Martínez-Zarzoso, Inmaculada; Doyle, Eleanor

Conference Paper

Trade, Productivity and Institutional Quality: Issues and Empirics

Proceedings of the German Development Economics Conference, Göttingen 2007 / Verein für Socialpolitik, Research Committee Development Economics, No. 21

Provided in Cooperation with:
Research Committee on Development Economics (AEL), German Economic Association

Suggested Citation: Martínez-Zarzoso, Inmaculada; Doyle, Eleanor (2007) : Trade, Productivity and Institutional Quality: Issues and Empirics, Proceedings of the German Development Economics Conference, Göttingen 2007 / Verein für Socialpolitik, Research Committee Development Economics, No. 21

This Version is available at:
http://hdl.handle.net/10419/19876

Terms of use:
Documents in EconStor may be saved and copied for your personal and scholarly purposes. You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.
Trade, Productivity and Institutional Quality: Issues and Empirics

By Inmaculada Martínez-Zarzoso and Eleanor Doyle

Ibero Amerika Institut for Economic Research, Universitaet-Goettingen, Germany and Department of Economics, Universitat Jaume I, Castellon, Spain. E-mail: martinei@eco.uji.es

*Department of Economics, University College Cork, Ireland e-mail: e.doyle@ucc.ie

ABSTRACT

We estimate the relationship between productivity and trade for a panel of countries over the period 1980 to 2000 using instrumental-variables estimation of a productivity equation. We note that some estimates of productivity gains attributed to trade capture instead the roles of institutions and geography. The endogeneity of trade and institutional quality is accounted for by using instruments. We extend the Frankel and Romer (1999) specification, using real openness to measure trade (following Alcala and Ciccone, 2004), which allows for identification of channels through which trade and production scale affect productivity. The trade instrument is based on a ‘theoretically motivated’ gravity equation. The instruments for institutional quality come from Gwartney, Holcombe and Lawson (2004). Contrary to Alcala and Ciccone, our results suggest no robust relationship between real openness and labour productivity in the 1980s. Conversely, the relationship between productivity and real openness appears to be robust from 1990 onwards and similarly in the case of institutional quality. We also find evidence implying that countries with low-quality institutions are also able to benefit from openness to trade.

JEL: F14, F43, O40
1. **Introduction**

Interest in the relationship between trade, or openness, and growth is evident across an extensive range of economic research. Empirical evidence points to a relationship between trade and income growth via productivity (see Yanikkaya 2003 for a survey) although specific results vary with country sample, time period and econometric approach. Just how to accurately construct and examine this causal relationship is problematic, however, as indicated by an array of theoretical investigations of this link. Developments in applied econometrics have allowed for various approaches to be used to investigate how trade and productivity are related but more recent research has focussed on whether estimated links between trade and productivity capture the roles of institutions and geography.

The measurement of trade in this literature includes explicit examination of exports only (in export-led growth studies) and their relationship with output and/or productivity. Some research includes openness as the measure of trade taking into account both exports and imports as separate but related channels that drive output or productivity growth. The standard measure of openness is a nominal measure of the sum of exports and imports expressed as a fraction of nominal GDP. However, this measure creates difficulties as outlined in Alcala and Ciccone (2004) due to the potential outcome of Balassa-Samuelson effects\(^1\), which they presented for cross-country analysis using 1985 data.

Motivated by the substantial literature in this area, this paper investigates the effect of international trade on productivity across a sample of 66 countries\(^2\) over the period 1980 to 2000. Alternative measures of openness are used to compare the implications of using real or nominal openness. To take account of the potential endogeneity of trade and institutional quality we use instruments. The selected instrument for trade follows the standards of Frankel and Romer (1999), which argues that trade is determined partially by country factors unrelated to productivity.

\(^1\) The trade-related Balassa-Samuelson (Balassa 1964; Samuelson, 1964) hypothesis implies that if trade increases productivity, where gains are greater in manufacturing than in non-tradable services, a rise in the relative price of services might result in a decrease in openness.

\(^2\) The number of countries included in the yearly regressions varies from 56 in 1980 to 66 in 1995 due to missing data.
The work of North (1990) and Landes (1998), in particular, highlighted that differences in income and growth are determined by the institutional framework and has been incorporated into the trade/growth debate. The proposition that weak economic institutions hinder growth is not particularly novel, however, but an assumption of neoclassical economics that institutional competition and public choice might reduce or eliminate them possibly explains why it was not of specific research focus until relatively recently. Following the work of Hall and Jones (1999) who coin the term ‘social infrastructurre’ to describe institutions, and Acemoglu, Johnson and Robinson (2001), the choice of instruments for institutional quality rest on the relationship between historical European influence and diffusion of the European institutional structure.

The paper is structured as follows. Section II provides the background literature on the trade-growth relationship and identifies the challenges associated with measures of openness and institutional quality in empirical work. In Section III the selected productivity equation we estimate is presented with detailed discussion of the instruments. Analysis and findings based on our estimated results are provided in Section IV while conclusions are offered in Section V.

2. Trade, Productivity and Institutional Quality

Open economies can benefit from specialisation, which allows for the generation of higher levels of income from a comparative advantage perspective. This means that when more of a country’s available resources are devoted to producing goods in which it has comparative advantages (measured as lower opportunity costs of production) relative to other countries, and it can import the goods in which it is less efficient, overall national output and consumption rise. Through creating international demand for domestic resources that might otherwise remain unused, a further (demand-side) basis for making more efficient use of resources exists in relation to trade. Static effects of specialisation change the economy’s production (and labour) mix inline with comparative advantage and this in line with ability to trade at international prices leaves consumers better off. If dynamic benefits are also possible then as the market and market access expand, the potential for greater division of labour arises, and the skills of labour may rise in response to greater division of labour. Hence, productivity improvements are
observed in an outward expansion of the production possibilities frontier (Myint, 1958).

As countries open up to trade, international communication of ideas and technology also becomes increasingly possible and may have the effect of intensifying competition in both import and export markets, increasing the incentive for both imitation and innovation and accelerating the rate of technical progress that can lead to efficiency gains through more competitive cost structures and productivity improvement. Connolly (2003) notes that developing countries rely more heavily on trade (focusing on imports of high technology goods) than developed countries as a source of productivity growth. Foreign exchange constraints may be eased also since increased exports provide a source of foreign exchange for countries that wish to purchase imports of final products or inputs that embody domestically unavailable technology.

In a scenario where increased exports lead to cost reductions and increased efficiency the underlying causal direction is from trade (particularly export growth) to output growth. Such cases describe export-led-growth, which is theoretically associated with the view of trade as an engine of growth. The extent to which positive externalities are generated from involvement in international markets, through resource allocation, economies of scale and pressure on new training for example, underpin how the hypothesis operates in practice (Medina-Smith, 2001).

An alternative causal explanation is manifest in Verdoorn's law which holds that output growth has a positive impact on productivity growth. Kaldor (1967) attributed this relationship to factors including economies of scale, learning curve effects, increased division of labour, and the creation of new processes and subsidiary industries. In this case productivity growth in the industrial sector, in particular, is considered as the principal determinant of output growth. Improved productivity and reductions in unit costs due to increasing returns simply make “it easier to sell abroad” (Kaldor, 1967: 42) implying a causal relationship from output growth, via productivity growth, to export growth.

Bidirectional causality is a possibility when productivity increases that are made through the exploitation of scale economies lead to increased exports (Kunst and Marin, 1989). This occurs if the market structure changes (brought about by
increased trade) result in fewer firms and if scale economies allow for increased competitiveness through further cost reductions. Hence a potential feedback effect exists between export growth and output (Sharma et al, 1991). Bhagwati (1988) also considered the possibility for two-way causation between growth and exports (or trade in general) arguing that increased trade, regardless of its cause, stimulated increased output and in turn additional income facilitated more trade, generating a process of a virtuous circle of growth and trade.

In terms of new trade theory, Romer (1990), Grossman and Helpman (1991) and Rivera-Batiz and Romer (1991) developed models where an expansion of international trade increases growth by increasing the number of specialized production inputs. In models of imperfect competition and increasing returns to scale, however, this outcome is ambiguous (Helpman and Krugman, 1985) and Grossman and Helpman (1991) also pointed out that tariffs could be growth reducing. The impact of trade on growth appears to depend on market competition, market contestability and whether the market structure is stable with regard to trade disturbances or will be altered and lead to productivity improvements and technical efficiency. Marin (1992) included models of imperfect competition in her analysis of the exports-output relationship and posited that exports lead to output growth (through productivity enhancement) the smaller the country and the less entry that occurs. She based this view on the fact that minimum efficient scale of production is large relative to the home market so that the potential of exploitation of scale economies through export expansion was high. An export expansion is more likely to lead to productivity improvements if the entry of new firms instigates greater competition forcing inefficient firms to exit and increasing the incentive for incumbents to invest in R&D.

