , ∀t ≥ t0.

28Recall that the product of any collection of compact topological spaces is compact with respect to

the product topology (Tychonoff’s theorem). If the collection is countable and composed by compact

metric spaces, one can define a distance in the product space inducing the product topology.
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