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Abstract 
 
Whether people seek or avoid risks on gambling, insurance, asset, or labor markets crucially 
depends on the skewness of the underlying probability distribution. In fact, people typically seek 
positively skewed risks and avoid negatively skewed risks. We show that salience theory of 
choice under risk can explain this preference for positive skewness, because unlikely, but 
outstanding payoffs attract attention. In contrast to alternative models, however, salience theory 
predicts that choices under risk not only depend on the absolute skewness of the available 
options, but also on how skewed these options appear to be relative to each other. We exploit 
this fact to derive novel, experimentally testable predictions that are unique to the salience 
model and that we find support for in two laboratory experiments. We thereby argue that 
skewness preferences—typically attributed to cumulative prospect theory—are more naturally 
accommodated by salience theory. 

JEL-Codes: D810. 
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1 Introduction

Most puzzles in choice under risk can be attributed to the skewness (i.e., the third standardized
moment) of the underlying probability distribution. First, due to monotonicity of preferences
most people like, ceteris paribus, risks with a higher expected value (i.e., a higher first moment).
Second, due to intrinsic risk aversionmost people dislike, ceteris paribus, riskswith a higher vari-
ance (i.e, a higher second moment). But the conventional wisdom that in general people prefer
risks with a higher expected value and/or a lower variance can be overturned by preferences
over the skewness of a risk. Many individuals, for instance, overpay for insurance with low
deductibles against left-skewed risks that yield a rather large loss with a small probability (e.g.,
Sydnor, 2010; Barseghyan et al., 2013). But at the same time, these individuals often seek right-
skewed risks such as casino gambles that realize a large gain with a tiny probability (e.g., Mao,
1970; Kahneman and Tversky, 1979; Golec and Tamarkin, 1998; Garrett and Sobel, 1999; Forrest
et al., 2002). Also the famous Allais paradoxes are at the heart a manifestation of the tendency
to avoid negatively skewed risks. The fact that people seek right-skewed and avoid left-skewed
risks is often referred to as skewness preferences.

A compelling explanation for skewness preferences is still missing. Since Bernoulli (1738)
expected utility theory (EUT) has been the predominant model of choice under risk. Given
the assumption of a concave utility function,1 however, EUT cannot explain why people be-
have risk-averse in some and risk-seeking in other situations. As Kahneman and Tversky (1979)
have pointed out, “Choices among risky prospects exhibit several pervasive effects that are in-
consistent with the basic tenets of [expected] utility theory.” In response, cumulative prospect
theory (CPT; Tversky and Kahneman, 1992) has proposed a non-linear probability weighting,
which allows us to rationalize that people dislike some, but not all risks. Since a CPT agent
overweights the probabilities of extreme events by assumption, she exhibits a preference for
right- and an aversion toward left-skewed risks. Indeed, the prevalence of people who reveal
a preference for positive skewness was a main reason for why CPT became the gold standard
for descriptive modeling of choice under risk. Since CPT assumes that the value of an option
is context-independent, however, it implies that only the absolute skewness of a lottery matters,
but not how skewed the lottery appears to be relative to alternative options. Not only does the
assumption of a context-independent valuation conflict with intuition, we will also provide ex-
perimental evidence showing that subjects evaluate lotteries relative to each other and decide
on the grounds of the lotteries’ relative rather than absolute skewness. Altogether, neither EUT
nor CPT offer a satisfactory explanation for the role of skewness in choice under risk.

Salience theory of choice under risk (Bordalo et al., 2012) provides an intuitive account for
why people like skewness, both in absolute and relative terms. Accordingly, attention is au-
tomatically directed toward outcomes that stand out in the choice context while less attention-
grabbing outcomes tend to be neglected. Similar to CPT, salience theory incorporates non-linear
probabilityweighting, but the distortion of a probabilityweight is endogenously determined by
the relative size of the corresponding payoff. Probabilities of outstanding outcomes are inflated,

1This assumption is necessary to explain why people avoid symmetric mean-preserving spreads over positive
outcomes.
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while probabilities of less salient outcomes are underweighted. In a typical lottery game, for
instance, the large jackpot stands out relative to the rather low price of the lottery ticket, thereby
attracting a great deal of attention. As a consequence, the agent overweights the probability of
winning the salient jackpot and behaves as if shewas risk-seeking. In contrast, an agent typically
demands insurance against unlikely, but potentially large losses. Compared to the rather small
insurance premium the large loss stands out, its probability is inflated, and the agent behaves
as if she was risk-averse. As a consequence, the salience mechanism yields both a preference
for right- and an aversion toward left-skewed risks.

Our contribution in this paper is threefold. First, we show that the salience model predicts
skewness preferences; that is, whether a salient thinker opts for a risky instead of a safe option
depends in a systematic way on the skewness of the risk at hand. To be more precise, we study
a salient thinker’s skewness preferences over binary lotteries buildung on the methodology de-
veloped in Ebert (2015). A salient thinker is more likely to choose a binary risk over its expected
value if it is ceteris paribus (i.e., for a given expected value and a given variance) skewed further
to the right. We also single out the channel—namely, the contrast effect—throughwhich salience
theory predicts skewness preferences. The contrast effect means that when comparing a risky
and a safe option, a certain outcome of the risky option receives the more attention the more
it differs from the safe option’s payoff. Also, when we control for the variance of the options,
salience theory suggests that skewness plays an important role for choice under risk.

Second, we show that not only a lottery’s absolute skewness matters, but also how skewed
it is relative to the other options. To capture this, we propose a novel measure of relative skew-
ness that depends on the correlation structure of the available lotteries. Since the correlation
of the lotteries determines the set of feasible payoff combinations, it also affects how skewed a
given lottery appears to be relative to alternative options. As a consequence, a salient thinker’s
behavior varies with changes in the correlation structure even if this does not convey any rel-
evant information. More specifically, we delineate under which conditions a salient thinker
prefers a right- over a left-skewed binary lottery with the same expected value and the same
variance, and we formulate novel, experimentally testable predictions that are based on our
measure of relative skewness. As we argue in Appendix A, the concept of relative skewness is
not only useful in the context of our experiment, but also helps us to better understand the fa-
mous Allais paradoxes. As it turns out, not only the common-consequence Allais paradox, but
also prominent versions of the common-ratio Allais paradox (see, e.g., Kahneman and Tversky,
1979; O’Donoghue and Sprenger, 2018) can be explained by a preference for relative skewness.

Third, we conducted two laboratory experiments in order to test for our predictions. These
experiments allow us to precisely disentangle the salience-based explanation for skewness pref-
erences from alternative approaches such as CPT. As predicted by salience, we find that the
more skewed the risky option is, the more likely it is that subjects will choose a risky option
over the safe option that pays its expected value. Also in line with the salience model, this
preference for positive skewness becomes stronger for lotteries with a larger expected value.
In a second experiment we control for the options’ variance, but vary both the lotteries’ abso-
lute skewness and their correlation structure, which enables us to identify the effect of relative
skewness on choice under risk. Our experimental results confirm that relative skewness in-
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deed plays an important role, which is consistent with salience, but not with CPT. Hence, given
the empirical relevance of the lotteries’ relative skewness, we argue that skewness preferences
usually attributed to CPT are more naturally accommodated by the salience model.

Skewness preferences are not only relevant for insurance and gambling decisions, but they
also have important implications for other economic and financial decision situations. On asset
markets, for instance, investors pay a premium for positive skewness (Boyer et al., 2010; Bali et al.,
2011; Conrad et al., 2013). This may help us to understand thewell-known growth puzzle (Fama
and French, 1992) according to which value stocks, that are underpriced relative to financial
indicators, yield higher average returns than (overpriced) growth stocks. Bordalo et al. (2013)
suggest that this discrepancy arises as value stocks are typically left-skewedwhile growth stocks
are usually right-skewed. Along these lines, Barberis (2013) argues that firms conducting an
initial public offering (IPO) have a lower average return on their stocks than comparable firms
that did not conduct an IPO, because stocks forwhich an IPO is conducted typically yield a right-
skewed distribution of returns and are therefore overpriced. Accordingly, Green and Hwang
(2012) find that the more skewed the distribution of expected returns is, the lower the long-
term average return of an IPO stock is. Chen et al. (2001) even argue that managers strategically
disclose information in order to create positive skewness in the distribution of stock returns.
Skewness preferences also play an important role for portfolio selection (Chunhachinda et al.,
1997; Prakash et al., 2003; Mitton and Vorkink, 2007), and allow us to understand the prevalent
use of technical analysis for asset trades, even though it is futile in light of the efficient market
hypothesis (Ebert and Hilpert, 2016). Finally, a preference for positive skewness also matters
in labor economics. Hartog and Vijverberg (2007) and Berkhout et al. (2010) argue that workers
accept a lower expected wage if the distribution of wages in a cluster (i.e., education-occupation
combination) is right-skewed. Grove et al. (2017) investigate factors that induce junior tennis
players to pursue the risky career of a professional tennis player. Using longitudinal data they
show that junior tennis players are attracted to the profession by highly right-skewed earnings
distributions. In line with this evidence, Choi et al. (2016) observe that the number of college
students choosing tomajor in a certain field is the higher themore right-skewed the distribution
of stock returns of potential employers is.

We proceed as follows. In Section 2, we present the salience model and derive first results.
Section 3 introduces measures of absolute and relative skewness, which we use in Section 4
in order to delineate our main theoretical results on skewness preferences. We present two
experiments on salience and skewness preferences in Section 5 and provide the corresponding
experimental results in Section 6. Section 7 then discusses alternative accounts for skewness
preferences, before Section 8 concludes. All proofs are relegated to the Appendix.

2 A Continuous Version of Salience Theory of Choice under Risk

2.1 Model

Suppose the choice set C contains exactly two real-valued lotteries, Lx and Ly. The correspond-
ing space of states of the world S ⊆ R2 is determined by the joint distribution of these lotteries.
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We denote the joint cumulative distribution function as F . If some lottery is degenerate, we call
it a safe option. With slight abuse of notation, we refer to Lz ∈ {Lx, Ly} both as a lottery and the
corresponding random variable.

According to salience theory of choice under risk (Bordalo et al., 2012, henceforth: BGS),
a decision-maker evaluates a lottery by assigning a subjective probability to each state of the
world s ∈ S that depends on the state’s objective probability and on its salience. The salience of
a state s ∈ S is determined by a so-called salience function that is defined as follows.

Definition 1 (Salience Function). A symmetric, bounded, continuous, and almost everywhere contin-
uously differentiable function σ : R2 → R+ is a salience function if and only if it satisfies the following
three properties:

1. Ordering. Let µ = sgn(x− y). Then for any ε, ε′ ≥ 0 with ε+ ε′ > 0,

σ(x+ µ ε, y − µ ε′) > σ(x, y).

2. Diminishing sensitivity. Let x, y ≥ 0. Then for any ε > 0,

σ(x+ ε, y + ε) < σ(x, y).

3. Reflection. For any x, y, x′, y′ ≥ 0, we have

σ(x, y) < σ(x′, y′) if and only if σ(−x,−y) < σ(−x′,−y′).

We say that a given state of the world s = (x, y) is the more salient the larger its salience
value σ(x, y) is. The ordering property implies that a state is the more salient the more the
lotteries’ payoffs in this state differ. Thus, ordering captures the well-known contrast effect (e.g.,
Schkade and Kahneman, 1998), whereby decisionmakers focus their attention on those states of
the world where the attainable outcomes differ a lot.2 Diminishing sensitivity reflects Weber’s
law of perception and it implies that the salience of a state decreases if the outcomes in this
state uniformly increase in absolute terms. Hence, diminishing sensitivity can be described as
a level effect according to which a given contrast in outcomes is more salient for lower outcome
levels. Instead of the rather abstract terminology of ordering and diminishing sensitivity, we
will mainly use the more intuitive notions of contrast and level effects.

Finally, since the relative importance of the contrast and the level effect may vary with the
payoff level, we need to imposemore structure on the salience function in order to derive certain
comparative statics with respect to a lottery’s expected value (namely, Proposition 3).

Definition 2 (Decreasing Level Effect). Suppose that x, y, z ∈ R with x+ y, x+ z ≥ 0. For a given
salience function σ, denote εσ(x, y, z) := −

d
dx
σ(x+y,x+z)

σ(x+y,x+z) . The salience function σ satisfies a decreasing
level effect if and only if both εσ(x, y, z) and εσ(−x,−y,−z) strictly decrease in y and z.

2In Appendix B.1 we provide a novel, equivalent definition of the ordering property that is based on the partial
derivatives of the salience function (see Lemma 4).
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The decreasing level effect states that the decrease in salience due to a uniform increase in pay-
offs (which is due to the level effect) is smaller for states with larger outcomes in absolute terms.
In general, the decreasing level effect implies that the contrast effect is the more important rel-
ative to the level effect the larger the payoff level is. The property of a decreasing level effect
is a stronger notion of what BGS define as convexity,3 and it turns out that the commonly used
salience functions satisfy also this stricter property.4

We followBGS in assuming that the salient thinker evaluatesmonetary outcomes via a linear
value function, u(x) = x. Then, using the concept of a salience function, we can define the
salience-weighted utility of a lottery Lx that is evaluated in the choice set C as follows.

Definition 3 (Salience-Weighted Utility). The salience-weighted utility of a lottery Lx evaluated
in the choice set C = {Lx, Ly} is given by

U s(Lx|C) =

∫
R2

x · σ(x, y)∫
R2 σ(s, t) dF (s, t)

dF (x, y),

where σ : R2 → R+ is a salience function that is bounded away from zero.

This gives a more general version of the continuous salience model proposed by BGS. Notice
that the denominator of the integrand normalizes salience-weighted probabilities so that they
sum up to one. Therefore, we obtain U s(c|C) = c for any safe option c ∈ R and any choice set C.
In words, the normalization factor ensures that a salient thinker’s valuation for any safe option
is undistorted, irrespective of the composition of the choice set.

Example 1 (Binary Lotteries). Suppose that Lx = (x1, p;x2, 1 − p) and Ly = (y1, q; y2, 1 − q).
Here, the lottery Lx realizes x1 with probability p and x2 with probability 1 − p, while the lottery Ly
realizes y1 with probability q and y2 with probability 1 − q. Depending on the correlation structure of
the two lotteries, the state space comprises two states (under perfect correlation) to four states (under
independence). Denote the probability that a given state sij := (xi, yj) is realized by πij . Then, the
salience-weighted utility of the lottery Lx is given by

U s(Lx|C) =
∑
sij∈S

xi ·
πij σ(xi, yj)∑

skl∈S πkl σ(xk, yl)
,

and if the lottery Ly is a safe option, that is, if Ly = (y, 1), the preceding formula further simplifies to

U s(Lx|C) =
px1σ(x1, y) + (1− p)x2σ(x2, y)

pσ(x1, y) + (1− p)σ(x2, y)
.

2.2 A Lottery’s Risk Premium is Well-Defined

In order tomeaningfully discuss risk attitudes under salience theory, we first verify that a salient
thinker’s certainty equivalent, and thus also her risk premium, are well-defined.

3To arrive at a definition equivalent to BGS’s notion of convexity we have to restrict Definition 2 to the case of
y = z. While convexity is not a sufficient condition for Lemma 1 in BGS to hold, the decreasing level effect is.

