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ABSTRACT 

This paper presents a Least Square Monte Carlo approach for accurately calculating credit value 

adjustment (CVA). In contrast to previous studies, the model relies on the probability distribution 

of a default time/jump rather than the default time itself, as the default time is usually inaccessible. 

As such, the model can achieve a high order of accuracy with a relatively easy implementation. 

We find that the valuation of a defaultable derivative is normally determined via backward 

induction when their payoffs could be positive or negative. Moreover, the model can naturally 

capture wrong or right way risk. 
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For years, a widespread practice in the industry has been to mark derivative portfolios to market 

without taking counterparty risk into account. All cash flows are discounted using the LIBOR 

curve. But the real parties, in many cases, happen to be of lower credit quality than the 

hypothetical LIBOR party and have a chance of default. 

 As a consequence, the International Accounting Standard (IAS) 39 requires banks to 

provide a fair-value adjustment due to counterparty risk. