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This paper studies attention allocation behavior of rationally inattentive consumers who have 
CRRA preferences, face uninsured capital income risk, and suffer from an information-
processing capacity constraint. For given attention devoted to capital income risk, we solve for 
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capacity, assuming a relative risk aversion degree larger than unity. Furthermore, we solve for 
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prior volatility of capital return, and (iv) higher degree of patience. 
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1 Introduction

Understanding effects of capital income risk on saving behavior is an important task in macroe-

conomic studies1. One reason is that according to empirical studies with surveys data, such

as Bertaut and Starr-McCluer (2002), a large share of households invest directly or indirectly

in stocks, pension funds, and corporate equities, which have highly nondiversified risk. Fur-

thermore, private businesses account for almost half of aggregate capital and employment in

the U.S., and they are subject to dramatic idiosyncratic capital income risk. Previous stud-

ies on temporal resolution of uncertainty, such as Epstein (1980), argue that acquiring more

information regarding future capital return affects agents’ current consumption choice and in-

creases their welfare. However, still little is known about what determines investors’ information

choice. Since understanding information acquisition is crucial to understanding households’

consumption-saving behavior, this paper applies rational inattention theory of Sims (2003)

to jointly investigates information acquisition behavior and consumption-saving choices under

capital income risk.

In our model, agents allocate their limited attention to future capital return before making

consumption-saving decision subject to a cost of attention, as in Van Nieuwerburgh and Veld-

kamp (2010) who jointly model information acquisition and static portfolio choice problem.

In this situation, agents face a trade-off between paying attention to capital income risk. On

the one hand, paying more attention increases expected utility because a more precise signal

helps agents to make more efficient consumption allocation plan. On the other hand, paying

attention causes an information cost in utility due to the attention capacity constraint. Since

agents have scarce consumption resource and limited attention capacity, they need to solve two

optimization problems: consumption choice and attention allocation. A two-period framework

with stochastic capital return allows us to solve these two problems analytically and make the

following predictions.

First, in contract to previous literature where the capital return cannot be learned 2, agents

in our model have smaller demand for savings assuming relative risk aversion larger than one.

This is because paying attention to future capital return reduces the perceived capital income

uncertainty, and this reduction leads to less precautionary savings when the substitution effect

dominates. Second, expected utility from consumption is increasing attention devoted to capital

return. The intuition is that when agents pay more attention to capital return, they can observe

1See, inter alia, Angeletos (2007) and Benhabib et al. (2015).
2See, inter alia, Levhari and Srinivasan (1969), Sandmo (1970), Rothschild and Stiglitz (1971).
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a more precise signal, which helps them to make more efficient consumption decisions.

Finally, optimal attention amount is increasing with risk aversion, degree of patience and

prior volatility of capital return, but decreasing with the marginal cost of information. The

key finding is that poorer agents pay more attention to capital income risk relative to their

wealthier counterparts, because more limited budgets lead to paying attention more profitable

under CRRA preferences. The intuition is that the poor is more susceptible to capital income

risk than the rich, and paying more attention helps them to allocate scarce resource more

efficiently. This finding is in line with that of Shah et al. (2018), who study money in the

mental lives of the poor with experiments and conclude that, facing more limited budget, the

poor are often think more carefully than the rich when it comes to monetary opportunity cost

of economic decisions.

Our paper builds on Sims (2003, 2006). Sims argues that consumers cannot attend per-

fectly to all freely available information. He proposes modeling consumers’ limited attention

as a constraint on information flow, which is measured by entropy as in Shannon (1948)’s in-

formation theory. Following works of Sims, rational inattention is popularly applied to solve

consumption-saving problems. For example, Luo (2008) solves excess smoothness puzzle and ex-

cess sensitivity puzzle, and Tutino (2013) studies asymmetric consumption responses to wealth

shocks. However, these papers all study consumption-saving choices of rationally inattentive

agents who face stochastic labor income but constant capital income3. Our paper mainly in-

vestigates attention allocation and consumption choice problems jointly under capital income

risk. Therefore we assume that at the beginning of period 1, lifetime labor income is known

with certainty, whereas capital return is stochastic but can be learned.

Another difference between our model and the others in the rational inattention consumption

literature is that we model agents with CRRA preferences. For the reason of tractability, linear

quadratic utility or log utility are popularly used in these studies4. However, when investigating

saving behavior with capital income risk neither linear quadratic nor log utility can be employed,

because the former utility leads to certainty equivalence and the latter one has a property that

income and substitution effects cancel out. Sims (2006) first solves rationally inattentive agent’s

saving problem with CRRA utility in a two-period framework, and especially the author solves

3Maćkowiak and Wiederholt (2015) also study a stochastic capital income in their model, but different from

our paper, the authors solve the RI model numerically under linear quadratic framework
4For example, Sims (2003), Luo (2008) and Luo and Young (2016) directly work with linear quadratic

framework. Luo (2010) and Maćkowiak and Wiederholt (2015) work with log-quadratic approximation of

CRRA utility.
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the model analytically for a log form. Tutino (2013) extends the two-period model of Sims

(2006) into a fully dynamic rational inattention consumption model and solves it numerically.

On the contrary, in this paper we can obtain analytical solutions to the consumption-saving

choice and attention allocation problems with a stochastic interest rate and CRRA preferences

in a two-period RI framework5.

Our work also contributes to the literature studying consumption choices with non-learnable

capital return. Phelps (1962) first studies optimal saving behavior under capital income un-

certainty by employing different utility functions. Levhari and Srinivasan (1969), Sandmo

(1970), and Rothschild and Stiglitz (1971) extend the work by Phelps and find that assuming

CRRA preferences, a degree of relative risk aversion larger than unity leads to positive effects of

mean-preserving increases of riskiness in capital income on demand for savings. A common as-

sumption in these papers is that future capital return is not observable and agents are endowed

with a prior belief6. The discussion about the effect of capital return risk on consumption-saving

choice depends on exogenous changes in the prior volatility of capital return with the expected

return remaining constant. Epstein (1980) extends these models above by allowing agents learn

about future capital return and solves optimal consumption-saving choice subject to improv-

ing information about future capital return, but the amount of information is exogenous to

agents. In our paper, we go one step further and allow agents to choose not only how much

to consume but also how much information to acquire regarding future capital income. This

endogenous information choice is important to understand heterogeneous consumption-saving

behavior. For example, our finding on the relationship between wealth inequality and attention

choice can explain why the rich save more7.

The remainder of this paper is organized as follows. Section 2 presents the two-period

RI consumption-saving model. Section 3 solves consumption-saving and attention allocation

problems analytically. Section 4 extends the model into a non-Gaussian framework in order to

check robustness of the main finding. Section 5 concludes.

5Van Nieuwerburgh and Veldkamp (2010) also solves a static portfolio choice and information choice problems

analytically with CARA and CRRA preferences respectively. However, different from their study that utility

comes from terminal wealth, in our paper agents make optimal intertemporal consumption allocation under

limited attention. Furthermore, we not only solve the model analytically under assumption on Gaussian signal

as in this paper, but also check the robustness of our results numerically without Gaussian assumption.
6The prior belief is usually the true distribution of capital return. This assumption is also made in the

literature of precautionary savings such as in Skinner (1988) and Kimball (1990) who discuss both labor income

risk and capital income risk.
7See Carroll (2000) and Quadrini (2000).
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2 Two-period consumption-saving model

In this section, we incorporate information constraint into a standard two-period consumption-

saving model.