4In Appendix C, we verify that this property holds for basically all salience functions used in the literature.
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Definition 4 (Certainty Equivalent). Consider any two lotteries L and L′ with finite expected values.

(a) Suppose an agent faces some choice set C = {L, c} where c represents a safe option. We say that
the safe option c is a certainty equivalent to the lottery L if and only if U s(L|C) = c.

(b) Let c be the unique certainty equivalent to L and c′ be the unique certainty equivalent to L′. Let L′

first-order stochastically dominate L. The certainty equivalent ismonotonic if and only if c′ > c.

Proposition 1. A salient thinker’s certainty equivalent to any lottery L is unique and monotonic.

As an illustration consider a binary lotteryL = (x1, p;x2, 1−p)with outcomes x2 > x1. Since
the lottery’s salience-weighted utility is a convex combination of its payoffs, at least one certainty
equivalent to L exists and any certainty equivalent lies between x1 and x2. Now suppose that
the agent chooses between the lottery L and a safe option c ∈ [x1, x2], and denote as φ(xi, c) :=

σ(xi, c)(xi − c) the salience-weighted difference between one of the lottery’s outcomes and the
safe option. We conclude that any certainty equivalent c to lottery L has to solve pφ(x1, c) +

(1 − p)φ(x2, c) = 0. In addition, any increase in the safe option’s payoff does not only make
the safe option more attractive, but also makes the lottery less attractive: the lottery’s lower
payoff becomes more salient while its higher payoff becomes less salient. Consequently, for any
fixed lottery L = (x1, p;x2, 1 − p), the expected salience-weighted difference, pφ(x1, c) + (1 −
p)φ(x2, c), is a monotonic function of c, which proves uniqueness of the certainty equivalent.
Monotonicity then follows immediately from the fact that ∂

∂xi
φ(xi, c) > 0 almost everywhere,

which implies that, for a fixed safe option c, first-order stochastic dominance with respect to
outcomes xi translates into first-order stochastic dominance with respect to salience-weighted
differences φ(xi, c).5

Given that certainty equivalents are well-defined, we can define a salient thinker’s risk pre-
mium r for a lottery L as the difference in the lottery’s expected value E[L] and its certainty
equivalent c(L), that is, r(L) := E[L]− c(L). According to Proposition 1, a salient thinker’s risk
premium for a lottery L is well-defined.

3 Measures of Absolute and Relative Skewness

In this section, we introduce concepts to measure a lottery’s absolute and relative skewness. We
thereby build on Ebert (2015)who has shown that for binary lotteries, various popularmeasures
of absolute skewness coincide so that absolute skewness is unambiguously defined in this case.
To assess relative skewness, we introduce a novel measure that proves useful in our analysis of
skewness preferences under salience theory. We also discuss the relationship between absolute
and relative skewness. Whenever we simply speak of skewness, we refer to absolute skewness.

5Notice that in the rank-based salience model which BGS have analyzed, the certainty equivalent is not mono-
tonic andmay not even exist (Kontek, 2016). The fact that the certainty equivalent is not monotonic in the rank-based
model highlights that Proposition 1 is not a trivial result.
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3.1 Absolute Skewness is Unambiguously Defined for Binary Risks

Often the skewness of a lottery L is associated with its third standardized central moment

S(L) := E

( L− E[L]√
V ar(L)

)3
 . (1)

Other notions of absolute skewness refer to “long and lean” tails of the risk’s probability distri-
bution. In general, these different notions of absolute skewness are not equivalent. For instance,
Ebert (2013) delineates an example of a distribution that has a third moment of zero (which is
usually interpreted as the distribution being symmetric), but that is clearly left-skewed when
judged by its tails. That said, the analysis of skewness effects on choice under risk is not unam-
biguous for lotteries with a general distribution.

Importantly, Ebert (2015) shows that for binary risks all conventional notions of skewness are
equivalent (see Proposition 2 in his paper), so that the skewness of a binary risk is well-defined.

Definition 5. Consider two binary lotteries Lx and Ly. We say that lottery Lx is more skewed than
lottery Ly if and only if S(Lx) > S(Ly). Lottery Lx is called right-skewed (or, equivalently, positively
skewed) if S > 0, left-skewed (or, equivalently, negatively skewed) if S < 0, and symmetric otherwise.

The main difficulty in identifying the effect of skewness on risk attitudes is that in general
variance and skewness are not independent. As an illustration, let us consider a stylized horse
race bet L = (1/p, p; 0, 1 − p) for some p ∈ (0, 1). If we fix the lottery’s lower payoff to zero,
then any increase in the probability p implies (i) an increase in the lottery’s skewness and (ii)
a decrease in the lottery’s variance. More generally, as long as we keep a lottery’s outcome(s)
fixed, any shift in choice that is attributed to a change in skewness can be likewise attributed
to a change in variance. Indeed most empirical studies on skewness effects do not properly
disentangle preferences over variance from preferences over skewness. Ebert (2015) argues,
for instance, that inferring skewness preferences at the horse track from the study by Golec
and Tamarkin (1998) might be misleading: increasing the skewness of a horse race bet, while
holding its expected value and variance constant, does not yield a new horse race bet, but a
lottery with very different properties. Conversely, Ebert concludes that “a choice between two
horse-race bets is never a choice between different levels of skewness only.”

In order to disentangle preferences for variance and skewness, we need to vary a lottery’s
skewness for a fixed expected value and a fixed variance. For that, we rely on the characterization
of binary lotteries in terms of their first three moments as provided in Ebert (2015).

Lemma 1 (Ebert’s Moment Characterization of Binary Risks). For constants E ∈ R, V ∈ R+ and
S ∈ R, there exists exactly one binary lottery L = (x1, p;x2, 1− p) with x2 > x1 such that E[L] = E,
V ar(L) = V and S(L) = S. Its parameters are given by

x1 = E −

√
V (1− p)

p
, x2 = E +

√
V p

1− p
, and p =

1

2
+

S

2
√

4 + S2
. (2)

We denote the binary lottery with expected value E, variance V , and skewness S as L(E, V, S).
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Besides allowing us to investigate how skewness affects choice under risk, the preceding
lemma also speaks to the potential richness of predictions based on binary lotteries. An imme-
diate implication of Ebert’s Moment Characterization is that any probability distribution can be
approximated by a binary lottery up to its first three moments. Thus, when restricting our anal-
ysis to binary risks we still allow for three-moment approximations of arbitrary risks. Studying
preferences over binary lotteries is also of intrinsic interest since many insurance and gambling
applications can bemodeled as a binary lottery. Finally, a good understanding of choices among
binary lotteries proves useful in other domains such as in the analysis of dynamic gambling be-
havior (e.g., Ebert and Strack, 2015, 2018; Dertwinkel-Kalt and Köster, 2018b).

3.2 Relative Skewness and Mao Pairs

One way to define the relative skewness of two lotteries Lx and Ly is via the third standardized
central moment of their difference ∆xy := Lx − Ly.

Definition 6 (Relative Skewness). We say that the lottery Lx is skewed relative to the lottery Ly
if and only if S(∆xy) > 0 holds.

As we verify in Appendix A.1, the relative skewness of binary lotteries Lx and Ly—when de-
fined this way—depends on (i) the difference in third moments (or skewness), S(Lx) − S(Ly),
and (ii) the difference in third cross-moments (or coskewness), Cos(Ly, Lx)−Cos(Lx, Ly). Since
the coskewness of two lotteries is determined by the lotteries’ joint distribution, our measure of
relative skewness varies with the state space. Thereby, relative skewness captures how skewed
the distribution of lottery Lx appears to be in comparison to the distribution of lottery Ly.

At this point it might be useful to highlight some important properties of the proposedmea-
sure of relative skewness, which suggest that it is not an arbitrary choice. First, if we compare a
lottery to a safe option, then our measure of relative skewness boils down to the lottery’s abso-
lute skewness. Hence, a lottery is skewed relative to a safe option if and only if it is right-skewed,
which allows us to use the same skewness measure to study (1) the choice between a binary lot-
tery and a safe option and (2) the choice between two binary lotteries. Second, when comparing
two lotteries with equal variance, whether some lottery is skewed relative to the other is fully
determined by the differences in third moments (i.e., skewness) and third cross-moments (i.e.,
coskewness). In particular, if these lotteries are stochastically independent, then a lottery Lx is
skewed relative to a lottery Ly if and only if it is more skewed in absolute terms.

Next, we illustrate the concept of relative skewness using a class of binary lotteries that was
introduced by Ebert and Wiesen (2011, Definition 2). This class of binary lotteries contains the
lotteries used in Mao’s (1970) seminal survey on skewness preferences of company managers.

Definition 7. Let S ∈ R+. The lotteries L(E, V, S) and L(E, V,−S) denote aMao pair.

The lotteries of a so-calledMao pair have the same expected value and the same variance, but dif-
fer in their direction of skewness, whichmakes these lotteries ideal for eliciting preferences over
the skewness of a risk. Since the lotteries of a Mao pair only differ in the direction of skewness,
the difference between the left-skewed lottery’s lower outcome and the right-skewed lottery’s
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lower outcome is the same as the difference between the higher outcomes of the two lotteries.
As a consequence, depending on the correlation structure, the difference in the outcomes of the
lotteries of a Mao pair takes at most three different values and often only two, which will prove
useful in illustrating the lotteries’ relative skewness (see Figure 2).

As an example of a Mao pair consider the lotteries depicted in Figure 1. Both lotteries have
an expected value of E = 108 and a variance of V = 1296. The lottery Lx pays AC120 with 90%
probability and AC0 with 10% probability; it is left-skewed. The lottery Ly pays AC96 with 90%
probability and AC216 with 10% probability; it is right-skewed.

Lx

90%

10%

AC120

AC0

Ly

90%

10%

AC96

AC216

Figure 1: An example of a Mao pair.

If Lx and Ly are perfectly negatively correlated, only the states (120, 96) and (0, 216) can oc-
cur. If the lotteries are independent, all four payoff combinations (120, 96), (0, 216), (120, 216),
and (0, 96) can occur. If Lx and Ly are as positively correlated as possible only the three states
(120, 216), (0, 96) and (120, 96) are realized with a positive probability.

In general, a Mao pair’s joint distribution can be parameterized by one parameter η ∈ [0, 1].
Let us denote the outcomes of the left-skewed lottery L(E, V,−S) as x1 = x1(E, V,−S) and
x2 = x2(E, V,−S), respectively, and the outcomes of the right-skewed lottery L(E, V, S) as
y1 = y1(E, V, S) and y2 = y2(E, V, S), respectively. In addition, let p = p(−S) ∈ (0, 1/2) be the
probability of the left-skewed lottery’s lower payoff, which is, by construction, identical to the
probability of the right-skewed lottery’s higher payoff. Table 1 depicts the joint distribution of
a Mao pair where the parameter η ∈ [0, 1] pins down the correlation structure. The correlation
of the two lotteries monotonically increases in η, with η = 0 corresponding to the perfectly
negative correlation and η = 1 corresponding to the maximal positive correlation.6

Probability ηp p− ηp 1− p− ηp ηp

L(E, V,−S) x1 x1 x2 x2

L(E, V, S) y1 y2 y1 y2

Table 1: Joint distribution of the lotteries of a Mao pair.

As the lotteries of a Mao pair are uniquely characterized by their first three moments and
the correlation structure is identified by the parameter η, we denote aMao pair byM(E, V, S, η).
In addition, let ∆(V, S, η) := L(E, V,−S)− L(E, V, S) denote the difference of the lotteries of a
Mao pair, which is by Lemma 1 independent of the lotteries’ expected value.

Now we turn to the relative skewness of Mao pairs and illustrate how it depends on the
6Lemma 3 in Appendix A.1 summarizes this and further properties of Mao pairs.
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absolute skewness and the correlation of the lotteries. Figure 2 depicts the distribution of
∆ = ∆(V, S, η), for the Mao pair introduced above (top row) and a Mao pair with the same
variance but a lower absolute skewness (bottom row), both under the perfectly negative corre-
lation (left column) and the maximal positive correlation (right column). For starters, consider
the Mao pair with a lower absolute skewness depicted in the bottom row. We observe that the
distribution of the difference in outcomes is right-skewed under the perfectly negative correla-
tion (bottom left), but left-skewed under the maximal positive correlation (bottom right). Thus,
by Definition 6, the left-skewed lottery is skewed relative to the right-skewed lottery under the
maximal positive correlation while the opposite is true under the perfectly negative correlation.
For the Mao pair with a higher absolute skewness depicted in the top row, however, the right-
skewed lottery is skewed relative to the left-skewed one, irrespective of the correlation structure.
More formally, as we show in Lemma 3 in the Appendix, the left-skewed lottery is skewed rel-
ative to the right-skewed lottery if and only if their correlation is sufficiently positive—that is,
if and only if η > 2

3(1 + S√
4+S2

)—, which can only be the case for Mao pairs that are sufficiently
symmetric in absolute terms, that is, only for Mao pairs with S < 2

3

√
3 ≈ 1.15.

∆

Pr(∆)

0.5

1

−216 24 ∆

Pr(∆)

0.5

1

−96 24

∆

Pr(∆)

0.5

1

−96 54 ∆

Pr(∆)

0.5

1

−21 54

Figure 2: The figures in the top row depict the probability mass functions of ∆(V, S, η), for anyMao pair
with V = 1296 and S = 2.7, under the perfectly negative correlation (η = 0, top left) and the maximal
positive correlation (η = 1, top right). As both ∆(1296, 2.7, 0) and ∆(1296, 2.7, 1) are left-skewed, the
lottery L(E, 1296, 2.7) is also skewed relative to the lottery L(E, 1296,−2.7) for both η = 0 and η = 1.
The figures in the bottom row depict the probability mass functions of ∆(V, S, η), for any Mao pair with
V = 1296 and S = 0.6, under the perfectly negative correlation (η = 0, bottom left) and the maximal
positive correlation (η = 1, bottom right). As ∆(1296, 0.6, 0) is left-skewed, but ∆(1296, 0.6, 1) is right-
skewed, for η = 0 the lottery L(E, 1296, 0.6) is skewed relative to the lottery L(E, 1296,−0.6), while
for η = 1 the lottery L(E, 1296,−0.6) is skewed relative to the lottery L(E, 1296, 0.6).

4 Salience and the Role of Skewness in Choice under Risk

In this section, wewill first show that whether a salient thinker appears to be risk seeking or risk
averse depends on the skewness of the risk at hand. Put differently, for a fixed expected value
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and variance, a binary lottery is chosen over its expected value if and only if it is sufficiently
skewed. Subsequently, we delineate that a salient thinker’s choice among two binary lotteries
with the same expected value and the same variance are determined by their relative skewness.

4.1 Skewness-Dependent Risk Attitudes

Suppose an agent chooses between a binary lottery and the safe option that pays the lottery’s
expected value; that is, the choice set is given by C = {L(E, V, S), E}. The salient thinker’s risk
premium for the lottery L(E, V, S) is given by

r(E, V, S) =

√
V

4 + S2
·
(

σ(x1, E)− σ(x2, E)

pσ(x1, E) + (1− p)σ(x2, E)

)
, (3)

where the outcomes xk = xk(E, V, S), k ∈ {1, 2}, and the probability p = p(S) are defined in Eq.
(2). To break ties we assume that the agent chooses the lottery if and only if the risk premium
is strictly negative. Then, an immediate implication of Eq. (3) is that a salient thinker strictly
prefers the lottery L(E, V, S) over the safe option E if and only if the lottery’s higher payoff is
salient, which turns out to be the case if and only if the lottery is sufficiently skewed.