Recent examinations of trade and growth examine the extent to which productivity changes attributed to trade instead measure the effects of institutions and geography, rather than trade. The inclusion of variables to control for geography and institutional quality rendered trade insignificant in a number of studies (Rodrik, 2000; Rodriguez and Rodrik, 2001; Irwin and Tervio, 2002). Frankel and Romer (1999) outline the difficulty in trying to find if trade causes growth since if the trade share (or openness) is endogenous, countries with high incomes due to reasons other than trade, may trade more. Since geography is a strong determinant of trade – gravity models
(Linneman, 1966; Frankel, 1997) are indicative - and geographical characteristics are not affected by income, it can be used as an instrument for trade.

In this context, Alcala and Ciccone (2004) identify potential deficiencies in using the standard measure of openness (nominal exports plus imports expressed relative to nominal GDP) for the trade share and estimate a measure of real openness used in a cross-country analysis of the trade-productivity relationship using 1985 data. Trade is found to be a significant and robust determinant of aggregate productivity. Our study follows the approach adopted but extends it in a time-series context from 1980 to 2000 across a sample of 66 countries.

3 Basis of Empirical Approach

The essence of Alcala and Ciccone (2004) is that the trade-related Balassa-Samuelson (Balassa 1964; Samuelson, 1964) hypothesis implies that using nominal openness as a measure of trade is problematic. If trade increases productivity, where gains are greater in manufacturing than in non-tradable services, a rise in the relative price of services might result in a decrease in openness. This is shown in a trade model with gains from specialisation, which is defined as the production of fewer varieties of tradable goods but in larger quantities. From the model, GDP in country c equals aggregate consumption (assuming balanced trade)

\[GDP_c = d_c y_c + a_c (1-t)x_c = tx_c + a_c (1-t)x_c \]

where

- \(d_c \) measures the number of varieties of tradable goods produced in country c (as this measure of tradable goods produced domestically falls, the country becomes more specialized);
- \(y_c \) denotes production of each tradable good
- \(a_c \) reflects the equilibrium price of non-tradable goods in country c (reflecting factor efficiency in tradable goods sectors relative to non-tradable goods sectors). It is assumed that \(a_c = g (d_c, L_c) \) where \(L \) denotes households’ supply of labour. It is further assumed that households want to consume the same quantity of each tradable and non-tradable good irrespective of the price of non-tradables.
- \((1-t) \) denotes the fraction of commodities that are non-tradable
- \(t \) denotes the fraction of tradable goods produced in country c
- \(x_c \) denotes consumption of each good.

3 Real openness is measured as nominal openness deflated by each country price level relative to US price. Data are from the Penn World Tables.
The production function in tradable goods is constant returns to scale where \(y = A_c l \) where \(A_c \) is country-specific factor efficiency and \(l \) denotes labour. In turn, it is given by

\[
A_c = B_c g(d_c, l_c)
\]

where \(B \) is an exogenous parameter, and \(l \) is aggregate employment. Gains from specialisation occur assuming \(\delta g/\delta d_c < 0 \). Increasing returns to aggregate employment occur assuming \(\delta g/\delta l_c > 0 \). Gains from specialisation are limited to this sector and no increasing returns are possible in non-tradable goods which are produced according to the production function \(s = B_c l \).

Assuming balanced trade and labour market clearing, Alcala and Ciccone (2004) show that the share of labour allocated to non-tradable goods production is \((1-t)a_c/t + (1-t)d_c\). Given this and the production functions and the equation for \(ac \), PPP GDP is shown to depend on specialisation.

\[
\frac{PPP GDP_c}{L_c} = \frac{t + a(1-t)}{g(d_c, L_c)^{-1} t + (1-t) B_c}
\]

where average labour productivity in PPP increases in the degree of specialisation and in aggregate employment.

In equilibrium nominal openness is

\[
Open_c = 2 \frac{Im ports_c}{GDP_c} = 2 \frac{t - d_c}{t + (1-t)a_c}
\]

An increase in specialization can affect openness in two ways. A higher degree of specialisation, for a given price of non-tradable goods, raises openness as it implies a larger volume of imports. According to the equation deriving \(a_c \), a higher degree of specialisation raises the price of non-tradables, which lowers openness. Hence, higher openness is not necessarily associated with higher PPP labour productivity. Real openness is given by

\[
ROpen_c = 2 \frac{Im ports_c}{PPP GDP_c} = \frac{t - d_c}{t + (1+t)a}
\]

which implies that as the price of non-tradables used to value production is the same across countries, real openness is a linear and increasing function of the degree.
of specialisation and average labour productivity in PPP can be written as an increasing function of real openness.\(^4\)

3.1 Estimating Equation and Data

We extend the specification in Frankel and Romer (1999) to consider the relationship between productivity and trade, following Alcala and Ciccone (2004). The benchmark specification, for a single year, is as follows,

\[
\log\left(\frac{\text{PPP GDP}_c}{\text{Workforce}_c}\right) = \alpha_0 + \alpha_1\text{Trade}_c + \alpha_2 \log\text{DScale}_c + \alpha_3 \log\text{Area}_c + \alpha_4\text{IQual}_c + \alpha_5X_c + u_c
\]

(6)

where \(\text{PPP GDP}_c\) denotes Productivity Per Worker in country \(c\). \(\text{Trade}\) represents measures of openness (both nominal and real are considered here where real openness is national imports plus exports (in US $) divided by national GDP in PPP US$ (instrumenting is discussed below). \(\text{DScale}\) represents domestic scale of production measured as population. This is included since the size or scale of a country impacts not only its propensity to trade externally, but also internally, as explained by Frankel and Romer (1999: 380). Hence, a second geography-based test of trade’s impact is considered by examining whether domestic trade increases income focusing on whether larger countries, measured by population or workforce, have higher productivity.\(^5\) \(\text{Area}\) denotes the land area in square kilometres. \(\text{IQual}\) denotes institutional quality and \(X\) represents geography control variables. Finally, \(u_c\) denotes the error term, assumed to be well behaved.

Data for productivity, nominal imports and exports, GDP in PPP US$ used to measure openness, and population to measure scale are all taken from the Penn World Tables, 6.1 (Heston et al., 2002). For comparison purposes, labour productivity data were also taken from the Groningen Growth and Development Centre (GGDC) Total

\(^4\) Alcala and Ciccone (2004) pointed out that although all gains from specialization are supposed to occur in tradables, this assumption is not necessary for specialization to increase the price of non-tradables.

\(^5\) Frankel and Romer (1999) focus on income per person. In line with Alcala and Ciccone (2004) our interest is in productivity.
Economy Database. A 66-country sample is considered for which labour productivity data are available from both sources. Data limitations require that a smaller sample than in Alcala and Ciccone (2004) is employed. However, countries in our sample have more reliable data and are larger in size; hence their productivity is less likely determined by idiosyncratic factors (Frankel and Romer 1999:387). Area is taken from the World Development Indicators (2005) of the World Bank. Institutional quality is taken from Gwartney and Lawson (2003). Since we are conducting time-series analysis we require a measure for the period 1980-2000. The Economic Freedom of the World Index (Gwartney and Lawson, 2003; Gwartney, Holcombe and Lawson, 2004) measures institutional quality across five dimensions: size of government, legal structure and security of property rights, access to sound money, exchange with foreigners and regulation of capital, labour and business. Data for 100 countries are available for the time period we consider. Although the index is built using perception-based indicators and thus measures the perceived level of institutional quality, we use it in the empirical analysis for two reasons. First, it is available since the early 1980s and second it covers developed and developing countries and it is based on a large number of different sources, which reduces potential bias in the data. We are aware of the weaknesses of the data in the early years of the sample and this is taken into account when evaluating the results.

Since IQ is likely to be endogenous, instruments are required. In instrumenting for institutional quality, Hall and Jones (1999) use the population share speaking English since birth, the population share speaking one of the five primary European languages, distance from the equator and Frankel and Romer’s (1999) geography–based trade measure. Geography control variables include distance from the equator (measures used in Hall and Jones (1999) are used here) and continent.
dummies for Europe, Africa, America, Asia and the omitted dummy is represented by the intercept.