Agents. In our model, agents live only two periods t ∈ {0, 1}.

Preference. u(Ct) is period t utility. I assume that the utility function belongs to the

CRRA family,

u(Ct) =
C1−γ
t

1− γ
(1)

where γ > 1 parametrizes the degree of relative risk aversion.

Time discounting factor. Let β ∈ (0, 1) denote the agents’ subjective discount factor. It

represents the degree of agents’ patience.

Budget constraints. Let Y0 be the initial wealth endowment8 which is strictly positive

and known in the initial period. In period 0, agents make consumption and saving decisions

and savings consist of a single asset, called capital, which is used to produce the consumption

good Y1, which will be consumed in period 1. Then, the period budget constraints in period 0

and 1 are respectively,

C0 +K1 = Y0 (2)

C1 = Y1 (3)

where C0 and C1 are consumption in period 0 and 1 respectively. K1 is the total savings/investment

of agents’ in period 0, which will be used as the producing inputs in period 1.

Technology and productivity shock. Each agent owns a firm with the production

function:

Yt = AtKt (4)

where At is productivity or return to capital, and Kt is the capital used for producing con-

sumption goods Yt. Productivity follows the process:

At = exp(εt) (5)

where εt is the exogenous productivity shock.

Agents are endowed with a prior belief about the distribution from which the productivity

disturbance is drawn: εt∼N(−1
2
σ2, σ2). However, the realization of εt cannot be observed at

8This can be interpreted as the present value of the riskless lifetime labor income. Correspondingly, the

period 0 is the period when agents work with labor income, and period 1 is the period that agents have no labor

income and consume from savings.
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period t− 1. In our two-period model the capital return in period 1 is

A1 = exp(ε1) (6)

Signal structure. We assume that agents learn the exogenous productivity shock by

observing a signal9:

s0 = ε1 + ψ0 (7)

where the signal is noisy but unbiased, and ψ0 ∼ N(0, σ2
ψ) is the endogenous noise caused by

finite capacity. The variance of signal is σ2 + σ2
ψ, and therefore, the precision of the signal is

defined 1
σ2+σ2

ψ
. Given prior belief on ε1, the signal precision is only determined by the noise

variance σ2
ψ. According to Section 2, this signal structure is equivalent to say that our agent

learns the productivity shock through a noisy Gaussian channel.

Bayes’ Law. Agents use Bayes’ Law to combine their prior belief and the observed signal

in (7) such that ε1|s0 ∼ N(ε̂1, σ̂
2), where

ε̂1 ≡ E[ε1|s0] =
(−1

2
σ2)σ2

ψ + σ2s0

σ2 + σ2
ψ

(8)

σ̂2 ≡ V ar[ε1|s0] =
σ2σ2

ψ

σ2 + σ2
ψ

(9)

where ε̂1 is the posterior mean. Notice that the posterior variance σ̂2 is determined by the prior

variance σ2 and noise variance σ2
ψ. Given prior belief, (9) implies that the signal precision can

be uniquely determined by the posterior variance. In addition, decreasing posterior variance is

equivalent to increasing signal precision because they both are results of reducing noise variance

σ2
ψ.

Information set. Let us now define information sets before and after observing the signal,

which are called stage 1 and stage 2 of period 0.

Definition 1 I1 and I2 are the information sets in stage 1 and stage 2 respectively.

I1 =

{
Y0, ε1 ∼ N

(
−σ

2

2
, σ2

)
, ε̂1 ∼ N

(
−σ

2

2
, σ2 − σ̂2

)}
I2 = I1 ∪ {s0}

where the ex-ante distribution of the posterior mean ε̂1 is derived in the appendix A.1.

9As the productivity in the AK model is also the marginal return to capital, which is determined by the

exogenous shock ε1 only, in the rest of this paper we interchangeably refer to paying attention to productivity

shock as paying attention to capital return or return on savings.
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Information constraint. According to the RI literature, information constraint is defined

as the maximum reduction in uncertainty, which is measured by entropy10. Denote f(ε1)

the PDF of the exogenous disturbance, and f(ε1|s0) as the conditional PDF of exogenous

disturbance conditional on the received signal. The information processing capacity constraint

is

I(ε1; s0) = H(ε1)−H(ε1|s0)

=
1

2
log

(
σ2

σ̂2

)
= κ

where H(ε1) is the entropy of productivity shock and H(ε1|s0) is the conditional entropy of pro-

ductivity shock given signal observation;I(ε1; s0) is also called the mutual information between

productivity shock and signal observation and can be interpreted as how much information

about ε1 is contained in s0; the equality implies that choosing the optimal signal precision is

equivalent to allocating the optimal amount of attention κ to learning the capital return.

Optimization problems. In this model, agents need to solve not only a consumption-

saving problem but also an information choice problem. Formally the whole optimization

problem looks as follows:

V = max
{σ̂2}

EI1 [u(C∗0) + βu(C∗1)]− λκ (10)

Subject to

C∗0 = arg max
C0

EI2 [u(C0) + βu(C1)]) (11)

C∗1 = A1(Y0 − C∗0) (12)

1

2
log

(
σ2

σ̂2

)
= κ (13)

where equation (10) is the objective function for the consumer; EI2 [·] is the expectation condi-

tional on the information set I2 and EI1 [·] is the expectation over all possible signals11; λ is the

marginal information cost, which can be interpreted as the opportunity cost of devoting some

10In information theory, entropy is defined as the negative expected log of the density function of the random

variable Sims (2003) states that the logarithm in the formula can be to any base, because the base only

determines a scale factor for the information measure, but conventionally it takes the logarithm to base 2, and as

a result the entropy of a discrete distribution with equal weight on two points is 1 or (−0.5 log(0.5)−0.5 log(0.5)),

which is the unit of information called a “bit”. When the base is e, the unit of information is a “nat”.
11This idea is close to the study by Dréze and Modigliani (1972) who discuss consumption decisions under

timeless uncertainty prospects, and in this case agents optimally select consumption after the resolution of

uncertainty, whereas in our model due to limited information processing capacity stochastic capital return is

only partially revealed at the initial period.
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of the scarce resource attention to the stochastic capital return or equivalently to ε1; budget

constraints are incorporated into equations (11) and (12); equation (13) is the information con-

straint. Later we will show that this strictly positive marginal cost guarantees that the capacity

is always finite, and consequently, the signal cannot perfectly reveal future capital return.

3 Analytical solution with Gaussian signal

In this section we solve for optimal consumption-saving and attention allocation decisions under

the assumption of a noisy Gaussian signal.

3.1 Solution approach and equilibrium

Given a noisy Gaussian signal, we follow Maćkowiak and Wiederholt (2009) and Van Nieuwer-

burgh and Veldkamp (2010) and divide the whole optimization problem of period 0 into two

stages as shown in the timeline in appendix A.2 (Figure 3), which displays the information

sets and actions on each stage of the initial period.