Proposition 2. For any expected value E and any variance V , there exists a unique skewness value
Ŝ = Ŝ(E, V ) ∈ R such that r(E, V, Ŝ) = 0. In addition, the salient thinker strictly prefers the binary
lottery L(E, V, S) over its expected value E if and only if S > Ŝ.

ByEq. (2), an increase in the lottery’s skewness is equivalent to an increase in both of the lottery’s
payoffs and in the probability that the lower payoff is realized. Since the lottery’s expected value
is fixed, the difference between the lower payoff and the expected value decreases in the lottery’s
skewness, while the difference between the expected value and the higher payoff increases in
the lottery’s skewness. Thus, by the contrast effect, the salience of the lottery’s lower (higher)
payoffmonotonically decreases (increases) in the lottery’s skewness. We conclude that a salient
thinker is the more likely to take up a binary risk the more skewed this risk is. The statement
then follows from the fact that the lottery’s lower (higher) payoff converges to the expected value
as the lottery’s skewness approaches (minus) infinity.

A useful corollary to Proposition 2 is the fourfold pattern of risk attitudes (Tversky and Kahne-
man, 1992): people are risk-averse (risk-seeking) over gambles with non-negative payoffs and
a likely (unlikely) upside, and risk-seeking (risk-averse) over gambles with non-positive pay-
offs and a likely (unlikely) downside. Put differently, people avoid symmetric lotteries with
non-negative payoffs, but seek symmetric risks with non-positive payoffs.

Corollary 1 (Fourfold Pattern of Risk Attitudes). Let Ŝ ∈ R be the cutoff derived in Proposition 2.

(a) For any binary lottery with non-negative payoffs it holds that Ŝ > 0.

(b) For any binary lottery with non-positive payoffs it holds that Ŝ < 0.

Consider a symmetric binary lottery. Due to symmetry, Eq. (2) gives p = 1
2 , which implies that

the difference between the low payoff and the expected value equals the difference between
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the high payoff and the expected value. If the lottery’s payoffs are non-negative, diminishing
sensitivity implies that the lower payoff is salient. Hence, a salient thinker avoids any symmetric
binary risk with non-negative payoffs. Likewise, diminishing sensitivity implies that the higher
payoff is salient if the lottery’s payoffs are non-positive, so that a salient thinker seeks symmetric
binary risks with non-positive payoffs. In any case, the salient thinker chooses a binary lottery
over its expected value if it is sufficiently skewed. A lottery with non-negative payoffs has to be
right-skewed in order to be selected, while a lottery with non-positive payoffs can be attractive
even if it is left-skewed.7

A second straightforward implication of Eq. (3) is that the risk premium converges to zero
as the lottery’s skewness becomes arbitrarily large in absolute terms. This result is driven by
the fact that the salience function is bounded from above and also bounded away from zero.

Corollary 2. For any expected value E and any variance V , we observe that limS→±∞ r(E, V, S) = 0.
In particular, for any binary lottery with a fixed expected valueE, the certainty equivalent cE : R+×R→
R, (V, S) 7→ cE(V, S) := c(L(E, V, S)) is bounded.

We conclude fromCorollary 2 that a salient thinker’s certainty equivalent to lotteryL(E, V, S)—
which corresponds to her willingness-to-pay for this lottery—is a non-monotonic function of
its skewness. In particular, for any fixed expected value, a salient thinker’s certainty equivalent
cE(V, S)—as a function of the lottery’s variance V and skewness S—is bounded from above.
While increasing a lottery’s skewness boosts the salience of the lottery’s higher payoff, it also
lowers the probability that this higher payoff will occur. Hence, as salience effects are bounded,
increasing a lottery’s skewness beyond some threshold decreases a salient thinker’s certainty
equivalent and therefore her willingness-to-pay for a given lottery.

So far, our results are driven by either the contrast or the level effect. Next, we study the
interaction of both effects which requires us to impose more structure on the salience function.
More precisely, we assume that the salience function satisfies the decreasing level effect, which
allows us to derive comparative statics with respect to the lottery’s expected value.

Proposition 3. Suppose the salience function satisfies the decreasing level effect. Then, for any ε > 0 so
that L(E, V, Ŝ(E, V )) and L(E + ε, V, Ŝ(E + ε, V )) have either both positive or both negative payoffs:

Ŝ(E + ε, V ) < Ŝ(E, V ).

Under the assumption of the decreasing level effect positive skewness becomes even more de-
sirable at larger payoff levels. Since the contrast effect becomes relatively more important if the
attainable outcome(s) increase, the larger contrast on a right-skewed lottery’s upside becomes
more salient at higher payoff levels. Consequently, a uniform increase in the payoff level—that
is, an increase in the lottery’s expected value from E to E + ε—lowers the minimum level of
skewness that renders a lotterywith a given variance attractive. This prediction is easily testable
in the lab where we can vary the payoff level across choices (see Experiment 1 in Section 5).

7BGS derive a similar result for the rank-based salience model.
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4.2 Not Absolute, But Relative Skewness Shapes Choice Under Risk

Next, we try to isolate the effect of skewness on choice under risk by fixing not only the expected
value but also the variance across options. Formally, we study a salient thinker’s choice from
C = {L(E, V, Sx), L(E, V, Sy)}with Sy > Sx = −Sy, which makes the two lotteries a Mao pair.8

Proposition 4. For anyMao pair, there exist some η̌(S) ∈ (0, 1] and Š ∈ R+ so that the following holds:

(a) A salient thinker prefers L(E, V, S) over L(E, V,−S) if and only if η ≤ η̌(S).

(b) For η = 0, a salient thinker always prefers L(E, V, S) over L(E, V,−S).

(c) For η = 1, a salient thinker prefers L(E, V, S) over L(E, V,−S) if and only if S ≥ Š.

For starters, Proposition 4 (a) states that a salient thinker chooses the right-skewed lottery of a
givenMao pair as long as the two lotteries are not too positively correlated or, more formally, as
long as η is sufficiently small. Recall from Section 3 that for anyMao pair with η < 2

3(1+ S√
4+S2

)

the right-skewed lottery is also skewed relative to the left-skewed lottery, which implies that
the distribution of L(E, V, S) − L(E, V,−S) is right-skewed or, in other words, the contrast in
outcomes is largest in those states in which the right-skewed lottery yields the higher payoff.
In particular, in the case of a perfectly negative correlation (i.e., η = 0), the high payoff of the
right-skewed lottery always occurs simultaneous to the left-skewed lottery’s lowpayoff, thereby
attracting a great deal of attention and rendering the right-skewed lottery attractive to a salient
thinker (Part (b) of Proposition 4). As an illustration consider the example of Figure 1: under
a perfectly negative correlation the two states of the world are (120, 96) and (0, 216), where the
latter is more salient according to the contrast effect. Under a sufficiently positive correlation
(i.e., for larger values of η), however, the left-skewed lottery can become skewed relative to the
right-skewed lottery, which results in a larger contrast in those states of the world where the
left-skewed lottery outperforms the right-skewed one. But, as we have seen in Section 3, only
if the lotteries are sufficiently symmetric the left-skewed lottery of a given Mao pair becomes
skewed relative to the right-skewed lottery, at least under the maximal positive correlation. For
the Mao pair presented in Figure 1, for instance, the right-skewed lottery is also skewed in
relative terms, irrespective of the correlation structure (see the top row of Figure 2). This is
different for the Mao pair with a lower absolute skewness depicted in the bottom row of Figure
2. Here, the lotteries’ relative skewness changes as we move from the perfectly negative to
the maximal positive correlation. In summary, the contrast effect implies that even under the
maximal positive correlation (i.e., for η = 1) a salient thinker chooses the left-skewed lottery
if and only if the lotteries are sufficiently symmetric (Part (c) of Proposition 4). In this sense,
Proposition 4 suggests that a salient thinker exhibits a preference for relative skewness.

Whether relative skewness affects choice under risk is easily testable in a lab experiment,
where we can manipulate the relative skewness of a Mao pair via the lotteries’ absolute skew-
ness and their correlation (see Experiment 2 in Section 5). Such an experiment allows us to dis-
tinguish our salience-based explanation for skewness preferences from alternative approaches
(e.g., CPT) which suggest that only absolute and not relative skewness matters (see Section 7).

8While Proposition 4 (a) includes the case of independent Mao pairs, we analyze in Appendix A.2 the choice
among two independent binary lotteries in general.
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5 Two Experiments on Salience and Skewness

Our analytic results give rise to novel predictions that we have tested for in two laboratory
experiments. While Experiment 1 tests for skewness-dependent risk attitudes, Experiment 2
investigates the role of relative skewness in choices between the lotteries of Mao pairs.

5.1 Design and Predictions

We ensure incentive compatibility by relying only on lotteries that have non-negative payoffs.
In order to improve power, we implement both experiments using a within-subjects design.
Detailed instructions on both experiments can be found in Appendix D.

Experiment 1. In our first experiment, subjects choose repeatedly between a binary lottery
L(E, V, S) and the safe option paying its expected value E, where the lottery’s skewness S is
gradually increased. We repeat all these choices with the only difference being that all payoffs
(the safe payoff E and the lottery’s payoffs) are uniformly increased by some amount ε > 0.

The choices betweenE andL(E, V, S) aswell as those betweenE+ε andL(E+ε, V, S) allow
us to test for the prediction arising from Proposition 2, saying that for each subject there exists a
certain threshold value Ŝ so that this subject prefers a binary lottery with a fixed variance over
its expected value if and only if the lottery’s skewness exceeds Ŝ. Since the threshold value Ŝ
depends on the curvature of the salience function, itmay vary across subjects. Thus, Proposition
2 implies that the share of subjects choosing the binary lotteryL(E, V, S) over its expected value
E monotonically increases in the lottery’s skewness S.

Prediction 1. For any E and any V , the share of subjects choosing L(E, V, S) over E increases in S.

Comparing choices from the set {E,L(E, V, S)} with those from {E + ε, L(E + ε, V, S)} al-
lows us to test for Proposition 3 whereby skewness preferences become stronger at larger payoff
levels. Accordingly, for each subject, the skewness level Ŝ that makes this subject indifferent be-
tween the safe optionE and the lottery L(E, V, S) should decrease inE. Given that subjects are
heterogeneous with respect to their threshold values Ŝ, we predict that the share of risk takers
increases in the lottery’s expected value.

Prediction 2. For any V and any S, the share of subjects choosing L(E, V, S) over E increases in E.

Experiment 2. In the second experiment, subjects choose repeatedly between two lotteries that
form a Mao pair. On the one hand, for a fixed expected value E, variance V , and skewness S,
we vary the lotteries’ correlation structure as captured by η. On the other hand, for a fixed ex-
pected valueE, variance V , and correlation structure η, we vary the lotteries’ absolute skewness
S. Both manipulations affect the relative skewness of the two lotteries. Given that subjects are
heterogeneous with respect to their salience functions, Proposition 4 implies that the share of
subjects choosing the right-skewed lottery (a) weakly decreases when we move from the per-
fectly negative correlation to themaximal positive correlation and (b) that this decrease is larger
for more symmetric Mao pairs.
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Prediction 3. Consider two Mao pairsM(E, V, S′, η) andM(E, V, S′′, η) with S′ < S′′.

(a) For each of the Mao pairs the share of subjects choosing the right-skewed lottery is weakly larger for
η = 0 (i.e., the perfectly negative correlation) than for η = 1 (i.e., the maximal positive correlation).

(b) The effect described in (a) is larger for the more symmetric Mao pairM(E, V, S′, η).

As we have already discussed in the previous section, for sufficiently skewed Mao pairs, the
salience model does not predict a shift in choice in response to a change in correlation. In line
with the intuition provided by Figure 2, we expect to observe a shift from the right-skewed
towards the left-skewed lottery when moving from the perfectly negative to the maximal pos-
itive correlation only if under the positive correlation the left-skewed lottery becomes skewed
relative to the right-skewed lottery, which is indeed the case if and only if S < 2

3

√
3 holds.

5.2 Implementation

For both experiments students were invited to our laboratory via ORSEE (Greiner, 2015) and
both experiments were implemented with z-Tree (Fischbacher, 2007). In each experiment sub-
jects made multiple choices and, in order to warrant incentive compatibility, only one of these
decisionswas randomly drawn to be payoff-relevant (Azrieli et al., 2018). For the payoff-relevant
decision the outcome of the chosen lottery was determined by a computer simulation.

Experiment 1. Each subject made twelve choices between a lottery and a safe option that paid
the lottery’s expected value. The order of all decisions was randomized at the subject level. We
used experimental currency units (ECU) and a conversion ratio of 2 ECU : 1 Euro. The lotteries
that we used in the experiment are listed in Table 2. All twelve lotteries have the same variance
of V = 225. In addition, the lotteries one to six and the lotteries seven to twelve also have the
same expected value and differ only with respect to their skewness.

Lottery Exp. Value Skewness
( 37.5, 80%; 0, 20%) 30 -1.5
(41.25, 64%; 10, 36%) 30 -0.6
( 45, 50%; 15, 50%) 30 0
( 60, 20%; 22.5, 80%) 30 1.5
( 75, 10%; 25, 90%) 30 2.7
( 135, 2%; 27.85, 98%) 30 6.9
( 57.5, 80%; 20, 20%) 50 -1.5
(61.25, 64%; 30, 36%) 50 -0.6
( 65, 50%; 35, 50%) 50 0
( 80, 20%; 42.5, 80%) 50 1.5
( 95, 10%; 45, 90%) 50 2.7
( 155, 2%; 47.85, 98%) 50 6.9

Table 2: Lotteries used in Experiment 1.
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We ran three sessions (n = 62) in January 2018 at the DICE experimental laboratory. The
experiment lasted, on average, 25 minutes with average earnings of AC21. Due to the lotteries’
skewness and the corresponding payoff profiles, subjects earned up to AC47.

Experiment 2. Each subject made twelve choices between two lotteries that form a Mao pair.
Again, we randomized the order of all decisions at the subject level. Experimental earningswere
converted at a ratio of 4 ECU : 1 Euro. We used the six Mao pairs listed in Table 3, where the
absolute skewness is chosen in a way that only for the more symmetric Mao pairs (with S = 0.6)
the left-skewed lottery becomes skewed relative to the right-skewed lottery when moving from
negative to positive correlation, but not for the more skewedMao pairs (with S = 2.7). For each
Mao pair, we implemented the correlation structures defined by η = 0 (i.e., perfectly negative
correlation) and by η = 1 (i.e., maximal positive correlation), which gives us in total six paired
choices (i.e., two choices for each Mao pair) per subject.

Left-skewed Lottery Right-skewed Lottery Variance Abs. Skewness Rel. Skewness
η = 0 η = 1

(120, 90%; 0, 10%) (96, 90%; 216, 10%) 1296 ± 2.7 -2.7 -1.5
(135, 64%; 60, 36%) (81, 64%; 156, 36%) 1296 ± 0.6 -0.6 1.0
( 40, 90%; 0, 10%) (32, 90%; 72, 10%) 144 ± 2.7 -2.7 -1.5
( 45, 64%; 20, 36%) (27, 64%; 52, 36%) 144 ± 0.6 -0.6 1.0
( 80, 90%; 0, 10%) (64, 90%; 144, 10%) 576 ± 2.7 -2.7 -1.5
( 90, 64%; 40, 36%) (54, 64%; 104, 36%) 576 ± 0.6 -0.6 1.0

Table 3: Mao pairs used in Experiment 2.