If trade and institutional quality are endogenous, OLS cannot be used for the estimating equation. Two-stage least squares is appropriate. To develop the instrument for trade, Frankel and Romer’s (1999) method is followed. A gravity equation is used to estimate bilateral trade shares using countries’ geographic characteristics and size as explanatory variables. The data set used is a cross-section of bilateral trade flows across 178 countries between 1980 and 2000. The data are from Rose (2005)10; we provide limited details here since data sources and description can be found in the cited paper.

In the specification of the bilateral trade equation the dependent variable is total trade in real terms relative to PPP GDP ($\text{Trade}_{ijt}/\text{PPP GDP}_i$) in logs. We include log population and log area as measures of size, log distance as measure of transport costs and a number of dummy variables that proxy for countries’ geographic characteristics and integration agreements. In addition, following Anderson and van Wincoop (2003) we include exporter and importer country dummies as proxies for multilateral resistance terms. Anderson and van Wincoop (2003) demonstrated that these terms have to be included in order to have a “theoretically justified” gravity-model specification.

Thus, the equation we estimate is given by

$$\ln(\text{Trade}_{ijt}/\text{PPP GDP}_i) = \gamma_i + \chi_j + \phi_i + \beta_1 \ln \text{Pop}_i + \beta_2 \ln \text{Pop}_j + \beta_3 \ln(\text{A}_i \text{A}_j)$$

$$+ \beta_4 \ln \text{Dist}_{ij} + \beta_5 \text{Landl}_i + \beta_6 \text{Lang}_j + \beta_7 \text{Adj}_{ij} + \beta_8 \text{Island}_j + \beta_9 \text{Concol}_{ij}$$

$$+ \beta_{10} \text{Currcol}_{ij} + \beta_{11} \text{CU}_{ij} + \beta_{12} \text{Colony}_{ij} + \beta_{13} \text{RTA}_{ij} + \beta_{14} \text{Gw}_1 + \beta_{15} \text{Gw}_2 + \beta_{16} \text{Gsp} + \mu_{ijt}$$

(7)

where i denotes the exporter, j denotes the importer, and t denotes the year. The explanatory variables γ and χ are exporter and importer country dummies, Pop is population, A is area, Dist is the distance between i and j, Landl is the number of landlocked countries in the country pair, Lang is a dummy variable which is unity if i and j have a common language and zero otherwise, Adj is a dummy variable which is unity if i and j have a common border and zero otherwise, Island is the number of

10 The authors are extremely grateful to Andrew K. Rose for making the data available at http://faculty.haas.berkeley.edu/arose/.
island nations in the pair i, j. $Comcol$ is a dummy variable which is unity if i and j were ever colonies after 1945 with the same colonizer, $Currcol$ is a binary variable which is unity if i and j are colonies at time t, CU is a binary variable which is unity if i and j use the same currency at time t, $Colony$ is a binary variable which is unity if i ever colonized j or vice versa, RTA is a binary variable which is unity if i and j belong to the same regional trade agreement, Gwl and $Gw2$ are binary variables which are unity if i and j are GATT/WTO members respectively and Gsp is a binary variable which is unity if i extends the GSP to j or vice versa. μ_{ijt} represents other omitted influences in bilateral trade.

The bilateral trade shares predicted by the gravity equation are aggregated providing a geography-based instrument for trade for each of the 66 countries we include in the estimation of the productivity equation (see Figure A1 in the appendix for a plot of the predicted shares and real openness).

4 Descriptive Statistics and Estimation Results

Table 1 contains descriptive statistics and the correlation matrix for selected variables. Real openness displays a lower mean than openness and the correlation between openness and real openness is high at 0.86. Real openness is more highly correlated with log average labour productivity than openness (compare 0.27 and 0.45 for the GGDC productivity measure). The differences are emphasised further when the logged trade measures are used (compare 0.30 to 0.58). In line with Alcala and Ciccone (2004) the differences can be attributed to the Balassa-Samuelson effect (which is further tested below).

Insert Table 1 here.

4.1 Instruments Estimation

Table 2 contains the first-stage regression results for log real openness (lropen) and for our proxy of institutional quality (iqual).

Insert Table 2 here.

Our geography-based trade instrument is a statistically significant determinant of log real openness in the final two estimation periods of 1995 and 2000, when
controlling for population, area, distance from equator, fraction of population speaking English and the continental dummies. The F-statistic of the hypothesis that our instrument can be excluded from the regression is statistically significant over all periods.

Results of the first-stage regression for our proxy of institutional quality indicate that the distance variable is statistically significant in 2000 only. Neither population nor area is significant. The fraction of population speaking English (englfrac) is statistically significant over all time periods. The fraction of population speaking one of the main five languages in Europe was also initially included, but it was always insignificant, therefore it is not included in the final regressions. Notably, the F-statistic is consistently lower in these results when compared to those for log real openness. Therefore the instruments are weaker in this case. We also tried with the variable “legal origin”11 as an additional instrument for institutional quality; however the results did not improve.

4.2 Productivity, Institutions and Trade

We start by presenting cross-section results for five selected years in order to analyse the stability/evolution over time of the estimated coefficients and to compare our results with those obtained in previous research. Table 3 reports our results using two-stage least squares (2SLS) estimation when examining the effect of trade on productivity, where our dependent variable for labour productivity is taken from the Penn World Tables.

Our results show that in 1980, the variable area is significant at 5% level and only three of the continent dummies are statistically significant (1%) in explaining labour productivity when controlling for population, area, distance from the equator, institutional quality and continent dummies. Results for 1985 are somewhat similar with distance to the equator indicating significance also. In 1990 only distance and the Australasia dummy are significant at 1% level, whereas institutions quality is significant at 5% level, in explaining productivity. For 1995 and 2000, real openness and area display a statistically significant coefficient (at 1% level). The 2000 results indicate that our measure of institutional quality, together with real openness, area and

11This variable is taken from: http://www.doingbusiness.org/.
three of the continent dummies are determinants of labour productivity. The results obtained in 2000 are more robust than those obtained in the previous years, the explanatory power is the highest and also the F-Statistic.

The continent dummies indicate that once we have controlled for the trade, institutions and scale effects, labour productivity is lower in the African continent and in Asia (excluding East Asia) than in North America (default dummy). The evolution over time shows that in Sub-Saharan Africa the situation has worsened whereas in Europe and East Asia the negative differential has somewhat decreased and the dummy is no longer significant in the 1990s.

Insert Table 3 here.

As a next step, we present estimation results for the whole panel. Although we have seen in Table 3 that the absolute value and significance of the coefficients varies for different years, we expect to find an “average effect” by running a single regression with time dummies for the five years under analysis. We considered both openness and real openness in estimation and used both PWT and GGDC measures of productivity for comparison purposes. These results are shown in Table 4 for the complete panel. The first half of the table present the results obtained with nominal openness as dependent variable, with both the Groningen Centre and the PWT data respectively and the second half of the table presents the results with real openness. We first estimated equation (6) with 2SLS with time effects. We also estimated the whole panel with the within (2 ways-fixed-effects) and the generalised 2SLS (random effects) but the results in terms of magnitude and sign of the coefficients did not vary.

The results from the F-tests indicate that using real openness12 as dependent variable we reject the existence of individual effects and the Hausman test indicates that the inclusion of random effects give more efficient estimates than the inclusion of fixed effects. We find that most of the variability of the data are across-countries rather than within countries, since the within variability is very reduced (R^2 within is always around 0.11 or even smaller). We conclude that the best estimates for real openness are the 2SLS with only time effects.

12 With nominal openness as dependent variable the tests indicate the significance of the individual effects and the Hausman test indicate that the effects should be treated as fixed. However, the results from the within estimator using nominal openness also indicate that nominal openness is no-significant and even negative signed.
The results in Table 4 indicate that institutional quality appears to explain productivity when both openness and real openness are included in the specifications and when either productivity measure is employed. Distance from the equator is also statistically significant across specifications and productivity measures. Real openness appears to be statistically significant only when GGDC productivity data are used. Population is statistically insignificant in all cases. Area is insignificant when using openness for both productivity measures but is significant when real openness is included in the specification.