• Stage 1 optimization: given the initial information set, preference, capacity constraint

and the information cost, agents optimally choose how to allocate their information ca-

pacity by choosing the optimal posterior variance, or equivalently the noise variance that

determines the signal precision.

• Stage 2 optimization: given the signal realization and the optimal signal precision ob-

tained on the first stage, agents now progress to the main consumption-saving decision.

The two-period model with capital income risk allows us to solve the model backward.

For a given signal realization and signal precision, we can solve for the optimal consumption-

saving choice, which depends on the posterior mean and variance of the productivity shock

ε1. Substituting optimal consumption and savings into the objective function delivers indirect

utility as a function posterior variance σ̂2. For given signal realization, the problem looks as

follows.

max
C0,K1,C1

U(C0) + βEI2U(C1) (14)

s.t. budget constraints

Solving the maximization problem (14) we will obtain the optimal consumption in each

period denoted as C∗0 and C∗1 . In Section 4.2 below, we will show that the optimal consumption

7



is a function of the realized signal and posterior variance of the capital return, which are

contained in the second stage information set I2. Therefore, when plugging C∗0 and C∗1 back

into the utility function, we have indirect utility as a function of the signal and posterior

variance.

The second step is to solve the optimization problem on the first stage: agents choose the

optimal signal precision by paying amount of attention κ. Formally agents solve:

max
σ̂2

EI1 [U(C∗0) + βEI2U(C∗1)]− λκ (15)

subject to C∗0(I2), C∗1(I2) and

1

2
log

(
σ2

σ̂2

)
= κ (16)

where λ > 0 is the marginal cost that is associated with the information processing capacity

constraint. The more attention is allocated to reducing productivity uncertainty, the higher

the total cost λκ will be reduced from the utility.

Solving these two optimization problems delivers the equilibrium in this model.

Definition 2 An equilibrium of this model is characterized by distributions for the posterior

variance (σ̂2)∗, the consumption choices C∗0(I2), C∗1(I2), and demand for savings K∗1(I2) such

that:

1. given Y0, f(ε1) and signal observation s0, agents choose optimal consumption and savings

according to the maximization problem defined in (14)

2. and the optimal posterior variance according to the maximization problem defined in (15).

3.2 Stage 2 solution: optimal consumption-saving choices

According to the two-step approach, our first step is to solve for the second optimization

problem where the signal is already realized, and thus we can rewrite the optimization problem

in (14) as:

U = u(C0) + βE[u(C1)|s0]

=
(Y0 −K1)1−γ

1− γ
+ βE

[
(A1K1)1−γ

1− γ

∣∣∣∣ s0

]
(17)

F.O.C:

∂U

∂K1

= −(Y0 −K1)−γ + βE[(A1K1)−γA1|s0] = 0 (18)
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Solving equation (18), we get optimal consumption and savings conditional on the observed

signal12:

K∗1 =
1[

βE[A1−γ
1 |s0]

]− 1
γ + 1

Y0 (19)

C∗0 =
1[

βE[A1−γ
1 |s0]

] 1
γ + 1

Y0 (20)

C∗1 = A1K
∗
1 (21)

where E[A1−γ
1 |s0] is a signal extraction problem. For different capacity of processing informa-

tion, agents also interpret the signal differently.

These three equations above imply that if agents pay finite amount of attention to produc-

tivity shock, a signal extraction problem or filtering problem E[A1−γ
1 |s0] is involved. With the

Gaussian assumptions of prior belief and signal about future productivity disturbance, we can

easily show that ε1|s0 follows a normal distribution. And therefore we can easily obtain that

E[A1−γ
1 |s0] = E[exp((1− γ)ε1)|s0] (22)

follows a log-normal distribution.

Given the results in (8), (9), (19), (20) and (22) we can rewrite the consumption rule as :

Cκ<∞
0 =

1[
β exp

(
(1− γ)ε̂1 + (1−γ)2

2
σ̂2
)] 1

γ
+ 1

Y0 (23)

and the savings decision is given by

Kκ<∞
1 =

1[
β exp

(
(1− γ)ε̂1 + (1−γ)2

2
σ̂2
)]− 1

γ
+ 1

Y0 (24)

By contrast, if agents pay no attention to the external disturbance, the noise variance will

be infinitely large and agents will solve her consumption-saving problem only according to

the prior knowledge with ε̂1 = −1
2
σ2 and σ̂2 = σ2, and consequently the consumption-savings

decisions in this case are:

Cκ=0
0 =

1[
β exp

(
−γ(1−γ)

2
σ2
)] 1

γ
+ 1

Y0 (25)

And accordingly, the savings is

Kκ=0
1 =

1[
β exp

(
−γ(1−γ)

2
σ2
)]− 1

γ
+ 1

Y0 (26)

12These results are also obtained by Epstein (1980), Gollier (2001) and Miao (2004).
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Results above teach us how perceived uncertainty affect consumption-saving decisions. First,

when the relative risk aversion coefficient γ = 1, consumption-savings decisions in both cases are

not influenced by the information acquisition: C0 = Y0/(1+β). This is because the income effect

and substitution effect of changing the perceived riskiness will off set with γ = 1. Furthermore,

we find that the consumption (on average) under limited attention is higher than that under

zero attention assuming the relative risk aversion coefficient is larger than unity13. This result

directly shows the role of information constraint in consumer’s precautionary saving behavior.

Equations (25) and (26) are results that can also be found in the previous literature without

learning capital return, such as Sandmo (1970). Comparing with this literature, our results

shown equations (23) and (24) imply that paying attention to learning capital return reduces

perceived future income uncertainty and demand for savings. This is because an increase in

capital income risk leads to two opposite effects on saving demand, which are positive income

risk and negative substitution effect, and CRRA preferences with a degree of relative risk

aversion larger than unity leads to income effect dominance14.

3.3 Welfare implications of information processing constraints

In order to examine the welfare effects of capital income fluctuations under information pro-

cessing constraint, we present how an increase in perceived uncertainty leads to changes in

the ex-ante expected utility. Given equations (19)-(21) we can reorganize the expected utility

function as:

E[U ] =
Y 1−γ

0

1− γ
E

[(
β exp

(
(1− γ)ε̂1 +

(1− γ)2

2
σ̂2

)) 1
γ

+ 1

]γ
(27)

A complete derivation of indirect utility function (27) can be found in appendix A.4. Roth-

schild and Stiglitz (1971) derive a similar expression, but the authors focus on the effect of

changing (perceived) capital income risk on savings demand. Here we go one step further and

study the effect of changing capital income risk on expected utility. However, calculating the

expected utility in equation (27) analytically is not easy, and in the current paper we provide

an alternative approach to study the welfare effect of information constraint by applying the

binomial theorem15.

13We show the proof for this result in appendix A.3.
14Many other papers also discuss this point. See Phelps (1962), Levhari and Srinivasan (1969), Rothschild

and Stiglitz (1971), Miao (2004), Eeckhoudt and Schlesinger (2008).
15 Appendix A.5 shows the details of this approach.
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Proposition 1 Given an integer degree of relative risk aversion larger than unity, the higher

attention paid to future productivity disturbance the higher the expected utility from consump-

tion.