The initial experiment consisted of three sessions (n = 79) that were conducted in February
and March 2018 at the DICE experimental laboratory. On the request of a referee, we ran a
replication with four sessions (n = 113) in November 2018. A power analysis based on the
results of the initial experiment implied that a replication study requires a sample size of n =

110.9 We ran the replication also at the DICE experimental laboratory, but excluded subjects
that participated already in the initial experiment. We pre-registered the replication study as
Dertwinkel-Kalt and Köster (2018a). The experiment lasted 25 minutes on average, subjects
earned up to AC54, and average earnings were AC18.

5.3 Related Experimental Literature

To the best of our knowledge none of our Predictions 1 to 3 has been tested yet.

Experiment 1. Previous experiments that studied choices between a safe and a risky option
changed the variance and skewness of the risky option simultaneously and/or included more

9Using a paired t-test with clustered standard errors (and a cluster size of three symmetric Mao pairs), this
sample size allows us to detect an effect size of 13.5 percentage points, which is the effect size observed in our initial
study for Mao pairs with S = 0.6 (see Table 9 in Appendix D), at a significance level of 5% with a power of 80%.
Based on the initial experiment we assumed an intra-cluster correlation of 0.48.
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than one lottery into the choice set, both of which make it impossible to test for Predictions 1
and 2. The large experimental literature on probability weighting (e.g., Gonzalez andWu, 1999;
Bruhin et al., 2010) as well as the experiments on salience by BGS and Frydman and Mormann
(2018) document violations of EUT that might be attributed to a preference for skewness, but do
not identify the causal effect of skewness on risk attitudes. Also recent experiments that want
to study skewness preferences do not offer tests of Predictions 1 and 2. Brocas et al. (2016), for
instance, try to identify the determinants of skewness-dependent risk attitudes by comparing
investments in an asset with normally distributed and therefore symmetric returns to invest-
ments in a less profitable asset with right-skewed binary returns. Since the return distributions
are chosen in a way such that the right-skewed asset also has a lower variance than the sym-
metric one, however, investments in the right-skewed asset—that Brocas et al. (2016) observe
for a majority of subjects—could be driven by both a lower variance or a higher skewness. The
experiment by Grossman and Eckel (2015) controls for the options’ variance, but does also not
precisely test for decisions between a safe and a risky option. In their experiment subjects first
choose from a menu of six options, one of which is safe. Subsequently, subjects are offered a
second set of (non-binary) lotteries that differ only in terms of third moments, that is, for each
lottery in the first choice set there is a lottery with the same expected value and the same vari-
ance but a larger third moment in the second choice set. Subjects can then switch from their
initial choice to any lottery in the second choice set and a majority of subjects do so at least
once. Grossman and Eckel (2015) interpret switching towards a lottery with a larger third mo-
ment as a skewness-seeking choice. In contrast to the existing literature, our first experiment
studies the choice between a safe option and a binary lottery in isolation while properly con-
trolling for variance. This allows us to identify the causal effect of skewness on risk attitudes
and provides a test of Predictions 1 and 2.

Experiment 2. Previous experiments that investigated the role of skewness in choices between
two risky options used non-binary lotteries and/or did not specify the correlation structure.
Building on seminal work by Eeckhoudt and Schlesinger (2006), a series of experiments ana-
lyzedwhether preferences over risky options satisfy prudence (see Trautmann andvandeKuilen,
2018, for a survey). Under EUT prudence is equivalent to a positive third derivative of the util-
ity function and it implies—for a fixed expected value and a fixed variance—a preference for
positive skewness. While these studies document that a majority of subjects prefer lotteries
with larger third moments, they do neither use binary lotteries (which comes with the caveat
that skewness is not well-defined) nor do they manipulate the lotteries’ correlation structure.
More closely related is the experiment by Ebert (2015) who investigated preferences over binary
lotteries with the same expected value and variance, but different levels of skewness, without
describing the exact state space. In line with the experiments on prudence, Ebert (2015) finds a
preference for right- over left-skewed risks, but he also observes that more absolute skewness
is not attractive per se, meaning that subjects do not necessarily choose the more skewed option
if both lotteries are right-skewed. As we discuss in Appendix C, this finding is consistent with
salience theory under the assumption that subjects perceived the lotteries as being independent.
Our second experiment directly builds on Ebert and Wiesen (2011) who formally introduced
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Mao pairs and experimentally investigated choices between these lotteries. We extend their
experimental setup by comparing choices under different correlation structures.10 This allows
us to identify the causal effect of relative skewness on choice under risk and provides a test of
Prediction 3.

6 Experimental Results

6.1 Experiment 1: Skewness-dependent Risk Attitudes

In line with Prediction 1, the share of risk-takers strictly increases in the lottery’s skewness, S,
both for lotteries with an expected value of E = 30 (see the gray bars in Figure 3) and for those
with an expected value of E = 50 (see the blue bars in Figure 3). Moreover, for all skewness
levels the share of risk takers strictly increases in the lottery’s expected value,E, which is in line
with Prediction 2 (compare the gray and blue bars in Figure 3).
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Figure 3: The figure depicts the share of lottery choices depending on the lottery’s skewness for a low and
a high expected value. The skewness values are presented in ascending order, but not in a proper scale.

In order to formally test for Predictions 1 and 2, we regress a binary indicator of whether
a subject chooses the lottery over its expected value on the lottery’s skewness and a dummy
indicating whether the lottery’s expected value is high or low (see Table 4). Since each subject
made twelve choices during the experiment, we cluster the standard errors at the subject level.
The regression models confirm what Figure 3 suggests: the share of risk takers significantly
increases with both a lottery’s skewness and its expected value.

Returning to Figure 3, we further observe that for both payoff levels there is a particularly
big shift in the share of risk takers when moving from the symmetric (i.e., S = 0) to the least
right-skewed (i.e., S = 1.5) lottery. This finding is in line with the salience-based explanation
of skewness preferences: the contrast on a binary lottery’s upside is larger than the contrast
on its downside if and only if the lottery is right-skewed, so that—due to the level effect—a

10Relatedly, a series of papers tests salience theory against CPT using correlated versions of the Allais paradoxes
(e.g., BGS; Frydman and Mormann, 2018; Bruhin et al., 2018).
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Parameter (1) (2)

Constant 0.247*** 0.175***
(0.022) (0.027)

Skewness 0.097*** 0.097***
(0.008) (0.008)

High Expected Value - 0.145***
- (0.025)

# Subjects 62 62
# Choices 744 744

Table 4: The table presents the results of OLS regressions of a dummy indicating the choice between
the lottery and the safe option (where a value of one indicates the choice of the lottery and a value of
zero indicates the choice of the safe option) on the lottery’s skewness and a dummy indicating whether
its expected value is high or low. All standard errors are clustered at the subject level and provided in
parenthesis. Significance level: *: 10%, **: 5%, ***: 1%.

binary lottery with non-negative payoffs becomes attractive to a salient thinker only if it is right-
skewed. Moreover, we observe that for a low expected value the least right-skewed lottery—
(60, 0.2; 22.5, 0.8)—is still chosen only by a minority, while the lottery that is least right-skewed
in the set of lotteries with a larger expected value—(80, 0.2; 42.5, 0.8)—is selected by a large
majority. The salience model can also explain this big shift in the share of risk takers: due
to the level effect the lower payoff of lottery (60, 0.2; 22.5, 0.8) is slightly more salient than the
higher payoff of this lottery although there is a larger contrast on the lottery’s higher, while the
decreasing level suggests that the upside payoff becomes salient for the lottery (80, 0.2; 42.5, 0.8).
A detailed overview of the results is provided in Table 8 in Appendix D.

Finally, we scrutinize whether the choice patterns predicted by Propositions 2 and 3 also
hold at the individual level. We observe that 63% of all subjects (39 out of 62 subjects) have a
unique switching point consistent with Proposition 2, both for the set of lotteries with a low
and a high expected value, which is a much larger share than we would expect under random
choice. Among the remaining 23 subjects there are 18 subjects who have a unique switching
point in line with Proposition 2 for exactly one set of lotteries (i.e., either for the lotteries with
low or for those with a high expected value), and only one subject has a unique switching point
in the opposite direction (i.e., choosing the lottery if and only if it is sufficiently left-skewed) for
both sets of lotteries.11 Moreover, we observe that 89% of those subjects who reveal a unique
switching point for both sets of lotteries also chose the lottery weakly more often (and 51%
of these subjects chose it strictly more often) in the case of a high expected value, which is
consistent with Proposition 3.

11A more formal treatment of skewness effects at the individual level is provided in Figure 12 in Appendix D,
where we plot the point estimates for the coefficient on the lottery’s skewness in individual-level versions of Regres-
sion Model (1) in Table 4. While in line with Proposition 2 the majority of point estimates is positive, the confidence
intervals have to be interpretedwith caution due to the small number of observations per subject. The results remain
basically the same when using Regression Model (2) from Table 4.
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In summary, the results of our first experiment confirm the importance of absolute skewness
for risk attitudes as well as our salience-based explanation of skewness preferences.

6.2 Experiment 2: A Preference for Relative Skewness

First, when pooling all choices for the more symmetric Mao pairs (i.e., those with S = 0.6), we
observe that the right-skewed lottery is chosen much more often under the perfectly negative
correlation than under the maximal positive correlation. Second, when pooling all choices for
the more skewedMao pairs (i.e., those with S = 2.7), we do not find much of a difference in the
frequency with which the right-skewed lottery is chosen under the perfectly negative and the
maximal positive correlation, respectively. Both findings are consistent with Prediction 3 and,
as illustrated in Figure 4, do not only hold for our initial study, but are successfully replicated
in a properly powered replication. Table 9 in Appendix D provides a detailed overview of the
results. Moreover, using the combined data for the initial study and the replication,12 we show
in the Appendix that the results are robust across the different Mao pairs (see Figure 13).
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Figure 4: The figure illustrates the share of choices of the right-skewed lottery under positive and negative
correlation. We present results separately for the initial study and the replication as well as the combined
results for both studies. We further report results of paired t-tests with standard errors being clustered at
the subject level (see Table 5 for the full regression). Significance level: *: 10%, **: 5%, ***: 1%.

Based on our power calculation—for which we used a paired t-test with standard errors be-
ing clustered at the subject level—we construct the dependent variable for a linear regression
model as follows. First, we create for each choice (i.e., twelve per subject) a dummy variable
that takes a value of one if the right-skewed lottery is chosen and a value of zero otherwise.
Second, using these dummies, we construct for each paired-choice (i.e., six per subject) a vari-
able that indicates the shift in choice due to a change in correlation and can take three values:

12Since we determined the necessary sample size for the replication in order to detect the same effect size for the
symmetric Mao pairs as observed in our initial study under the assumption that each subject makes three paired
choices, we do not have enough power to test our hypothesis for each symmetric Mao pair separately when using
only the data from the replication.
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a value of one if a subject switches from the right-skewed lottery under the perfectly negative
correlation to the left-skewed lottery under the maximal positive correlation, a value of minus
one if a subject switches in the opposite direction, and a value of zero if a subject does not change
her choice. Notice that the mean shift in choice corresponds to the difference in the shares of
subjects switching in either direction. Then, Prediction 3 (a) implies that the average shift in
choice is positive (i.e., there are more subjects who switch from the right-skewed lottery under
the perfectly negative correlation to the left-skewed lottery under the maximal positive correla-
tion than subjects who switch in the opposite direction), and Prediction 3 (b) suggests that the
average shift in choice is strictly larger for the more symmetric Mao pairs (with S = 0.6).

Now in order to formally test for Predictions 3 (a) and (b), we regress the shift in choice
as constructed above on a constant—which indicates the mean shift in choice for symmetric
Mao pairs and therefore tests for Prediction 3 (a)—and a dummy Skewed indicating whether a
given Mao pair is more symmetric (i.e., Skewed = 0 if S = 0.6) or more skewed (i.e., Skewed = 1

S = 2.7)—which yields the difference in means between symmetric and skewedMao pairs and
therefore tests for Prediction 3 (b). This regression (as presented in Table 5) computes paired
t-tests of the average shift in choice being different from zero, and it also allows us to account for
the fact that each subject makes multiple choices by clustering the standard errors at the subject
level. In line with Prediction 3 (a), we observe that for the symmetric Mao pairs the share of
choices of the right-skewed lottery significantly decreases by around 12 to 13 percentage points
when moving from the perfectly negative to the maximal positive correlation (i.e., the constant
takes a value between 0.121 and 0.135, and it is always significantly different from zero). And,
in line with Prediction 3 (b), we also find that the shift in choice is significantly smaller for the
more skewed Mao pairs (i.e., the coefficient of the dummy takes a value between -0.093 and
-0.136, and it is always (weakly) significantly different from zero). As illustrated in Figure 4, for
the more skewed Mao pairs there is at most a weakly significant shift in choice, that vanishes
once we take all the data into account.

The preceding results provide a test of the qualitative salience predictions derived in this
paper, but the data reveals further interesting patterns that are consistent with salience theory
and a preference for relative skewness. While for the more skewed Mao pairs the right-skewed
lottery is chosen in more than 90% of the cases, both under the perfectly negative and the max-
imal positive correlation, for the more symmetric Mao pairs even under the perfectly negative
correlation the right-skewed lottery is chosen in only around 60% of the cases (see Table 9 in
the Appendix). Since the difference in salience-weighted utility between the right-skewed and
the left-skewed lottery under the perfectly negative correlation is much smaller for the more
symmetric Mao pairs, this finding is easily reconciled with our salience model given an appro-
priate assumption on the decision noise. A more intuitive way to grasp this result, however,
is in terms of the lotteries’ relative skewness. Recall that the relative skewness of two lotter-
ies depends on both their absolute skewness and their correlation structure. As illustrated in
Table 3, the left-skewed lottery is less skewed relative to the right-skewed lottery for the more
skewedMao pairs under themaximal positive correlation than it is for themore symmetricMao
pairs under the perfectly negative correlation. Along these lines, Figure 5 shows that the right-
skewed lottery is chosen less often the more skewed the left-skewed lottery is in relative terms.
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Parameter Initial Study Replication Combined

Constant 0.135*** 0.121** 0.127***
(0.054) (0.053) (0.034)

Skewed -0.093* -0.136** -0.118***
(0.046) (0.047) (0.038)

# Subjects 79 113 192
# Paired Choices 474 678 1,152

Table 5: The table presents the results of OLS regressions of the shift in choice (i.e., the difference in
choices under the prefectly negative correlation and the maximal positive correlation) on a constant (which
corresponds to the mean shift in choice for the more symmetric Mao pairs and therefore tests for Part (a)
of Prediction 3) and a dummy indicating skewed Mao pairs (which gives the difference in means between
the more symmetric and the more skewed Mao pairs and therefore tests for Part (b) of Prediction 3). The
first column uses only data from the initial study, the second column uses only data from the replication,
and the third column combines both datasets. All standard errors are clustered at the subject level and
provided in parenthesis. Significance level: *: 10%, **: 5%, ***: 1%.