For completeness, we also ran OLS regressions for each year and using the two alternative measures for the productivity variable. The results are shown in Table A1 in the Appendix. The coefficients are generally more precisely estimated under OLS than under 2SLS, since the standard errors are almost always lower. We perform Wu-Hausman and Durbin-wu-Hausman tests of the hypothesis that trade and institutions quality are uncorrelated with the residuals, and thus OLS are unbiased. For most of the coefficients and years we cannot reject the hypothesis that the OLS and the 2SLS estimates are equal. The results from the tests are shown in the last rows of Tables 3 and 4. Both tests are, in the usual classical statistical sense, being conservative about concluding endogeneity. If theory or evidence from other studies or even common sense suggests endogeneity, this may suffice to proceed with the 2SLS regardless of the results of the test. In this case, it is convenient to report both the OLS and the IV estimates and the test results, and interpret the findings from the analysis accordingly. In particular, endogeneity is always rejected when productivity data from the Groningen centre are employed. Our results are in line with those found in Frankel and Romer (1999), since they show that the IV and OLS estimates of the trade impact on income never differ substantially. The authors find that moving from OLS to IV increase the estimated impact of trade and country size on income. On the contrary, we find that examining the link between trade and productivity using OLS overstates rather than understates the effect of trade. This is in accordance with the theory, since countries that are more open, are likely to adopt other policies that enhance productivity and are expected to have better infrastructures and transportation systems.
For thoroughness, we also used 3SLS estimation to examine the trade-productivity relationship across our sample of countries. This method provides a comprehensive and, arguably, more complete estimation method across the system of equations that characterise the relationships among our variables of interest. These results are presented in Table 5. By using 3SLS we also control for the existence of cross-correlation of the residuals in the three different equations. 3SLS combines the seemingly unrelated regression (SUR) technique with the 2SLS technique and it is therefore more accurate. We observe that some of the coefficients are higher in magnitude than those obtained with the 2SLS method (real openness and area) but the main results are unchanged: both real openness, institutions quality, area and distance and the continent dummies are statistically significant, whereas population is not.

Insert Table 5 here

One interesting aspect of our results is that in most of the regressions we find that population is insignificant and negatively signed. Alcala and Ciccone (2004) show in their regression results (Table 5:34) a positive and significant coefficient for population, however, Table I (Alcala and Ciccone, 2004: 30) shows a negative correlation between population and real openness. In this table they do not show the correlation coefficient between area and population, it could be that in their sample population and area are highly correlated and the population variable is showing the effect of the area variable (the area variable is insignificant in Alcala and Ciccone, 2004). In our results, the area variable is positively signed and significant. A greater area can have a positive impact on productivity via increased natural resources and a negative one via lower intra-country trade. Focusing on country size and holding population density constant (population/area) the effect of country size on productivity would be the sum of both the log of population and the log of area coefficients (Frankel and Romer 1999). Only with this hypothesis are we able to find a positive scale effect in our results.

For completeness, we test for the Balassa-Samuelson Effect and results are provided in Table 6. We regress the price level on real openness and other variables included in the productivity equation. Both OLS and 2SLS estimations were conducted. All geography controls and a constant were also included. Results indicate that real openness has a highly significant positive effect on the price level, confirming the trade-related Balassa-Samuelson effect.
4.3 Robustness

First, we tested for the robustness of our results to inclusion of outliers. The results of our sensitivity analysis are provided in Table 7 (results for each year (1980, 1985, 1990, 1995 and 2000) are not provided here but were similar). Statistical significance of real openness (lropen) appears robust, however, but not for the non-OECD countries in our sample. Similar findings for institutional quality are evident. Population is insignificant and area remains statistically significant over the entire set of analyses. Distance from the equator is not statistically significant for the OECD sample of countries.

Insert Table 7 here

Second, since we are mainly interested in the robustness of the observed linkage between real openness and productivity, we try to investigate whether countries with a low score on institutional quality (20% worse scores) benefit less from trade than countries with higher institutional quality (Bormann, Busse and Newhaus, 2006). With this aim, we create a dummy variable (DIQual) that takes a value of one if a country belongs to the 20% bottom quintile, and zero otherwise. We then interact this dummy with real openness and add both to the list of explanatory variables. The new specification for a single year, is given by,

\[
\log \left(\frac{PPP\text{ GDP}_c}{\text{Workforce}_c} \right) = \alpha_0 + \alpha_1 \text{Trade}_c + \alpha_2 \log \text{DScale}_c + \alpha_3 \log \text{Area}_c + \alpha_4 \text{IQual}_c + \alpha_5 X_c + \\
+ \alpha_6 \text{DIQual}_c + \alpha_7 \text{Trade}_c \times \text{DIQual}_c + u_c
\]

(7)

We estimate the extended model specification using OLS and 2SLS yearly and for the whole panel. When using OLS, the results for the yearly regressions show that the two new variables are almost always insignificant and trade is still positive associated with productivity levels in most years. When using 2SLS, the dummy and the interactive term are always insignificant. For the whole panel, the two additional variables are only significant (and with the expected signs) when fixed or random
effects are considered13, but they lose significance when instruments for institutions quality and trade variables are used. When using 2SLS, the random effects model is more efficient than the fixed effect model and both are consistent according to the results from the Hausman test. The last column of table 7 shows the panel-random effects 2SLS results for the extended model. Trade has still a positive influence on productivity; the coefficient is significant at 10\% level, whereas the institutions quality variable is only significant at 10\% level for the group of countries with the 20\% worse scores on institutional quality. The interactive term $\text{trade}^{*}\text{DIQual}$ is negatively signed but insignificant, showing no evidence that trade has a negative impact on productivity in the countries with low-quality institutions.

Following Bormann \textit{et al.} (2006) we re-estimate the extended model choosing different threshold levels for the institutions dummy. Increasing the threshold level to 30, 40 and 50 per cent did not improve the results. The interactive term was always insignificant. Contrary to Bormann \textit{et al.} (2006) we do not find evidence implying that countries with the worse quality of institutions are not able to benefit from trade.

5 Conclusions

A considerable range of research examines the role of trade in growth and productivity. Some of this is discussed in Section 2 of our paper, in particular. Empirically, a range of results using different techniques across different country samples, yield alternative stories of how trade relates to productivity and growth. We add to this literature using the real openness measure as a determinant of labour productivity applied in a cross-country setting over the 1980-2000 period.

Using the measure of real openness, we find that it is a statistically significant explanatory variable for labour productivity across our sample of countries, when geography controls and institutional quality are included, for the data from 1995 and 2000. The effect is more modest than the previous literature suggested. The estimates suggest that a one-percentage-point increase in real openness raises productivity by only 0.55 per cent. Between 1980 and 1990, we find no statistically significant relationship between real openness and labour productivity. This differs to the findings of Alcala and Ciccone (2004) but different data sources and country sample

13 The Hausman test indicate that only the fixed effects results are consistent when instrumental variables are not used.
were used and in particular we used an alternative measure of institutional quality. (Interestingly, while their data refer to 1985, their institutional quality data were from 1997/1998). Hence, while the rationale underlying the use of real openness was supported in our data with the finding of the Balassa-Samuelson effect, we cannot argue in favour of a robust relationship between real openness and labour productivity for our country sample for the period 1985-2000.

Concerning institutional quality, we find a robust relationship between this variable and productivity from 1990 onwards. The reason why this is no the case in the 1980s could be that the quality of the data is poor and there are hardly any other measures for institutions older than ten years. Additionally, Contrary to Bormann et al. (2006) we do not find evidence implying that countries with the worse quality of institutions are not able to benefit from trade.

We only find partial support for the scale effect. Population is statistically significant in our first-stage regression for openness only. Using population alone has no impact on labour productivity. The theoretical rationale for inclusion of the variable in terms of the absorption effect finds no empirical support here. However, the area variable is significant and positive signed, thus considering the joint effect of area and population we are able to find a small positive effect of increasing size with population density held constant.

The use of different data sources for labour productivity reveals that this makes a substantial difference to the results of our analysis and the inferences we can make. More research is needed here to identify the sources of difference in the data that give rise to diverse results. This is where our further research is to be directed.

