
Mrázová, Monika; Neary, J. Peter; Parenti, Mathieu

Working Paper

Sales and Markup Dispersion: Theory and Empirics

CESifo Working Paper, No. 7433

Provided in Cooperation with:
Ifo Institute – Leibniz Institute for Economic Research at the University of Munich

Suggested Citation: Mrázová, Monika; Neary, J. Peter; Parenti, Mathieu (2018) : Sales and
Markup Dispersion: Theory and Empirics, CESifo Working Paper, No. 7433, Center for
Economic Studies and ifo Institute (CESifo), Munich

This Version is available at:
https://hdl.handle.net/10419/198793

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your
personal and scholarly purposes.

You are not to copy documents for public or commercial
purposes, to exhibit the documents publicly, to make them
publicly available on the internet, or to distribute or otherwise
use the documents in public.

If the documents have been made available under an Open
Content Licence (especially Creative Commons Licences), you
may exercise further usage rights as specified in the indicated
licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/198793
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


 

7433 
2018 
December 2018 

 

Sales and Markup Dispersion: 
Theory and Empirics 
Monika Mrázová, J. Peter Neary, Mathieu Parenti 



 
Impressum: 
 

CESifo Working Papers 
ISSN 2364‐1428 (electronic version) 
Publisher and distributor: Munich Society for the Promotion of Economic Research ‐ CESifo 
GmbH 
The international platform of Ludwigs‐Maximilians University’s Center for Economic Studies 
and the ifo Institute 
Poschingerstr. 5, 81679 Munich, Germany 
Telephone +49 (0)89 2180‐2740, Telefax +49 (0)89 2180‐17845, email office@cesifo.de 
Editors: Clemens Fuest, Oliver Falck, Jasmin Gröschl 
www.cesifo‐group.org/wp 
  
An electronic version of the paper may be downloaded  
∙ from the SSRN website:           www.SSRN.com 
∙ from the RePEc website:          www.RePEc.org 
∙ from the CESifo website:         www.CESifo‐group.org/wp 
 
 
 

 
 

  
  

 



CESifo Working Paper No. 7433 
Category 8: Trade Policy 

 
 
 
Sales and Markup Dispersion: Theory and Empirics 

 
 

Abstract 
 
We derive exact conditions relating the distributions of firm productivity, sales, output, and 
markups to the form of demand in monopolistic competition. Applications include a new 
“CREMR” demand function (Constant Revenue Elasticity of Marginal Revenue): it is necessary 
and sufficient for the distributions of productivity and sales to have the same form (whether 
Pareto, lognormal, or Fréchet) in the cross section, and for Gibrat’s Law to hold over time; it 
implies a new class of distributions well-suited to capture the dispersion of markups; and it 
provides a parsimonious fit for the distributions of sales and markups superior to most widely-
used alternatives. 

JEL-Codes: F150, F230, F120. 

Keywords: CREMR demands, Gibrat’s Law, heterogeneous firms, Kullback-Leibler divergence, 
lognormal versus Pareto distributions, sales and markup distributions. 
 
 
 

Monika Mrázová 
Geneva School of Economics and Management 

(GSEM), University of Geneva 
Bd. du Pont d’Arve 40 

Switzerland – 1211 Geneva 4 
monika.mrazova@unige.ch 

J. Peter Neary 
Department of Economics 

University of Oxford 
Manor Road 

United Kingdom – Oxford OX1 3UQ 
peter.neary@economics.ox.ac.uk 

 
Mathieu Parenti 

ECARES, Université Libre de Bruxelles 
Av. F.D. Roosevelt, 42 

Belgium – 1050 Brussels 
mparenti@ulb.ac.be 

  
 

December 17, 2018 
Earlier versions were circulated under the title “Technology, Demand, and the Size Distribution of Firms”. We are 
particularly grateful to Jan De Loecker and Julien Martin for assisting us with the data, to four referees, and to Abi 
Adams, Costas Arkolakis, Jonathan Dingel, Peter Egger, Basile Grassi, Joe Hirschberg, Oleg Itskhoki, Luca 
Macedoni, Rosa Matzkin, Marc Melitz, Aviv Nevo, Gianmarco Ottaviano, Steve Redding, Kevin Roberts, Ina 
Simonovska, Stefan Sperlich, Gonzague Vannoorenberghe, Frank Verboven, Frank Windmeijer, Tianhao Wu, and 
participants at various conferences and seminars for helpful comments. Monika Mrázová thanks the Fondation de 
Famille Sandoz for funding under the “Sandoz Family Foundation - Monique de Meuron” Programme for 
Academic Promotion. Peter Neary thanks the European Research Council for funding under the European Union’s 
Seventh Framework Programme (FP7/2007-2013), ERC grant agreement no. 295669. 



1 Introduction

The hypothesis of a representative agent has provided a useful starting point in many fields

of economics. However, sooner or later, both intellectual curiosity and the exigencies of

matching empirical evidence make it desirable to take account of agent heterogeneity. In

many cases, this involves constructing models with three components. First is a distribu-

tion of agent characteristics, usually assumed exogenous; second is a model of individual

agent behavior; and third, implied by the first two, is a predicted distribution of outcomes.

Such a pattern can be seen in income distribution theory, in the theory of optimal income

taxation, in macroeconomics, and in urban economics.1 In the field of international trade

it has rapidly become the dominant paradigm, since the increasing availability of firm-level

export data from the mid-1990s onwards undermined the credibility of representative-firm

models, and stimulated new theoretical developments. A key contribution was Melitz (2003),

who built on Hopenhayn (1992) to derive an equilibrium model of monopolistic competition

with heterogeneous firms. In this setting, the model structure combines assumptions about

the distribution of firm productivity and about the form of demand that firms face, and

from these derives predictions about the distribution of firm sales. Such models have pro-

vided a fertile laboratory for studying a wide range of problems relating to the process of

globalization.

Although the pioneering work of Melitz (2003) avoided making specific distributional

assumptions, trade models have typically been parameterized in a canonical way, that com-

bines a Pareto distribution of firm productivity on the supply side with CES preferences on

the demand side. As shown by Helpman, Melitz, and Yeaple (2004) and Chaney (2008), this

combination of assumptions predicts a Pareto distribution of firm sales. This parametriza-

tion can be justified on at least two grounds. First is its theoretical tractability, which makes

it relatively easy to extend the model to incorporate various real-world features of the global

1For examples, see Stiglitz (1969), Mirrlees (1971), Krusell and Smith (1998), and Behrens, Duranton,
and Robert-Nicoud (2014), respectively.



economy, such as outsourcing, multi-product firms, and global value chains.2 Second is the

empirical regularity that the distribution of firm sales is plausibly close to Pareto, at least

in the upper tail. (See, for example, Axtell (2001) and Gabaix (2009).)

However, at least two difficulties arise when this canonical model is confronted with

data. First is that not all studies find a Pareto distribution of firm sales, especially if smaller

firms are included. Bee and Schiavo (2018) and Head, Mayer, and Thoenig (2014) consider

the implications of a lognormal distribution, while Combes, Duranton, Gobillon, Puga, and

Roux (2012), and Nigai (2017) explore mixtures and piecewise combinations of Pareto and

lognormal, respectively. Analytically, this literature yields a second result: Head, Mayer,

and Thoenig (2014) show that lognormal productivities plus CES demands yield a lognormal

distribution of firm sales. The parallel between this result and the Helpman-Melitz-Yeaple-

Chaney result for the Pareto-CES case is suggestive, but between them they exhaust the

extant theoretical literature, which to date gives no guidance on what may happen with

other combinations of assumptions.

PRICES, MARKUPS, AND TRADE REFORM 493

FIGURE 4.—Distribution of marginal costs and markups in 1989 and 1997. Sample only in-
cludes firm–product pairs present in 1989 and 1997. Outliers above and below the 3rd and 97th
percentiles are trimmed.

higher markups. The results indicate that firms offset the beneficial cost reduc-
tions from improved access to imported inputs by raising markups. The overall
effect, taking into account the average declines in input and output tariffs be-
tween 1989 and 1997, is that markups, on average, increased by 12.6 percent.
This increase offsets almost half of the average decline in marginal costs, and
as a result, the overall effect of the trade reform on prices is moderated.52

Although tempting, it is misleading to draw conclusions about the pro-
competitive effects of the trade reform from the markup regressions in Col-
umn 3 of Table IX. The reason is that one needs to control for the impacts of

52These results are robust to controlling India’s de-licensing policy reform; see Table A.I in the
Supplemental Material.

(a) India, 1989 and 1997 (b) Chile, 2001-2007

Figure 1: Empirical Evidence on Markup Distributions
Sources: De Loecker et al. (2016) and Lamorgese et al. (2014)

A second problem with the canonical framework is that a CES demand function has

2See Antràs and Helpman (2004), Bernard, Redding, and Schott (2011), and Antràs and Chor (2013),
respectively.
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strong counterfactual implications. In particular, it implies that markups are constant across

space and time: in a cross section, all firms should have the same markup in all markets;

while, in time series, exogenous shocks such as globalization cannot affect markups and so

competition effects will never be observed. Trade economists have been uneasy with these

stark predictions for some time, and a number of contributions has explored the implications

of relaxing the CES assumption, though to date without considering their implications for

sales and markup distributions.3 However, only recently has it become possible to confront

the predictions of CES-based models with data, following the development of techniques for

measuring markups that do not impose assumptions about market structure or the functional

form of demand. Figure 1(a) from De Loecker, Goldberg, Khandelwal, and Pavcnik (2016)

shows that the distribution of markups from a sample of Indian firms is very far from being

concentrated at a single value.4 A possible explanation is that such markup heterogeneity

arises from aggregation across sectors with different elasticities of substitution. However,

Figure 1(b) from Lamorgese, Linarello, and Warzynski (2014), who use data on Chilean

firms, shows that even greater heterogeneity is observed when the data are disaggregated by

sector. Taken together, this evidence suggests that markup distributions are far from the

Dirac form implied by CES preferences, but to date there is no model of industry equilibrium

that would generate such patterns.

In this paper, we provide a general characterization of the problem of explaining the

distributions of firm sales and firm markups, given particular assumptions about the struc-

ture of demand and the distribution of firm productivities. We present two different kinds

of results. On the one hand, we present exact conditions under which specific assumptions

about the distribution of firm productivity are consistent with particular forms of the distri-

bution of sales revenue, output, or markups. On the other hand, we use the Kullback-Leibler

3The implications of preferences other than CES have been considered by Melitz and Ottaviano (2008),
Zhelobodko, Kokovin, Parenti, and Thisse (2012), Fabinger and Weyl (2012), Bertoletti and Epifani (2014),
Simonovska (2015), Feenstra and Weinstein (2017), Mrázová and Neary (2017), Parenti, Ushchev, and Thisse
(2017), Arkolakis, Costinot, Donaldson, and Rodŕıguez-Clare (2018), and Feenstra (2018), among others.

4We discuss these data in more detail in Section 7.1 below.
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Divergence to quantify the information loss when a predicted distribution fails to match the

actual one. We show that applying this criterion in the context of models of heterogeneous

firms leads to new insights about the relationship between fundamentals and the size distri-

bution of firms, and also provides a quantitative framework for gauging how well a given set

of assumptions explain a given data set.

It hardly needs emphasizing that the assumptions made about productivity distributions

and demand structure have crucial implications for a wide range of questions. We mention

just three. First is the interpretation of the trade elasticity. The elasticity of trade with

respect to trade costs is a constant when demands are CES, as shown by Chaney (2008),

and this allows a parsimonious expression for the gains from trade in a wide range of canon-

ical models, as shown by Arkolakis, Costinot, and Rodŕıguez-Clare (2012); see also Melitz

and Redding (2015). Similar results hold with non-CES demands if the distribution of firm

productivities is Pareto, as shown by Arkolakis, Costinot, Donaldson, and Rodŕıguez-Clare

(2018). However, when the distribution of firm productivities is lognormal, the trade elastic-

ity is variable and does not take a simple analytic form even with CES demands, as shown by

Head, Mayer, and Thoenig (2014); see also Bas, Mayer, and Thoenig (2017). A second rea-

son why these assumptions matter is the granular origins of aggregate fluctuations. Gabaix

(2011) showed that relaxing the continuum assumption implies that the largest firms can

have an impact on aggregate fluctuations, and di Giovanni and Levchenko (2012) showed

that similar effects arise in open economies. These arguments rely on the assumption that

the upper tail of the distribution of firm size is a power law, so understanding the mechanisms

that may generate this is a key research question. Thirdly, the interaction of distributional

and demand assumptions matters for quantifying the misallocation of resources. The pio-

neering study of Hsieh and Klenow (2007) showed that close to half the difference in efficiency

between China and India on the one hand and the U.S. on the other could be attributed to

an inefficient allocation of labor. However, this was under the maintained hypothesis that

demands were CES, which, as Dixit and Stiglitz (1977) showed, implies that goods markets

4



are constrained efficient. With non-CES demands, inefficiency may be partly a reflection

of goods-market rather than factor-market distortions, with very different implications for

welfare-enhancing policies. (See, for example, Epifani and Gancia (2011) and Dhingra and

Morrow (2019).) Finally, the links between productivity and demand have been explored in

models that consider the distribution not of firm sales but of their growth rates. A central

benchmark is Gibrat’s Law, or “The Law of Proportionate Effect”, which asserts that the

rate of growth of a firm is independent of its size. Among the theoretical explanations that

have been advanced for the result, it has been shown to hold in models of monopolistic

competition with CES preferences by Luttmer (2007, 2011) and Arkolakis (2010a, 2010b,

2016). This raises the question whether Gibrat’s Law is consistent with any other demand

functions that allow for variable markups.

In all these cases, the assumptions made about the productivity distribution and demand

structure matter for key economic issues, yet the existing literature gives little guidance on

the implications of relaxing the standard assumptions, nor how best to proceed when the

assumptions of the canonical model do not hold. Our paper aims to throw light on both

these questions.

The first part of the paper presents exact characterizations of the links between the

distributions of firm attributes, technology and preferences. We begin in Section 2 with

two general propositions which characterize the form that very general distributions of firm

characteristics and general models of firm behavior must take if they are to be mutually

consistent. Sections 3 and 5 then apply these results to distributions of sales and markups

respectively.5 Among the results we derive is a characterization of the demand functions

which are necessary and sufficient for productivity and sales to exhibit the same distribution

from a wide family which includes Pareto, lognormal and Fréchet. We show that this property

is implied by a new family of demands, a generalization of the CES, which we call “CREMR”

for “Constant Revenue Elasticity of Marginal Revenue.”6 The CREMR class has many other

5We use “sales” throughout to refer to sales revenue.
6“CREMR” rhymes with “dreamer”.
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desirable properties; in particular, it is necessary and sufficient for Gibrat’s Law to hold

over time; and it implies a new class of distributions well-suited to capture the dispersion

of markups across firms in a flexible but parsimonious way. However, it is very different

from most of the non-CES demand systems used in applied economics. We also derive the

distributions of markups that are implied by CREMR and other demand functions.

The second part of the paper addresses the question of how to proceed when the condi-

tions for exact consistency between distributions, preferences and technology do not hold.

Section 6 presents the Kullback-Leibler Divergence (KLD), which has a natural application

to evaluating how “close” a predicted distribution comes to an actual one, and shows how

this criterion allows us to quantify the cost of using the “wrong” assumptions about demand

or technology to calibrate a hypothetical distribution of firm sales or markups. Section 7

illustrates the results of applying the KLD to actual data sets, and shows that it provides

a parsimonious fit for the distributions of sales and markups superior to most widely-used

alternatives. Finally, Section 8 concludes, while the Appendix contains proofs of propositions

as well as further technical details and robustness checks.

2 Characterizing Links Between Distributions

The two central results of the paper link the distributions of two firm characteristics to a gen-

eral specification of the relationship between them: we make no assumptions about whether

either characteristic is exogenous or endogenous, nor about the details of the technological

and demand constraints faced by firms which generate the relationship. All we assume is a

hypothetical dataset of a continuum of firms, which reports for each firm i its characteristics

x(i) and y(i), both of which are monotonically increasing functions of i.7 Formally:

7The assumption that they are increasing functions is without loss of generality. For example, if x(i)
is increasing and y(i) is decreasing, Proposition 1 can easily be reformulated using the survival function
of y. As for the assumption of monotonicity, it is a property of theoretical models only. In our empirical
applications we do not need to assume that any measured firm characteristics are monotonic in i. We follow
standard models of firm heterogeneity under monopolistic competition by considering a continuum of firms
whose characteristics are realizations of a random variable. Because we work with a continuum, the c.d.f.

6



Assumption 1. {i, x(i), y(i)} ∈
[
Ω× (x, x)× (y, y)

]
, where Ω is the set of firms, with both

x(i) and y(i) monotonically increasing functions of i.

Examples of x(i) and y(i) include firm productivity, sales and output in most models of

heterogeneous firms.

The first result restates a standard result in mathematical statistics in our context; it is

closely related to Lemma 1 of Matzkin (2003).

Proposition 1. Given Assumption 1, any two of the following imply the third:

(1) x is distributed with CDF G (x), where g(x) ≡ G′(x) > 0;

(2) y is distributed with CDF F (y), where f(y) ≡ F ′(y) > 0;

(3) Firm behavior, given technology and demand, is such that: x = v(y), v′(y) > 0;

where the functions are related as follows:

(i) (1) and (3) imply (2) with F (y) = G[v(y)] and f(y) = g[v(y)]v′(y); similarly, (2) and

(3) imply (1) with G(x) = F [v−1(x)] and g(x) = f [v−1(x)]d[v−1(x)]
dx

.

(ii) (1) and (2) imply (3) with v(y) = G−1[F (y)].

Part (i) of the proposition is a standard result on transformations of variables. Part (ii) is

less standard, and requires Assumption 1: characteristics x(i) and y(i) must refer to the

same firm and must be monotonically increasing in i.8 The proof is in Appendix A. The

importance of the result is that it allows us to characterize fully the conditions under which

assumptions about distributions and about the functional forms that link them are mutually

consistent. Part (ii) in particular provides an easy way of determining which specifications

of firm behavior are consistent with particular assumptions about the distributions of firm

of this random variable is the actual distribution of these realizations. Henceforward, we use lower-case
variables to describe both a random variable and its realization.

8This implies that the Spearman rank correlation between x and y is one.
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characteristics. All that is required is to derive the form of v(y) implied by any pair of

distributional assumptions.

Our next result shows how Proposition 1 is significantly strengthened when the distribu-

tions of the two firm characteristics share a common parametric structure, which is given by

the following:

Definition 1. A sub-family of probability distributions is a member of the “Generalized

Power Function” [“GPF”] family if there exists a continuously differentiable function H(·)

such that the cumulative distribution function of every member of the sub-family can be

written as:

G (x;θ) = H

(
θ0 +

θ1

θ2

xθ2
)

(1)

where each member of the sub-family corresponds to a particular value of the vector θ ≡

{θ0, θ1, θ2}.

The function H(·) is completely general, other than exhibiting the minimal requirements of

a probability distribution: G(xmin;θ) = 0 and G(xmax;θ) = 1, where xmin and xmax are the

bounds of the support of G; and, to be consistent with a strictly positive density function,

Gx > 0, H(·) must satisfy the restriction: θ1H
′ > 0. The great convenience of the GPF

family given by (1) is that it nests many of the most widely-used distributions in applied

economics, including Pareto, truncated Pareto, lognormal, uniform, Fréchet, Gumbel, and

Weibull. (See Appendix B for details of members of the GPF family.)

Combining Proposition 1 and Definition 1 gives the following:9

Proposition 2. Given Assumption 1, any two of the following imply the third:

(1) The distribution of x is a member of the GPF family: G(x;θ) = H
(
θ0 + θ1

θ2
xθ2
)

, Gx > 0;

(2) The distribution of h(y) has the same form as that of x but with different parameters:

F (y;θ′) = G [h(y);θ′] = H
(
θ0 +

θ′1
θ′2
h(y)θ

′
2

)
, Fy > 0;

9The proof is in Appendix C.
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(3) x is a power function of h(y): x = x0h(y)E;

where the parameters are related as follows:

(i) (1) and (3) imply (2) with θ′1 = Eθ1x
θ2
0 and θ′2 = Eθ2; similarly, (2) and (3) imply (1)

with θ1 = E−1θ′1x
−E−1θ′2
0 and θ2 = E−1θ′2.

(ii) (1) and (2) imply (3) with x0 =
(
θ2
θ1

θ′1
θ′2

) 1
θ2 and E =

θ′2
θ2

.

Comparing the distributions of x and y in (1) and (2), they are the same member of the

GPF family, except that the θ1 and θ2 parameters are different, and that y is subject to

an arbitrary monotonic transformation h(y). The h(·) function is completely general, and

the elements of the parameter vector θ can take on any values, except in two respects: h

must be monotonically increasing from the strict monotonicity restriction on F : h′ > 0 since

Fy = Gxh
′ > 0; and θ0 must be the same in both distributions, so both G(x;θ) and F (y;θ′)

are two-parameter distributions.

Each choice of the h(·) function generates in turn a further family, such that the trans-

formation h(y) follows a distribution from the GPF family.10 Proposition 2 shows that these

families are intimately linked via a simple power function that expresses one of the two firm

characteristics as a transformation of the other. In much of the paper we will concentrate on

two special forms for the h(·) function. The identity transformation, h(y) = y, implies from

Proposition 2 a property we call “self-reflection”, since the distributions of x and y are the

same. This case proves particularly useful when we consider distributions of firm sales and

output in Section 3 and of the growth of firm sales in Section 4.1. The other case we consider

in detail is the odds transformation, h(y) = y
1−y , where 0 ≤ y ≤ 1. This implies a property

we call “odds-reflection”, since the distribution of y is an odds transformation of that of

x. This case proves particularly useful when we consider distributions of firm markups in

Section 5.

10Assuming that a transformation of a variable follows a standard distribution is a well-known method of
generating new functional forms for distributions. See Johnson (1949), who attributes it to Edgeworth, and
Jones (2015).
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In the next two sections we give some examples of links between distributions and models

of firm behavior implied by Propositions 1 and 2, with detailed derivations in Appendix E.

3 Backing Out Demands

The first set of applications of Proposition 2 apply part (ii) of the proposition: we ask what

demand functions are consistent with assumed distributions of two different firm attributes.

Moreover, following the existing literature, we ask when will we observe self-reflection, in

the sense that the distributions of the two attributes are the same (though with different

parameters of course). Figure 2 summarizes schematically the results of this section, which

specify the demand functions that are necessary and sufficient for self-reflection between the

distributions of any two of firm output x, sales revenue r, and productivity ϕ.

CEMR

r

CES

CREMR



x

Figure 2: Links Between Firm Characteristics

3.1 Self-Reflection of Productivity and Sales

We begin in this sub-section by focusing on the two central attributes of productivity and

sales revenue. We know from Helpman, Melitz, and Yeaple (2004) and Chaney (2008) that

CES demands are sufficient to bridge the gap between two Pareto distributions; and we also

know from Head, Mayer, and Thoenig (2014) that a lognormal distribution of productivity

coupled with CES demands implies a lognormal distribution of sales. We want to establish

10



the necessary conditions for these links, which in turn will tell us whether there are other

demand systems that ensure an exact correspondence between the form of the productivity

and sales distributions.

The answer to these questions is immediate from Proposition 2: if both productivity

ϕ and sales r follow the same distribution, which can be any member of the GPF family,

including the Pareto and the lognormal, then they must be related by a power function:

ϕ = ϕ0r
E (2)

To infer the implications of this for demand, we use two properties of a monopolistically

competitive equilibrium. First, firms equate marginal cost to marginal revenue, so ϕ =

c−1 =
(
∂r
∂x

)−1
.11 Second, all firms face the same residual demand function, so firm sales

conditional on output are independent of productivity ϕ: r(x) = xp(x) and ∂r
∂x

= r′(x).

Combining these with (2) gives a simple differential equation in sales revenue:

[r′(x)]−1 = ϕ0r(x)E (3)

Integrating this we find that a necessary and sufficient condition for self-reflection of pro-

ductivity and sales is that the inverse demand function take the following form:

p(x) =
β

x
(x− γ)

σ−1
σ , 1 < σ <∞, x > γσ, β > 0 (4)

We are not aware of any previous discussion of the family of inverse demand functions in (4),

which expresses expenditure r(x) = xp(x) as a power function of consumption relative to a

benchmark γ. We detail its properties in Appendix D. Its key property, from (3), is that

the elasticity of marginal revenue with respect to total revenue is constant: E = 1
σ−1

. Hence

11Our approach does not require that the marginal costs be exogenous. They could be chosen endogenously
by firms either by optimizing subject to a variable cost function, as in Zhelobodko, Kokovin, Parenti, and
Thisse (2012), or as the outcome of investment in R&D, as in Bustos (2011).
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we call it the “CREMR” family, for “Constant Revenue Elasticity of Marginal Revenue.” It

includes CES demands as a special case: when γ equals zero, (4) reduces to p(x) = βx−
1
σ ,

and the elasticity of demand is constant, equal to σ. More generally, the elasticity of demand

varies with consumption, ε(x) ≡ − p(x)
xp′(x)

= x−γ
x−γσσ, though it approaches σ for large firms.

To give some intuition for the result that CREMR demands link GPF productivity and

sales, consider the Pareto case. A Pareto distribution of productivities ϕ implies that the

elasticity of the density of the productivity distribution is constant: if G(ϕ) is Pareto, so

G(ϕ) = 1 −
(
ϕ
ϕ

)−k
, with density function g(ϕ) = G′(ϕ), then the elasticity of density is

ϕg′(ϕ)
g(ϕ)

= −(k+1). Similarly, a Pareto distribution of sales, r = px, implies that the elasticity

of the density of the sales distribution is constant: if F (r) = 1 −
(
r
r

)−n
, with density

function f(r) = F ′(r), then the elasticity of density is rf ′(r)
f(r)

= −(n + 1). These two log-

linear relationships are only consistent with each other if demands also imply a log-linear

relationship between firm productivity and firm sales. In a Melitz-type model, productivity is

the inverse of marginal cost, which equals marginal revenue. Hence Pareto productivities and

Pareto sales are only consistent with each other if there is a log-linear relationship between

marginal and total revenue, which is the eponymous defining feature of CREMR demands.

To see this slightly more formally, suppose that the distribution of productivity is Pareto

with shape parameter k. Then for any two levels of productivity, c−1
1 and c−1

2 , the ratio

of their survival functions (one minus their cumulative probabilities) is
(
c2
c1

)k
. Since firms

are profit-maximizers, this is also the ratio of the survival functions of marginal revenues,[
r′(x2)
r′(x1)

]k
. But if the elasticity of marginal revenue to sales revenue is constant and equal

to 1
σ−1

, this in turn equals
(
r2
r1

) k
σ−1

. Since this is true for any arbitrary level of sales, it

implies that sales are distributed as a Pareto with scale parameter n = k
σ−1

. This result was

derived for the case of Pareto productivities and CES demands by Chaney (2008). (See also

Helpman, Melitz, and Yeaple (2004).) The formal proof, a corollary of Proposition 2, shows

that it generalizes from CES to CREMR, that it holds for any member of the GPF family

not just Pareto, and that GPF productivities and CREMR demands are necessary as well

12



as sufficient.
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(a) γ = 0: CES

p'(x)<0
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(b) γ > 0: Subconvex

x

p(x)

p

r(x)

r'(x)

(c) γ < 0: Superconvex

Figure 3: Examples of CREMR Demand and Marginal Revenue Functions

Figure 3 shows three representative inverse demand curves from the CREMR family, along

with their corresponding marginal revenue curves. The CES case in panel (a) combines the

familiar advantage of analytic tractability with the equally familiar disadvantage of imposing

strong and counter-factual properties. In particular, the proportional markup p
c

must be the

same, equal to σ
σ−1

, for all firms in all markets. By contrast, members of the CREMR

family with non-zero values of γ avoid this restriction. Moreover, we show in Appendix D

that the sign of γ determines whether a CREMR demand function is more or less convex

than a CES demand function. The case of a positive γ as in panel (b) corresponds to

demands that are “subconvex”: less convex at each point than a CES demand function with

the same elasticity. In this case the elasticity of demand falls with output, which implies

that larger firms have higher markups and that globalization has a pro-competitive effect.

These properties are reversed when γ is negative as in panel (c). Now the demands are

“superconvex” – more convex than a CES demand function with the same elasticity – and

larger firms have smaller markups. CREMR demands thus allow for a much wider range of

comparative statics responses than the CES itself.

How do CREMR demands compare with other better-known demand systems? Inspect-

ing the demand functions themselves is not so informative, as they depend on three different

parameters. Instead, we use the approach of Mrázová and Neary (2017), who show that any

13
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Figure 4: Demand Manifolds for CREMR and Other Demand Functions

well-behaved demand function can be represented by its “demand manifold”, a smooth curve

relating its elasticity ε(x) ≡ − p(x)
xp′(x)

to its convexity ρ(x) ≡ −xp′′(x)
p′(x)

. We show in Appendix

D that the CREMR demand manifold can be written in closed form as follows:

ρ̄(ε) = 2− 1

σ − 1

(ε− 1)2

ε
(5)

Whereas the demand function (4) depends on three parameters, the corresponding demand

manifold only depends on σ. Panel (a) of Figure 4 illustrates some manifolds from this

family for different values of σ, while panel (b) shows the manifolds of some of the most

commonly-used demand functions in applied economics: linear, CARA, Translog and Stone-

Geary (or Linear Expenditure System).12 It is clear that CREMR manifolds, and hence

CREMR demand functions, behave very differently from the others. The arrows in Figure

4 denote the direction of movement as sales increase. In the empirically relevant subconvex

12These manifolds are derived in Mrázová and Neary (2017). We confine attention to the admissible region,
{ε > 1, ρ < 2}, defined as the region where firms’ first- and second-order conditions are satisfied. The curve
labeled “CES” is the locus ε = 1

ρ−1 , each point on which corresponds to a particular CES demand function;

this is also equation (5) with ε = σ. To the right of the CES locus is the superconvex region (where demand
is more convex than the CES), while to the left is the subconvex region. The curve labeled “SM ” is the
locus ε = 3−ρ; to the right is the “supermodular” region (where selection effects in models of heterogeneous
firms have the conventional sign, e.g., more efficient firms serve foreign markets by foreign direct investment
rather than exports); while to the left is the submodular region. See Mrázová and Neary (2019) for further
discussion.
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region, where demands are less convex than the CES, CREMR demands are more concave at

low levels of output (i.e., at high demand elasticities) than any of the others, which, indeed,

are approximately linear for small firms. As we move to larger firms, the CREMR elasticity

of demand falls more slowly with convexity than any of the others. As for the largest firms,

with CREMR demands they asymptote towards a demand function with elasticity equal

to σ; whereas with other demand functions the largest firms either hit an upper bound of

maximum profitable output (in the linear and CARA cases), or else asymptote to a Cobb-

Douglas demand function with elasticity of one (in the translog and Stone-Geary cases).

3.2 CREMR and GPF Distributions: Some Special Cases

While the result of the previous sub-section holds for any distributions from the GPF family,

it is useful to consider in more detail the Pareto and lognormal cases. Starting with the

Pareto, since it is a member of the GPF family of distributions, it follows immediately as

a corollary of Proposition 2 that CREMR demands are necessary and sufficient for self-

reflection in this case. We state the result formally for completeness, and because it makes

explicit the links that must hold between the parameters of the two Pareto distributions and

the demand function. (In what follows we use r ∼ P(r, n) to indicate that r follows a Pareto

distribution with threshold parameter r and shape parameter n, so F (r) = 1−
(
r
r

)−n
.)

Corollary 1. Pareto Productivity and Sales Revenue: Any two of the following state-

ments imply the third: 1. Firm productivity ϕ ∼ P(ϕ, k); 2. Firm sales revenue r ∼ P(r, n);

3. The demand function belongs to the CREMR family in (4); where the parameters are

related as follows:

σ =
k + n

n
⇔ n =

k

σ − 1
and β =

(
k + n

k

r
n
k

ϕ

) k
k+n

⇔ r = βσ
(
σ − 1

σ
ϕ

)σ−1

(6)

Note that the demand parameter γ does not appear in (6), so these expressions hold for all

members of the CREMR family, including the CES. This confirms that Corollary 1 extends
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a result of Chaney (2008), as noted earlier.

Although it has become customary to assume that actual firm size distributions can be

approximated by the Pareto, at least for larger firms, there are other candidate explanations

for the pattern of firm sales. Head, Mayer, and Thoenig (2014) and Bee and Schiavo (2018)

argue that firm size distribution is better approximated by a lognormal distribution than

a Pareto. We have already noted that the lognormal distribution is a special case of the

GPF family in Proposition 2. It follows immediately from the proposition that the CREMR

relationship ϕ = ϕ0r
E is necessary and sufficient for self-reflection in the lognormal case.

However, unlike in the Pareto case, this does not imply that all CREMR demand functions

are consistent with lognormal productivity and sales. The reason is that, except in the CES

case (when the CREMR parameter γ is zero), the value of sales revenue for the smallest firm

is strictly positive.13 Strictly speaking, this is inconsistent with the lognormal distribution,

whose lower bound is zero. We can summarize this result as follows. (We use r ∼ LN (µ, s)

to indicate that r follows a lognormal distribution with location parameter µ and scale

parameter s, equal to the mean and standard deviation of the natural logarithm of r. Hence

F (r) = Φ
(

log r−µ
s

)
, where Φ is the cumulative distribution function of the standard normal

distribution.)

Corollary 2. Lognormal Productivity and Sales Revenue: Any two of the following

statements imply the third: 1. Firm productivity follows a LN (µ, s) distribution; 2. Firm

sales follow a LN (µ′, s′) distribution; 3. The demand function is CES: p(x) = βx−
1
σ ; where

the parameters are related as follows:

σ =
s+ s′

s
⇔ s′ = (σ−1)s and β =

s+ s′

s′
exp

( s
s′
µ′ − µ

)
⇔ µ′ = (σ−1)

[
µ+ log

(
β

σ

)]
(7)

Hence, unlike the Pareto case, the only demand function that is exactly compatible with

13Since p′(x) = − β
σx2 (x− γ)−

1
σ (x− γσ), the output of the smallest firm when γ is strictly positive is γσ,

while its sales revenue is r(x) = β [γ(σ − 1)]
σ−1
σ > 0. When demands are strictly superconvex, so γ is strictly

negative, sales revenue is discontinuous at x = 0: lim
x→0+

r(x) = β(−γ)
σ−1
σ > 0, but r(0) = 0.
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lognormal productivity and sales is the CES. Relaxing the assumption of Pareto productivity

in favor of lognormal productivity comes at the expense of ruling out pro-competitive effects.

However, in practical applications, where there is a finite interval between the output of the

smallest firm and zero, we may not wish to rule out combining lognormal productivity with

members of the CREMR family other than the CES.

3.3 Self-Reflection of Productivity and Output

The distribution of sales revenue is not the only outcome predicted by models of heteroge-

neous firms. We can also ask what are the conditions under which output follows the same

distribution as productivity. Proposition 2 implies that a necessary and sufficient condition

for this form of self-reflection is that the elasticity of productivity with respect to output be

constant. This turns out to be related to a different demand family:

p(x) =
1

x
(α + βx

σ−1
σ ) (8)

The demand function in (8) plays the same role with respect to the characteristic of interest,

in this case firm output, as the CREMR family does with respect to firm sales. It is necessary

and sufficient for a constant elasticity of marginal revenue with respect to output, equal to

1
σ
. Hence we call it “CEMR” for “Constant (Output) Elasticity of Marginal Revenue.”14

Unlike CREMR, there are some precedents for this class. It has the same functional

form, except with prices and quantities reversed, as the direct PIGL (“Price-Independent

Generalized Linearity”) class of Muellbauer (1975).15 In particular, the limiting case where

σ approaches one is the inverse translog demand function of Christensen, Jorgenson, and

Lau (1975). However, except for the CES (the special case when α = 0), CEMR demands

bear little resemblance to commonly-used demand functions.16

14“CEMR” rhymes with “seemer.”
15For this reason, Mrázová and Neary (2017) called it the “inverse PIGL” class of demand functions.
16As shown by Mrázová and Neary (2017), the CEMR demand manifold implies a linear relationship

between the convexity and elasticity of demand, passing through the Cobb-Douglas point (ε, ρ) = (1, 2):
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When the common distribution of productivity and output is a Pareto, we can immedi-

ately state a further corollary of Proposition 2:

Corollary 3. Pareto Productivity and Output: Any two of the following statements

imply the third: 1. Firm productivity ϕ ∼ P(ϕ, k); 2. Firm output x ∼ P(x,m); 3. The de-

mand function belongs to the CEMR family (8); where the parameters are related as follows:

σ =
k

m
⇔ m =

k

σ
and β =

k

k −m
x
m
k

ϕ
⇔ x =

(
β
σ − 1

σ
ϕ

)σ
(9)

However, when both productivity and output follow a lognormal distribution, we en-

counter a similar though less extreme restriction on the range of admissible CEMR demand

functions to that in the CREMR case of Corollary 2. Now the requirement that output be

zero for the smallest firm is only possible if both the parameters α and β in the CEMR

demand function (8) are positive. As shown by Mrázová and Neary (2017), this corresponds

to the case where CEMR demands are superconvex. By contrast, if either α or β is strictly

negative, then demands are strictly subconvex: more plausible in terms of its implications

for the distribution of markups, but not compatible with a lognormal distribution of output.

Summarizing:

Corollary 4. Lognormal Productivity and Output: Any two of the following state-

ments imply the third: 1. Firm productivity follows a LN (µ, s) distribution; 2. Firm output

follows a LN (µ′, s′) distribution; 3. The demand function belongs to the superconvex sub-

class of the CEMR family (8) with α ≥ 0, β ≥ 0, and αβ > 0; where the parameters are

related as follows:

σ =
s′

s
⇔ s′ = σs and β =

s′

s′ − s
exp

( s
s′
µ′ − µ

)
⇔ µ′ = σ

[
µ+ log

(
β
σ − 1

σ

)]
(10)

ρ = 2 − ε−1
σ . The manifold for the inverse translog special case (σ → 1) coincides with the SM locus in

Figure 4(b). For high elasticities (corresponding to small firms when demand is subconvex), CEMR demands
are qualitatively similar to CREMR, except that they are somewhat more elastic: the CEMR manifold can
be written as ε = (2− ρ)σ + 1, while for high ε the CREMR manifold becomes ε = (2− ρ)(σ − 1) + 1.
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3.4 Self-Reflection of Output and Sales

A final self-reflection corollary of Proposition 2 relates to the case where output and sales

follow the same distribution. This requires that the elasticity of one with respect to the

other is constant, which implies that the demand function must be a CES.17 Formally:

Corollary 5. Pareto Output and Sales Revenue: Any two of the following statements

imply the third: 1. The distribution of firm output x is a member of the generalized power

function family; 2. The distribution of firm sales revenue r is the same member of the

generalized power function family; 3. The demand function is CES: p(x) = βx−
1
σ , where

β = x
− 1
E

0 and σ = E
E−1

.

In the Pareto case, the sufficiency part of this result is familiar from the large literature

on the Melitz model with CES demands: it is implicit in Chaney (2008) for example. The

necessity part, taken together with earlier results, shows that it is not possible for all three

firm attributes, productivity, output and sales revenue, to have the same distribution from

the generalized power family class under any demand system other than the CES. Corollary 5

follows immediately from previous results when productivities themselves have a generalized

power function distribution, since the only demand function which is a member of both the

CEMR and CREMR families is the CES itself. However, it is much more general than that,

since it does not require any assumption about the underlying distribution of productivities.

It is an example of a corollary to Proposition 2 which relates two endogenous firm outcomes

rather than an exogenous and an endogenous one.

Taken together, the results of this section show that exactly matching a Pareto or log-

normal distribution of firm sales or output, when productivity is assumed to have the same

distribution, places strong restrictions on the admissible demand function. The elasticity of

marginal revenue with respect to the firm outcome of interest must be constant, and the

implied demand function must be consistent with the range of the distribution assumed.

17Suppose that x = x0r(x)E . Recalling that r(x) = xp(x), it follows immediately that the demand function
must take the CES form.
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However, that leaves open the question of how great an error would be made by using a

demand function which does not allow for an exact fit. We address this question in Section

6. First, we turn to consider some further features of CREMR demands in Section 4, and

then explore their implications for the distribution of markups in Section 5.

4 Applications of CREMR Demands and Preferences

In this section, we explore some further implications of CREMR demands and the preferences

that generate them. We show that CREMR demands are necessary and sufficient for Gibrat’s

Law (i.e., firm growth rates are independent of firm size); we show how CREMR preferences

can be used for explicit welfare calculations; and we derive closed-form expressions for the

distributions of output in the competitive equilibrium and in the social optimum, showing

that, when demand is subconvex, competitive markets encourage too many small firms and

not enough large ones relative to the optimum.

4.1 Gibrat’s Law

A variety of mechanisms has been proposed to explain the empirical regularity of Gibrat’s

Law.18 Early contributions, by Gibrat (1931) himself and by Ijiri and Simon (1974), gave

purely stochastic explanations. In particular, if firms are subject to i.i.d. idiosyncratic shocks,

these cumulate to give an asymptotic log-normal distribution of firm size, all growing at

the same rate. Later work has shown how Gibrat’s Law can be derived as an implication

of industry equilibrium, when firms are subject to industry-wide as well as idiosyncratic

shocks.19 Much of this work has been carried out under perfectly competitive assumptions,

focusing on learning, as in Jovanovic (1982), or differential access to credit, as in Cabral and

18For surveys of a large literature, see Sutton (1997) and Luttmer (2010). Gibrat’s Law has also been
applied to the growth rate of cities. See, for example, Eeckhout (2004). We do not pursue this application
here, but it is clear that analogous results to ours can be derived in that case.

19As Sutton (1997) points out, different authors have considered shocks to either sales, employment, or
assets. In a monopolistically competitive setting, it is natural to assume shocks to productivity, as below.
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Mata (2003). The result has also been shown to hold in models of monopolistic competition

by Luttmer (2007, 2011) and Arkolakis (2010a, 2010b, 2016). However, these papers assume

CES demand. Putting this differently, all models that generate Gibrat’s Law to date imply

that prices are either equal to or proportional to marginal costs. This raises the question

whether Gibrat’s Law is consistent with any other demand functions that allow for variable

markups.

In fact, we can show that CREMR is the only demand function that allows this:

Proposition 3. In monopolistic competition, CREMR demands are necessary and suffi-

cient for Gibrat’s Law to hold following both idiosyncratic and industry-wide shocks to firm

productivity.

We give a formal proof in Appendix F, but the intuition for the result is immediate. Assume

that the productivity process for firm i can be written as: ϕit = ϕtγit, where ϕt is an

industry-wide shock, common to all firms, whereas γit is a firm-specific idiosyncratic shock.

We consider each of these types of shocks in turn.

Consider first an industry-wide shock. We seek conditions for this to have the same

proportionate effect on the sales of all firms. This implies a constant elasticity of sales revenue

with respect to marginal cost (recalling that marginal cost is the inverse of productivity).

This in turn is equivalent to the CREMR condition for self-reflection that we have already

considered, which entails a constant elasticity of marginal revenue with respect to total

revenue. Since marginal revenue equals marginal cost, it is immediate that the two conditions

are formally identical, though they arise in different contexts: “cross-section” comparisons

across firms in the case of self-reflection, by contrast with “time-series” comparisons between

the pre- and post-productivity shock equilibria in the case of Gibrat’s Law. Hence, invoking

Proposition 2, it follows that CREMR demands are necessary and sufficient for Gibrat’s Law

to hold following industry-wide shocks to firm productivity.
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Consider next idiosyncratic shocks to firms’ productivity, which can be written as follows:

γit − γi,t−1 = εitγi,t−1 (11)

where εit is i.i.d. Such shocks cumulate to give an asymptotic Lognormal distribution.

Equation (11) implies:

logϕit = logϕt + log γ0t +
t∑

t′=0

log εit′ (12)

As t→∞, and provided logϕt + log γ0t is small relative to logϕit, the distribution of ϕit is

approximately Lognormal:

logϕit
t
∼ N(µ, σ2) (13)

The final step is to recall that productivity equals the inverse of marginal revenue:

ϕit = ϕiγit = c−1
it = (r′it)

−1 (14)

Once again, we can invoke Proposition 2 and conclude that CREMR demands are necessary

and sufficient for i.i.d. shocks to productivity to cumulate to give an asymptotic log-normal

distribution of sales, with firm growth rates independent of size.

Combining these results, we have proved Proposition 3: CREMR demands are necessary

and sufficient for Gibrat’s Law to hold in the long run following both industry-wide and

idiosyncratic shocks to firm productivity.

4.2 CREMR Preferences

Next, we seek a specification of preferences that rationalizes CREMR demands. One way of

doing this is to assume additively separable preferences, U =

∫
i∈Ω

u(x(i)) di, which implies

that p(i) = λ−1u′(x(i)), where λ is the marginal utility of income. Rewriting the demand

shifter in the CREMR demand function (4) as β = λ−1β̃ and integrating yields the sub-

utility function u(x(i)). This equals the product of two functions, one a CES and the other
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an augmented hypergeometric, plus a constant of integration κ:

u(x(i)) = β̃
σ

σ − 1

(x(i)− γ)
σ−1
σ

x(i)

(
x(i) + γ(σ − 1) 2F1

(
1, 1, 1 +

1

σ
,
γ

x(i)

))
+ κ (15)

Here 2F1 (a, b; c; z), |z| < 1, is the Gaussian hypergeometric function:

2F1(a, b; c; z) =
∞∑
n=0

(a)n (b)n
(c)n

zn

n!
(16)

and (q)n is the (rising) Pochhammer symbol:

(q)n =
Γ(q + n)

Γ(q)
(17)

where Γ(q) is the gamma function. The final step is to recover the value of λ, which can be

done in a standard way.20

(a) γ = 0: CES (b) γ > 0: Subconvex (c) γ < 0: Superconvex

Figure 5: Examples of CREMR Sub-Utility Functions

When γ is zero, the hypergeometric function equals one, and so (15) reduces to the CES

utility function, u(x(i)) = β σ
σ−1

x(i)
σ−1
σ + κ. Figure 5 illustrates three sub-utility functions

from the CREMR family, each as a function of σ and x, for different values of γ. Panel

20Inverting (4) yields the direct demand functions: x(i) = (u′)−1(λp(i)), which can be combined with the
budget constraint to obtain:

∫
i∈Ω

p(i) (u′)−1(λp(i)) di = I (where I denotes consumer income). Solving this
gives λ as a function of prices and income. Note that x(i) cannot be written in closed form, but the marginal
utility function is invertible provided the elasticity of demand is positive, i.e., provided x ∈ (max(0, γσ),∞)).
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(a) is the CES case, showing that utility is increasing in σ and increasing and concave in x.