Also a linear regression confirms that the average probability of choosing the right-skewed lot-
tery significantly decreases by around 12.6 to 14 percentage points in the relative skewness of
the left-skewed lottery (see Table 10 in Appendix D). Altogether, these results reveal a strong
preference for relative skewness.
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Figure 5: The figure illustrates the share of choices of the right-skewed lottery as a function of the left-
skewed lottery’s relative skewness S(∆), where ∆ = L(E, V,−S)−L(E, V, S), separately for the initial
study and the replication as well as for the combined data. We observe that the share of choices of the
right-skewed lottery declines in the left-skewed lottery’s relative skewness.

Finally, using the combined data from the initial study and the replication, we analyze
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whether the choice patterns predicted by Proposition 4 also hold at the individual level. First,
we observe that 60% of all subjects (i.e., 115 out of 192 subjects) either switched from the right-
skewed lottery under the perfectly negative correlation toward the left-skewed lottery under
the maximal positive correlation or did not change their behavior for all six Mao pairs. This
behavior is fully in line with Proposition 4 and a share of 60% is much larger than the share
predicted by random choice. In addition, we find that 77% of all subjects (i.e., 147 out of 192
subjects) switched weakly more often in the direction predicted by salience theory. In order to
study preferences for relative skewness more directly we ran individual-level regressions of the
dummy indicating the choice between the right-skewed and the left-skewed lottery of a given
Mao pair on the left-skewed lottery’s relative skewness and Figure 14 in Appendix D depicts
the point estimates. While in line with Proposition 4 the majority of point estimates is nega-
tive, the confidence intervals have to be interpreted with caution due to the small number of
observations per subject.

In summary, the results of our second experiment confirm the importance of relative skew-
ness for choice under risk and support our salience-based explanation of skewness preferences.
Moreover, if some subjects noticed that each decision problem occurred twice in the experiment
(with the only difference being that payoff-irrelevant correlations are modified) and therefore
tried to choose in a consistent manner, we might actually underestimate the effect of relative
skewness on choices. In this sense, due to the within-subjects design, our estimates of the aver-
age correlation effect on choice might constitute a lower bound.

7 Alternative Explanations of Skewness Preferences

7.1 Expected Utility Theory

In order to explain the fact that most people are risk-averse with respect to symmetric mean-
preserving spreads over positive outcomes, EUT needs to assume that the utility function is
strictly concave (Bernoulli, 1738). Under this assumption, however, EUT cannot account for
skewness-dependent risk attitudes as elicited in Experiment 1. More specifically, it cannot ex-
plainwhy—depending on the skewness of a risk—people like variance in some, but dislike vari-
ance in other decision situations. While EUT can in principle explain why people prefer right-
skewed over left-skewed lotteries with the same expected value and variance (e.g., Menezes
et al., 1980; Ebert, 2015), it cannot account for the correlation effects that we detected in Exper-
iment 2. According to EUT a subject’s choice between two lotteries should be independent of
the correlation structure. In summary, EUT may explain a preference for absolute skewness
when the variance is fixed across options, but it cannot account either for the fact that a lottery’s
skewness affects risk attitudes or for the role of relative skewness in choice under risk.

7.2 Cumulative Prospect Theory

In response to the weaknesses of EUT as a descriptive model of choice under risk, Kahneman
and Tversky proposed prospect theory (Kahneman and Tversky, 1979) and later developed it into
cumulative prospect theory (Tversky and Kahneman, 1992). CPT fundamentally deviates from
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EUT in two directions by assuming that people (1) are loss-aversewith respect to some reference
point and (2) weight probabilities according to a non-linear function. In order to guarantee that
preferences over lotteries satisfy first-order stochastic dominance, CPT assumes that outcomes
are ranked before probability weights are computed, which in turn implies that the size of the
outcomes affects probability weighting in an ordinal way.13

CPT can explain why decision makers seek positively skewed and avoid negatively skewed
risks. More specifically, given an S-shaped value function with a sufficiently positive third
derivative and an inverse S-shaped weighting function that overweights not only small but also
moderate probabilities, CPT can account for both results of Experiment 1. The non-linear prob-
ability weighting function gives the effect of a lottery’s skewness on risk attitudes while the
curvature of the value function yields the effect of the expected value on risk attitudes.

In contrast to the salience model, however, the value of a given lottery is independent of
the choice context in CPT. As a consequence, CPT cannot explain the role that the correlation
structure plays for the choice between two lotteries and, therefore, it cannot account for the
results of Experiment 2. In other words, CPT predicts that only the lotteries’ absolute skewness
and not their relative skewness matters for choice under risk.

Finally, there are further theoretical arguments that favor the salience-based over the CPT-
based explanation of skewness effects. Unlike the salience model, CPT inherently produces
puzzling predictions on the strength of skewness effects. Rieger andWang (2006) and Azevedo
andGottlieb (2012) show that, according to CPT, a firm selling sufficiently right-skewed lotteries
with a fixed expected value can earn arbitrarily large profit margins in expectation. This result
is based on the fact that increasing a lottery’s upside payoff and simultaneously reducing the
corresponding probability increases a CPT agent’s willingness-to-pay for this lottery, namely
due to the overweighting of small probabilities. This prediction arises for “virtually all func-
tional forms that have been proposed in the literature” (Azevedo and Gottlieb, 2012, p. 1294).
Since, by Corollary 2, a salient thinker’s certainty equivalent to any lottery with a fixed expected
value is bounded, this puzzling prediction does not arise in the salience model.14 Also unreal-
istic predictions of CPT on dynamic gambling and investment behavior (Ebert and Strack, 2015,
2018) can be ruled out in the salience model (Dertwinkel-Kalt and Köster, 2018b).

7.3 Context-Dependent Attention Models

We are not the first to draw the connection between salience and skewness preferences. Bordalo
et al. (2013) have already pointed out that the salience model can explain why individuals like
right-skewed and dislike left-skewed assets, but they have not disentangled a salient thinker’s
preferences for variance and for skewness, respectively. Moreover, they have used the rank-
based version of salience theory which does not give a satisfactory explanation of skewness
preferences as it shares, for instance, the puzzling predictions of CPT on dynamic gambling
behavior (Dertwinkel-Kalt and Köster, 2018b).

13This rank-dependence was first proposed by Quiggin (1982).
14It is straightforward to show that the certainty equivalent to a lottery with expected value E is bounded by a

function that is affine in E.
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Not only the salience model, but also other approaches that model context-sensitive behav-
ior and that build on the contrast effect can account for many of our findings. For instance, our
results on skewness effects carry over to the closely related focusing model (Kőszegi and Szeidl,
2013) if it is applied to choice under risk. In this case, a focusing function—that is, the pendant
to the salience function satisfying only the contrast and not the level effect—determines which
states an agent’s attention is directed to. As the level effect can be included into the value func-
tion (Kőszegi and Szeidl, 2013, Section III.D), the focusing model can be closely aligned to the
salience model in which case it shares salience theory’s predictions for choice under risk.

Since our results are driven by the contrast effect, the model of relative thinking by Bushong
et al. (2017), which builds on the setup by Kőszegi and Szeidl (2013), but assumes a reverse
contrast effect (i.e., the attention a state attracts decreases in the range of attainable payoffs in
this state), cannot account for skewness preferences.

7.4 Optimal expectations

According to the model on optimal expectations proposed by Brunnermeier and Parker (2005),
an agent receives utility not only from her actions, but also from her beliefs over the likelihood
of favorable future outcomes. Therefore, an agent intentionally inflates the “perceived likeli-
hood” of upside events in order to enhance the pleasure from expecting these events. As a
consequence, a model of optimal expectations predicts an excessive demand for right-skewed
lotteries. But this model yields weaker predictions on skewness preferences than our salience-
based approach (see, e.g., Proposition 2 in Brunnermeier and Parker, 2005). First, Brunnermeier
andParker explain a preference for sufficiently right-skewed risks, but they donot obtain precise
predictions on the demand for less skewed or left-skewed assets. Second, utility from pleasant
expectations can be obtained only before an event is realized. Thus, it seems plausible that op-
timal expectations matter only when there is a considerable amount of time between an invest-
ment decision and the event realization. Our salience-based approach instead explains skew-
ness preferences irrespective of whether the realization of outcomes is delayed or not. More
importantly, also a model of optimal expectations implies that only the absolute skewness of
a lottery matters, but not how skewed it is relative to alternative options. Thus, Brunnermeier
and Parker (2005) cannot account for the results of our second experiment.

8 Conclusion

Choices on, for example, gambling, insurance, asset, and labor markets are crucially affected by
skewness preferences. As a consequence, it is important to understand the mechanism driving
skewness effects in choice under risk. In this paper, we have identified the contrast effect as
a plausible driver of skewness preferences. Accordingly, when comparing a risky and a safe
option, an outcome of the risky option attracts the more attention the more it differs from the
safe option’s payoff. Thereby, the contrast effect induces a focus on the large, but unlikely upside
of right-skewed risks, and a focus on the large potential loss in the case of left-skewed risks.
Alongside our theoretical results, we offer a novel set of experimental predictions that we have
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found support for in two laboratory experiments.
Our two experiments show that (1) when choosing between a risky and safe option subjects

exhibit a preference for positive skewness that becomes more pronounced as the payoff level
increases and that (2) the choice between two lotteries crucially depends on their correlation
structure, even though this correlation is irrelevant for a subject’s earnings. As Bordalo et al.
(2013) have already pointed out, the results of our first experiment might allow us to better
understand, for instance, the countercyclical relationship between the aggregated stock mar-
ket returns and the current economic situation. Proposition 3 suggests that we should observe
more risk-seeking behavior at higher payoff levels, as for higher payoffs a salient thinker focuses
even more on the large upside of a right-skewed risk and less on its downside. We confirm this
prediction in our first experiment, which can also explain why in the aggregate stocks are often
overvalued in boom times, but undervalued in the times of a bust (e.g., Campbell and Shiller,
1988; Guiso et al., 2018). In our second experiment we manipulated the correlation structure
of the available lotteries, as this allows us to test salience theory against alternative models of
choice under risk, in particular, cumulative prospect theory. Since in reality the correlation
structure often carries important information and therefore should affect behavior, however, it
is harder to come up with practical applications of our second experiment. Interestingly, while
we show that making the correlation structure explicit affects behavior even if it should not, a
recently growing literature has detected that in (rather complex) choice situations where cor-
relation indeed matters subjects tend to neglect it, thereby forming incorrect conditional prob-
abilities when making inferences (e.g., Levy and Razin, 2015; Enke and Zimmermann, 2018).
One conclusion that might be drawn from our experimental results is that helping people to
overcome correlation neglect and to thereby learn the objective probabilities of the states of the
world does not necessarily improve people’s decisions as salience effects can distort choices even
(more) if objective probabilities are known.

A potential limitation of our study is that we restrict our analysis of skewness preferences
to the class of binary risks. But despite the fact that skewness is not well-defined for lotter-
ies with a general distribution, the basic insights derived in this paper should carry over to a
broader class of distribution functions. Consider for instance a symmetric distribution with
continuous and bounded support on the positive real numbers (e.g., a truncated normal dis-
tribution). When choosing between this symmetric risk and a safe option paying its expected
value, a salient thinker goes for the safe option due to the level effect. Now extend the support of
the distribution’s right tail and shift some probability mass there, which skews the distribution
to the right. When compared to the risk’s expected value, outcomes in the right tail attract a
salient thinker’s attention (due to the contrast effect) and render the risk attractive. Conversely,
skewing such a symmetric distribution to the left by extending the support of its left tail makes
the risk less attractive to the salient thinker, due to the outcomes in the left tail attracting an
overproportionate amount of attention. While the intuition why salience can explain skewness
preferences, therefore, appears to be quite robust, general results as those derived in this paper
cannot be expected to hold, since for continuous distributions the salience predictions hinge on
the precise definition of skewness and on the exact curvature of the salience function over the
entire realm.
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To sum up, our paper adds to the theoretical (Bordalo et al., 2012, 2013) and experimental
literature on salience effects in choice under risk (e.g., Dertwinkel-Kalt and Köster, 2017; Fryd-
man and Mormann, 2018). Using both theoretical arguments and experimental data, we argue
that skewness preferences typically attributed to cumulative prospect theory aremore naturally
accommodated by salience theory.
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Appendix A: Relative Skewness and Choice Under Risk

A.1: Relative Skewness of Binary Lotteries and Mao Pairs

In this subsection, we derive some properties of our measure of relative skewness. Before we
can state these properties, however, we have to introduce the concept of coskewness.

Definition 8 (Coskewness). The coskewness of a lottery Lx relative to a lottery Ly is given by

Cos(Lx, Ly) :=
E[(Lx − E[Lx])(Ly − E[Ly])

2]√
V ar(Lx)V ar(Ly)

.

The coskewness of two lotteries refers to their third (non-trivial) cross-moments and it is often
used in the asset-pricing literature. Using the concept of coskewness, we canmake the following
statements on the relative skewness of two binary lotteriesLx andLy. Recall that∆xy = Lx−Ly.

Lemma 2. For any two binary lotteries Lx = L(Ex, Vx, Sx) and Ly = L(Ey, Vy, Sy) we obtain

S(∆xy) =
1√
Vxy

3

[
Sx
√
Vx

3
− Sy

√
Vy

3
+ 3Cos(Lx, Ly)

√
VxVy − 3Cos(Ly, Lx)Vx

√
Vy
]
,

where Vxy gives the variance of ∆xy. In addition, the following statements hold:

(a) If both lotteries have the same variance, then we obtain

S(∆xy) =

(
Vx
Vxy

)3/2 [
Sx − Sy + 3Cos(Lx, Ly)− 3Cos(Ly, Lx)

]
.

(b) If the two lotteries are stochastically independent, then we obtain

S(∆xy) =
Sx
√
Vx

3 − Sy
√
Vy

3√
Vx + Vy

3 ,

which simplifies to S(∆xy) = 1
2
√
2
[Sx − Sy] in the case of equal variances.

(c) If lottery Ly is degenerate, then we obtain S(∆xy) = Sx.

Proof. Straightforward calculations yield

E
[
(∆xy − E[∆xy])

3
]

= E
[(

[Lx − Ex]− [Ly − Ey]
)3]

= E
[
(Lx − Ex)3

]
− 3E

[
(Lx − Ex)2(Ly − Ey)

]
+ 3E

[
(Lx − Ex)(Ly − Ey)2

]
− E

[
(Ly − Ey)3

]
,

which gives the above formula for S(∆xy). Now Parts (a) and (c) directly follow, so we only
need to prove Part (b). Suppose that Lx and Ly are stochastically independent. Then, we obtain

E
[
(Lx − Ex)(Ly − Ey)2

]
= E

[
LxL

2
y

]
− ExE

[
L2
y

]
= E

[
Lx
]
E
[
L2
y

]
− ExE

[
L2
y

]
= 0,

where the first equality holds by Cov(Lx, Ly) = 0 and the second one by Cov(Lx, L
2
y) = 0.
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Next, we restrict attention to those binary lotteries that form a Mao pair (see Definition 7).
The following lemma summarizes the properties of Mao pairs that we have already discussed
in the main text and extends the list by some further useful properties. In particular, the left-
skewed lottery of a Mao pair is skewed relative to the right-skewed lottery only if the lotteries
are positively correlated and not too skewed in absolute terms.