Proof for Proposition 1 can be found in appendix A.6. Although a comparison between

expected utility under different timing of uncertainty resolution has been conducted in the

literature such as Dréze and Modigliani (1972) and Epstein (1980), here we show an analytical

comparative statics for the change in expected utility under RI. Proposition 1 suggests that

by paying more attention to learning capital return, agents will obtain a more precise signal

and therefore can make more efficient consumption-saving decisions. However, due to our

assumption on the positive marginal cost of processing information, agents cannot pay infinite

amount of attention to future return to savings. As a result, agents need to compare the benefit

and cost of paying more attention and solve for the optimal capacity allocation to capital return.

In the next subsection we will show how to solve the information choice problem and explain

the determinants of attention allocation.

3.4 Stage 1 solution: the optimal information choice

The key mechanism to solve for the optimal attention allocation problem below is the trade-off

of paying attention as shown in Section 4.316.

V = max
σ̂2

Y 1−γ
0

1− γ
E

[(
β exp

(
(1− γ)ε̂1 +

(1− γ)2

2
σ̂2

)) 1
γ

+ 1

]γ
− λκ (28)

1

2
log

(
σ2

σ̂2

)
= κ (29)

This optimization problem is a well-posed mathematical problem with a concave objective

function (28) and a convex constraint set (29). Details are shown in appendix A.7. The

difficulty of solving this problem is to compute the expectation of indirect utility with non-

integer or large relative risk aversion coefficient. To make progress in solving it, (a) we apply

binomial theorem on indirect utility with integer γ > 1, and (b) we conduct comparative statics

by applying implicit function theorem on the first order condition.

First, for integer relative risk aversion degree we can obtain the first order condition for the

16An endogenous information choice is sometimes missing in the RI literature. For example, Luo (2008, 2010)

uses a different approach solves the dynamics of consumption with a similar result as equation (23), however,

the author finds interesting results of consumption behavior based on some fixed exogenous attention capacity.
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above maximization problem17:

Y 1−γ
0

1− γ

γ∑
q=0

γ
q

 β
q
γ exp

(
−1

2

(
1− γ
γ

q

)
σ2 +

1

2

(
1− γ
γ

q

)2

σ2

)
× exp

(
(1− γ)2

2

q

γ
σ̂2

(
1− q

γ

))(
(1− γ)2

2

q

γ

(
1− q

γ

))
+

1

2
λ

1

σ̂2
= 0 (30)

where the first part is the marginal benefit of paying attention to capital return in terms

of consumption utility, and the second part is the marginal cost of paying one extra unit of

attention to capital return.

Then, in the following comparative statics we show how optimal signal precision character-

ized by the first order condition above is affected by factors such as prior volatility, information

cost, initial wealth endowment, and time discounting factor18. Let us start with two com-

mon themes in the RI literature regarding the effects of information processing cost and prior

volatility on information choice19.

Proposition 2 Assuming integer γ > 1, the optimal amount of attention allocated to capital

income is decreasing with the information processing cost λ.

Proof can be found in appendix A.8. The reason that this result is labeled as a common

theme is because many other works in the RI literature also find the same result. For example,

Wiederholt (2010) solves analytically for the attention choice in a static price setting RI model

as well, and concludes that attention allocated to the unobservable total demand is negatively

related with information cost. In addition, this finding can be also found in Tutino (2013) who

quantitatively shows that when the shadow price of processing information is higher, agents

pay less attention to the unobservable labor income history respectively.

Proposition 3 Assuming integer γ > 1, the optimal amount of attention allocated to capital

income is increasing with the volatility of the exogenous disturbance σ2.

Proof can be found in A.9. This finding is also in line with many other studies in the vein of

RI, such as Maćkowiak and Wiederholt (2009), Van Nieuwerburgh and Veldkamp (2010), and

Wiederholt (2010). These works try to tackle different economic problems but all realize that

17Details can be found in appendix A.5 and A.7.
18In the literature such as Sims (2006), Maćkowiak and Wiederholt (2009) and Tutino (2013), authors tend

to discuss the optimal capacity allocation instead of the signal precision, and therefore, in the following text we

use attention allocated to capital income risk to substitute the choice of signal precision.
19Maćkowiak et al. (2018) state another common theme in the RI literature that agents pays more attention

to the variables that are most useful to them.
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rationally inattentive agents would pay more attention to the variable with higher volatility.

The intuition in our model is that for given marginal cost of attention, the higher the prior

volatility, the higher the marginal benefit of paying attention.

The next two propositions on the effects of patience and initial wealth on the optimal amount

attention are main findings in our paper.

Proposition 4 Assuming integer γ > 1, the optimal amount of attention allocated to capital

income is decreasing with the initial endowment Y0.

Proof for this proposition can be found in A.10. The key mechanism through which initial

wealth operates on attention allocation comes from our assumptions on the utility function and

marginal cost of paying attention. Agents in our model have CRRA-type preferences, which

implies that absolute risk aversion is smaller when initial wealth is higher. A decreasing absolute

risk aversion is equivalent to increasing absolute risk tolerance, meaning that agents with very

large initial wealth would like to pay less attention to reduce the perceived riskiness in future

consumption, or equivalently capital income. A more intuitive explanation is to compare the

marginal benefit and the marginal cost of paying attention. The marginal cost λ is a positive

constant number and identical to all agents. However, from the first order condition in equation

(30) we can observe that the marginal benefit of paying attention in terms of consumption utility

is lower for wealthier agents, and this decreasing benefit of paying attention over initial wealth

can also explain the negative relationship between initial wealth and the optimal amount of

attention devoted to capital income risk20.

Proposition 5 Assuming integer γ > 1, the optimal amount of attention allocated to capital

income is increasing with the patience level denoted by β.

Proof can be found in A.11. In the literature it is rare to see the effect of patience or the

discount factor on the attention allocation. However in our two-period setup we think it is

worth discussing the role of patience in the information choice, because attention is paid to

future capital income, which contributes to all second period consumption and thus the second

period utility. Agents with larger β value future utility more, and as a result a reduction in

second-period income will negatively affect their welfare more. To avoid a reduction in the

future, agents will pay more attention to the return to savings.

20Maćkowiak and Wiederholt (2015) also study the attention allocation of heterogeneous households. How-

ever different from ours, their focus is on investigating changes in attention allocation to different sources of

uncertainty under different income structures, which are measured by labor income to expenditure ratios.
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3.5 Additional results

3.5.1 Attention choice with γ = 2

Now, let us show how to solve the optimal attention allocation problem analytically for γ = 2.

Here we call this simplified optimization problem for attention choice the baseline model.

V = max
σ̂2
− 1

Y0

[
β exp

(
σ2
)

+ 2β
1
2 exp

(
3

8
σ2 +

1

8
σ̂2

)
+ 1

]
− λκ (31)

subject to

1

2
log

(
σ2

σ̂2

)
= κ (32)

where Equation (32) implies that choosing the optimal posterior variance is equivalent to choos-

ing the optimal attention capacity κ.