The subconcave case in Panel (b) and the superconvex case in Panel (c) (with positive and

negative values of γ respectively) deviate from the CES case in ways that correspond to the

ways that the corresponding demand functions differ from CES demands in Figure 3.

Setting κ, the constant of integration in (15), equal to zero implies that u(0) = 0. In

this case, the utility function always exhibits a taste for diversity. To see this, note that

u(x) must be increasing (since otherwise p(x) would not be positive) and concave (since

otherwise p(x) would not be decreasing in x). Any concave and differentiable function u(x)

is bounded above by its Taylor approximation: u(x0) ≤ u(x) + (x0−x)u′(x). Setting x0 = 0

and using the fact that u(0) = 0 implies that u(x) ≥ xu′(x). Hence the elasticity of utility

ξ(x) ≡ xu′(x)
u(x)

is always less than one, which implies that the consumer’s preferences exhibit

a taste for diversity.21

In conclusion, the same techniques can be used to calculate preferences that generate

CREMR demands implied by other members of the generalized separability class of Pollak

(1972). This is true, for example, of the implicitly additive preferences of Kimball (1990),

where the sub-functions corresponding to each good depend on total utility U as well as

on the consumption of that good:

∫
i∈Ω

Υ(x(i)/U) di = 1. A particular advantage of this

sub-class is that all members of it exhibit homotheticity. Assuming the demand functions

implied by this utility function take a CREMR form, they can be integrated to derive the

implied form of Υ(.), which takes a form similar to that in (15). Hence CREMR demands

can be rationalized by a number of different forms of generalized separability, where the sub-

function corresponding to each good takes a hypergeometric form. Since this is an analytic

function, CREMR demands can thus be used as a foundation for quantitative analysis of

normative issues.

21To see this, assume all varieties have the same price p and so are consumed in equal amounts x, with
total expenditure equal to X = npx, where n is the measure of varieties. Hence U = nu(x) = nu (X/pn).
Logarithmically differentiating with respect to n yields: Û = (1 − ξ)n̂. Hence, utility is increasing in the
number of varieties provided ξ is less than one, as required; i.e., provided an increase in the measure of
varieties leads to a utility loss at the intensive margin (equal to ξ) that is less than the gain at the extensive
margin (equal to one).
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4.3 Quantifying Misallocation at the Microeconomic Level

The results in the previous sub-section make it possible to calculate the aggregate gains from

trade under CREMR preferences. A different normative application of CREMR demands

is to compare the distributions of outputs across firms in the market equilibrium and in

the social optimum. Comparisons between the allocation of resources in a monopolistically

competitive market and in the optimum that a social planner would choose have largely

focused on the extensive margin, addressing the question of whether the market leads to an

under- or over-supply of varieties relative to the social optimum. Dixit and Stiglitz (1977)

provided the definitive answer to this question when firms are homogeneous:the market

is efficient, in the sense that it supplies the socially optimal number of varieties, and the

optimal output of each, if and only if preferences are CES. Feenstra and Kee (2008) showed

that the market is also efficient when firms are heterogeneous and the distribution of firm

productivities is Pareto, while Dhingra and Morrow (2019) present a general qualitative

analysis of the heterogeneous-firm case. Here we focus on a quantitative comparison between

the market outcome and the optimal allocation at the intensive margin. In particular, we

show how our methods from previous sections can be used to compute the distributions of

output in the socially optimal and market outcomes, and we compare the two distributions

explicitly in the CREMR case.

We wish to compare the market outcome with the social optimum. Consider first the

social planner. Following Dixit and Stiglitz (1977), we assume that the planner cannot make

use of lump-sum taxes or subsidies to affect profits. Extending the logic of this assumption to

a heterogeneous-firms context, the feasible optimum is a constrained one, where the planner

faces the same constraints as the market. In particular, she takes as given the mass of active

firms, Ne, the set of goods produced, X, and the productivity threshold, ϕ̄, equal to the

productivity of a cutoff firm that makes zero profits in the market equilibrium.
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The planner maximizes aggregate utility:

∫
i∈X

u(x(i))di = Ne

∫ ∞
ϕ̄

u(x(ϕ))g(ϕ)dϕ (18)

subject to the aggregate labor endowment constraint:22

Ne

∫ ∞
ϕ̄

Lϕ−1x(ϕ)g(ϕ)dϕ+Nefe ≤ L (19)

The first-order condition is:

u′(x(ϕ)) = λ∗ϕ−1 (20)

where λ∗ is the shadow price of the constraint (19), which we can interpret as the social

marginal utility of income; it is defined implicitly by:

Ne

∫ ∞
ϕ̄

Lϕ−1 (u′)
−1

(λ∗ϕ−1)g(ϕ)dϕ+Nefe = L (21)

Hence the planner allocates production across firms according to:

u′(x(ϕi))

u′(x(ϕj))
=
ϕj
ϕi

(22)

which is a standard marginal-cost-pricing rule.

We can say more if the marginal utility of a threshold firm is finite: u′(x̄) <∞, where x̄

is the output of a firm with productivity ϕ̄. This could be because firms incur fixed costs,

or because the demand function implies a positive choke output, as in the case of linear or

strictly subconvex CREMR demands. Reexpressing (22) in terms of the output of a typical

firm relative to that of a threshold one gives:

u′(x(ϕ))

u′(x̄)
=
ϕ̄

ϕ
⇒ ϕ∗(x) = ϕ̄

u′(x̄)

u′(x)
(23)

22The number of firms that actually produce, and so the number of varieties available to consumers, is:
N = Ne

∫∞
ϕ̄
g(ϕ)dϕ = Ne(1−G(ϕ̄)).
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So the optimal productivity-output relationship depends only on demand.

We are now able to compute the socially optimal distribution of output, using Proposition

2. If the distribution of productivity is given by G(ϕ), then the optimal distribution of

output is F ∗(x) = G(ϕ∗(x)), with ϕ∗(x) determined by (23). This implies a new family of

distributions, that we can call the “inverse marginal utility reflection” family:

F ∗(x) = G

(
ϕ̄
u′(x̄)

u′(x)

)
(24)

Particular members of this family follow if we assume parametric forms for G(ϕ) and p(x).

For example, with CREMR demands, u′(x) is proportional to p(x) as given by (4), and

x̄ = γσ. (We confine attention to the strictly subconvex case, where γ > 0.) If, in addition,

productivity follows a Pareto distribution we have:

F ∗(x) = 1−

(
(γσ − γ)

σ−1
σ

γσ

x

(x− γ)
σ−1
σ

)−k
(25)

If instead productivity follows a Lognormal distribution we have:

F ∗(x) = Φ

[
1

s

{
A+ log x− σ − 1

σ
log (x− γ)

}]
(26)

where the constant A is defined as: A = log
(
ϕ̄β
γσ

)
+ σ−1

σ
log (γσ − γ)− µ.

Consider next the market equilibrium. The first-order condition for each firm is that

marginal cost should equal marginal revenue, so the productivity-output relationship is:

ϕ(x) =
1

p(x) + xp′(x)
(27)

Once again, this implies a new family of distributions, that we can call the “inverse marginal

revenue reflection” family. Just as we did in the socially optimal case, we can now compute

the distribution of output for any demand function and any distribution of productivities.
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Figure 6: Market versus Socially-Optimal Output Profiles

For example, with strictly subconvex CREMR demands and a Pareto distribution of pro-

ductivities, the distribution of output in the market equilibrium is:

F (x) = 1−
(

x− γ
γ(σ − 1)

)− k
σ

(28)

In the Lognormal case, only firms with productivity ϕ greater than or equal to ϕ̄ will produce,

so the relevant distribution of productivities is a Lognormal that is left-truncated at ϕ̄ where:

P (X ≤ x | X ≤ a) =
F (x)− F (a)

1− F (a)
(29)

So we have:

F (x) =

Φ

[
1
s

{
log

(
ϕ̄
(
x−γ
x̄−γ

) 1
σ

)
− µ

}]
Φ
[

1
s
{log (ϕ̄)− µ}

] − 1 (30)

The analytic expressions we have derived allow us to quantify explicitly the pattern of

misallocation across firms. Figure 6 illustrates the output profiles in the market equilibrium

(in blue) and in the social optimum (in red); panels (a) and (b) give the Pareto and Lognormal

cases respectively. The differences between the two panels are unsurprising: both the optimal

and the market output profiles are more biased towards smaller firms in the Lognormal case

than in the long-tailed Pareto case. More surprising are the similarities between them: in
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both panels, we see that competitive markets encourage too many small firms and not enough

large ones relative to the social optimum.

5 Inferring Sales and Markup Distributions

Section 3 used part (ii) of Proposition 2 to back out the demands implied by assumed

distributions of two firm characteristics. In this section we show how part (i) can be used

to derive the distributions of firm characteristics given the distribution of productivity and

the form of the demand function. In particular, we want to derive the distributions of sales

r and markups m, defined as p
c
. Section 5.1 shows how this is done in general; Section

5.2 considers the distributions of markups implied by CREMR demands; while Section 5.3

presents the distributions of both sales and markups implied by a number of widely-used

demand functions.

5.1 Sales and Markup Distributions in General

In order to be able to invoke Proposition 2, we need to express productivity as a function of

sales and markups: combining these with the distribution of productivity allows us to derive

the implied distributions of sales and markups: F (r) = G(ϕ(r)) and F (m) = G(ϕ(m)).

To see how this works in practice, assume that we know the functional form of the inverse

demand function, p(x). (A similar approach is used when we know the direct demand

function: see the discussion of the translog case in Appendix G.)

The first step is to express productivity as a function of output. This is straightforward

given we know the inverse demand function, since productivity is the inverse of marginal

cost, which equals marginal revenue for a profit-maximizing firm. Hence: ϕ(x) = (r′(x))−1 =

(p(x) + xp′(x))−1. Next, to relate output to sales revenue, we need to be able to invert the

function r(x) = xp(x). Finally, to express output as a function of the markup, we can

use the demand function to calculate the elasticity of demand as a function of output:
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ε(x) = −p(x)/xp′(x), and then write the markup as a function of output by invoking a

standard expression in terms of the elasticity of demand: m(x) = ε(x)
ε(x)−1

. This too needs to

be inverted to obtain x(m).

5.2 CREMR Markup Distributions

To illustrate how this approach works, we specialize to the case of CREMR demands, which

have the added attraction that they imply a particularly simple form for the markup distribu-

tion. The first step is to express productivity ϕ as a function of output, using the expression

for CREMR marginal revenue given by equation (42) in Appendix D: ϕ(x) = 1
β

σ
σ−1

(x−γ)
1
σ .

Next, to relate output to the markup, recall from Section 3.1 that the CREMR elasticity

of demand is ε(x) = x−γ
x−γσσ. Hence, we can write the CREMR markup as a function of

output: m(x) = x−γ
x

σ
σ−1

. We concentrate on the case of subconvex demands (i.e., γ > 0),

which implies that larger firms have higher markups: m(x) ∈
[
m, σ

σ−1

]
as x ∈ [x,∞]. Define

the relative markup as the markup relative to its maximum value, σ
σ−1

, which is the value

that obtains under CES preferences with the same value of σ: m̌ ≡ m
m

= σ−1
σ
m ∈ [m̌, 1].

Hence it follows that: m̌(x) = x−γ
x

. Inverting this allows us to express output as a function

of the relative markup: x(m̌) = γ
1−m̌ . Finally, combining ϕ(x) and x(m̌), gives the desired

relationship between productivity and the markup:

ϕ(m̌) = ϕ0

(
m̌

1− m̌

) 1
σ

ϕ0 ≡
1

β

σ

σ − 1
γ

1
σ (31)

Clearly this satisfies Proposition 2’s conditions for “Odds Reflection”. Hence, if productivity

follows any distribution in the GPF class, and if the demand function belongs to the sub-

convex CREMR family, equation (4) with γ > 0, then Proposition 2 implies that markups

follow the corresponding “GPF-odds” distribution.

Once again, we focus on three particularly interesting cases:

1. Pareto: If demands are subconvex CREMR and productivity ϕ is distributed as a
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Pareto, so G(ϕ) = 1− ϕkϕ−k, then the relative markup must follow a “Pareto-Odds”

distribution:

F (m̌) = 1−
(

m̌

1− m̌

)n′ (
m̌

1− m̌

)−n′
m̌ ∈ {m̌, 1} m̌ ≡ m

m
, m̌ ≡ m

m
. (32)

where n′ ≡ k
σ

and m̌ ≡ ϕσ

ϕσ+ϕσ
0

. This distribution appears to be new, and may prove

useful in future applications. However, it implies that the distribution of markups

is U-shaped, which is less in line with the available evidence than the next case we

consider, although the minimum value of the U may lie to the left of the relevant [0, 1]

interval.

2. Lognormal: If demands are subconvex CREMR and productivity follows a lognormal

distribution, so G(ϕ) = Φ
[

1
s
{logϕ− µ}

]
, then the relative markup must follow a

“Lognormal-Odds” distribution:

F (m̌) = Φ

[
1

s′

{
log

m̌

1− m̌
− µ′

}]
(33)

where: s′ ≡ σs and µ′ ≡ σ(µ − logϕ0). This distribution has been studied in the

statistics literature where it is known as the “Logit-Normal”, though we are not aware

of a theoretical rationale for its occurrence as here.23 Figure 7 illustrates some mem-

bers of this family of distributions. Comparing these with the empirical results from

23See Johnson (1949) and Mead (1965).
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De Loecker, Goldberg, Khandelwal, and Pavcnik (2016) and Lamorgese, Linarello,

and Warzynski (2014) illustrated in Figure 1, which also exhibit inverted-U-shaped

profiles, suggests that the lognormal-odds distribution provides a good fit for the em-

pirical markup distribution. Of course, a more precise way of measuring goodness of

fit of distributions would be preferable; we will turn to this in the next section.

3. Fréchet: Finally, if productivity follows a Fréchet distribution and demands are CREMR,

then the relative markup must follow a “Fréchet-Odds” distribution. Once again, this

distribution appears to be new. It provides an exact characterization of the distribution

of profit margins for a firm that sells in many foreign markets, where the distribution

of productivity draws across markets follows a Fréchet distribution, as in Tintelnot

(2017).

5.3 Other Sales and Markup Distributions

p(x) or x(p) ϕ(r) or ϕ(ř) ϕ(m) or ϕ(m̌)

CREMR β
x (x− γ)

σ−1
σ ϕ0r

1
σ−1 ϕ0

(
m̌

1−m̌

) 1
σ

Linear α− βx 1
α

(
1

1−ř

) 1
2 2m−1

α

LES δ
x+γ γδ

(
1

1−ř

)2
γ
δm

2

Translog/AI 1
p (γ − η log p) ϕ0(r + η) exp

(
r
η

)
m exp

(
m− η+γ

η

)
Table 1: Productivity as a Function of Sales and Markups

for Selected Demand Functions

Proposition 2 can be used to derive the distributions of sales and markups implied by any

demand function. In particular, closed-form expressions for productivity as a function of sales

or markups can be derived for some of the most widely-used demand functions in applied

economics. Table 1 gives results for linear, Stone-Geary or linear expenditure system (LES),

32



and translog demands, along with the CREMR results already derived.24 Combining these

with different assumptions about the distribution of productivity, and invoking Proposition

2, it is clear that a wide variety of sales and markup distributions are implied.25 For example,

the relationships between productivity and sales implied by linear and LES demands have

the same form, so the sales distributions implied by these two very different demand systems

are observationally equivalent. The same is not true of their implied markup distributions,

however: in the LES case, productivity is a simple power function of markups, so the LES

implies self-reflection of the productivity and markup distributions if either is a member of

the GPF class.26

It is clearly desirable to compare the distributions implied by these different demand

functions with each other and with a given empirical distribution. In the remainder of the

paper we turn to this task.