Lemma 3. For any Mao pairM(E, V, S, η) the following statements hold:

(a) The covariance of L(E, V,−S) and L(E, V, S) strictly increases in η.

(b) Cov
(
L(E, V,−S), L(E, V, S)

)
> 0 if and only if η > 1

2

(
1 + S√

4+S2

)
.

(c) The coskewness of L(E, V,−S) relative to L(E, V, S) strictly increases in η.

(d) Cos
(
L(E, V, S), L(E, V,−S)

)
= −Cos

(
L(E, V,−S), L(E, V, S)

)
.

(e) Cos
(
L(E, V,−S), L(E, V, S)

)
> 0 if and only if η > 1

2

(
1 + S√

4+S2

)
.

(f) The third standardized central moment of ∆ = L(E, V,−S)− L(E, V, S) strictly increases in η.

(g) L(E, V,−S) is skewed relative to L(E, V, S) if and only if η > 2
3

(
1 + S√

4+S2

)
. In particular, for

η = 1, L(E, V,−S) is skewed relative to L(E, V, S) if and only if S < 2
3

√
3 ≈ 1.15.

Proof. The proof is straightforward and therefore omitted.

A.2: Independent Binary Lotteries

Suppose the choice set is given by C = {L(E, V, Sx), L(E, V, Sy)} with Sy > Sx. In addition,
let the lotteries be independent, in which case the relative skewness of the two lotteries is fully
determined by the difference in their absolute skewness (see Lemma 2 in Appendix A.1). In this
sense, the choice between two independent binary lotteries with the same expected value and
the same variance is structurally similar to the choice between a binary lottery and a safe option,
as also in the latter case the relative skewness is given by the difference in absolute skewness,
that is, simply by the skewness of the binary lottery (see Lemma 2).

The first result in this subsection relates a salient thinker’s choice between two independent
binary lotteries with the same expected value and the same variance to her choice between a
binary lottery and the safe option paying its expected value. Proposition 5 shows, in particular,
that a salient thinker does not necessarily choose the lottery that is more skewed in absolute
terms if either both lotteries are right-skewed or both are left-skewed. This prediction is in line
with experimental evidence by Ebert (2015).

Proposition 5. Denote by Ŝ ∈ R the threshold value derived in Proposition 2. Then, if the two binary
lotteries are stochastically independent, the following statements hold:

(a) lim
Sy→∞

[
U s
(
L(E, V, Sy) | C

)
− U s

(
L(E, V, Sx) | C

)]
> 0 if and only if Sx < Ŝ.

(b) lim
Sx→−∞

[
U s
(
L(E, V, Sy) | C

)
− U s

(
L(E, V, Sx) | C

)]
> 0 if and only if Sy > Ŝ.
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Proof. Let pz be the probability of the lower payoff of Lz := L(E, V, Sz). By Eq. (2), we obtain

Us(Lx)− E√
V

=

√
px(1− px)py(1− py)

[√
py

1−py

(
σ(x2, y1)− σ(x1, y1)

)
+
√

1−py
py

(
σ(x2, y2)− σ(x1, y2)

)]
pxpyσ(x1, y1) + px(1− py)σ(x1, y2) + (1− px)pyσ(x2, y1) + (1− px)(1− py)σ(x2, y2)

as well as

Us(Ly)− E√
V

=

√
px(1− px)py(1− py)

[√
px

1−px

(
σ(x1, y2)− σ(x1, y1)

)
+
√

1−px
px

(
σ(x2, y2)− σ(x2, y1)

)]
pxpyσ(x1, y1) + px(1− py)σ(x1, y2) + (1− px)pyσ(x2, y1) + (1− px)(1− py)σ(x2, y2)

.

Taking the difference of the above expressions yields

sgn
(
Us(Ly)− Us(Lx)

)
= sgn

([
σ(x1, y1)− σ(x2, y1)

]
√
px
√
py +

[
σ(x1, y2)− σ(x1, y1)

]
px

√
1− py
1− px

+

[
σ(x1, y2)− σ(x2, y2)

]
(1− py)

√
px
py

+

[
σ(x2, y2)− σ(x2, y1)

]√
1− px

√
1− py

)
,

where sgn : R→ {−1, 0, 1} is the signum-function. Now, as Sy approaches infinity, we have

sgn
(

lim
Sy→∞

[
U s(Ly)− U s(Lx)

])
= sgn

(√
px(1− px)σ(x1, E)−

√
px(1− px)σ(x2, E)

)
,

which exceeds zero if and only if Sx < Ŝ. This yields part (a). Analogously, we have

sgn
(

lim
Sx→−∞

[
U s(Ly)− U s(Lx)

])
= sgn

(√
py(1− py)σ(E, y2)−

√
py(1− py)σ(E, y1)

)
,

which exceeds zero if and only if Sy > Ŝ. This yields part (b).

Proposition 5 suggests that under the assumption of independence a salient thinker prefers
right- over left-skewed binary lotteries with the same expected value and the same variance.
This prediction is consistent with evidence from the lab (Ebert and Wiesen, 2011; Ebert, 2015).
More precisely, Proposition 5 (a) states that a salient thinker chooses an extremely right-skewed
lottery L(E, V, Sy) over the less skewed alternative L(E, V, Sx) if and only if lottery L(E, V, Sx)

is sufficiently less skewed in the sense that Sx < Ŝ, where the threshold value Ŝ is the same as
the one derived in Proposition 2. This result follows from the fact that, by Corollary 2, a salient
thinker’s valuation of L(E, V, Sy) approaches the lottery’s expected value as Sy approaches in-
finity, so that in this limit case the choice between the two lotteries L(E, V, Sy) and L(E, V, Sx)

is basically the same as the choice between the safe optionE and the lottery L(E, V, Sx). Analo-
gously, Proposition 5 (b) implies that a salient thinker does not choose an extremely left-skewed
lottery as long as the alternative option is sufficiently more skewed.

In summary, the preceding proposition implies that a lottery’s absolute skewness matters,
but it also suggests that more absolute skewness is not per se attractive to a salient thinker. By
Proposition 5 (a) an extremely right-skewed option is not chosen over a less but still sufficiently
skewed alternative, while by Proposition 5 (b) an extremely left-skewed lottery can be attractive
relative to a slightly more skewed alternative. These predictions link back to Corollary 2, ac-
cording to which the certainty equivalent to a binary lottery with a fixed expected value—when
interpreted as a function of the lottery’s skewness—is bounded. Notably, Ebert (2015) finds in
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his lab experiment that many subjects choose the less skewed of two right-skewed binary lot-
teries with the same expected value and variance. In this sense, Proposition 5 (a) is consistent
with the experimental evidence by Ebert (2015) under the assumption that the subjects in his
experiment perceived the lotteries as being independent.

Finally, by observing that a salient thinker’s behavior is driven by the difference in absolute
skewness, we can formulate the above result also in terms of relative skewness: Proposition 5
basically says that there exists some threshold value ∆̂ ∈ R such that the salient thinker chooses
L(E, V, Sy) overL(E, V, Sx) if its relative skewness, S(∆yx), exceeds the threshold ∆̂. It is in this
sense that Proposition 5 points towards a salient thinker’s preference for relative skewness.

If we assume that one of the lotteries is symmetric, we further obtain the following corollary,
which directly relates to the fourfold pattern of risk attitudes.

Corollary 3. Suppose the lotteries are stochastically independent. Then, the following statements hold:

(a) Let Sx = 0 and suppose that lottery L(E, V, Sx) has non-negative payoffs. Then, there exists some
S′ ∈ R such that for any Sy > S′ the salient thinker chooses L(E, V, Sy).

(b) Let Sy = 0 and suppose that lottery L(E, V, Sy) has non-positive payoffs. Then, there exists some
S′′ ∈ R such that for any Sx < S′′ the salient thinker chooses L(E, V, Sy).

Recall from Corollary 1 (a) that a binary lottery L(E, V, Sx) with non-negative payoffs is chosen
over its expected value if and only if Sx > Ŝ > 0 holds. Then, it follows immediately from
Proposition 5 (a) that a salient thinker chooses the more skewed alternative L(E, V, Sy) if its
absolute skewness exceeds a certain threshold (Part (a) of Corollary 3). Using the same line
of argumentation, Corollary 3 (b) follows directly from Corollary 1 (b) and Proposition 5 (b).
Again, both parts of Corollary 3 suggest that a salient thinker opts for the lottery that is more
skewed in absolute terms if it is also sufficiently skewed in relative terms.

A.3: A Preference for Relative Skewness can Explain the Allais Paradoxes

Not only choices on gambling, insurance, asset, and labormarkets are crucially affected by skew-
ness preferences, but also long-standing puzzles in choice under risk such as theAllais paradoxes
can be attributed to skewness preferences or, more precisely, a preference for relative skewness.

Common-Consequence Allais Paradox. In order to highlight the role that relative skewness
plays in predicting whether subjects exhibit the common-consequence Allais paradox, we build
on a recent experiment by Frydman and Mormann (2018). Suppose a subject chooses between
the lotteries L1(z) = (25, 0.33; 0, 0.01; z, 0.66) and L2(z) = (24, 0.34; z, 0.66) where z ∈ {0, 24}.
The common finding in the literature is that without making the state space explicit a majority
of subjects choose L2(24) over L1(24), but L2(0) over L1(0). This preference reversal constitutes
a puzzle from a classical economics point of view as according to EUT the common consequence
z should not affect behavior. It can, however, be easily rationalized by CPT or salience theory.
In addition, Frydman and Mormann (2018) have demonstrated that the emergence of the Al-
lais paradox crucially depends on the lotteries’ correlation structure. Can the idea of relative
skewness explain this phenomenon?
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In order to answer this question, let us start by considering the case in which the common
consequence is given by z = 24. In this case, subjects choose between the safe option L2(24) and
the left-skewed lottery L1(24) = (25, 0.33; 0, 0.01; 24, 0.66). According to the contrast effect, the
left-skewed lottery’s lowest payoff attracts a great deal of attention, which results in a preference
for the safe option. Now suppose that the common consequence is given by z = 0. In this case, in
order to derive predictions on a salient thinker’s behavior, we need to state what the state space
is. Adopting the notation by Frydman andMormann (2018), we parameterize the lotteries’ joint
distribution via some β ∈ [12 , 1]. The last row in Table 6 depicts the difference in the outcomes
of the lotteries, which determines their relative skewness.

Probability 0.33(2β − 1) 0.67− 0.66β 0.66β 0.66(1− β)

L1(0) 25 0 0 25
L2(0) 24 24 0 0

L1(0)− L2(0) 1 −24 0 25

Table 6: Joint distribution of the lotteries used to induce the common-consequence Allais paradox.

Frydman and Mormann (2018) verify in their Appendix that (i) the correlation between
L1(0) and L2(0) strictly increases in β ∈ [12 , 1] and that (ii) a salient thinker’s preference for
L1(0) over L2(0) is diminished as the lotteries become more positively correlated. Moreover, as
illustrated in Figure 6, lottery L1(0) is the more skewed relative to lottery L2(0) the smaller β
is, where we denote S(β) := S

(
L1(0)− L2(0)

)
.15 In this sense, salience theory again predicts a

preference for relative skewness and it suggests that subjects are the more likely to exhibit the
Allais paradox the more skewed lottery L1(0) is relative to lottery L2(0).

β

S(β)

0.6 0.7 0.8 0.9

−0.3

−0.2

−0.1

0.1

Figure 6: The figure illustrates how skewed L1(0) is relative to L2(0) as a function of β.

In their expriments, Frydman and Mormann (2018) vary the lotteries’ correlation across
three conditions—no correlation for β = 0.67, intermediate correlation for β = 0.98, and maxi-
mal correlation for β = 1—and they observe that, in line with salience, the share of subjects
exhibiting the Allais paradox strictly decreases in β. Since we obtain S(0.67) > S(0.98) > S(1),
these findings can be understood as subjects revealing a preference for relative skewness.

15To be precise, S(β)monotonically decreases in β ∈ [0.56, 1], with S(β) > 0 if and only if β < 0.86.
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Common-Ratio Allais Paradox. Finally, we demonstrate that also prominent versions of the
common-ratio Allais paradox proposed by Kahneman and Tversky (1979) or O’Donoghue and
Sprenger (2018) can be attributed to skewness preferences. We borrow the lotteries introduced
in Problems 3 and 4 of Kahneman and Tversky (1979), but divide all payoffs by 1,000 for the sake
of comparability with the common-consequence example. Let L3(q) = (40, 0.8q; 0, 1−0.8q) and
L4(q) = (30, q; 0, 1 − q) for q ∈ {0.25, 1}. Kahneman and Tversky (1979) observe that around
80% of the subjects choose L4(1) over L3(1), which can be explained by an aversion toward
left-skewed risks (see Proposition 2), while around 65% of the subjects choose L3(0.25) over
L4(0.25). This preference reversal contradicts EUT, but is in line with Proposition 5 given that
the subjects perceived the lotteries as being independent. In order to saymore on the role of rel-
ative skewness, Table 7 parameterizes the joint distribution for q = 0.25 via γ ∈ [0.6875, 0.9375].

Probability 0.8(1− γ)− 0.05 0.25− 0.8(1− γ) 0.8(1− γ) 0.8γ

L3(0.25) 40 40 0 0
L4(0.25) 0 30 30 0

L3(0.25)− L4(0.25) 40 10 −30 0

Table 7: Joint distribution of the lotteries used to induce the common-ratio Allais paradox.

Notice that for any salience function the states of the world can be unambiguously ranked
according to their salience: σ(40, 0) > σ(30, 0) > σ(40, 30), where the first inequality follows
by ordering and the second one by ordering and diminishing sensitivity. Then, it is easy to
check that either the salient thinker always prefers L3(0.25) or she always prefers L4(0.25) or
there exists some γ̂ ∈ (0.6875, 0.9375] so that she prefers L3(0.25) over L4(0.25) if and only if
γ < γ̂. In addition, as illustrated in Figure 7, lottery L3(0.25) is the more skewed relative to
lottery L4(0.25) the smaller γ is,16 where we denote S(γ) := S

(
L3(0.25)−L4(0.25)

)
. As before,

salience theory suggests that subjects are the more likely to exhibit the Allais paradox the more
skewed lotteryL3(0.25) is relative to lotteryL4(0.25). In this sense, also the common-ratio Allais
paradox can be understood as a manifestation of skewness preferences.

γ
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Figure 7: The figure illustrates how skewed L3(0.25) is relative to L4(0.25) as a function of γ.

16To be precise, S(γ)monotonically decreases in γ ∈ [0.7257, 0.9375], with S(γ) > 0 if and only if γ < 0.89.
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Appendix B: Proofs

B.1: Auxiliary Results

In this subsection, we derive auxiliary results on the salience-weighted utility that wewill apply
in the proofs of our main results. In a first step, we characterize the ordering property via prop-
erties of the partial derivatives of the salience function (Lemma 4). In a second step, we argue
that the salience-weighted utility of any lottery with a finite expected value is bounded (Lemma
5). In a third step, we formally introduce the notion of first-order stochastic dominance and we
state an implication for positive monotone transformations of lotteries that can be ordered in
terms of first-order stochastic dominance (Lemma 6). While Lemmata 5 and 6 are only relevant
for the proof of Proposition 1, we will use Lemma 4 also in the proof of Proposition 3.