We also leave for further research the analysis of the channels through which openness affects growth and productivity in a dynamic setting.
References

World Development Indicators, 2005, World Bank.
Table 1. Descriptive Statistics and Correlation Matrix

<table>
<thead>
<tr>
<th>Variable</th>
<th>Obs</th>
<th>Mean</th>
<th>Min</th>
<th>Max</th>
<th>Std. Dev.</th>
</tr>
</thead>
<tbody>
<tr>
<td>lproac</td>
<td>314</td>
<td>9.77</td>
<td>6.89</td>
<td>11.54</td>
<td>0.93</td>
</tr>
<tr>
<td>lpro</td>
<td>365</td>
<td>9.66</td>
<td>6.90</td>
<td>10.98</td>
<td>0.91</td>
</tr>
<tr>
<td>openc</td>
<td>323</td>
<td>72.68</td>
<td>11.51</td>
<td>439.03</td>
<td>59.20</td>
</tr>
<tr>
<td>lopenc</td>
<td>323</td>
<td>4.07</td>
<td>2.44</td>
<td>6.08</td>
<td>0.64</td>
</tr>
<tr>
<td>ropen</td>
<td>323</td>
<td>53.27</td>
<td>4.00</td>
<td>348.02</td>
<td>56.87</td>
</tr>
<tr>
<td>lropen</td>
<td>323</td>
<td>3.56</td>
<td>1.39</td>
<td>5.85</td>
<td>0.90</td>
</tr>
<tr>
<td>lpop</td>
<td>365</td>
<td>9.73</td>
<td>5.43</td>
<td>14.05</td>
<td>1.68</td>
</tr>
<tr>
<td>iqual</td>
<td>353</td>
<td>5.91</td>
<td>2.30</td>
<td>9.10</td>
<td>1.40</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>lproac</th>
<th>lpro</th>
<th>openc</th>
<th>lopenc</th>
<th>ropen</th>
<th>lropen</th>
<th>lpop</th>
<th>iqual</th>
</tr>
</thead>
<tbody>
<tr>
<td>lproac</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>lpro</td>
<td>0.93</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>openc</td>
<td>0.29</td>
<td>0.27</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>lopenc</td>
<td>0.32</td>
<td>0.30</td>
<td>0.88</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ropen</td>
<td>0.48</td>
<td>0.45</td>
<td>0.86</td>
<td>0.74</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>lropen</td>
<td>0.60</td>
<td>0.58</td>
<td>0.71</td>
<td>0.78</td>
<td>0.86</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>lpop</td>
<td>-0.43</td>
<td>-0.44</td>
<td>-0.50</td>
<td>-0.60</td>
<td>-0.57</td>
<td>-0.67</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>iqual</td>
<td>0.56</td>
<td>0.59</td>
<td>0.46</td>
<td>0.48</td>
<td>0.51</td>
<td>0.55</td>
<td>-0.31</td>
<td>1.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>lpro</th>
<th>lproac</th>
<th>iqual</th>
<th>englfrac</th>
<th>eurfrac</th>
<th>disteq</th>
<th>ropen</th>
<th>lopenc</th>
<th>lopenf</th>
</tr>
</thead>
<tbody>
<tr>
<td>lpro</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>lproac</td>
<td>0.92</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>iqual</td>
<td>0.57</td>
<td>0.54</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>englfrac</td>
<td>0.30</td>
<td>0.29</td>
<td>0.34</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>eurfrac</td>
<td>0.37</td>
<td>0.37</td>
<td>0.18</td>
<td>0.44</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>disteq</td>
<td>0.57</td>
<td>0.64</td>
<td>0.21</td>
<td>0.16</td>
<td>0.01</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ropen</td>
<td>0.59</td>
<td>0.60</td>
<td>0.53</td>
<td>0.11</td>
<td>-0.02</td>
<td>0.35</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>lopenc</td>
<td>0.28</td>
<td>0.29</td>
<td>0.45</td>
<td>-0.04</td>
<td>-0.21</td>
<td>0.06</td>
<td>0.76</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>lopenf</td>
<td>0.53</td>
<td>0.54</td>
<td>0.37</td>
<td>0.04</td>
<td>0.06</td>
<td>0.54</td>
<td>0.68</td>
<td>0.51</td>
<td>1.00</td>
</tr>
</tbody>
</table>

Notes:
- lproac and lpro are the log of labour productivity per worker from Penn World Tables and from the Groningen Growth and Development Centre respectively;
- openc and ropen are openness and real openness, and lopenc and lropen are the same variables in logs;
- lpop is the log of population and iqual is the institutional quality index;
- lopenf denotes the bilateral trade shares predicted by the gravity equation.
Table 2: First stage regressions

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Coef.</td>
<td>t-ratio</td>
<td>Coef.</td>
<td>t-ratio</td>
<td>Coef.</td>
</tr>
<tr>
<td>lopen</td>
<td>0.17</td>
<td>1.69</td>
<td>0.19</td>
<td>1.80</td>
<td>0.20</td>
</tr>
<tr>
<td>lopenf</td>
<td>-0.22</td>
<td>-3.34</td>
<td>-0.22</td>
<td>-3.03</td>
<td>-0.18</td>
</tr>
<tr>
<td>lpop</td>
<td>-0.11</td>
<td>-1.33</td>
<td>-0.09</td>
<td>-1.01</td>
<td>-0.14</td>
</tr>
<tr>
<td>lrar</td>
<td>0.58</td>
<td>1.06</td>
<td>0.92</td>
<td>1.63</td>
<td>0.84</td>
</tr>
<tr>
<td>disteq</td>
<td>0.56</td>
<td>3.08</td>
<td>0.57</td>
<td>2.54</td>
<td>0.29</td>
</tr>
<tr>
<td>engfrac</td>
<td>0.13</td>
<td>0.50</td>
<td>0.00</td>
<td>0.12</td>
<td>0.47</td>
</tr>
<tr>
<td>dafrica</td>
<td>0.03</td>
<td>0.12</td>
<td>-0.13</td>
<td>-0.44</td>
<td>0.09</td>
</tr>
<tr>
<td>deur</td>
<td>-0.27</td>
<td>-1.26</td>
<td>-0.18</td>
<td>-0.77</td>
<td>0.00</td>
</tr>
<tr>
<td>deastasia</td>
<td>0.74</td>
<td>2.55</td>
<td>0.67</td>
<td>2.13</td>
<td>0.59</td>
</tr>
<tr>
<td>dsb</td>
<td>0.33</td>
<td>0.73</td>
<td>0.25</td>
<td>0.59</td>
<td>0.10</td>
</tr>
<tr>
<td>_cons</td>
<td>5.62</td>
<td>4.03</td>
<td>4.84</td>
<td>3.32</td>
<td>5.12</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.72</td>
<td>0.70</td>
<td>0.62</td>
<td>0.67</td>
<td>0.74</td>
</tr>
<tr>
<td>Nobs</td>
<td>58.00</td>
<td>58.00</td>
<td>58.00</td>
<td>61.00</td>
<td>59.00</td>
</tr>
<tr>
<td>F(10,47)</td>
<td>14.56</td>
<td>11.51</td>
<td>13.55</td>
<td>14.94</td>
<td>23.10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Coef.</td>
<td>t-ratio</td>
<td>Coef.</td>
<td>t-ratio</td>
<td>Coef.</td>
</tr>
<tr>
<td>iqual</td>
<td>0.31</td>
<td>1.52</td>
<td>0.13</td>
<td>0.54</td>
<td>0.13</td>
</tr>
<tr>
<td>lopen</td>
<td>-0.05</td>
<td>-0.39</td>
<td>-0.21</td>
<td>-1.36</td>
<td>-0.07</td>
</tr>
<tr>
<td>lpop</td>
<td>0.00</td>
<td>-0.02</td>
<td>-0.01</td>
<td>-0.07</td>
<td>-0.13</td>
</tr>
<tr>
<td>lrar</td>
<td>-0.19</td>
<td>-1.02</td>
<td>0.17</td>
<td>0.78</td>
<td>0.25</td>
</tr>
<tr>
<td>disteq</td>
<td>1.44</td>
<td>2.56</td>
<td>1.96</td>
<td>3.26</td>
<td>2.04</td>
</tr>
<tr>
<td>engfrac</td>
<td>-0.38</td>
<td>-0.66</td>
<td>-0.14</td>
<td>-0.25</td>
<td>-1.05</td>
</tr>
<tr>
<td>dafrica</td>
<td>-0.03</td>
<td>-0.06</td>
<td>-0.09</td>
<td>-0.16</td>
<td>-0.50</td>
</tr>
<tr>
<td>deur</td>
<td>-0.98</td>
<td>-2.38</td>
<td>-0.05</td>
<td>-0.10</td>
<td>-1.27</td>
</tr>
<tr>
<td>deastasia</td>
<td>1.40</td>
<td>5.15</td>
<td>1.35</td>
<td>3.15</td>
<td>2.17</td>
</tr>
<tr>
<td>dsb</td>
<td>-1.61</td>
<td>-1.99</td>
<td>0.46</td>
<td>0.42</td>
<td>0.89</td>
</tr>
<tr>
<td>_cons</td>
<td>3.29</td>
<td>1.18</td>
<td>6.49</td>
<td>2.03</td>
<td>7.60</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.51</td>
<td>0.30</td>
<td>0.40</td>
<td>0.42</td>
<td>0.49</td>
</tr>
<tr>
<td>Nobs</td>
<td>64.00</td>
<td>68.00</td>
<td>68.00</td>
<td>65.00</td>
<td>58.00</td>
</tr>
<tr>
<td>F(9,54)</td>
<td>7.26</td>
<td>3.63</td>
<td>8.31</td>
<td>8.35</td>
<td>8.12</td>
</tr>
</tbody>
</table>
Table 3. Instrumental Variables results (2SLS)14