6 Comparing Predicted and Actual Distributions

6.1 From Theory to Calibration

So far we have characterized the exact distributions of firm size and firm markups implied

by particular assumptions about the primitives of the model: the structure of demand and

the distribution of firm productivities. Results of this kind provide an essential benchmark,

but they are not so helpful from a quantitative perspective: they do not tell us by how much

a theoretically-implied distribution departs from a given distribution, whether hypothetical

or observed. In the remainder of the paper, we turn to explore the quantitative implications

24From a firm’s perspective, the translog is observationally equivalent to the almost ideal (AI) model of
Deaton and Muellbauer (1980).

25For parameter restrictions and other details, such as the form of ϕ0 (which differs in each case), see
Appendix G. Note that in some cases it is desirable to express the results in terms of sales relative to the
maximum level, ř ≡ r

r , just as with CREMR demands the markup distribution is most easily expressed in
terms of the relative markup m̌.

26For example, a lognormal distribution of productivity and LES demand imply a lognormal distribution
of markups, so providing microfoundations for an assumption made by Epifani and Gancia (2011).
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of our approach when applied to actual data sets. In particular, we quantify the differences

between the actual distributions in the data and a variety of distributions implied by different

theoretical models. To measure the “goodness of fit” of different models, we use the Kullback-

Leibler divergence (denoted “KLD” hereafter), introduced by Kullback and Leibler (1951).

We also present results for the QQ estimator as a robustness check.27 The next sub-section

sketches the theoretical properties of the KLD, while Section 6.3 shows how we operationalize

it. To fix ideas, we focus on explaining the distribution of firm sales. Adapting the framework

to explain the distribution of output, markups, or any other firm outcome, is straightforward.

6.2 The Kullback-Leibler Divergence

The KLD measures the “information loss” or “relative entropy” when one distribution, F ,

is used to approximate another, F̃ :

DKL(F̃ || F (.;θ)) ≡
∫ r

r

log

(
f̃(r)

f(r;θ)

)
f̃(r)dr (34)

In our context, the observed distribution F̃ (r) is the actual distribution of firm sales. As

for F (r;θ), it is the theory-consistent distribution of firm sales implied by the assumed

underlying distribution of firm productivities, combined with an assumed model of firm

behavior.

The KLD has a number of desirable features, the first two of which are well-known. First,

it has an axiomatic foundation in information theory: we give further details in Appendix

H.1. Second, it has an elegant statistical interpretation: it equals the expected value of

the inverse log-likelihood ratio, so choosing the parameter vector θ to minimize the KLD

27Other criteria could be used, though none is as satisfactory as the KLD. A first- or second-order stochastic
dominance criterion is not informative about the dissimilarity between the two firm size distributions if their
cumulative distributions intersect more than once. The Kolmogorov-Smirnov test privileges the maximum
deviation between the two cumulative distributions, and ignores information about the distributions at
other points. As for matching moments, this does not guarantee a close fit unless many moments are used.
Moreover, there is a specific problem with matching moments for the Pareto distribution. The t’th moment
exists if and only if the dispersion parameter k exceeds t; however, empirically, raw data often exhibit values
of k that are less than one, so even the mean does not exist.
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is asymptotically equivalent to maximizing the likelihood. Third, and new in this paper,

is that it links directly with Proposition 2: the KLD in our context can be decomposed to

show how it relates to the Revenue Elasticity of Marginal Revenue (REMR) E:

DKL(F̃ || F ) = log f̃(r)− log

[
g (ϕ(r))

dϕ

dr

∣∣∣∣
r

]
︸ ︷︷ ︸

(1)

+

∫ r

r

1− F̃ (r)

r

[{
rf̃ ′(r)

f̃(r)
+ 1

}
−
{
ϕg′(ϕ(r))

g(ϕ(r))
+ 1

}
E(r)︸ ︷︷ ︸

(2)

− rE ′(r)

E(r)︸ ︷︷ ︸
(3)

]
dr

(35)

Recall that Proposition 2 derived necessary and sufficient conditions for an exact match

between the distributions of two firm characteristics when both distributions belong to the

same member of the generalized power function family: the elasticity of one characteristic

with respect to the other should be constant, and its value should be consistent with the

parameters of the two distributions. Equation (35) goes further and quantifies the infor-

mation loss when the assumptions of Proposition 2 do not hold. In particular, it identifies

three distinct sources of information loss in matching a fitted distribution F (r) to an actual

distribution of firm sizes F̃ (r), as indicated by the numbered terms in the equation. First is

a failure to match the lower end-point of the distribution, r. Second is a mismatch at each

point in the range between the actual elasticity of density of the firm size distribution, rf̃ ′(r)

f̃(r)
,

and that predicted by the assumptions about the productivity distribution and the REMR,

ϕg′(ϕ(r))
g(ϕ(r))

E(r). Third is a failure to allow for variations in the REMR, E, itself; i.e., a failure

to allow for deviations from part (iii) of Proposition 2. Each of these three components can

be positive or negative, but their sum must be non-negative. Appendices H.2 and H.3 give

details and applications.
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6.3 Operationalizing the KLD

To compare the fit of predicted and actual distributions we use the discrete counterpart

of the continuous KLD introduced in Section 6.2. We choose the parameter vector θ to

minimize the KLD between the empirical c.d.f. F̃ (r) defined over the support [r, r̄], and the

theoretical c.d.f. F (r;θ). Considering the histogram corresponding to F̃ (r), defined over nb

bins with width equal to b, the KLD becomes:

DKL(F̃ || F (.;θ)) =
nb∑
i=1

(
F̃ (r + i ∗ b)− F̃ (r + (i− 1) ∗ b)

)
log
(
F̃ (r+i∗b)−F̃ (r+(i−1)∗b)
F (r+i∗b)−F (r+(i−1)∗b)

) (36)

We report below DKL(F̃ || F (.; θ̂)), where θ̂ is the parameter vector that minimizes DKL(F̃ ||

F (.;θ)).

In the next section, we set the number of bins equal to 1, 000. Fortunately, the ranking

of different models is not very sensitive to the number of bins considered. As the number of

bins increases without bound, our estimator is asymptotically equivalent to the maximum

likelihood estimator under the additional constraint that the empirical support of the distri-

bution is included in the one predicted by the theory.28 As for the units of measurement for

the KLD, information scientists typically present values in “bits” (log to base 2) or “nats”

(log to base e). Such units have little intuitive appeal in economics. Instead, we present

the values of the KLD normalized by the value implied by a uniform distribution of sales.29

This is an uninformative prior in the spirit of the Laplace principle of insufficient reason; it

is analogous to the “dartboard” approach to benchmarking the geographic concentration of

manufacturing industry of Ellison and Glaeser (1997), or the “balls and bins” approach to

benchmarking the world trade matrix of Armenter and Koren (2014). The value of the KLD

is unbounded, but a specification that gave a value greater than that implied by a uniform

28When the distribution is lognormal this difference is immaterial as the support consists of R+. This is
no longer the case when the distribution is Pareto.

29See (62) in Appendix H.1 for the explicit expression.
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distribution would be an satisfactory explanation of the data.

7 Fitting the Distributions of Sales and Markups

We turn to show the usefulness of our approach in general, and of CREMR demands in

particular, in fitting empirical distributions of both sales and markups. Section 7.1 introduces

the firm-level data on Indian sales and markups we use, following De Loecker, Goldberg,

Khandelwal, and Pavcnik (2016), and illustrates the results of using the KLD to compare the

goodness of fit of different assumptions about demand and the distribution of productivity.

Section 7.2 explores how robust are the results to dropping smaller observations. As a further

robustness check, Section 7.3 confirms that an alternative criterion for choosing between

distributions, the QQ estimator, gives qualitatively similar results to the KLD. Finally,

Appendix I gives a second application to French export data: these have the advantage of

being more comprehensive but the disadvantage of giving information only on sales and not

on markups.

7.1 Indian Sales and Markups

The data set we use has 2,457 firm-product observations on both sales and markups in In-

dian manufacturing for the year 2001. (See De Loecker, Goldberg, Khandelwal, and Pavcnik

(2016) for a detailed description of the data, which come from the Prowess data set collected

by the Centre for Monitoring the Indian Economy (CMIE).) The sales data are directly

observed, while the markup data are estimated, using the so-called “production approach”.

This approach relies solely on cost-minimization: markups are calculated by computing the

gap between the output elasticity with respect to variable inputs and the share of those in-

puts in total revenue. It is particularly well-suited to our purposes, since it does not impose

any restrictions on consumer demand, and it is consistent with a variety of market struc-

tures including monopolistic competition. Since the empirical markup distribution has been
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obtained without making any assumption about functional forms, we can therefore compare

the performance of different productivity distributions combined with different demand sys-

tems based on the distributions of sales and markups that they imply. The empirical markup

distribution was shown in Figure 1(a) above. Observations with negative markups (about

20% of the total) are not included in the sample, as they are inconsistent with steady-state

equilibrium behavior by firms. The remaining observations are demeaned by product-year

and firm-year fixed effects, so the sample mean equals one by construction.

CREMR Translog/AI LES Linear

A. Sales
Pareto 0.2253 0.1028 0.1837 0.1837
Lognormal 0.0140 0.5825 0.7266 0.7266

B. Markups
Pareto 0.1851 0.2205 0.2191 0.2512
Lognormal 0.1863 0.2228 0.2083 0.2075

Table 2: KLD for Indian Sales and Markups Compared with Predictions from
Selected Demand Functions and Productivity Distributions

KLD (Sales)

KLD
(Markups)

CREMR

TranslogTranslog

LES
LES

Linear

Linear

CREMR
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Figure 8: KLD for Indian Sales and Markups
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The KLD results are given in Table 2 and illustrated in Figure 8. In each case, we

choose parameter values for the specification in question that minimize the KLD: recall that

this is asymptotically equivalent to a maximum likelihood estimation of those parameters,

conditional on the specification. As already explained, the results are normalized by the

KLD for a uniform distribution. Bootstrapping confirms that the differences between them

are highly robust, except for that between the predictions of the LES and linear demands

for sales: as noted in Section 5.3 these are observationally equivalent. (Appendix J gives

details.)

The rankings of different specifications for sales are very different in the Pareto and log-

normal cases. Conditional on a Pareto distribution of productivities, CREMR demands give

the worst fit to sales, with translog demands performing best, and linear-LES intermediate

between the others. However, the differences between the KLD values for these specifications

are much less than those conditional on lognormal productivities. In this case CREMR does

best, with translog performing much less well and linear-LES worst of all.

Of most interest are the results for markups. Here CREMR demands clearly do best,

irrespective of the assumed distribution, with translog and LES performing at the same level,

and linear doing better under Pareto assumptions but less well in the lognormal case. A clear

implication of these results is that the choice between Pareto and lognormal distributions is

less important than the choice between CREMR and other demands.

7.2 Robustness to Truncation

The results for Indian sales data in the preceding sub-section are broadly similar to those

with French sales data in Appendix I, except for the case of CREMR demands combined with

Pareto productivity: this gives a good fit with French data but performs less well with Indian

data. One possible explanation for this is that the French data relate to exports, whereas

the Indian data are for total domestic production. Presumptively, smaller firms have been

selected out of the French data, so we might expect the Pareto assumption to be more
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appropriate. To throw light on this issue, we explore the robustness of the Indian results

to left-truncating the data: specifically, we repeat a number of the comparisons between

different specifications for the Indian sales distribution dropping one observation at a time.

KLD

Number of Observations Dropped

0.00

0.05

0.10

0.15

0.20

0.25

0 200 400 600 800

  Pareto + CREMR

  Lognormal + CREMR

Figure 9: CREMR vs. CREMR: KLD for Indian Sales

Figure 9 compares the KLD for the Pareto and lognormal, conditional on CREMR de-

mands, starting on the left-hand side with all observations (so the values are the same as

in Figure 8) and successively dropping up to 809 observations one at a time.30 Although

the curves are not precisely monotonic, the broad picture is clear: conditional on CREMR

demands, Pareto does better and lognormal does worse as more and more observations are

dropped. The Pareto specification dominates when we drop 663 or more observations: these

account for 27% of all firm-product observations, but only 1.2% of total sales.

Figure 10 shows that a similar pattern emerges when we compare the performance of

different demand functions in explaining the sales distribution, conditional on a Pareto dis-

tribution for productivity. (Note that the horizontal scale differs from that in Figure 9.)

30Each KLD value is normalized by the value of the KLD for a uniform distribution corresponding to the
number of observations used to calculate it; i.e., excluding the observations dropped. Alternative approaches
would make very little difference however, as the KLD value for the uniform varies very little, from 3.9403
with no observations dropped to 3.5598 with 809 observations dropped.
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Figure 10: CREMR vs. The Rest, Given Pareto: KLD for Indian Sales

In this case, the CREMR specification overtakes the linear one when we drop 11 or more

observations, which account for 0.44% of all firm-product observations, and only 0.0002%

of sales. As for the translog, CREMR overtakes it when we drop 118 or more observations,

which account for 4.80% of observations, and 0.03% of sales.

These findings confirm that the combination of CREMR demand and Pareto productivi-

ties fits the sales data relatively better when the smallest observations are dropped. They also

make precise the pattern observed in Figure 15 in Appendix I and in many other datasets,

whereby the Pareto assumption outperforms the lognormal in the right tail of the sales dis-

tribution. For example, Figure 9 shows that the relevant region in the right tail begins at

exactly 663 observations.

7.3 Robustness: The QQ Estimator

A different kind of robustness check is to consider an alternative criterion to the KLD for

comparing predicted and actual distributions. Here we consider the QQ estimator, devel-

oped by Kratz and Resnick (1996), and previously applied by Head, Mayer, and Thoenig
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(2014) and Nigai (2017). Unlike the KLD, this estimator does not have the same desirable

theoretical properties as the KLD: in particular, it does not have a maximum likelihood

interpretation. However, it is more intuitive, since the QQ distance measure is simply the

sum of the squared deviations of the quantiles of the predicted distribution from those of

the actual distribution:

QQ(F̃ || F (·;θ)) =
n∑
i=1

(log q̃i − log qi(θ))2 (37)

where q̃i = F̃−1(i/n) is the i’th quantile observed in the data, while qi(θ) = F−1(i/n;θ) is

the i’th quantile predicted by the theory. The QQ estimator θ̂ is defined as the parameter

vector that minimizes the sum of squares QQ(F̃ || F (·;θ)) in (37).

CREMR Translog LES Linear

A. Sales
Pareto 58.939 12.693 24.484 24.484
Lognormal 3.078 116.918 133.274 133.274

B. Markups
Pareto 0.113 0.978 1.133 3.606
Lognormal 0.110 0.990 0.340 0.325

Table 3: QQ Estimator for Indian Sales and Markups

To implement the QQ estimator we need analytic expressions for the quantiles under each

of the eight combinations of assumptions about demand and the distribution of productivity

we consider. These are given in Appendix K. We set the number of quantiles n equal to 100.

The resulting values of the QQ estimator for Indian sales and markups are given in Table 3,

and they are illustrated in Figure 11.

Comparing Table 3 with Table 2, and Figure 11 with Figure 8, it is evident that the

results based on the QQ estimator are qualitatively very similar to those for the KLD. In

particular, the Pareto assumption gives a better fit for sales than for markups, except in
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Figure 11: QQ Estimator for Indian Sales and Markups

the CREMR case; while the lognormal assumption tends to give a better fit for markups

than for sales. Comparing different demand functions, CREMR demands give a better

fit to the markup distribution than any other demands, irrespective of which productivity

distribution is assumed. As for sales, the results differ between the Pareto and lognormal

cases. Conditional on lognormal, CREMR again performs much better, whereas, conditional

on Pareto, it performs least well, with the translog doing best. The only qualitative difference

between the results using the two criteria is that with the QQ estimator the translog does

somewhat better than the LES in fitting the markup distribution. Overall, we can conclude

that the rankings given earlier are not unduly sensitive to our choice of criterion for comparing

actual and predicted distributions.