The first result in this subsection pins down the sign of the partial derivatives of the salience
function (whenever these partial derivatives exist). In particular, we show that, on any dense
subset of R, the partial derivatives of a salience function are different from zero.

Lemma 4. Without loss of generality assume x ≥ y. Consider a symmetric, continuous, and almost
everywhere (a.e.) continuously differentiable function σ : R2 → R+. Denote as Nx ⊂ R the set on
which the partial derivative ∂

∂xσ(x, y) does not exist and asNy ⊂ R the set on which the partial derivative
∂
∂yσ(x, y) does not exist. Then, the following two statements are equivalent:

i) The function σ satisfies ordering.

ii) ∂
∂xσ(x, y) ≥ 0 for all (x, y) ∈ {R \Nx} × R and ∂

∂yσ(x, y) ≤ 0 for all (x, y) ∈ R × {R \Ny}.
In addition, we obtain ∂

∂xσ(x, y) > 0 > ∂
∂yσ(x, y) on any dense subset of R.

Proof. i) ⇒ ii): For any ε > 0 the ordering property implies σ(x + ε, y) − σ(x, y) > 0. Thus,
whenever the partial derivative ∂

∂xσ(x, y) exists, then ∂
∂xσ(x, y) ≥ 0 follows immediately from

its definition. By the Mean Value Theorem, there exists some ξ ∈ [x, x+ ε] such that

∂

∂x
σ(x, y)

∣∣∣∣
x=ξ

=
σ(x+ ε, y)− σ(x, y)

ε
> 0.

Since Nx has measure zero by assumption, we obtain ∂
∂xσ(x, y) > 0 on any dense subset of R.

The statement then follows by symmetry.

ii)⇒ i): For any ε, ε′ ≥ 0 with ε+ ε′ > 0 it holds that

σ(x+ ε, y − ε′)− σ(x, y) =

∫
[x,x+ε]\Nx

∂

∂z
σ(z, y − ε′)dz −

∫
[y−ε′,y]\Ny

∂

∂z
σ(x, z)dz > 0

since Nx and Ny have measure zero and either [x, x+ ε] \Nx or [y − ε′, y] \Ny or both are non-
empty and include dense subsets of R. Hence, σ satisfies ordering, which was to be proven.

The second result in this subsection states that the salience-weighted utility of any lottery
with a finite expected value is bounded. If we replace the linear value function assumed in
the main text by any strictly increasing value function, then the salience-weighted utility of any
lottery with a finite expected utility is bounded.
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Lemma 5. Fix a choice set C := {Lx, Ly}. There exist constantsK,K ∈ R so that U s(Lz|C) ∈ [K,K].
In particular, the bounds on the salience-weighted utility of lottery Lz are independent of lottery L−z .

Proof. Since the expected utility of lottery Lz ∈ {Lx, Ly} is finite, the statement simply follows
from the fact that the salience function is bounded (away from zero).

Before we state the last result of this subsection, we formally introduce the notion of first-
order stochastic dominance: we say that a lottery Lx first-order stochastically dominates the lottery
Ly (i.e., Lx fosd Ly) if and only if Fx(z) ≤ Fy(z) for any z ∈ R and Fx(z) < Fy(z) for some z ∈ R.
Lemma 6 states that not only has a first-order stochastic dominant lottery a higher expected
value than the corresponding dominated lottery, but that this inequality survives under any
positive monotone transformation of the lotteries.

Lemma 6. Let φ : R→ R be a strictly increasing function with φ′(·) > 0 (a.e.). Then, it holds:

Lx fosd Ly =⇒
∫
R
φ(x) dFx >

∫
R
φ(y) dFy

Proof. The proof is straightforward and therefore omitted.

B.2: Main Results

Proof of Proposition 1. We prove a slightly more general version of this proposition. Indeed, the
statement holds not only for a linear value function, but for any strictly increasing value function
u(·) with u′(·) > 0 such that the expected utility U(L) =

∫
R u(x) dF (x) is finite.

To begin with, notice that a salient thinker with a value function u(·) strictly prefers the
lottery L to the safe option c if and only if

u(c) <

∫
R
u(x) · σ(u(x), u(c))∫

R σ(u(s), u(c)) dF (s)
dF (x) =: h(c).

The proof now proceeds in four steps. In a first step, we use the Intermediate Value Theorem
and Lemma 5 to argue that u(c) = h(c) has at least one solution, which implies that a certainty
equivalent exists. In a second step, we show that for any c that solves u(c) = h(c), there exists
some ε > 0 such that u(c′) > h(c′) for any c′ ∈ (c, c+ ε) and u(c′′) < h(c′′) for any c′′ ∈ (c− ε, c).
This implies that the certainty equivalent is locally unique. In a third step, we take two lotteries
Lx and Ly where Lx fosd Ly and show—by the use of Lemma 6—that the smallest certainty
equivalent to the lottery Lx strictly exceeds the largest certainty equivalent to the lottery Ly.
In a fourth step, we combine the results from the previous steps to prove that the certainty
equivalent is (globally) unique. Monotonicity then follows immediately from the third step.

1. STEP: Since both u(·) and h(·) are continuous, the Intermediate Value Theorem states that
at least one solution to u(c) = h(c) exists if it is true that

lim
c→−∞

u(c) < lim
c→−∞

h(c) and lim
c→∞

u(c) > lim
c→∞

h(c). (4)

In order to verify that Eq. (4) is indeed fulfilled, we distinguish three cases.
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First, suppose that limc→−∞ u(c) = −∞ and limc→∞ u(c) = ∞. By Lemma 5, there exist
constantsK,K ∈ R such that h(c) ∈ [K,K] for any c ∈ R. Hence, Eq. (4) holds.

Second, let both limc→−∞ u(c) and limc→∞ u(c) be finite. As u′(·) > 0, we obtain

lim
z→−∞

u(z) =

∫
R

σ(u(x), u(c))∫
R σ(u(s), u(c)) dF (s)

· lim
z→−∞

u(z) dF (x)

<

∫
R

σ(u(x), u(c))∫
R σ(u(s), u(c)) dF (s)

· u(x) dF (x)

= h(c),

for any c ∈ R. This implies, in particular, that limc→−∞ u(c) < limc→−∞ h(c) has to hold. By the
same type of argument, we obtain limz→∞ u(z) > h(c) for any c ∈ R, which, in turn, implies
that limc→∞ u(c) > limc→∞ h(c) has to hold. Hence, Eq. (4) is satisfied.

Third, suppose that either limc→−∞ u(c) = −∞ and limc→∞ u(c) ∈ R or limc→−∞ u(c) ∈ R
and limc→∞ u(c) =∞. Here, combining the arguments used in the first and second case yields
the claim. Altogether, we conclude that at least one certainty equivalent exists.

2. STEP: Next, consider some certainty equivalent c. We show that there exists some ε > 0

such that u(c′) > h(c′) for any c′ ∈ (c, c + ε) and u(c′′) < h(c′′) for any c′′ ∈ (c − ε, c). Since we
have u′(c) > 0 by assumption, it is sufficient to verify that h′(c) ≤ 0 holds.

Denote as Nc ⊂ R the set on which the partial derivative ∂
∂cσ(u(x), u(c)) does not exist.

Since Nc has measure zero, we know that h′(c) exists. Moreover, as σ is bounded and as |u|
is integrable, the Dominated Convergence Theorem implies that we can reverse the order of
differentiation and integration. Simple re-arrangements show that h′(c) ≤ 0 holds if and only if∫
R u(x)σ(u(x), u(c)) dF (x)∫

R σ(u(s), u(c)) dF (s)︸ ︷︷ ︸
=h(c)

(∫
R\Nc

∂

∂c
σ(u(s), u(c)) dF (s)

)
≥
∫
R\Nc

u(x)
∂

∂c
σ(u(x), u(c)) dF (x).

Let X := {x ∈ R : u(x) ≤ u(c)} \Nc and X := {x ∈ R : u(x) > u(c)} \Nc. Since c is a certainty
equivalent by assumption, we have h(c) = u(c) and the preceding inequality is equivalent to∫

X
(u(c)− u(x))︸ ︷︷ ︸

≥0

∂

∂c
σ(u(x), u(c))︸ ︷︷ ︸

≥0

dF (x) +

∫
X

(u(c)− u(x))︸ ︷︷ ︸
<0

∂

∂c
σ(u(x), u(c))︸ ︷︷ ︸

≤0

dF (x) ≥ 0,

where the sign of ∂
∂cσ(u(x), u(c)) = u′(c) · ∂

∂u(c)σ(u(x), u(c)) follows from Lemma 4. As a con-
sequence, we have h′(c) ≤ 0, which implies that any certainty equivalent c is locally unique.

3. STEP: Consider two lotteries Lx and Ly where Lx fosd Ly. Suppose that cz ∈ R denotes
some certainty equivalent to lottery Lz ∈ {Lx, Ly}. Then any such certainty equivalent cz solves∫

R
φ(s, cz) dFz(s) = 0, (5)

where φ(s, c) :=
(
u(s)− u(c)

)
σ(u(s), u(c)) and Fz is the cumulative distribution function of Lz .
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Since ordering (by Lemma 4) implies that

∂

∂s
σ(u(s), u(c)) ≥ 0 (a.e.) if and only if u(s) ≥ u(c),

we have ∂
∂sφ(s, c) > 0 almost everywhere. Analogously, ∂

∂cφ(s, c) < 0 almost everywhere.
Now, for the sake of a contradiction, suppose that cx ≤ cy. This assumption implies

0 =

∫
R
φ(s, cx) dFx(s) ≥

∫
R
φ(s, cy) dFx(s) >

∫
R
φ(s, cy) dFy(s) = 0

where the equalities follow from (5), the weak inequality follows from ∂
∂cφ(s, c) < 0 (a.e.) and

cx ≤ cy, and the strict inequality holds by ∂
∂sφ(s, c) > 0 (a.e.) and Lemma 6; a contradiction.

Hence, we conclude that the smallest certainty equivalent to the lottery Lx is larger than the
largest certainty equivalent to the lottery Ly.

4. STEP: Consider some lottery L with a cumulative distribution function F . For the sake
of a contradiction, suppose that at least two certainty equivalents to L exist; that is, there exist
some c1, c2 ∈ R, c1 < c2, such that u(c1) = h(c1) and u(c2) = h(c2).

Nowconsider a sequence of lotteries (Ln)n∈Nwith cumulative distribution functions (Fn)n∈N

such thatL fosd Ln for any n ∈ N and Fn converges to F pointwise. By the second step, for each
k ∈ {1, 2} there is some εk > 0 such that u(z) > h(z) for any z ∈ (ck, ck + εk) and u(z) < h(z)

for any z ∈ (ck − εk, ck). In addition, it is straightforward to see that∫
R
u(x)

σ(u(x), u(c))∫
R σ(u(s), u(c)) dFn(s)

dFn(x)
n→∞−→

∫
R
u(x)

σ(u(x), u(c))∫
R σ(u(s), u(c)) dF (s)

dF (x).

Together, these two observations imply that there exists some n′ ∈ N such that for any n ≥ n′

also Ln has at least two certainty equivalents cn1 and cn2 which smoothly converge to c1 and c2,
respectively, when n approaches infinity. This implies that there exists some n′′ ≥ n′ such that
for any n ≥ n′′ we have cn2 > c1. But this yields a contradiction to the fact that the smallest
certainty equivalent to L is larger than the largest certainty equivalent to Ln (see 3. STEP).
Hence, the certainty equivalent is also globally unique.

Proof of Proposition 2. Consider a binary lottery Lwith expected valueE and variance V . Using
the characterization of binary risks in Eq. (2), we observe that the lottery’s lower payoff becomes
more likely if the lottery’s skewness increases. Formally, we have

∂p

∂S
= 2 · (S2 + 4)−3/2 > 0.

Using (2) again, we conclude that—for a fixed expected value and a fixed variance—both the
lower payoff x1 = x1(E, V, S) and the higher payoff x2 = x2(E, V, S) increase in the lottery’s
skewness S. Therefore, the difference between the lower (higher) payoff and the expected value
monotonically decreases (increases) in the lottery’s skewness S:

∂(E − x1)
∂S

< 0 and ∂(x2 − E)

∂S
> 0.
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Since the expected valueE is fixed, an increase in the contrast |xk−E| is equivalent to an increase
in the salience of state (xk, E) due to the ordering property. Hence, the lower payoff’s salience
decreases in S, while the higher payoff’s salience increases in S.

Since limS→∞ x2(E, V, S) =∞ > E, we obtain

lim
S→∞

σ(x2, E) > σ(E,E) = lim
S→∞

σ(x1, E)

by ordering and continuity of the salience function. Continuity of the salience function further
implies that there exists some Ŝ <∞ such that for anyS > Ŝ the lottery’s higher payoff is salient.
As we have seen that the salience of both outcomes is monotonic in the lottery’s skewness S, we
conclude that the salient thinker chooses the risky option if and only if S > Ŝ. Finally, the fact
that limS→−∞ σ(x1, E) > σ(E,E) = limS→−∞ σ(x2, E) together with monotonicity ensure that
there exists a unique skewness value Ŝ ∈ R such that r(E, V, Ŝ) = 0.

Proof of Proposition 3. Let either x1(E, V, S) ≥ 0 or x2(E, V, S) ≤ 0. By definition, the threshold
value Ŝ = Ŝ(E, V ) solves r = r(E, V, S) = 0. We proceed in two steps. First, we determine the
sign of ∂

∂E Ŝ(E, V ) given that this partial derivative exists. Second, we argue that ∂
∂E Ŝ(E, V )

exists for any E ∈ R \N where N has measure zero. This suffices to prove our claim.

1. STEP: If ∂
∂E Ŝ(E, V ) exists, then the Implicit Function Theorem yields

∂

∂E
Ŝ(E, V ) = −

∂
∂E r(E, V, S)
∂
∂S r(E, V, S)

∣∣∣∣
S=Ŝ

. (6)

For any expected value E, variance V , and skewness S, we have

∂

∂E
r(E, V, S) =

√
V p(1− p) · d

dE

(
σ(x1, E)− σ(x2, E)

pσ(x1, E) + (1− p)σ(x2, E)

)
, (7)

so that the sign of the preceding derivative is equal to the sign of

d

dE

(
σ(x1, E)− σ(x2, E)

pσ(x1, E) + (1− p)σ(x2, E)

)
=
σ(x2, E) d

dEσ(x1, E)− σ(x1, E) d
dEσ(x2, E)

(pσ(x1, E) + (1− p)σ(x2, E))2
. (8)

Thus, by definition of the decreasing level effect, we obtain ∂
∂E r(E, V, S) < 0.