And the optimal attention choice is then given by the first order condition:

− 2
1

Y0

β
1
2 exp

(
3

8
σ2 +

1

8
σ̂2

)
1

8
+

1

2
λ

1

σ̂2
= 0 (33)

where the posterior variance or equivalently the attention allocated to learning the capital

return is determined by this first-order condition.

Replacing the posterior variance σ̂2 by the attention amount κ according to the information

constraint (32), the first-order condition is re-organized as:

log

(
β

1
2

2Y0

)
+

3

8
σ2 = log(λ)− log(σ2) + 2κ− σ2

8
exp(−2κ) (34)

First notice that it is not possible to solve for κ∗ with closed form directly from the first

order condition (34). However, it is also not difficult to approximate the last term on the right

hand side of the first order condition up to order 1 around κ = 0. An approximately linearized

first order condition delivers the optimal attention21 choice as:

κ∗ =


1

2+σ2

4

log

(
β

1
2 σ2 exp( 1

2
σ2)

2λY0

)
, if λ <

β
1
2 σ2 exp( 1

2
σ2)

2Y0

0, otherwise

(35)

where the ratio
β

1
2 σ2 exp( 1

2
σ2)

2Y0
is the marginal benefit of paying attention to capital return at

κ = 0. A full derivation for κ∗ can be found in appendix A.12.

This equation shows that agents pay some amount of attention if the marginal cost is smaller

than this marginal benefit, otherwise they would pay no attention to capital return and make

21A similar result can be found in Maćkowiak and Wiederholt (2009) and Wiederholt (2010).
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consumption-saving decisions only based on their prior beliefs. More importantly, this results

suggests that paying attention to capital income risk is not always optimal. At κ = 0, agent’s

marginal benefit maybe smaller than the marginal cost due to large wealth holding, or small

prior volatility. Under this situation, this consumer prefers to pay no attention to capital

income risk, and it is equivalent to that this agent prefers late resolution of uncertainty.

3.5.2 The effect of risk aversion on attention allocation

Figure 1: Relative risk aversion and attention

In the comparative statics studies, we cannot analytically show how relative risk aversion

affects attention choice. Here we present a simulation result on the relation between attention

allocated to capital income risk and relative risk aversion in Figure 1 (parameter values can be

found in appendix B.1.). The intuition is that for higher relative risk aversion, agents dislike the

uncertainty in future capital income more, and therefore, they would like to pay more attention

in order to reduce the uncertainty, or equivalently agents would like to pay more attention in

order to obtain a more precise signal on future capital return22.

22This finding can also be found in Tutino (2013). For three values of relative risk aversion coefficient (0.5, 1

and 5), the author also numerically shows that the attention allocation is increasing over relative risk aversion

degree.
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4 Moving beyond the Gaussian framework

To solve the model analytically, we assume that the signal on productivity disturbance follow a

Gaussian distribution in the previous sections. Here we check whether our main finding on the

correlation between wealth and attention choice under Gaussian assumption also holds true in a

non-Gaussian setup. However, solving the RI model analytically without a specific distribution

form for the unobservable state variable is very difficult. Therefore, in this situation we focus

on numerical solutions by following Sims (2006), Maćkowiak and Wiederholt (2009) and Tutino

(2013) to solve for the joint distribution of control variable and the unobserved state variable,

which are K1 and A1 in the model.

4.1 Model

Following the model specification in Sims (2006), we form the optimization problem as the

following.

max
f

∫
0<K1<Y0

(
C1−γ

0

1− γ
+ β

C1−γ
1

1− γ

)
f(K1, A1)dK1dA1 (36)

subject to

C0 +K1 = Y0 (37)

C1 = A1K1 (38)

1 ≥ f(K1, A1) ≥ 0 (39)∫
0<K1<Y0

f(K1, A1)dK1 = g(A1) (40)

(λ :)∫
0<K1<Y0

log(f(K1, A1))f(K1, A1)dK1dA1

−
∫ ∞

0

(
log

(∫ ∞
K2

f(K1, A1)dA1

)∫ ∞
K1

f(K1, A1)dA1

)
dK1

−
∫ ∞

0

log(g(A1))g(A1)dA1 = κ (41)

where equation (36) implies that we are still maximizing expected utility, which is the sum of

the expected utility in the initial period’s consumption, (Y0−K1)1−γ

1−γ and the discounted expected

utility of next period’s consumption, β (A1K1)1−γ

1−γ . However, in this case the control variable is

not consumption or attention as in Section 4, but the joint distribution f(K1, A1). Equation

(39) shows the boundaries of feasible values for probability densities, which are f = 0 and f = 1.
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Equation (40) constraints the marginal distribution of productivity (or capital return), and this

constraint also implies that the optimal joint distribution f(K1, A1) is optimal if agents’ prior

capital return is zero. Information constraint is equation (41), and λ > 0 is the marginal cost

of using the capacity to process information.

We follow the solution methodology by Tutino (2013) to discretize the space of saving

demand K1 and capital return A1 and their marginal and joint distributions. Then by inserting

the budget constraints (37) and (38) into the objective function (36), the optimization above

becomes:

V = max
f(K1,A1)

 ∑
A1∈ΩA1

 ∑
K∈ΩK1

(Y0 −K1)1−γ

1− γ
f(K1, A1)

+ β
∑

A1∈ΩA1

 ∑
K1∈ΩK1

(A1K1)1−γ

1− γ
f(K1, A1)


(42)

subject to:

1 ≥ f(K1, A1) ≥ 0 ∀(K1, A1) ∈ B (43)∑
K1∈ΩK1

f(K1, A1) = g(A1) (44)

(λ :)

κ =
∑

A1∈ΩA1

∑
K1∈ΩK1

f(K1, A1)

(
log

f(K1, A1)∑
K1∈ΩK

f(K1, A1) ∗ g(A1)

)
(45)

where ΩA1 is the space for productivity, and ΩK1 is the space for savings choice, and B ≡

{(K1, A1) : K1 < Y0}.

4.2 Numerical technique

To solve the model above we apply the gradient-based search method, which is also used in

Sims (2006) and Tutino (2013). First, we choose nA1 = 25 equi-spaced grid points ranging from

1.02 to 1.8. Let g(A1) be the probability of state A1 ∈ ΩA1 , then points in the simplex ∆(g(A1))

are nA1 distinct values for the marginal probability mass function g(A1) in the interval [0, 1].

The simplex is constructed using uniform random samples from the unit simplex, whose sum

per row is one and each column contains also nA1 random values in the [0, 1] interval. We

choose nK1 = 25 equi-spaced grid points ranging from 10% to 90% of initial wealth Y0, and

those values constitute the behavior space ΩK1 .

Second, for each simplex point in ∆(g(A1)) we initialize the corresponding joint distribution

of savings K1 and capital return A1. As nA1 = nK1 , the joint distribution of savings and capital

return for a given multidimensional grid point is a square matrix with rows corresponding to
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levels of savings and columns corresponding to capital return. Summing the matrix per row

returns the marginal distribution of savings p(K1) and summing the matrix per column returns

the marginal distribution of capital return g(A1). I restrict the joint distribution f(K1, Ã1) = 0

for some values Ã1 with g(Ã1) = 0.