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>lpro</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>lroopen</td>
<td>1.01</td>
<td>0.14</td>
<td>0.28</td>
<td>0.26</td>
<td>0.49</td>
<td>0.75</td>
</tr>
<tr>
<td>iqual</td>
<td>0.01</td>
<td>0.03</td>
<td>0.33</td>
<td>1.65</td>
<td>0.26</td>
<td>1.75</td>
</tr>
<tr>
<td>lpop</td>
<td>0.04</td>
<td>0.23</td>
<td>-0.17</td>
<td>-1.29</td>
<td>-0.13</td>
<td>-1.13</td>
</tr>
<tr>
<td>lar</td>
<td>0.16</td>
<td>1.77</td>
<td>0.02</td>
<td>0.24</td>
<td>0.02</td>
<td>0.17</td>
</tr>
<tr>
<td>ldisteq</td>
<td>0.77</td>
<td>0.90</td>
<td>0.30</td>
<td>2.67</td>
<td>0.29</td>
<td>2.61</td>
</tr>
<tr>
<td>daustrasia</td>
<td>-0.64</td>
<td>-2.34</td>
<td>-0.66</td>
<td>-2.78</td>
<td>-0.62</td>
<td>-1.99</td>
</tr>
<tr>
<td>dafrica</td>
<td>-1.28</td>
<td>-3.32</td>
<td>-0.86</td>
<td>-2.64</td>
<td>-0.73</td>
<td>-1.66</td>
</tr>
<tr>
<td>deurope</td>
<td>-0.76</td>
<td>-2.27</td>
<td>-0.63</td>
<td>-2.00</td>
<td>-0.60</td>
<td>-1.35</td>
</tr>
<tr>
<td>deastasia</td>
<td>-0.59</td>
<td>-1.57</td>
<td>-0.32</td>
<td>-0.94</td>
<td>-0.14</td>
<td>-0.38</td>
</tr>
<tr>
<td>dsusafrika</td>
<td>-1.18</td>
<td>-1.77</td>
<td>-0.21</td>
<td>-0.45</td>
<td>-0.13</td>
<td>-0.25</td>
</tr>
<tr>
<td>_cons</td>
<td>3.94</td>
<td>1.17</td>
<td>9.83</td>
<td>3.84</td>
<td>9.24</td>
<td>3.11</td>
</tr>
</tbody>
</table>

R-squared 0.78 0.85 0.75 0.70 0.87
Nobs 56.00 58.00 58.00 66.00 59.00
F(10,45) 18.68 3.68 10.51 16.09 36.65

Wu-Hausman F test 0.85 0.98 0.20 1.44 0.84
Durbin-Wu-Hausman 2.13 0.97 0.51 3.44 2.09
Chi-sq test 1.22 0.26 0.19 1.43 0.51
Sargan test (N*R-sq) 0.98 0.21 0.15 1.17 0.41
Basmann test, Chi-sq(1) 0.98 0.21 0.15 1.17 0.41

Notes: W-Hausman and Durbin-Wu-Hausman are tests of endogeneity of lroopen and iqual (the results from the tests indicate acceptance of H0: Regressors are exogenous). Sargan N*R-sq and Basmann are tests of over-identifying restrictions, a rejection of the null hypothesis indicates that the instrumental variables estimator should be employed (results indicate acceptance of H0).

14 OLS results are provided (for both data sources of labour productivity) in the appendix, for information.
Table 4. Comparing Openness with Real Openness (2SLS panel)

<table>
<thead>
<tr>
<th>Results with openness in nominal terms</th>
<th>Results with real openness(^3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(lpro)</td>
<td>Coef(^1) t</td>
</tr>
<tr>
<td>Lopenc/lropen</td>
<td>0.74 1.46 0.10 0.20</td>
</tr>
<tr>
<td>iqual</td>
<td>-0.05 -0.70 -0.10 -1.45</td>
</tr>
<tr>
<td>lpop</td>
<td>0.33 3.17 0.19 2.04</td>
</tr>
<tr>
<td>ldisteq</td>
<td>-0.67 -3.53 -0.46 -2.74</td>
</tr>
<tr>
<td>daustrasia</td>
<td>-1.10 -3.29 -0.35 -1.23</td>
</tr>
<tr>
<td>dafrica</td>
<td>-0.51 -2.09 -0.03 -0.15</td>
</tr>
<tr>
<td>deaustria</td>
<td>-0.42 -2.24 -0.22 -1.16</td>
</tr>
<tr>
<td>dsousafrica</td>
<td>-0.25 -0.64 -1.29 -4.33</td>
</tr>
<tr>
<td>y85</td>
<td>0.04 0.38 -0.01 -0.13</td>
</tr>
<tr>
<td>y90</td>
<td>-0.12 -1.12 -0.10 -1.11</td>
</tr>
<tr>
<td>y95</td>
<td>-0.30 -2.56 -0.27 -2.60</td>
</tr>
<tr>
<td>y2000</td>
<td>-0.48 -2.88 -0.34 -2.19</td>
</tr>
<tr>
<td>_cons</td>
<td>5.12 1.81 8.13 3.06</td>
</tr>
</tbody>
</table>

Adj. R-squared	0.66 0.74	0.77 0.82	0.66 0.74	0.77 0.82
Nobs	292 283	292 283	292 283	292 283
Wu-Hausman F test	3.22 7.67	0.64 6.81	3.22 7.67	0.64 6.81
Durbin-Wu-Hausman Chi-sq test	6.68 15.43	1.35 13.79	6.68 15.43	1.35 13.79
Sargan test (N*R-sq)	1.50 5.56	0.44 5.81	1.50 5.56	0.44 5.81
Basmann test, Chi-sq(1)	1.57 5.35	0.42 5.60	1.57 5.35	0.42 5.60
F test that all u_i=0	F(62,221)=2.19**	F(61,213)=2.66**	F(62,221)=1.01	F(61,213)=1.15
Hausman test (fixed versus random effect)	-1.83	0.71 0.40	-1.83	0.71 0.40

Notes:
- W-Hausman and Durbin-Wu-Hausman are tests of endogeneity of lropen (lopenc) and iqual (the results from the tests indicate acceptance of H0: Regressors are exogenous). Sargan N*R-sq and Basmann are tests of overidentifying restrictions, a rejection of the null hypothesis indicates that the instrumental variables estimator should be employed (results indicate acceptance of H0).
- \(^1\)The dependent variable is log of productivity measured as GDP per person employed in 1990 GK $ from the Groningen Centre.
- \(^2\)The dependent variable is log of productivity measured as GDP per person employed in 1990 GK $ from the PWT.
- \(^3\)With pooled OLS we obtain basically the same coefficients as with random effects.
Table 5. Panel results (Three-stage least-squares regression with time dummies)