8 Conclusion

This paper has addressed the question of how to explain the distributions of firm size, firm

growth rates, and firm markups using models of heterogeneous firms. We provide a general

necessary and sufficient condition for consistency between arbitrary assumptions about the
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distributions of two firm characteristics and an arbitrary model of firm behavior which relates

those two characteristics at the level of an individual firm. In the specific context of Melitz-

type models of heterogeneous firms competing in monopolistic competition, we showed that

our condition implies a new demand function that generalizes the CES. The CREMR or

“Constant Revenue Elasticity of Marginal Revenue” family of demands is necessary and

sufficient for a Pareto or lognormal distribution of firm productivities to be consistent with

a similar distribution of firm sales. It also allows for variable markups in a parsimonious

way, and is necessary and sufficient for Gibrat’s Law to hold over time in monopolistic

competition.

In addition to exact results of this kind, we have used the Kullback-Leibler divergence

to compare the observed distributions of firm sales and firm markups with those predicted

by a range of assumptions about the distributions of productivity and the form of demand.

Applying our approach to a dataset of sales and markups for Indian firms, suggest that the

choice between Pareto and lognormal distributions is less important than the choice between

CREMR and other demands. CREMR demands do a particularly good job of explaining

markups, and also (conditional on lognormal productivity) give the best fit to sales. More-

over, as in many other data sets, the superior performance of a lognormal relative to a Pareto

distribution is sensitive to the presence of very small firms: only a relatively small number

of these (accounting for a very small proportion of total sales) needs to be excluded to make

the combination of Pareto productivity and CREMR demands the preferred explanation of

sales.

While we have concentrated on explaining the distributions of firm sales and markups

given assumptions about the distribution of firm productivity, it is clear that our approach

has many other potential applications. Linking observed heterogeneity of outcomes to un-

derlying heterogeneity of agents’ characteristics via an assumed model of agent behavior is

a common research strategy in many fields of economics. Both our exact results and our

approach to measuring the information cost of incorrect assumptions about behavior should
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prove useful in many other contexts.
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Appendices

A Proof of Proposition 1

To show that (1) and (3) imply (2), let F̃ (y) denote the distribution of y implied by (1) and

(3). Since v is strictly increasing from (3), we have y = v−1(x). Therefore the CDF of x is

F̃ [v−1(x)]. By Assumption 1, it has to coincide with G so:

F̃ [v−1(x)] = G(x) ∀x ∈ (x, x̄) (38)

Therefore, F̃ (y) = G[v(y)], which is the function assumed in (2), as was to be proved. A

similar proof shows that (2) and (3) imply (1).

Next, we wish to prove that (1) and (2) imply (3). We start by picking an arbitrary firm

i with characteristics x(i) and y(i). Because x(i) and y(i) are strictly increasing in i, the

fraction of firms with characteristics below x(i) and, respectively, y(i), are equal:

G[x(i)] = F [y(i)] ∀i ∈ Ω (39)

Inverting gives x(i) = G−1[F (y(i))]. Since this holds for any firm i ∈ Ω, it follows that

x = v(y) = G−1[F (y)], as required.

B Generalized Power Function Distributions

Table 4 shows that many well-known distributions are members of the Generalized Power

Function family, G (x;θ) = H
(
θ0 + θ1

θ2
xθ2
)

, introduced in Definition 1. Hence Proposition

2 can immediately be applied to deduce a constant-elasticity relationship between any two

firm characteristics which share any of the distributions in the table, provided the two

distributions have compatible supports, and the same value of the parameter θ0.
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G (x;θ) Support H (z) θ0 θ1 θ2

Pareto 1−
(
x
x

)−k
[x,∞) z 1 kxk −k

Truncated Pareto 1−xkx−k
1−xkx̄−k [x, x̄] z 1

1−xkx̄−k
kxk

1−xkx̄−k −k

Lognormal Φ
(

log x−µ
s

)
[0,∞) Φ [log (z)] 0 1

s exp
(
−µ
s

)
1
s

Uniform x−x
x̄−x [x, x̄] z − x

x̄−x
1

x̄−x 1

Fréchet exp
[
−
(x−µ

s

)−α]
[µ,∞) exp [−z−α] −µ

s
1
s 1

Gumbel exp
[
− exp

{
−
(x−µ

s

)}]
(−∞,∞) exp [− exp {−z}] −µ

s
1
s 1

Reversed Weibull exp
[
−
(µ−x

s

)α]
(−∞, µ] exp [−zα] µ

s −1
s 1

Table 4: Some Members of the Generalized Power Function Family of Distributions

A simple example of a distribution which is not a member of the GPF family is the

exponential: G (x;θ) = 1 − exp (−λx). This one-parameter distribution does not have the

flexibility to match either the sufficiency or the necessity part of Proposition 2. If x is

distributed as an exponential and x = x0y
E, then y is distributed as a Weibull: F (y;θ′) =

1 − exp(−λx0y
E). Whereas if both x and y are distributed as exponentials, then x = x0y,

i.e., E = 1. For similar reasons, the one-parameter version of the Fréchet (used in Eaton

and Kortum (2002)) is not a member of the GPF family, though as Table 4 shows, both

its two-parameter version (used in many applications of the Eaton-Kortum model) and the

three-parameter “Translated Fréchet” (with one of the parameters set equal to θ0) can be

written as members of the family.

C Proof of Proposition 2

To show that (1) and (3) imply (2), assume G (x;θ) = H
(
θ0 + θ1

θ2
xθ2
)

, Gx > 0, and x =

x0h(y)E. Then the implied distribution of y is:

F (y;θ) = H

[
θ0 +

θ1

θ2

{
x0h(y)E

}θ2]
= H

[
θ0 +

θ′1
θ′2
h(y)θ

′
2

]
(40)
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where: θ′2 = Eθ2 and
θ′1
θ′2

= θ1
θ2
xθ20 so θ′1 = θ1

θ2
θ′2x

θ2
0 = Eθ1x

θ2
0 . Thus (1) and (3) imply (2). A

similar proof shows that (2) and (3) imply (1).

Next, to show that (1) and (2) imply (3), assume G (x;θ) = H
(
θ0 + θ1

θ2
xθ2
)

, Gx >

0, and F (y;θ′) = H
(
θ0 +

θ′1
θ′3
h(y)θ

′
2

)
, Fy > 0. From part (ii) of Proposition 1, x =

G−1 [F (y;θ′) ;θ]. Inverting G (x;θ) gives θ0 + θ1
θ2
xθ2 = H−1 (G(x;θ)), which implies that:

x =
[
θ2
θ1
{H−1 (G(x;θ))− θ0}

] 1
θ2 . Now substitute F (y;θ′) for G(x;θ):

x =

[
θ2

θ1

{
H−1

(
H

(
θ0 +

θ′1
θ′3
h(y)θ

′
2

))
− θ0

}] 1
θ2

=

[
θ2

θ1

{(
θ0 +

θ′1
θ′2
h(y)θ

′
2

)
− θ0

}] 1
θ2

= x0h(y)E

(41)

where: E =
θ′2
θ2

and x0 =
(
θ2
θ1

θ′1
θ′3

) 1
θ2 =

(
1
E

θ′1
θ1

) 1
θ2 . Thus (1) and (2) imply (3).

D Properties of CREMR Demand Functions

First, we wish to show that the CREMR property ϕ = (r′)−1 = ϕ0r
E is necessary and

sufficient for the CREMR demands given in (4). To prove sufficiency, note that, from (4),

total and marginal revenue are:

r(x) ≡ xp(x) = β (x− γ)
σ−1
σ r′(x) = p(x) + xp′(x) = β

σ − 1

σ
(x− γ)−

1
σ (42)

Combining these gives:

r′(x) = β
σ
σ−1

σ−1

σ
r(x)−

1
σ−1 (43)

Hence, the revenue elasticity of marginal revenue is indeed constant, equal to 1
σ−1

. For later

use it is also useful to express these equations in terms of proportional changes (where a

circumflex denotes a logarithmic derivative, so r̂ ≡ dr
r
, r > 0):

r̂ = σ−1
σ

x
x−γ x̂

r̂′ = − 1
σ

x
x−γ x̂

 ⇒ r̂′ = − 1

σ − 1
r̂ (44)
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To prove necessity, invert equation (3) to obtain r′(x) = ϕ−1
0 r(x)−E. This is a standard

first-order differential equation in r(x) with constant coefficients. Its solution is:

r(x) =
[
(E + 1)

(
ϕ−1

0 x− κ
)] 1

E+1 (45)

where κ is a constant of integration. Collecting terms, recalling that r(x) = xp(x), gives the

CREMR demand system (4), where the coefficients are: σ = E+1
E

, β = (E+1)
1

E+1ϕ
− 1
E+1

0 , and

γ = ϕ0κ. Note that it is the constant κ which makes CREMR more general than CES. Since

the CREMR property ϕ = (r′)−1 = ϕ0r
E is both necessary and sufficient for the demands

given in (4), we call the latter CREMR demands.

Next, we wish to derive the demand manifold for CREMR demand functions. Mrázová

and Neary (2017) show that, for a firm with constant marginal cost facing an arbitrary

demand function, the elasticities of total and marginal revenue with respect to output can

be expressed in terms of the elasticity and convexity of demand. Combining their results

leads to an expression for the revenue elasticity of marginal revenue which holds for any

demand function:

r̂ = ε−1
ε
x̂

r̂′ = −2−ρ
ε−1

x̂

 ⇒ r̂′ = −ε(2− ρ)

(ε− 1)2
r̂ (46)

Equating the coefficient of r̂ to the corresponding coefficient in the CREMR case, (44), leads

to the CREMR demand manifold in the text, equation (5). Note that requiring marginal

revenue to be positive (ε > 1) and decreasing (ρ < 2) implies that σ > 1, just as in the

familiar CES case.

To establish conditions for demand to be superconvex, we solve for the points of intersec-

tion between the demand manifold and the CES locus, the boundary between the sub- and

superconvex regions. From Mrázová and Neary (2017), the expression for the CES locus is:
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ρ = ε+1
ε

. Eliminating ρ using the CREMR demand manifold (5) and factorizing gives:

ρ− ε+ 1

ε
= −(ε− σ)(ε− 1)

(σ − 1)ε
= 0 (47)

Given 1 < σ ≤ ∞, this expression is zero, and so every CREMR manifold intersects the

CES locus, at two points. One is at {ε, ρ} = {1, 2}, implying that all CREMR demand

manifolds must pass through the Cobb-Douglas point. The other is at {ε, ρ} = {σ, 1 + 1
σ
}.

Hence every CREMR demand manifold lies strictly within the superconvex region (where

ρ > ε+1
ε

) for σ > ε > 1, and strictly within the subconvex region for ε > σ. The condition for

superconvexity, ε ≤ σ, can be reexpressed in terms of γ by using the fact that the elasticity

of demand is ε = x−γ
x−γσσ. Substituting and recalling that σ must be strictly greater than

one, we find that CREMR demands are superconvex if and only if γ ≤ 0. As with many

other demand manifolds considered in Mrázová and Neary (2017), this implies that, for a

given value of σ, the demand manifold has two branches, one in the superconvex region

corresponding to negative values of γ, and the other in the subconvex region corresponding

to positive values of γ. Along each branch, the equilibrium point converges towards the CES

locus as output rises without bound, as shown by the arrows in Figure 4.

Similarly, to establish conditions for profits to be supermodular, we solve for the points

of intersection between the demand manifold and the SM locus, the boundary between the

sub- and supermodular regions. From Mrázová and Neary (2017), the expression for the SM

locus is: ρ = 3−ε. Eliminating ρ using the CREMR demand manifold and factorizing gives:

ρ+ ε− 3 =
[(σ − 2)ε+ 1](ε− 1)

(σ − 1)ε
= 0 (48)

Once again, this expression is zero at two points: the Cobb-Douglas point {ε, ρ} = {1, 2},

and the point {ε, ρ} = { 1
2−σ ,

5−3σ
2−σ }. The latter is in the admissible region only for σ < 2.

Hence for σ ≥ 2, the CREMR demand manifold is always in the supermodular region.
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E Proofs of Corollaries 1, 2, 3, and 4

Corollaries 1 and 2 (Productivity and Sales with Pareto or Lognormal):

Proposition 2 holds for any distribution in the generalized power function class. The

particular solutions for the constant terms in equations (6) and (7) are derived by substituting

the parameters of the Pareto and lognormal distributions into the relevant expressions in

Proposition 2. Finally, as discussed in the text, all members of the CREMR class with non-

zero γ (i.e., non-zero κ) are, strictly speaking, inconsistent with a lognormal distribution,

since they imply that the smallest firm has strictly positive sales revenue.

Corollaries 3 and 4 (Productivity and Output with Pareto or Lognormal):

In these cases, Proposition 2 implies that productivity must be a simple power function

of output: ϕ = ϕ0x
E. Replacing ϕ by r′(x)−1 as before yields a new differential equation in

r(x), with solution:

r(x) = ϕ−1
0

x1−E

1− E
+ κ (49)

where κ is once again a constant of integration. This is the CEMR demand system (8),

where σ = 1
E

and β = 1
ϕ0(1−E)

. The final step, as in the case of Corollaries 1 and 2, is to

solve for the constant terms when the distributions are either Pareto or lognormal.

F Gibrat’s Law in Industry Equilibrium

We wish to show that CREMR demands are necessary and sufficient for Gibrat’s Law to hold

under monopolistic competition following industry-wide productivity shocks. Consider a

monopolistically competitive industry with heterogeneous firms. The model is that of Melitz

(2003), extended to allow for demands other than CES, following Zhelobodko, Kokovin,

Parenti, and Thisse (2012), Bertoletti and Epifani (2014), and Mrázová and Neary (2017).

Firms have a common fixed cost f , but differ in their productivity, ϕ. Each firm produces a
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unique good, and chooses its level of output y to maximize profits:

π(ϕ, λ, τ) = max
y

[{
p(y, λ)− τϕ−1

}
y − f

]
(50)

Here, p(y, λ) is the inverse demand function faced by all firms, which depends negatively

on their output level y and on λ, a common demand parameter that is exogenous to firms

but endogenous to the industry. From each firm’s perspective, λ is a measure of intensity

of competition; we assume that preferences are additively separable, so from the consumer’s

perspective it equals the marginal utility of income.31 Finally, τ is a uniform cost shock that

is common to all firms.

Firm’s productivities are drawn from a distribution G (ϕ) with support on [ϕ,∞]. A

potential entrant bases its entry decision on the value v(ϕ, λ, τ) that it expects to earn; firm

value cannot be negative, so it is zero for firms that get a low-productivity draw and equals

operating profits less fixed costs otherwise. Equilibrium requires that the expected value of

a firm, v̄(λ, τ), equal the sunk cost of entering the industry fe:

v̄(λ, τ) ≡
∫ ∞

ϕ

v(ϕ, λ, τ)g(ϕ) dϕ = fe, where v(ϕ, λ, τ) ≡ max [0, π(ϕ, λ, τ)− f ] (51)

This zero-expected-profit condition determines the equilibrium value of the intensity of com-

petition λ as a function of the cost parameter τ .

We are now ready to explore conditions for Gibrat’s Law to hold following a uniform

exogenous chock to the productivity of all firms: τ̂ < 0. Writing the sales revenue of a firm

of type ϕ as r(ϕ) = p(ϕ)y(ϕ), the growth rate of sales following a uniform productivity shock

is: g(ϕ) ≡ − τ
r(ϕ)

dr(ϕ)
dτ

. Hence Gibrat’s Law obtains when g(ϕ) is independent of ϕ: dg(ϕ)
dϕ

= 0.