Finally, we apply value function iteration to find the optimal joint distribution23. This

optimal f(K1, A1) allows us to calculate the optimal attention choice according to equation

(45). The parameter values for conducting this numerical analysis can be found in the appendix

B.2.

4.3 Main results

As shown in figure 2, without making any assumption on the signal distribution, we find that

the optimal attention choice is decreasing with wealth, which is in line with our findings in

the Gaussian case. We argue that the reasons for this results are the same as in the Gaussian

case: under CRRA preferences agents have increasing absolute risk tolerance, and as a result

the wealthier households would like to bear more risk in their future capital income.

Figure 2: Attention choice and wealth in a non-Gaussian RI model

This result is in line with findings in surveys and experiments. For example, Shah et al.

(2018) study the mental lives of the poor with with very limited budgets, and argue that the

23The pseudo codes can be found in the appendix A.13.
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poor think more carefully about opportunity cost of economic decisions. This suggests that the

poor must pay more attention to everyday economic dimensions (financial, temporal, and etc.)

in order to be less susceptible to potential loss in future income. Sicherman et al. (2016) study

financial attention using daily investor online logins as a proxy. The authors find that during

market declines, wealthy investors were more likely to engage in financial “ostrich behavior”,

allowing them to pay less attention to their financial holdings relative to poorer investors who

found it harder to suppress monetary concerns.

5 Conclusion

This paper incorporates information processing constraint into a consumption-saving model of

capital income risk. We find that when agents face capital income risk that affects their future

income, their consumption-saving choices depend largely on the degree of risk aversion and how

much attention they will pay to learning about the return on savings. These results challenges

the empirical literature on precautionary saving behavior, such as Hurst et al. (2010) who

directly used the exogenous variance but not taking the reality that households learn future

capital return into account. According to Epstein (1980), the different informativeness in signal

about future capital return affects current consumption-saving choices.

Then we study the effect of changing perceived riskiness of capital return on expected utility

and we find that the welfare loss is decreasing with attention capacity. However, agents can-

not choose infinite capacity level due to the positive marginal cost of attention, and therefore,

agents need also solve for optimal information choice problem. In order to study determinants

of attention allocation, we first apply binomial theorem on indirect utility and then apply im-

plicit function theorem on the first order condition. Analytical results suggest that the optimal

attention allocated to capital income is positively correlated with prior volatility and negatively

correlated with initial wealth and information processing cost. Relations between attention al-

location and information cost and prior volatility are the common themes in the RI literature,

and we can easily understand that agents pay less attention to learning capital return when the

opportunity cost of paying attention is higher or when agents learn from their prior knowledge

that capital return tomorrow will not be very volatile. Our main contributions are showing

relations between attention allocation and wealth inequality and degree of patience. Due to the

constant marginal cost and decreasing marginal utility of paying attention, wealthier house-

holds benefit less from devoting attention to capital return. Moreover, CRRA utility implies

increasing absolute risk tolerance, meaning that wealthier households would like bear more risk
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in their future capital income. In addition, we solve for a closed-form (with approximation)

attention choice for agents with a degree of relative risk aversion 2. This solution intuitively

show under which condition will agents pay attention to capital return, and under which con-

dition agents do not pay any attention at all. To show the role of relative risk aversion playing

in attention allocation, we simulate our model and show a positive effect of higher degree of

relative risk aversion on the optimal attention allocation. This is because more risk-averse

agents dislike future uncertainty more, and this motives them to allocate more attention to

future return on savings.

Our analytical solutions to consumption-saving choice and information choice are based

on the assumption of Gaussian signal. In order to show our main findings are valid in a

non-Gaussian world, we extend our baseline model to a non-Gaussian framework. Provided

reasonable parameter values, our numerical results also show a negative effect of initial wealth

on the optimal attention choice.

Finally, we want to point that there are still problems unsolved in this paper. First, in such

a two-period consumption saving model it is not possible to study the change in the amount of

information on current consumption-saving choices, because in our model all decisions are ex

post decisions, i.e. after signal observation. Therefore, in future research we will extend this

model into three or more periods in order study such effect. This is crucial to understand the

consumption-investment behavior in a incomplete information model, such as the puzzling em-

pirical fact that households from different wealth group having different savings rates. Second,

in our model households have only one asset to invest, however, in reality there are many dif-

ferent assets that households can invest in the financial market. Therefore, in future research,

we also plan to disentangle the total savings into different assets, for example home asset and

foreign asset, in order to study the international capital flow under information-processing

constraint and how portfolio re-balance affects consumption-saving decisions.
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Appendix

Appendix A

A.1. Derivation of the distribution of the pre-posterior mean ε̂1

Distribution of posterior mean ε̂1

First, according to the Bayesian updating rule we have

ε̂1 ≡ E[ε1|s0] =
−1

2
σ2σ2

ψ + σ2s0

σ2 + σ2
ψ

σ̂2 ≡ V ar[ε1|s0] =
σ2σ2

ψ

σ2 + σ2
ψ

Second, according to the prior belief ε1 ∼ N(−1
2
σ2, σ2) and signal structure s0 = ε1 + ψ0,

with ψ0 ∼ N(0, σ2
ψ), we can obtain s0 ∼ N(−1

2
σ2, σ2 + σ2

ψ). Therefore,

E[ε̂1] =
−1

2
σ2σ2

ψ + σ2E[s0]

σ2 + σ2
ψ

=
−1

2
σ2σ2

ψ + σ2
(
−1

2
σ2
)

σ2 + σ2
ψ

= −1

2
σ2

and,

V ar[ε̂1] =
(σ2)2V ar[s0](
σ2 + σ2

ψ

)2

=
(σ2)2

(
σ2 + σ2

ψ

)(
σ2 + σ2

ψ

)2

=
(σ2)2

σ2 + σ2
ψ

= σ2 − σ̂2

A.2. Timeline of agents’ optimization problem
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A.3. Proof of the relation between perceived risk and unconditional expectation

of savings for γ > 1:

Proof. If denote Y =
[
β exp

(
(1− γ)ε̂1 + (1−γ)2

2
σ̂2
)] 1

γ
+ 1 then 1

Y
is a convex function on the

range of Y ∈ (0,∞). Therefore, Jensen’s inequality can show

E[Cκ<∞
0 ] = E

 1[
β exp

(
(1− γ)ε̂1 + (1−γ)2

2
σ̂2
)] 1

γ
+ 1

Y0


≥ 1

E

[[
β exp

(
(1− γ)ε̂1 + (1−γ)2

2
σ̂2
)] 1

γ
+ 1

]Y0

=
1

β
1
γ exp

(
−σ2

2
1−γ
γ

+ 1
2

(1−γ)2

γ
σ̂2 + 1

2

(
1−γ
γ

)2

(σ2 − σ̂2)

)
+ 1

Y0 (46)

>
1

β
1
γ exp

(
γ−1

2
σ2
)

+ 1
Y0 = Cκ=0

0

=⇒ E[Cκ<∞
0 ] > Cκ=0

0 (47)

where equation (46) is derived from equations (8) and (9) and ε̂ ∼ N
(
−1

2
σ2, σ2 − σ̂2

)
.