<table>
<thead>
<tr>
<th>variables</th>
<th>Coef.</th>
<th>Std. Error</th>
<th>Z</th>
<th>variables</th>
<th>Coef.</th>
<th>Std. Error</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>lpro</td>
<td></td>
<td></td>
<td></td>
<td>lropen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>lropen</td>
<td>0.65</td>
<td>0.24</td>
<td>2.71</td>
<td>lopenf</td>
<td>0.16</td>
<td>0.04</td>
<td>3.69</td>
</tr>
<tr>
<td>lpop</td>
<td>-0.01</td>
<td>0.04</td>
<td>-0.26</td>
<td>lpop</td>
<td>-0.18</td>
<td>0.03</td>
<td>-6.68</td>
</tr>
<tr>
<td>lar</td>
<td>0.11</td>
<td>0.04</td>
<td>2.62</td>
<td>disteq</td>
<td>0.95</td>
<td>0.29</td>
<td>3.33</td>
</tr>
<tr>
<td>iqual</td>
<td>0.20</td>
<td>0.09</td>
<td>2.35</td>
<td>lar</td>
<td>-0.14</td>
<td>0.03</td>
<td>-4.74</td>
</tr>
<tr>
<td>disteq</td>
<td>0.71</td>
<td>0.29</td>
<td>2.43</td>
<td>eurfrac</td>
<td>0.25</td>
<td>0.11</td>
<td>2.40</td>
</tr>
<tr>
<td>dafrica</td>
<td>-0.81</td>
<td>0.14</td>
<td>-5.84</td>
<td>englfrac</td>
<td>0.30</td>
<td>0.15</td>
<td>2.05</td>
</tr>
<tr>
<td>deurope</td>
<td>-0.48</td>
<td>0.14</td>
<td>-3.52</td>
<td>dafrica</td>
<td>0.14</td>
<td>0.14</td>
<td>1.00</td>
</tr>
<tr>
<td>daustralasia</td>
<td>-0.51</td>
<td>0.10</td>
<td>-5.21</td>
<td>deurope</td>
<td>0.09</td>
<td>0.13</td>
<td>0.66</td>
</tr>
<tr>
<td>deastasia</td>
<td>-0.42</td>
<td>0.13</td>
<td>-3.11</td>
<td>daustralasia</td>
<td>0.03</td>
<td>0.11</td>
<td>0.28</td>
</tr>
<tr>
<td>dsubsafrica</td>
<td>-1.00</td>
<td>0.17</td>
<td>-5.94</td>
<td>deastasia</td>
<td>0.68</td>
<td>0.12</td>
<td>5.81</td>
</tr>
<tr>
<td>y85</td>
<td>0.30</td>
<td>0.14</td>
<td>2.16</td>
<td>y85</td>
<td>-0.35</td>
<td>0.09</td>
<td>-3.71</td>
</tr>
<tr>
<td>y90</td>
<td>0.11</td>
<td>0.12</td>
<td>0.89</td>
<td>y90</td>
<td>-0.14</td>
<td>0.09</td>
<td>-1.47</td>
</tr>
<tr>
<td>y95</td>
<td>0.00</td>
<td>0.14</td>
<td>0.03</td>
<td>y95</td>
<td>-0.05</td>
<td>0.09</td>
<td>-0.53</td>
</tr>
<tr>
<td>y2000</td>
<td>0.01</td>
<td>0.16</td>
<td>0.05</td>
<td>y2000</td>
<td>-0.05</td>
<td>0.09</td>
<td>-0.61</td>
</tr>
<tr>
<td>_cons</td>
<td>5.18</td>
<td>1.26</td>
<td>4.10</td>
<td>_cons</td>
<td>5.40</td>
<td>0.56</td>
<td>9.68</td>
</tr>
<tr>
<td>iqual</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>lpop</td>
<td>-0.10</td>
<td>0.05</td>
<td>-1.95</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>lar</td>
<td>-0.18</td>
<td>0.05</td>
<td>-3.71</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>disteq</td>
<td>1.27</td>
<td>0.54</td>
<td>2.36</td>
<td>englfrac</td>
<td>0.37</td>
<td>0.20</td>
<td>1.84</td>
</tr>
<tr>
<td>eurfrac</td>
<td>0.37</td>
<td>0.20</td>
<td>1.84</td>
<td>dafrica</td>
<td>2.04</td>
<td>0.28</td>
<td>7.18</td>
</tr>
<tr>
<td>deurope</td>
<td>-0.20</td>
<td>0.24</td>
<td>-0.82</td>
<td>dafrica</td>
<td>-0.49</td>
<td>0.28</td>
<td>-1.78</td>
</tr>
<tr>
<td>daustralasia</td>
<td>-0.68</td>
<td>0.22</td>
<td>-3.11</td>
<td>deastasia</td>
<td>1.73</td>
<td>0.22</td>
<td>7.68</td>
</tr>
<tr>
<td>deastasia</td>
<td>1.73</td>
<td>0.22</td>
<td>7.68</td>
<td>dsubsafrica</td>
<td>0.37</td>
<td>0.33</td>
<td>1.10</td>
</tr>
<tr>
<td>y85</td>
<td>0.06</td>
<td>0.17</td>
<td>0.32</td>
<td>y85</td>
<td>0.06</td>
<td>0.17</td>
<td>0.32</td>
</tr>
<tr>
<td>y90</td>
<td>0.49</td>
<td>0.17</td>
<td>2.86</td>
<td>y90</td>
<td>0.49</td>
<td>0.17</td>
<td>2.86</td>
</tr>
<tr>
<td>y95</td>
<td>1.05</td>
<td>0.17</td>
<td>6.15</td>
<td>y95</td>
<td>1.05</td>
<td>0.17</td>
<td>6.15</td>
</tr>
<tr>
<td>y2000</td>
<td>1.45</td>
<td>0.17</td>
<td>8.40</td>
<td>y2000</td>
<td>1.45</td>
<td>0.17</td>
<td>8.40</td>
</tr>
<tr>
<td>_cons</td>
<td>7.91</td>
<td>0.52</td>
<td>15.16</td>
<td>_cons</td>
<td>7.91</td>
<td>0.52</td>
<td>15.16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Equation</th>
<th>Obs</th>
<th>Parms</th>
<th>RMSE</th>
<th>R-sq</th>
</tr>
</thead>
<tbody>
<tr>
<td>lpro</td>
<td>292.00</td>
<td>14.00</td>
<td>0.45</td>
<td>0.77</td>
</tr>
<tr>
<td>lropen</td>
<td>292.00</td>
<td>15.00</td>
<td>0.48</td>
<td>0.69</td>
</tr>
<tr>
<td>iqual</td>
<td>292.00</td>
<td>14.00</td>
<td>0.92</td>
<td>0.54</td>
</tr>
</tbody>
</table>
Table 6. Testing for the Balassa-Samuelson Effect (2SLS)

<table>
<thead>
<tr>
<th>Without Iqual</th>
<th>With Iqual</th>
</tr>
</thead>
<tbody>
<tr>
<td>lprice</td>
<td>lprice</td>
</tr>
<tr>
<td>lropen</td>
<td>0.63 7.72</td>
</tr>
<tr>
<td>lpop</td>
<td>0.05 1.82</td>
</tr>
<tr>
<td>lar</td>
<td>0.07 4.17</td>
</tr>
<tr>
<td>ldisteq</td>
<td>0.18 6.34</td>
</tr>
<tr>
<td>daustrasia</td>
<td>-0.24 -4.06</td>
</tr>
<tr>
<td>dafrica</td>
<td>-0.49 -6.16</td>
</tr>
<tr>
<td>deurope</td>
<td>-0.25 -3.22</td>
</tr>
<tr>
<td>deastasia</td>
<td>-0.16 -1.85</td>
</tr>
<tr>
<td>dsubsafrica</td>
<td>0.65 5.64</td>
</tr>
<tr>
<td>y85</td>
<td>-0.10 -1.53</td>
</tr>
<tr>
<td>y90</td>
<td>-0.10 -1.75</td>
</tr>
<tr>
<td>y95</td>
<td>-0.18 -3.26</td>
</tr>
<tr>
<td>y2000</td>
<td>-0.37 -6.72</td>
</tr>
<tr>
<td>_cons</td>
<td>1.07 1.66</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Adj. R-squared	0.74	Adj. R-squared	0.72
Nobs	292	Nobs	292
Wu-Hausman F test	0.02	Wu-Hausman F test	0.46
Durbin-Wu-Hausman		Durbin-Wu-Hausman	0.97
Chi-sq test	0.02	Chi-sq test	
Sargan test (N*R-sq)	3.71	Sargan test (N*R-sq)	3.53
Basmann test, Chi-sq(1)	3.55	Basmann test, Chi-sq(1)	3.34

Note: lprice is the log of the price level from the PWT.
Table 7. Sensitivity analysis. Productivity equation for different sub-samples and for the extended model