We first consider the effects of the shock on each firm’s price and output, taking account

31This specification of demand is consistent with other preference systems. The assumption that λ is a
scalar implies that the demand functions are members of the generalized separability class of Pollak (1972)
already mentioned above; this includes additive separability as well as many other widely-used demand
systems.
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of the fact that λ is endogenous. Starting with the household’s first-order condition, p(y, λ) =

λ−1u′( y
kL

), we totally differentiate to get the proportional change in prices:

p̂ = −1

ε
ŷ − λ̂ (52)

Hence the change in sales revenue is:

r̂(ϕ) = p̂(ϕ) + ŷ(ϕ) =
ε− 1

ε
ŷ (ϕ)− λ̂ (53)

Next we totally differentiate the firm’s first-order condition, p(y, λ) + ypy(y, λ) = τϕ−1, to

get the proportional change in outputs:

ŷ = −ε− 1

2− ρ
(τ̂ + λ̂) (54)

Next we totally differentiate the zero-expected-profit condition (51) to get the change in the

intensity of competition:

λ̂ = − ε̄− 1

ε̄
τ̂ (55)

Following Mrázová and Neary (2017), ε̄ is the profit-weighted average elasticity of demand

across all firms (including those that choose not to enter), which we can interpret as the

elasticity faced by the average firm:

ε̄ ≡
∫ ∞

ϕ

v(ϕ, λ, τ)

v̄(λ, τ)
ε(ϕ)g(ϕ) dϕ (56)

Finally, substituting from (54) and (55) for the changes in y and λ into equation (53), we

can calculate the growth rate of a firm with productivity ϕ following a uniform cost shock

(τ̂ < 0):

g(ϕ) ≡ − r̂(ϕ)

τ̂
=

(ε− 1)2

ε(2− ρ)︸ ︷︷ ︸
(A)

1

ε̄
− ε̄− 1

ε̄︸ ︷︷ ︸
(B)

(57)
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To establish whether Gibrat’s Law holds, we need to establish when (57) is independent

of ϕ. Clearly the terms indicated by (B) cannot offset the Law irrespective of the form of

demand: they are not constant, and will in general be affected by changes in τ , but they are

the same for all firms. Hence, differences in growth rates across firms can only arise from

differences in (A). It follows that a necessary and sufficient condition for Gibrat’s Law in

this setting is that (A) is constant across firms. This term, (ε−1)2

ε(2−ρ)
, is the elasticity of revenue

with respect to productivity. It is clearly the inverse of ε(2−ρ)
(ε−1)2

, which as we have already

seen in (46) is the elasticity of marginal revenue with respect to total revenue. We have also

seen that this term is constant if and only if demands are CREMR, in which case it equals

1
σ−1

. (See Section 3, and equations (44) and (46) in Appendix D.) Hence we have shown

that dg(ϕ)
dτ

= 0, i.e., Gibrat’s Law holds following an industry-wide shock in monopolistic

competition, if and only if demands are CREMR.

G Derivations Underlying Table 1

As in Mrázová and Neary (2017), we give the demand functions from a “firm’s-eye view”;

many of the parameters taken as given by the firm are endogenous in industry and general

equilibrium. For each demand function, we follow a similar approach to that used with

CREMR demands in Sections 3.1 and 5.2: we use the first-order condition to solve for

productivity as a function of either output or price; the definition of sales revenue to solve for

output or price as a function of sales; and the relationship between markups and elasticities

to solve for either output or price as a function of the markup. Combining yields ϕ(r) and

ϕ(m) as required.

Linear: p(x) = α − βx, α > 0, β > 0. Sales revenue is quadratic in output, r(x) =

αx−βx2, but only the root corresponding to positive marginal revenue, r′(x) = α−2βx > 0,

is admissible. Since maximum output is x = α
2β

, maximum sales revenue is r = α2

4β
, and we

work with sales relative to their maximum: ř ≡ r
r
. Hence output as a function of relative sales
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is: x(ř) = α
2β

[
1− (1− ř) 1

2

]
. Equating marginal revenue to marginal cost gives ϕ(x) = 1

α−2βx
.

Finally, the elasticity of demand is ε(x) = α−βx
βx

, so the markup as a function of output is

m(x) = α−βx
α−2βx

. We do not work with the relative markup in this case, since m(x) → ∞ as

x→ x. Inverting m(x) gives x(m) = α
β

m−1
2m−1

.

LES: p(x) = δ
x+γ

, γ > 0, δ > 0. We use the inverse demand function rather than the more

familiar direct one: x(p) = δ
p
− γ. Note that, in monopolistic competition, the second-order

condition requires that γ be positive, so its usual interpretation as (minus) a subsistence

level of consumption is not admissible. Sales revenue is r(x) = δx
x+γ

, attaining its maximum

at r = δ, so we work with relative sales: ř ≡ r
r

= x
x+γ

. Inverting gives: x(ř) = γ ř
1−ř . The

first-order condition yields: ϕ(x) = (x+γ)2

γδ
. Finally, the elasticity of demand is ε(x) = x+γ

x
,

so the markup as a function of output is m(x) = x+γ
γ

; inverting gives x(m) = γ(m− 1).

Translog: x(p) = 1
p

(γ − η log p), γ > 0, η > 0. From the direct demand function,

sales revenue as a function of price is r(p) = γ − η log p, which when inverted gives p(r) =

exp
(
γ−r
η

)
. From the first-order condition, ϕ(p) = x′(p)

r′(p)
= η+γ−η log p

ηp
. Combining this with

p(r) gives the expression for ϕ(r) in Table 1, with: ϕ0 = 1

exp( γη )
. Finally, the elasticity

of demand is ε(p) = η+γ−η log p
γ−η log p

, so the markup as a function of price is m(p) = η+γ−η log p
η

;

inverting gives p(m) = exp
(
η+γ
η
−m

)
.

H The Kullback-Leibler Divergence

H.1 Information-Theoretic Foundations of the KLD

The starting point of information theory is an axiomatic basis for a quantitative measure

of the information content of a single draw from a known distribution F (r).32 It is natural

32See Cover and Thomas (2012) for an introduction to information theory. Previous applications of
Shannon entropy to economics include the work on inequality by Theil (1967), and the theory of rational
inattention developed by Sims (2003), and applied to international trade by Dasgupta and Mondria (2018).
Applications of the KLD to economics include Vuong (1989), Cameron and Windmeijer (1997) and Ullah
(2002) in econometrics, Adams (2013) in empirical demand analysis, and Galle, Rodŕıguez-Clare, and Yi
(2017) in international trade.
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that a measure of information should be additive, non-negative, and inversely related to the

probability of the draw. The only function satisfying these requirements is minus the log

of the probability: I(r) = − log(f(r)).33 This in turn leads to the concept of the Shannon

entropy of F (r), which is the expected value of information from a single draw:34

SF ≡ E[I(r)] = −
∫ r

r

log (f(r)) f(r)dr (58)

(See Shannon (1948).) Intuitively, Shannon entropy can be thought of as a measure of the

unpredictability or uncertainty about an individual draw implied by the known distribution

F (r). In general it ranges from zero to infinity. It equals zero when F (r) is a Dirac distribu-

tion with all its mass concentrated at a single point: in this case, knowing the distribution

tells us everything about individual draws, so an extra draw conveys no new information.

By contrast, Shannon entropy can be arbitrarily large when F (r) is a uniform distribution:

F (r) =
r − r
r − r

, r ∈ [r, r] ⇒ SF = SUniform = log(r − r) (59)

In this case, knowing the distribution conveys no information whatsoever about individual

draws, so, as the upper bound r becomes arbitrarily large, the same happens to Shannon

entropy.

While Shannon entropy measures the expected information gain conveyed by a draw from

a single distribution, the KLD measures the information loss when one distribution is used

to approximate another one, typically the one observed in the data. Formally, if F̃ (r) is the

observed c.d.f. of firms’ sales, and F (r) is the model-based c.d.f. used to approximate F̃ (r),

33In information theory it is customary to take all logarithms to base 2, so information is measured in
bits. For some theoretical results it is more convenient to use natural logarithms, though most results hold
irrespective of the logarithmic base used.

34Shannon entropy was first introduced for discrete distributions. The application to continuous distribu-
tions is also called “differential entropy”.
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then the KLD is defined as follows:

DKL
(
F̃ || F

)
≡
∫ r

r

log

(
f̃(r)

f(r)

)
f̃(r)dr (60)

To get some intuition for the KLD, it is helpful to rewrite it as follows:

DKL
(
F̃ || F

)
= −

∫ r

r

log (f(r)) f̃(r)dr − SF̃ (61)

The first term on the right-hand side of (61) measures the cross-entropy between F̃ (r) and

F (r). Intuitively, this is a measure of the unpredictability of an individual draw from the

benchmark distribution F̃ (r) implied by the tested distribution F (r). Equation (61) thus

shows that the KLD equals the difference between the cross-entropy and Shannon entropy.

Heuristically, it can be interpreted as the “excess” unpredictability of F̃ (r) implied by F (r)

relative to the unpredictability of F̃ (r) implied by itself; or as the informativeness of a

draw from F (r) relative to one from F̃ (r). The KLD also has a statistical interpretation:

it equals the expected value of the log likelihood ratio, so choosing the parameters of a

distribution to minimize KLD is equivalent to maximizing the likelihood of the sample. By

Gibbs’ inequality, the KLD is always non-negative, DKL
(
F̃ || F

)
≥ 0, and attains its lower

bound of zero if and only if F (r) = F̃ (r) almost everywhere, when the distribution F (r) is

completely informative about F̃ (r). As for its upper bound, the KLD value is unbounded

unlike Shannon entropy. However, as discussed in the text, we take its value when F is

uniform as a benchmark for a “reasonable” fit. This is given by:

DKL
(
F̃ || FUniform

)
= log(r − r)− SF̃ = SUniform − SF̃ (62)

where the second equality follows from (60).

A number of qualifications need to be kept in mind when we use the KLD as a measure

of the “closeness” of two distributions. First, the KLD is not symmetric with respect to
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both distributions: DKL
(
F̃ || F

)
6= DKL

(
F || F̃

)
. Formally, the KLD is a pre-metric, not

a metric, and it does not satisfy the triangle inequality. In our application, this does not

pose a problem, since it is natural to take the actual firm size distribution as a benchmark,

whether it comes from theory or from empirical observation. The role of the KLD is then to

quantify how well different candidate methods of calculating a distribution F (r) approximate

the “true” distribution F̃ (r): it measures the divergence of F (r) from F̃ (r), not the distance

between them.

Second, for the KLD to be well defined, the tested distribution F (r) must have a strictly

positive density, f(r) > 0, at every point in [r, r].35 In principle, this can pose problems when

we wish to compare a distribution implied by a demand function (such as the linear) that

implies a saturation consumption level with an unbounded distribution such as the Pareto

or lognormal. This is not a problem in practical applications, however, since we can always

calibrate demand to fit the upper limit of the observed values of F̃ (r). Even in theoretical

contexts, it is an advantage rather than a disadvantage in our context, since it leads us to

consider right-truncated distributions. This is a particularly desirable direction to explore

in the light of Feenstra (2018), who shows that, without truncation, a Pareto distribution

does not allow us to distinguish between the product-variety and pro-competitive gains from

trade.

Third, the KLD, like Shannon entropy, attaches the same weight to all observations. In a

heterogeneous-firms context, we may be more interested in explaining the behavior of large

firms, which account for a disproportionate share of total production and exports. One way

of implementing this would be to calculate a “weighted KLD”, where higher weights are

attached to larger firms.36 A more direct approach is to see how the KLD behaves as we

35The converse is not needed, since by convention limf(r)→0 f(r) log (f(r)) = 0.
36For a discrete version of such a measure, called a “quantitative-qualitative measure of relative infor-

mation,” see Taneja and Tuteja (1984) and Kv̊alseth (1991). A more satisfactory alternative is the gen-
eralization of KLD known as the Rényi divergence of order α, α ≥ 0 (see Rényi (1959)): Dα

(
F̃ || F

)
≡

1
α−1 log

( ∫ r
r

f(r)α

f̃(r)α−1
dr
)
. The KLD is the limiting case of this as α → 1: D1

(
F̃ || F

)
= DKL

(
F̃ || F

)
. For

values of α between zero and one, the Rényi divergence weights all possible draws more equally than the
KLD, regardless of their probability.
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drop more observations on smaller firms: we pursue this in Section 7.2.

H.2 Decomposing the KLD

Because our main focus is on comparing an observed distribution with one predicted by

a model, it is helpful to relate the KLD to the elasticities of density of the two underlying

distributions. To do this we use integration by parts. First, rewrite the definition of Shannon

entropy in (58) as
∫ r
r
udv, where u ≡ log f (r), so du = f ′(r)

f(r)
dr, and dv ≡ f (r) dr, so

v = F (r) + C, where C is an arbitrary constant of integration. Integrate by parts:

SF = − (1 + C) log f (r) + C log f (r) +

∫ r

r

F (r) + C

r

rf ′(r)

f(r)
dr (63)

Setting C equal to −1 gives:

SF = − log f (r)−
∫ r

r

1− F (r)

r

rf ′ (r)

f (r)
dr (64)

This shows that Shannon entropy can be decomposed into two terms. The first is the infor-

mation content of the lower limit of the distribution, i.e., in our application, the information

content of the marginal firms. The second equals the integral of the elasticity of the density,

rf ′(r)
f(r)

, times the relative survival function, 1−F (r)
r

. The latter is declining in sales, so, when

written in this way, Shannon entropy attaches more weight to the elasticities of density of

larger firms.37 If instead we set C in (63) equal to zero rather than one, we get an alternative

decomposition expressed in terms of the upper bound:

SF = − log f (r) +

∫ r

r

F (r)

r

rf ′ (r)

f (r)
dr (65)

37The rate at which the relative survival function declines is one plus the proportional hazard rate:

d log
[

1−F (r)
r

]
= −

(
1 + rf

1−F

)
d log r.
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Now the first term is the information content of the upper limit of the distribution. However,

this is less useful than (64) for our purposes, since, for many distributions, including the

Pareto and the lognormal, log f(r) = −∞.

Repeating this process for the KLD gives in a similar fashion two alternative decompo-

sitions, one expressed in terms of the lower bounds of the distribution:

DKL
(
F̃ || F

)
= log f̃ (r)− log f (r) +

∫ r

r

1− F̃ (r)

r

[
rf̃ ′ (r)

f̃ (r)
− rf ′ (r)

f (r)

]
dr (66)

and the other in terms of the upper bounds:

DKL
(
F̃ || F

)
= log f̃ (r)− log f (r)−

∫ r

r

F̃ (r)

r

[
rf̃ ′ (r)

f (r)
− rf ′ (r)

f (r)

]
dr (67)

Again we concentrate on the first of these, which, as before, can be decomposed into two

terms. The first is the difference between the information contents of the lower limits of the

two distributions. The second equals the integral of the difference between their elasticities

of density, times the relative survival function, 1−F̃ (r)
r

. Recalling that the latter is declining in

sales shows that the KLD attaches less weight to underestimates of the elasticity of density

of larger firms.