To prove the inequality in (47) holds, we only need to show

−σ
2

2

1− γ
γ

+
1

2

(1− γ)2

γ
σ̂2 +

1

2

(
1− γ
γ

)2

(σ2 − σ̂2) <
γ − 1

2
σ2

And it is true because when κ ∈ (0,∞) we always have σ̂2 < σ2 and with assumption γ > 1

then

− σ2

2

1− γ
γ

+
1

2

(1− γ)2

γ
σ̂2 +

1

2

(
1− γ
γ

)2

(σ2 − σ̂2) +
1− γ

2
σ2

= −σ
2

2

1− γ
γ

(1− γ) +
1

2

(
1− γ
γ

)2

(σ2 − σ̂2) +
1

2

(1− γ)2

γ
σ̂2

= −1

2

(1− γ)2

γ
σ2 +

1

2

(
1− γ
γ

)2

(σ2 − σ̂2) +
1

2

(1− γ)2

γ
σ̂2

= −(1− γ)2

2γ
(σ2 − σ̂2) +

1

2

(
1− γ
γ

)2

(σ2 − σ̂2)

= −1

2

(
1− γ
γ

)2

(σ2 − σ̂2)(γ − 1) < 0
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A.4. Derivation of the indirect utility function in stage 1:

First, denote φ = 1

[βE[A1−γ
1 |s0]]

1
γ +1

.

Then, given the equations (19)-(21) we can rewrite the expected utility function as:

E[U ] = E {u(C∗0) + βE[u(C∗1)|s0]}

= E

{
(φY0)1−γ

1− γ
+ βE

[
(A1(1− φ)Y0)1−γ

1− γ
|s0

]}
= E

{
(φY0)1−γ

1− γ
+ β

((1− φ)Y0)1−γ

1− γ
E[A1−γ

1 |s0]

}
(48)

If we denote X = βE[A1−γ
1 |s0],

φ =
1[

βE[A1−γ
1 |s0]

] 1
γ + 1

=
1

X
1
γ + 1

and

φ1−γ =

(
1

X
1
γ + 1

)1−γ

=
(
X

1
γ + 1

)γ−1

(1− φ)1−γ =

(
X

1
γ

X
1
γ + 1

)1−γ

=
(
X

1
γ + 1

)γ−1

X
1−γ
γ

therefore, we can now write the indirect utility function

E[U ] = E

{
(Y0)1−γ

1− γ
[
φ1−γ + β(1− φ)1−γE[A1−γ

1 |s0]
]}

= E

{
Y 1−γ

0

1− γ

[(
X

1
γ + 1

)γ−1

+
(
X

1
γ + 1

)γ−1

X
1−γ
γ X

]}
= E

{
Y 1−γ

0

1− γ

[(
X

1
γ + 1

)γ−1

+
(
X

1
γ + 1

)γ−1

X
1
γ

]}
= E

{
Y 1−γ

0

1− γ

(
X

1
γ + 1

)γ}
=
Y 1−γ

0

1− γ
E
{(
X

1
γ + 1

)γ}
(49)

Then we can calculate the expected utility under constrained information i.e. when κ ∈

24



(0,∞),

X = βE[A1−γ
1 |s0]

= βE[exp((1− γ)ε1)|s0]

= β exp

(
(1− γ)E[ε1|s0] +

(1− γ)2

2
var[ε1|s0]

)
= β exp

(
(1− γ)ε̂1 +

(1− γ)2

2
σ̂2

)
(50)

Combine (49) and (50),

E[U ] =
Y 1−γ

0

1− γ
E

[(
β exp

(
(1− γ)ε̂1 +

(1− γ)2

2
σ̂2

)) 1
γ

+ 1

]γ

A.5. Solving the expected indirect utility

Before presenting the proof, we need to know the following regarding this indirect utility func-

tion:

1. Ex ante, the posterior mean ε̂1 is a random variable with ε̂1 ∼ N(−1
2
σ2, σ2 − σ̂2)24.

2.
(
β exp

(
(1− γ)ε̂1 + (1−γ)2

2
σ̂2
)) 1

γ
+1 is then a shifted lognormal distributed variable. Then

E

[(
β exp

(
(1− γ)ε̂1 + (1−γ)2

2
σ̂2
)) 1

γ
+ 1

]γ
is equivalent to solving the γth moment of a

shifted lognormal variable.

3. We can apply the binomial theorem to expand the expression (27) above, i.e. when the

relative risk aversion coefficient γ is integer we have the indirect utility function as

E[U ] =
Y 1−γ

0

1− γ

γ∑
q=0

γ
q

E

[(
β exp

(
(1− γ)ε̂1 +

(1− γ)2

2
σ̂2

)) 1
γ

]q

=
Y 1−γ

0

1− γ

γ∑
q=0

γ
q

Eβ
q
γ exp

(
1− γ
γ

qε̂1 +
(1− γ)2

2

q

γ
σ̂2

)
(51)

where q are integers from 0 to γ.

Equation (51) can be written as the sum of expectations of lognormal variables. Since the

distribution of ε̂1 is known, we can also obtain the distribution of 1−γ
γ
qε̂1,

1− γ
γ

qε̂1 ∼ N

(
−1

2

(
1− γ
γ

q

)
σ2,

1

2

(
1− γ
γ

q

)2

(σ2 − σ̂2)

)
24Details can be found in appendix A.3.2
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Inserting the expected value of lognormal variables delivers

E[U ] =
Y 1−γ

0

1− γ

γ∑
q=0

γ
q

 β
q
γ exp

(
−1

2

(
1− γ
γ

q

)
σ2 +

1

2

(
1− γ
γ

q

)2

(σ2 − σ̂2) +
(1− γ)2

2

q

γ
σ̂2

)

=
Y 1−γ

0

1− γ

γ∑
q=0

γ
q

 β
q
γ exp

(
−1

2

(
1− γ
γ

q

)
σ2 +

1

2

(
1− γ
γ

q

)2

σ2

)
exp

(
(1− γ)2

2

q

γ
σ̂2

(
1− q

γ

))
(52)

where the expected indirect utility E[U ] is a function of posterior variance σ̂2 of productivity

shock ε1.

A.6. Proof of Proposition 1

Proof.

∂E[U ]

∂σ̂2
=
Y 1−γ

0

1− γ

γ∑
q=0

γ
q

 β
q
γ exp

(
−1

2

(
1− γ
γ

q

)
σ2 +

1

2

(
1− γ
γ

q

)2

σ2

)
× exp

(
(1− γ)2

2

q

γ
σ̂2

(
1− q

γ

))(
(1− γ)2

2

q

γ

(
1− q

γ

))
< 0 (53)

where γ > 1.

A.7. Concave objective function and convex constraint set

Proof. First, maximizing a concave objective function can be replaced by minimizing a convex

function. We rewrite the objective function (15) as

max
σ̂2

V (σ̂2) = E[U ]− λκ (54)

s.t.