<table>
<thead>
<tr>
<th>Variables</th>
<th>Bench-mark</th>
<th>Excluding HK, Lux., Sing.</th>
<th>OECD</th>
<th>NON-OECD</th>
<th>Extended model (2SLS with re)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Coef.</td>
<td>t</td>
<td>Coef.</td>
<td>t</td>
<td>Coef.</td>
</tr>
<tr>
<td>lpro</td>
<td>0.55</td>
<td>2.33</td>
<td>0.57</td>
<td>2.72</td>
<td>0.28</td>
</tr>
<tr>
<td>lropen</td>
<td>0.23</td>
<td>2.69</td>
<td>0.21</td>
<td>2.73</td>
<td>0.21</td>
</tr>
<tr>
<td>iqual</td>
<td>-0.04</td>
<td>-0.92</td>
<td>-0.04</td>
<td>-0.96</td>
<td>0.01</td>
</tr>
<tr>
<td>lpop</td>
<td>0.08</td>
<td>2.31</td>
<td>0.10</td>
<td>3.09</td>
<td>0.06</td>
</tr>
<tr>
<td>ldisteq</td>
<td>0.20</td>
<td>4.71</td>
<td>0.22</td>
<td>4.66</td>
<td>-0.03</td>
</tr>
<tr>
<td>daustrasia</td>
<td>-0.54</td>
<td>-5.39</td>
<td>-0.55</td>
<td>-5.52</td>
<td>-0.14</td>
</tr>
<tr>
<td>dafrica</td>
<td>-0.84</td>
<td>-8.1</td>
<td>-0.87</td>
<td>-6.21</td>
<td>-</td>
</tr>
<tr>
<td>deurope</td>
<td>-0.47</td>
<td>-3.09</td>
<td>-0.48</td>
<td>-3.31</td>
<td>0.07</td>
</tr>
<tr>
<td>deastasia</td>
<td>-0.29</td>
<td>-2.25</td>
<td>-0.30</td>
<td>-2.32</td>
<td>-0.10</td>
</tr>
<tr>
<td>dsusaafrica</td>
<td>-0.73</td>
<td>-4.24</td>
<td>-0.69</td>
<td>-3.77</td>
<td>-</td>
</tr>
<tr>
<td>y85</td>
<td>0.25</td>
<td>1.85</td>
<td>0.26</td>
<td>2.06</td>
<td>0.12</td>
</tr>
<tr>
<td>y90</td>
<td>0.07</td>
<td>0.60</td>
<td>0.09</td>
<td>0.76</td>
<td>0.04</td>
</tr>
<tr>
<td>y95</td>
<td>-0.04</td>
<td>-0.26</td>
<td>-0.02</td>
<td>-0.15</td>
<td>-0.07</td>
</tr>
<tr>
<td>y2000</td>
<td>-0.04</td>
<td>-0.23</td>
<td>-0.02</td>
<td>-0.12</td>
<td>0.03</td>
</tr>
<tr>
<td>_cons</td>
<td>6.50</td>
<td>5.25</td>
<td>6.39</td>
<td>5.76</td>
<td>6.96</td>
</tr>
<tr>
<td>DIQual</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.00</td>
</tr>
<tr>
<td>Lropen*DIQual</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-0.32</td>
</tr>
<tr>
<td>Adj. R-squared</td>
<td>0.77</td>
<td></td>
<td>0.77</td>
<td></td>
<td>0.71</td>
</tr>
<tr>
<td>Nobs</td>
<td>292</td>
<td></td>
<td>286</td>
<td></td>
<td>115</td>
</tr>
<tr>
<td>f(14,277)</td>
<td>61.34</td>
<td></td>
<td>60.64</td>
<td></td>
<td>17.38</td>
</tr>
<tr>
<td>Wu-Hausman F test</td>
<td>0.53</td>
<td></td>
<td>0.64</td>
<td></td>
<td>0.87</td>
</tr>
<tr>
<td>Durbin-Wu-Hausman Chi-sq test</td>
<td>0.51</td>
<td></td>
<td>1.35</td>
<td></td>
<td>1.96</td>
</tr>
<tr>
<td>Sargan test (N*R-sq)</td>
<td>0.64</td>
<td></td>
<td>0.67</td>
<td></td>
<td>6.60</td>
</tr>
<tr>
<td>Basmann test, Chi-sq(1)</td>
<td>1.35</td>
<td></td>
<td>0.63</td>
<td></td>
<td>6.15</td>
</tr>
<tr>
<td>Hausman Test (pr)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.71</td>
</tr>
</tbody>
</table>

Notes: W-Hausman and Durbin-Wu-Hausman are tests of endogeneity of lropen (lopen) and iqual (the results from the tests indicate acceptance of H0: Regressors are exogenous). Sargan N*R-sq and Basmann are tests of overidentifying restrictions, a rejection of the null hypothesis indicates that the instrumental variables estimator should be employed.
Table A1. OLS main results

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>lpro</td>
<td>0.71</td>
<td>0.65</td>
<td>0.62</td>
<td>0.58</td>
<td>0.54</td>
</tr>
<tr>
<td>lropen</td>
<td>0.01</td>
<td>0.03</td>
<td>0.03</td>
<td>0.04</td>
<td>0.05</td>
</tr>
<tr>
<td>lar</td>
<td>0.06</td>
<td>0.10</td>
<td>0.20</td>
<td>0.24</td>
<td>0.25</td>
</tr>
<tr>
<td>equal</td>
<td>-0.65</td>
<td>-0.61</td>
<td>-0.50</td>
<td>-0.47</td>
<td>-0.45</td>
</tr>
<tr>
<td>ldisteq</td>
<td>0.15</td>
<td>0.03</td>
<td>0.28</td>
<td>0.34</td>
<td>0.41</td>
</tr>
<tr>
<td>daustrasia</td>
<td>-0.65</td>
<td>-0.61</td>
<td>-0.51</td>
<td>-0.47</td>
<td>-0.45</td>
</tr>
<tr>
<td>dafrica</td>
<td>-1.09</td>
<td>-1.58</td>
<td>-1.52</td>
<td>-2.04</td>
<td>-2.54</td>
</tr>
<tr>
<td>deurope</td>
<td>-0.46</td>
<td>-0.25</td>
<td>-0.28</td>
<td>-0.32</td>
<td>-0.36</td>
</tr>
<tr>
<td>deastasia</td>
<td>-0.41</td>
<td>-0.42</td>
<td>-0.48</td>
<td>-0.52</td>
<td>-0.62</td>
</tr>
<tr>
<td>dsuafsia</td>
<td>-0.16</td>
<td>-0.23</td>
<td>-0.23</td>
<td>-0.36</td>
<td>-0.79</td>
</tr>
<tr>
<td>Constant</td>
<td>6.23</td>
<td>6.71</td>
<td>9.33</td>
<td>8.59</td>
<td>7.50</td>
</tr>
</tbody>
</table>

Note: Labour productivity data are from the Groningen Centre.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>lproac</td>
<td>0.66</td>
<td>0.67</td>
<td>0.69</td>
<td>0.70</td>
<td>0.71</td>
</tr>
<tr>
<td>lropen</td>
<td>-0.01</td>
<td>-0.03</td>
<td>-0.04</td>
<td>-0.05</td>
<td>-0.06</td>
</tr>
<tr>
<td>lar</td>
<td>0.09</td>
<td>0.10</td>
<td>0.08</td>
<td>0.06</td>
<td>0.05</td>
</tr>
<tr>
<td>equal</td>
<td>0.06</td>
<td>0.07</td>
<td>0.12</td>
<td>0.16</td>
<td>0.14</td>
</tr>
<tr>
<td>ldisteq</td>
<td>0.14</td>
<td>0.20</td>
<td>0.15</td>
<td>0.26</td>
<td>0.24</td>
</tr>
<tr>
<td>daustrasia</td>
<td>-0.67</td>
<td>-0.62</td>
<td>-0.74</td>
<td>-0.64</td>
<td>-0.67</td>
</tr>
<tr>
<td>dafrica</td>
<td>-0.61</td>
<td>-0.49</td>
<td>-1.64</td>
<td>-0.37</td>
<td>-0.27</td>
</tr>
<tr>
<td>deurope</td>
<td>-1.42</td>
<td>-1.30</td>
<td>-1.25</td>
<td>-1.72</td>
<td>-1.10</td>
</tr>
<tr>
<td>deastasia</td>
<td>-0.33</td>
<td>-0.27</td>
<td>-0.25</td>
<td>-0.39</td>
<td>-0.35</td>
</tr>
<tr>
<td>dsuafsia</td>
<td>-0.37</td>
<td>-1.58</td>
<td>-3.90</td>
<td>-6.02</td>
<td>-6.01</td>
</tr>
<tr>
<td>Constant</td>
<td>3.48</td>
<td>7.19</td>
<td>7.12</td>
<td>5.22</td>
<td>5.16</td>
</tr>
</tbody>
</table>

Note: Labour productivity data are from the Groningen Centre.
Figure A1: Real Openness (in logs) Versus Constructed Trade Measure