In addition, for any expected value E, and variance V , we have

∂r

∂S

∣∣∣∣
S=Ŝ

=
√
V

(
σ̂1 − σ̂2

pσ̂1 + (1− p)σ̂2

)
︸ ︷︷ ︸

=0 by definition of Ŝ

· ∂
∂S

(√
p(1− p)

)∣∣∣∣
S=Ŝ

+
√
V p(1− p) · ∂

∂S

(
σ1 − σ2

pσ1 + (1− p)σ2

)∣∣∣∣
S=Ŝ

where σk := σ(xk(E, V, S), E) and σ̂k := σ(xk(E, V, Ŝ), E) for k ∈ {1, 2}. Since σ̂1 = σ̂2 by the
definition of Ŝ and since ∂

∂E Ŝ(E, V ) exists by assumption, it is easy to verify that ∂
∂S r(E, V, S)

∣∣
S=Ŝ

has the same sign as

∂

∂S

(
σ(x1(E, V, S), E)− σ(x2(E, V, S), E)

)∣∣
S=Ŝ

.
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Then, as ∂
∂E Ŝ(E, V ) exists by assumption, we conclude by Lemma 4 and Eq. (2) that

∂

∂S

(
σ(x1(E, V, S), E)− σ(x2(E, V, S), E)

)∣∣
S=Ŝ

< 0

has to hold. This implies that ∂
∂E Ŝ(E, V ) < 0 holds whenever this partial derivative exists.

2. STEP: Notice that ∂
∂S

(
σ(x1(E, V, S), E) − σ(x2(E, V, S), E)

)∣∣
S=Ŝ

= 0 holds if and only if
∂
∂xk

σ(xk, E) = 0 for k ∈ {1, 2}. For a fixed variance V and a fixed skewness S, we define

N :=

{
E ∈ R :

∂

∂xk
σ(xk(E, V, S), E) = 0, k ∈ {1, 2}, or d

dE
σ(xk(E, V, S), E) does not exist

}
.

Hence for any expected value E ∈ R \N the partial derivative ∂
∂E Ŝ(E, V ) exists. By Lemma 4,

set N has measure zero, which implies that for any ε > 0 it holds that

Ŝ(E + ε, V )− Ŝ(E, V ) =

∫
[E,E+ε]\N

∂

∂x
Ŝ(x, V ) dx < 0.

This completes the proof.

Proof of Proposition 4. Let Ly := L(E, V, S) and Lx := L(E, V,−S), and denote as p = p(−S)

the probability that the left-skewed lottery’s lower payoff is realized. In addition, denote as
sgn : R→ {−1, 0, 1} the signum-function. We prove Parts (a), (b), and (c) successively.

PART (a): Since sgn
(
U s(Ly)− U s(Lx)

)
= sgn

(∑
sij∈S πij(η)(yj − xi)σ(yj , xi)

)
, we obtain

sgn
(
Us(Ly)− Us(Lx)

)
= sgn

(
(1− p)

[
2σ(y2, x1) + η

(
σ(y1, x1)− 2σ(y2, x1) + σ(y2, x2)

)]
−
[
2(1− p)σ(y1, x2) + η

(
σ(y1, x1)− 2σ(y2, x1) + σ(y2, x2)

)])
.

Hence, we conclude that U s(Ly)− U s(Lx) > 0 holds if and only if

η <
2(1− p)[σ(y2, x1)− σ(y1, x2)]

2[(1− p)σ(y2, x1)− pσ(y1, x2)]− (1− 2p)[σ(y1, x1) + σ(y2, x2)]
. (9)

Now we define

η̌(S) := min

{
1,

2(1− p)[σ(y2, x1)− σ(y1, x2)]

2[(1− p)σ(y2, x1)− pσ(y1, x2)]− (1− 2p)[σ(y1, x1) + σ(y2, x2)]

}
, (10)

where xk = xk(E, V, S), yk = yk(E, V, S), k ∈ {1, 2}, and p = p(−S) are defined in Eq. (2).
Then, it is straightforward to check that η̌(S) < 1 holds if and only if

σ(y1, x1) + σ(y2, x2)− 2σ(y1, x2) < 0. (11)

As limS→∞ x1 = −∞, as limS→∞ x2 = E = limS→∞ y1, and as limS→∞ y2 = ∞, the ordering
property implies that Inequality (11) does not hold in the limit of S → ∞. Analogously, as
limS→0 x1 = E −

√
V = limS→0 y1 and as limS→0 x2 = E +

√
V = limS→0 y2, ordering implies

that Inequality (11) holds in the limit of S → 0.
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PART (b): Since sgn
(
U s(Ly)− U s(Lx)

)
= sgn

(∑
sij
πij(η = 0)(yj − xi)σ(yj , xi)

)
, we have

sgn
(
U s(Ly)− U s(Lx)

)
= sgn

(
p(y2 − x1)σ(y2, x1) + (1− p)(y1 − x2)σ(y1, x2)

)
= sgn

(
p(y2 − x1)

(
σ(y2, x1)− σ(y1, x2)

))
,

where the second equality follows from the fact that E[Lx] = E = E[Ly]. Since we further have
y2 > x2 > y1 > x1 by Eq. (2), the statement follows from the ordering property.

PART (c): Notice that y1 and y2 monotonically increase in S while x1 and x2 monotonically
decrease in S. Thus, since y2 > x2 > y1 > x1, ordering implies that σ(y1, x1) and σ(y2, x2)

monotonically increase in S while σ(y1, x2) monotonically decreases in S. Together these obser-
vations imply that the left-hand side of (11) strictly increases in S. The statement then follows
from limS→∞ η̌(S) = 1 and limS→0 η̌(S) < 1 (see Part (a) of the proof).

Appendix C: Decreasing Level Effect

In this section, we show that awide class of salience functions satisfies the decreasing level effect.
The decreasing level effect, as introduced in Definition 2, basically says that the contrast effect
becomes more important relative to the level effect as the payoff level increases. This property
is a necessary and sufficient condition for Proposition 3 to hold.

Consider, for instance, the salience function

σθ(x, y) :=
(x− y)2n

(|x|+ |y|+ θ)2n
, n ∈ N, θ > 0. (12)

Now, for the sake of the argument, let y, z ∈ R and x ≥ max{−y,−z, 0}. Then, we obtain

d
dxσθ(x+ y, x+ z)n

σθ(x+ y, x+ z)n
= − 4n

x+ y + x+ z + θ
=

d
dxσθ(−x− y,−x− z)

n

σθ(−x− y,−x− z)n
,

which implies that the salience function σθ(x, y) indeed satisfies the decreasing level effect. Also
positive transformations of the salience function σθ(x, y) satisfy this property.

Similar calculations as above show that also the salience function σ(x, y) = |x−y|
|x|+|y|+θ , which

was proposed by Bordalo et al. (2012), satisfies the decreasing level effect and therefore yields
Proposition 3. Moreover, the weighting functions proposed by Bordalo et al. (2016), Thakral and
To (2017), or Ellis and Masatlioglu (2017) all satisfy the decreasing level effect.
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Appendix D: Experiments on Salience and Skewness

D.1: Instructions

Information about the experiment

Welcome to this experimental study. Please do not talk to other participants or use your mobile from
now on and throughout the entire experiment. Please read the following instructions carefully. For the
successful completion of the experiment it is important that you have fully understood the instructions.
Should you have any questions at any point in time please raise your hand. An experimenter will then
answer your questions at your seat.

In this experiment you can earn an experimental currency (Taler) which will be converted into Euro at
the end of the experiment. The conversion rate is

1 Euro = 2 Taler.

Altogether you will make 12 decisions. These decisions only concern your personal preferences, there
are no right or wrong answers. You choose between two choice options that are denoted (L) and (R).
Option (L) always denotes a safe option that gives you a certain payoff with 100% probability. Option
(R) gives you a payoff that depends on a turn of the wheel of fortune with 100 fields that is simulated by
your computer. In the following we show you some examples. Please study them carefully.

Example 1:

Option (L): You obtain 50 Taler.

Option (R): You obtain 45 Taler with 90% probability (that is, if the wheel of fortune stops on fields 1-90)
and 95 Taler with 10% probability (that is, if the wheel of fortune stops on fields 91-100).

Figure 8: Instructions for Experiment 1, translated into English (first part).
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Example 2:

Option (L): You obtain 30 Taler.

Option (R): You obtain 0 Taler with 20% probability (that is, if the wheel of fortune stops on fields 1-20)
and 37.5 Taler with 80% probability (that is, if the wheel of fortune stops on fields 21-100).

Payoffs:

At the end of the experiment the computer will choose one of your 12 choice tasks randomly. If you have
chosen (L) in this task you will receive the according sum. If you have chosen (R) your payoff will be
determined through the simulation of the turn of a wheel of fortune. Your payoff will be paid in cash at
the end of the experiment.

Please look carefully at each of the 12 choice tasks. Between tasks the payoff probabilities and the corre-
sponding payoffs change.

Figure 9: Instructions for Experiment 1, translated into English (second part).
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Information about the experiment

Welcome to this experimental study. Please do not talk to other participants or use your mobile from
now on and throughout the entire experiment. Please read the following instructions carefully. For the
successful completion of the experiment it is important that you have fully understood the instructions.
Should you have any questions at any point in time please raise your hand. An experimenter will then
answer your questions at your seat.

In this experiment you can earn an experimental currency (Taler) which will be converted into Euro at
the end of the experiment. The conversion rate is

1 Euro = 4 Taler.

Altogether you will make 12 decisions. These decisions only concern your personal preferences, there
are no right or wrong answers. You choose between two choice options that are denoted A and B. The
payoffs of these options depend on a turn of the wheel of fortune with 100 fields that is simulated by
your computer. The probability of being hit is the same for all fields. In the following we show you some
examples. Please study them carefully.

Example 1:

If the wheel of fortune stops on fields 1-90 (that corresponds to a 90% probability) with Option A you
will receive exactly 120 Taler and with Option B exactly 96 Taler. If the wheel of fortune stops on fields
91-100 (that gives a 10% probability) you will receive with Option A exactly 0 Taler and with Option B
exactly 216 Taler.

Figure 10: Instructions for Experiment 2, translated into English (first part).
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Example 2:

If the wheel of fortune stops on fields 1-36 (that corresponds to a 36% probability) with Option A you
will receive exactly 90 Taler and with Option B exactly 104 Taler. If the wheel of fortune stops on fields
37-72 (that gives a 36% probability) you receive with Option A exactly 40 Taler andwith Option B exactly
54 Taler. If the wheel of fortune stops on fields 73-100 (that corresponds to a 28% probability) you receive
with Option A exactly 90 Taler and with Option B exactly 104 Taler.

Payoffs:

At the end of the experiment the computer will choose one of your 12 choice tasks randomly. This choice
task is payoff relevant. Your payoff will be determined through the simulation of the turn of a wheel
of fortune. Assume, for instance, the choice task given in Example 1 is payoff relevant and the wheel of
fortune stops on field 93. If you have chosen option A you will receive 0 Taler. If you have chosen Option
B you will receive 216 Taler.

Your payoff will be paid in cash at the end of the experiment.

Please look carefully at each of the 12 choice tasks. Between tasks the payoff probabilities and the corre-
sponding payoffs change.

Figure 11: Instructions for Experiment 2, translated into English (second part).
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D.2: Additional Results

Experiment 1. Here we report further results of Experiment 1. Table 8 presents the numbers
underlying Figure 3, and Figure 12 illustrates additional results regarding our within-subjects
predictions. In particular, we have estimated the RegressionModel (1) of Table 4 for each subject
separately and plot the point estimates for the coefficient on the lottery’s skewness togetherwith
the corresponding 95%-confidence intervals. We observe that—in line with Proposition 2—the
point estimates are positive for the majority of subjects.

Choice of lottery for E = 30 Choice of lottery for E = 50

# of choices % of choices # of choices % of choices
S = −1.5 2 3% 7 11%
S = −0.6 3 5% 9 15%
S = 0 9 15% 15 24%
S = 1.5 22 35% 43 69%
S = 2.7 34 55% 47 76%
S = 6.9 49 79% 52 84%

Table 8: The table presents the number and share of risk takers by skewness level and expected value.

-.2 -.1 0 .1 .2

Figure 12: The figure illustrates the point estimates and 95%-confidence intervals for the coefficient on
the risky option’s skewness in individual-level versions of Regression Model (1) presented in Table 4.
Each of the 62 point estimates corresponds to a specific subject and is based on twelve observations at
six different skewness levels. A positive coefficient implies that the average probability that this subject
chooses the lottery over its expected value increases with the lottery’s skewness. Due to the small number
of observations per subject, however, the confidence intervals should be interpreted with caution.
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Experiment 2. In the following, we provide further results on Experiment 2. Table 9 presents
the numbers underlying Figure 4, and Figure 13 illustrates the results for the combined data
separately for each Mao pair. In particular, we find that the results are robust across Mao pairs.

Perfectly Negative Correlation Maximal Positive Correlation

# of choices % of choices # of choices % of choices

Initial Study
S = 2.7 224 95% 214 90%

S = 0.6 145 61% 113 48%

Replication
S = 2.7 313 92% 318 94%

S = 0.6 216 64% 175 52%

Combined
S = 2.7 537 93% 532 92%

S = 0.6 361 63% 288 50%

Table 9: The table presents the number and share of choices of the right-skewed lottery of a Mao pair
pooled over all symmetric and skewed Mao pairs, respectively, as introduced in Table 3. We present
results separately for the initial study and the replication as well as the combined results for both studies.
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d = 0.135∗∗∗

d = −0.005

S = 0.6 S = 2.7

E = 108 & V = 1296

d = 0.156∗∗∗

d = 0.005

S = 0.6 S = 2.7

E = 36 & V = 144

d = 0.089∗

d = 0.026

S = 0.6 S = 2.7

E = 72 & V = 576

Positive correlation Negative correlation

Figure 13: The figure illustrates the share of choices of the right-skewed lottery under the positive and
the negative correlation. We present the combined results for both studies separately for each Mao pair.
We further report the results of paired t-tests. Significance level: *: 10%, **: 5%, ***: 1%.

Finally, we extend our analysis of relative skewness by regressing a binary indicator of
whether the right-skewed lottery of a givenMao pair is chosen on the left-skewed lottery’s rela-
tive skewness (see Table 10). We find that the average probability of choosing the right-skewed
lottery of a Mao pair significantly decreases in the relative skewness of the left-skewed lottery.
Figure 14 presents individual-level versions of our regression model using the combined data,
and we observe that—in line with Proposition 4—the majority of point estimates are negative.
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Parameter Initial Study Replication Combined

Constant 0.602*** 0.635*** 0.622***
(0.025) (0.021) (0.016)

Relative Skewness -0.140*** -0.126*** -0.132***
(0.011) (0.010) (0.007)

# Subjects 79 113 192
# Choices 948 1,356 2,304

Table 10: The table presents the results of OLS regressions of a dummy indicating the choice between the
lotteries of aMao pair (which takes a value of one if the subject chooses the right-skewed lottery and a value
of zero otherwise) on the relative skewness of the left-skewed lottery. All standard errors are clustered at
the subject level and provided in parenthesis. Significance level: *: 10%, **: 5%, ***: 1%.

-.4 -.2 0 .2 .4 -.4 -.2 0 .2 .4

-.4 -.2 0 .2 .4 -.4 -.2 0 .2 .4

Figure 14: The figure illustrates the point estimates and 95%-confidence intervals for the coefficient on
the left-skewed lottery’s relative skewness in individual-level versions of the regression model presented in
Table 10 using the combined data. Each of the 192 point estimates corresponds to a specific subject and is
based on twelve observations. A negative coefficient implies that the average probability that this subject
chooses the right-skewed lottery decreases with the left-skewed lottery’s relative skewness. But due to the
small number of observations per subject the confidence intervals should be interpreted with caution.
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