κ =
1

2
log

(
σ2

σ̂2

)
(55)

Then the first-order condition is

∂V (σ̂2)

∂σ̂2
=
Y 1−γ

0

1− γ

γ∑
q=0

γ
q

 β
q
γ exp

(
−1

2

(
1− γ
γ

q

)
σ2 +

1

2

(
1− γ
γ

q

)2

σ2

)
× exp

(
(1− γ)2

2

q

γ
σ̂2

(
1− q

γ

))(
(1− γ)2

2

q

γ

(
1− q

γ

))
+

1

2
λ

1

σ̂2
(56)
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And the second-order condition is

∂2V (σ̂2)

∂(σ̂2)2
=
Y 1−γ

0

1− γ

γ∑
q=0

γ
q

 β
q
γ exp

(
−1

2

(
1− γ
γ

q

)
σ2 +

1

2

(
1− γ
γ

q

)2

σ2

)
× exp

(
(1− γ)2

2

q

γ
σ̂2

(
1− q

γ

))(
(1− γ)2

2

q

γ

(
1− q

γ

))2

− 1

2
λ

1

(σ̂2)2
< 0 (57)

(57) shows that the objective function is concave with respect to σ̂2 assuming γ > 1.

Let us denote

g(σ̂2) =
1

2
log(σ̂2)− 1

2
log(σ2) < 0 (58)

we can also show concave function g(·) defines a convex constraint set. Then the optimization

is defined by a concave objective function and a convex set, which is a well-posed mathematical

problem with local maximum being also global maximum.

A.8. Proof of Proposition 2

Proof.

We first rewrite the first order condition (34) as

F =
Y 1−γ

0

1− γ

γ∑
q=0

γ
q

 β
q
γ exp

(
−1

2

(
1− γ
γ

q

)
σ2 +

1

2

(
1− γ
γ

q

)2

σ2

)
× exp

(
(1− γ)2

2

q

γ
σ̂2

(
1− q

γ

))(
(1− γ)2

2

q

γ

(
1− q

γ

))
+

1

2
λ

1

σ̂2
(59)

From the equation above we can obtain:

∂F

∂λ
=

1

σ̂2
> 0 (60)

∂F

∂σ̂2
=
Y 1−γ

0

1− γ

γ∑
q=0

γ
q

 β
q
γ exp

(
−1

2

(
1− γ
γ

q

)
σ2 +

1

2

(
1− γ
γ

q

)2

σ2

)
× exp

(
(1− γ)2

2

q

γ
σ̂2

(
1− q

γ

))(
(1− γ)2

2

q

γ

(
1− q

γ

))2

− 1

2
λ

1

(σ̂2)2
< 0 (61)

According to the implicit function theorem, we can easily show

∂σ̂2

∂λ
= −

∂F
∂λ
∂F
∂κ

> 0 (62)
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A.9. Proof of Proposition 3

Proof. Similarly to the proof in A.8, we can show that

∂F

∂σ2
=
Y 1−γ

0

1− γ

γ∑
q=0

γ
q

 β
q
γ exp

(
−1

2

(
1− γ
γ

q

)
σ2 +

1

2

(
1− γ
γ

q

)2

σ2

)(
− q

2γ
(1− γ)

(
1− q

γ
+ γ

))
× exp

(
(1− γ)2

2

q

γ
σ̂2

(
1− q

γ

))(
(1− γ)2

2

q

γ

(
1− q

γ

))
< 0 (63)

∂σ̂2

∂σ2
= −

∂F
∂σ2

∂F
∂σ̂2

< 0 (64)

A.10. Proof of Proposition 4

Proof.

∂F

∂σ2
= Y −γ0

γ∑
q=0

γ
q

 β
q
γ exp

(
−1

2

(
1− γ
γ

q

)
σ2 +

1

2

(
1− γ
γ

q

)2

σ2

)
× exp

(
(1− γ)2

2

q

γ
σ̂2

(
1− q

γ

))(
(1− γ)2

2

q

γ

(
1− q

γ

))
> 0 (65)

∂σ̂2

∂Y0

= −
∂F
∂Y0
∂F
∂σ̂2

> 0 (66)

A.11. Proof of Proposition 5

Proof.

∂F

∂β
=
Y 1−γ

0

1− γ

γ∑
q=0

γ
q

 q

γ
β
q
γ
−1 exp

(
−1

2

(
1− γ
γ

q

)
σ2 +

1

2

(
1− γ
γ

q

)2

σ2

)
× exp

(
(1− γ)2

2

q

γ
σ̂2

(
1− q

γ

))(
(1− γ)2

2

q

γ

(
1− q

γ

))
< 0 (67)

∂σ̂2

∂β
= −

∂F
∂β

∂F
∂σ̂2

< 0 (68)

A.12. Approximated solution to information choice on the first stage

First, equation (33) can be rewritten as

1

2

1

Y0

β
1
2 exp

(
3

8
σ2

)
= λ

1

σ̂2 exp
(

1
8
σ̂2
) (69)
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Then taking the logarithm on both sides of (69)

log

(
β

1
2

2Y0

)
+

3

8
σ2 = log(λ)− log(σ̂2)− 1

8
σ̂2 (70)

From the information constraint in equation (16), we have 2κ = log(σ2) − log(σ̂2) and

σ̂2 = exp(−2κ)σ2. Therefore, (70) becomes

log

(
β

1
2

2Y0

)
+

3

8
σ2 = log(λ)− log(σ2) + 2κ− σ2

8
exp(−2κ)

≈ log(λ)− log(σ2) + 2κ− σ2

8
(−2κ+ 1)

≈ log(λ) +

(
2 +

σ2

4

)
κ− log(σ2)− σ2

8

=⇒ κ ≈ 1

2 + σ2

4

log

(
β

1
2σ2 exp

(
1
2
σ2
)

2λY0

)
(71)

When the information cost is large enough such that log

(
β

1
2 σ2 exp( 1

2
σ2)

2λ

)
≤ 0, by the defi-

nition of attention capacity, we set κ = 0,

κ∗ =


1

2+σ2

4

log

(
β

1
2 σ2 exp( 1

2
σ2)

2λY0

)
, if λ <

β
1
2 σ2 exp( 1

2
σ2)

2

0, otherwise

A.13. Pseudocode

• Step 1: Build the simplex with equi-spaced grid for capital return A1

• Step 2: For each simplex point, define f(K1, A1) and initialize the value function with 0.

• Step 3: For each simplex point, find the f ∗(K1, A1) such that the objective function (42)

is maximized.

• Step 4: Optimization using csminwel and iterate on the value function up to convergence.

• Step 5: Obtain the optimal attention choice from the binding information constraint and

f ∗(K1, A1)
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Appendix B

B.1. Parameter values for Figure 1

Parameter Value

Initial endowment Y0 2

Prior Variance σ2 0.08

Discounting factor β 0.98

Information cost λ 0.015

Range for posterior variance σ̂2 (0.001, σ2 − 0.0001)

Risk aversion degree γ 2, 3, 4, 5, 6, 7, 8, 9, 10

B.2. Parameter values for Figure 2

Parameter Value

Initial endowment Y0 [2,...,2.5]

Capital return space A1 [0.9,...,1.1]

Savings space K1 [0.1 ∗ Y0,...,0.9 ∗ Y0]

Discounting factor β 0.98

Joint distribution per simplex point, f(K1, A1) 60× 60

Marginal distribution of K1, 60× 1

Marginal distribution of A1, 60× 1

Information cost λ 0.015

Risk aversion degree γ 2
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