The decomposition of the KLD in (66) proves particularly insightful when the predicted

size distribution is derived from an underlying model of firm behavior. As in Section 3, this

comes from a distribution of firm productivity g(ϕ) and a model that links productivity to

sales via a function ϕ(r). From the standard result on densities of transformed variables

(part (i) of Proposition 1), we can relate the density of the derived distribution of sales to

the density of the underlying distribution of firm productivity: f(r) = g(ϕ(r))dϕ
dr

. Totally

differentiating this gives an expression in terms of elasticities:

rf ′(r)

f(r)
=
ϕ(r)g′(ϕ(r))

g(ϕ(r))

rϕ′(r)

ϕ(r)
+
rϕ′′(r)

ϕ′(r)
(68)
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We can relate the second term to the elasticity of marginal revenue with respect to total

revenue, E(r) ≡ rϕ′(r)
ϕ(r)

:

rϕ′′(r)

ϕ′(r)
= E(r)− 1 +

rE ′(r)

E(r)
(69)

(See Lemma 5 in Mrázová and Neary (2017).) Substituting into (68), the density elasticity

of the derived sales distribution F (r) can be written in terms of underlying elasticities as

follows:

rf ′(r)

f(r)
=

[
ϕ(r)g′(ϕ(r))

g(ϕ(r))
+ 1

]
E(r)− 1 +

rE ′(r)

E(r)
(70)

Substituting this into (66) gives the full decomposition of the KLD in equation (35) in the

text. When G(ϕ) is Pareto, so G(ϕ) = 1−
(
ϕ
ϕ

)−k
, the elasticity of density is ϕg′(ϕ)

g(ϕ)
= −(1+k).

Hence (70) simplifies to the following:

rf ′(r)

f(r)
= −[kE(r) + 1] +

rE ′(r)

E(r)
(71)

H.3 Quantifying the Information Cost of Incorrect Assumptions

To illustrate the application of the KLD decomposition in equation (35), we show its impli-

cations in the benchmark case where both productivity and sales have a Pareto distribution,

and demands are of the CREMR type. This eliminates the third source of information loss

in (35), since E ′ = 0. However, this does not mean that a perfect calibration is guaranteed,

as we shall see.

When F̃ and F are both Pareto with parameters ñ and n respectively, the KLD can be

calculated from equation (66):

DKL(F̃ || F ) = log
ñ

n
+
n

ñ
− 1 (72)

To relate this to primitive parameters, recall from Section 3 that with CREMR demands the

elasticity of marginal revenue with respect to total revenue, E, equals 1
σ−1

, and so, with a
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Figure 12: KLD as a Function of σ in the Pareto-CREMR Case

Pareto distribution of productivity, the shape parameter for the derived distribution of sales

is n = Ek = k
σ−1

. Substituting into (72) gives the KLD decomposition, equation (35), in the

Pareto-CREMR case:

DKL(F̃ || F ) = log
ñ

k
+ log(σ − 1)︸ ︷︷ ︸

(1)

+
k

ñ

1

σ − 1
− 1︸ ︷︷ ︸

(2)

(73)

The first derivative of this with respect to σ is: dDKL
dσ

= (σ−1)−1
(
1− n

ñ

)
= (σ−1)−2

(
σ − k+ñ

ñ

)
.

This is positive, and so DKL is increasing, if and only if σ ≥ k+ñ
ñ

. The second derivative

is: d2DKL
dσ2 = −(σ − 1)−2

(
1− 2n

ñ

)
= −(σ − 1)−3

(
σ − 2k+ñ

ñ

)
. This is negative, and so DKL is

concave, if and only if σ ≥ 2k+ñ
ñ

. Equation (73) is illustrated in Figure 12 as a function of

σ, drawn for values of k = 1 and ñ = 2.

Figure 12 shows clearly that the information cost of using the “wrong” estimate of σ

is highly asymmetric. For given values of k and ñ, the true value of σ equals k+ñ
ñ

. (Recall

equation (6).) Given the assumed values of k and ñ, this equals 1.5, which is the value of σ at

which the KLD is minimized. For other values, it is much more sensitive to underestimates

than to overestimates of the true value of σ. Why this is so is shown from two different

perspectives in Figure 13. Panel (a) shows the two numbered components of the KLD

from (73), while panel (b) shows how a higher assumed value of σ affects the location of
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Figure 13: Decomposition of KLD in the Pareto-CREMR Case

the predicted distribution relative to that of the true distribution corresponding to σ =

1.5. Clearly, underestimating σ means overestimating the mass of the smallest firms and

underestimating the mass of the larger firms. From (73), the cost of the former is increasing

in the log of σ − 1, whereas the cost of the latter is falling in the reciprocal of σ − 1. For

values of σ below 1.5, the second effect dominates: because the Pareto has an infinite tail, it

is more important to fit the larger firms than the smaller ones. This is clear from panel (b),

while the numerical values of the components of the KLD in panel (a) show explicitly how

the gains and losses in information that come from an increase in σ are traded off against

each other.

A further implication of equation (73) is that, with Pareto productivity and CREMR

demands, the KLD depends on only one of the three parameters in the CREMR demand

function. Figure 12 applies equally well to the CES case (where the CREMR parameter γ

is zero) as it does to any other member of the CREMR class. This suggests a further role

for the CREMR family in calibrations. To calibrate the size distribution of firms, the only

demand parameter that is needed is σ. Hence the values of the other parameters β and γ can

be chosen to match other features of the data: γ to match the size distribution of markups

across firms, and β to match the level of demand.
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Figure 14: Components of KLD in the Truncated-Pareto-CREMR Case

It is also illuminating to see how the KLD extends to the case of CREMR demands

combined with productivity and observed sales distributions that are right-truncated Paretos,

F (r) = 1−rnr−n
1−rnr−n and F̃ (r) = 1−rñr−ñ

1−rñr−ñ , where r ∈ [r, r]. In the untruncated Pareto case, the

KLD was independent of the lower bound of the Pareto r. This is no longer true, though it

depends only on the ratio of the lower and upper bounds: λ ≡ r
r
∈ [0, 1]. (This reduces to

zero in the untruncated case.) Straightforward calculations give the extension of equation

(72) to the truncated case:

DKL(F̃ || F ) = log
ñ

n
+ log

1− λn

1− λñ
+
n− ñ
ñ

+ (n− ñ)
λñ

1− λñ
log λ (74)

Replacing some, though not all, occurrences of n by k
σ−1

allows us to write this in terms of

primitives in a manner which parallels equation (73):

DKL(F̃ || F ) = log
ñ

k
+ log(σ − 1) + log

1− λn

1− λñ︸ ︷︷ ︸
(1)

+
k

ñ

1

σ − 1
− 1 + (n− ñ)

λñ

1− λñ
log λ︸ ︷︷ ︸

(2)

(75)

This is illustrated in Figure 14 as a function of σ. The dashed loci repeat the KLD and its

components for the untruncated case from Figure 13(a). The solid loci give the KLD and

its components for the truncated case, assuming the same values of k and ñ as before and
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a value of λ = 0.1. It is clear that right-truncation makes almost no quantitative difference

to the cost of underestimating σ. The main effect is to reduce the cost of mismeasuring the

mass of the smallest firms when σ is overestimated.

I French Exports to Germany

The Indian data used in Section 7 have the great advantage that they give both sales and

markups for all firms. This is important, for example, in allowing us to discriminate between

CES and CREMR, whose implications for sales are observationally equivalent. However,

relative to many data sets used in recent trade applications, they refer to total sales rather

than exports and they cover a relatively small number of firms. Hence it is useful to repeat

the analysis on a more conventional data set on export sales, even if this does not give

information on markups. We do this in this section, using data on the universe of French

exports to Germany in 2005, drawn from the same source as that used by Head, Mayer, and

Thoenig (2014).38

(a) A First Look: Obviously Pareto?

(1) (2) (3)

(b) A Second Look: Obviously Lognormal?

Figure 15: Alternative Perspectives on the Data

Figure 15 shows that the export sales data exhibit some typical features of such data

38The data set contains 161,191 firm-product observations on export sales by 27,550 firms: 5.85 products
per firm. We are very grateful to Julien Martin for performing the analysis for us on French Customs data.
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sets. When we plot a histogram with the log frequency on the vertical axis and actual sales

on the horizontal, as in Panel (a), the long tail is clearly in evidence, and it seems plausible

that the data are generated by a Pareto distribution. However, the first bin contains over

half the firms, which is brought out more clearly when we plot the actual frequency on

the vertical axis and log sales on the horizontal, as in Panel (b). Now the data seem self-

evidently lognormal. Yet a third perspective comes from the vertical lines in Panel (b). The

line labeled (1) is at median sales, with 50% of firms to the left, but these account for only

0.1% of sales; the line labeled (2) is at 76.7% of firms, but these account for only 1.0% of

sales; finally, the line labeled (3) is at 99.6% of firms, which account for only 50% of sales.

Thus, we might reasonably conclude that the data are Pareto where it matters, with the top

firms dominating.

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
9

(a) All Observations

0 1 2 3 4 5 6

x 10
7

(b) All Bar Top 89 Observations

Figure 16: KLD-Minimizing Predicted Distributions: Pareto (green) and Lognormal (red)

These subjective considerations provide a poor basis for discriminating between rival

views of the best underlying distribution, and justify our turning to use the KLD as a more

objective indicator of how well different assumptions fit the data. Figure 16 compares the

best-fit Pareto (in green) and lognormal (in red). From Section 3, each of these amounts

to assuming that demand is CREMR, and that the underlying productivity distribution is

either Pareto or lognormal. (Recall from our discussion in the text that the distribution and
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demand parameters are not separately identified.) Panel (a) illustrates the results for all

firms, while panel (b) avoids the distorted perspective caused by including the largest firms,

by omitting the top 89 firms, which account for 0.05% of observations but 32% of sales.

Inspecting the fitted distributions, it is evident that the lognormal matches the smaller firms

better, and conversely for the Pareto. The values of the minimized KLD show that the

lognormal provides a better overall fit than the Pareto: 0.0001 as opposed to 0.0012. (As

with the Indian data in Section 7, the data are normalized by the value of the KLD for a

uniform distribution, which for this data set is 6.8082.)

CREMR/CES Translog/AI Linear and LES

Pareto 0.0012 0.3819 0.4711
Lognormal 0.0001 0.7315 0.8314

Table 5: KLD for French Exports Compared with Predictions from
Selected Demand Functions and Productivity Distributions

Table 5 gives the values of the KLD for the Pareto and lognormal cases shown in Fig-

ure 16, and also for the distributions implied by either translog or linear demand functions

combined with either Pareto or lognormal productivities. These distributions are calculated

by combining the relevant productivity distribution with the relationships between produc-

tivity and sales implied by translog and linear demands from Table 1. (Recall from that

table that the linear and LES specifications are observationally equivalent.) Each entry in

the table is the value of the KLD that measures the information loss when the combination

of assumptions indicated by the row and column is used to explain the observed distribution

of sales.

To assess whether the values are significantly different from one another, we use a boot-

strapping approach. We construct one thousand samples of the same size as the data (i.e.,

161,191 observations), by sampling with replacement from the original data. For each sam-

ple, we then compute the KLD value for each of the six models. Table 6 gives the results.

Each entry in the table is the proportion of samples in which the combination in the relevant
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column gives a higher value of the KLD than that in the relevant row. All the values are

equal to or very close to 100%, which confirms that the results in Table 5 are robust.

CREMR + LN CREMR + P TLog + P Lin + P TLog + LN Lin + LN

CREMR + LN – 0% 0% 0% 0% 0%
CREMR + P 100% – 0% 0% 0% 0%

TLog + P 100% 100% – 0% 0% 0%
Lin + P 100% 100% 100% – 0% 0%

TLog + LN 100% 100% 100% 100% – 0.3%
Lin + LN 100% 100% 100% 100% 99.7% –

Table 6: Bootstrapped Robustness of the KLD Ranking: French Sales
(See text for explanation)

Turning to the results in Table 5, recall that panel (a) of Figure 16 showed that the

lognormal matches the smaller firms better, and conversely for the Pareto. Table 5 provides a

quantitative confirmation of this. With a preponderance of the bins corresponding to smaller

firms, it is not surprising that the lognormal does better as measured by the KLD. However,

the difference between distributions turns out to be much less significant than that between

different specifications of demand. The KLD values for the translog/AI and linear/LES

specifications are much higher than for the CREMR case, as shown in the third and fourth

columns of Table 5, with the Pareto now preferred to the lognormal. The overwhelming

conclusion from these results is that, if we want to fit the distribution of sales in this data

set, then the choice between Pareto and lognormal distributions is less important than the

choice between CREMR and other demands. This is broadly in line with the results for

Indian sales data in Section 7, especially when we exclude the smallest firms as in Section

7.2.

J Bootstrapped Comparisons on Indian Data

Tables 7 and 8 repeat for Indian sales and markup data respectively the bootstrapping

comparisons presented for French exports data in Table 6. It is clear that the comparisons
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between different values of the KLD for Indian data shown in Table 2 and Figure 8 in the

text are just as robust as those for the French data shown in Table 5.

CREMR + LN CREMR + P TLog + P Lin + P TLog + LN Lin + LN

CREMR + LN – 0% 0% 0% 0% 0%
CREMR + P 100% – 0% 0% 0% 0%

TLog + P 100% 100% – 0% 0% 0%
Lin + P 100% 100% 100% – 0% 0%

TLog + LN 100% 100% 100% 100% – 0%
Lin + LN 100% 100% 100% 100% 100% –

Table 7: Bootstrapped Robustness of the KLD Ranking: Indian Sales
(See text for explanation)

CREMR + P CREMR + LN Lin + LN LES + LN LES + P TLog + P TLog + LN Lin + P

CREMR + P – 2% 0% 0% 0% 0% 0% 0%
CREMR + LN 98% – 0% 0% 0% 0% 0% 0%

Lin + LN 100% 100% – 0% 0% 0% 0% 0%
LES + LN 100% 100% 100% – 0% 0% 0% 0%
LES + P 100% 100% 100% 100% – 16% 6% 0%
TLog + P 100% 100% 100% 100% 84% – 0% 0%

TLog + LN 100% 100% 100% 100% 94% 100% – 0%
Lin + P 100% 100% 100% 100% 100% 100% 100% –

Table 8: Bootstrapped Robustness of the KLD Ranking: Indian Markups
(See text for explanation)

K Quantiles for the QQ Estimator

Tables 9 and 10 give the expressions for the quantiles of the sales and markup distributions

respectively that are implied by our assumptions about demand and the distribution of firm

productivities. These expressions are used to calculate the entries in Figure 11.
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Demand Pareto P(ϕ, k) lognormal LN (µ, s)

CREMR r (1− y)−
σ−1
k exp

(
µ+ s · Φ−1 [y]

)
Translog η ·

(
W
[
e · (1− y)−

1
k

]
− 1
)

η ·
(
W
[
exp

(
γ
η + 1 + s · Φ−1 [y] + µ

)]
− 1
)

Linear/LES r̄
(

1− (1− y)
1
2k

)
r̄ − exp(−2(µ+s·Φ−1[y]))

4β

Table 9: Quantiles for Sales

Φ[z]: c.d.f. of a standard normal
W: The Lambert function

Demand Pareto P(ϕ, k) lognormal LN (µ, s)

CREMR m̄·(1−y)−
1
k

m̄−1+(1−y)−
1
k

m̄
[
1 + exp

(
−µ− s · ζ

[
y; 1

s ·
(

log
(

1
m̄−1

)
− µ

)])]−1

Translog W
[
e · (1− y)−

1
k

]
W
[
exp

[
s · ζ

[
y;−1

s ·
(
γ
η + µ

)]
+ γ

η + µ+ 1
]]

Linear 1
2 + 1

2 · (1− y)−
1
k 1

2 + α
2 exp

[
µ+ s · ζ

[
y;−1

s · (log (α) + µ)
]]

LES (1− y)−
1

2·k

√
δ
γ · exp

(µ
2 + s

2 · ζ
[
y, 1

s ·
(
log
[γ
δ

]
− µ

)])
Table 10: Quantiles for Markups

ζ[y; z] ≡ Φ−1 [(1− Φ [z]) · y + Φ [z]]
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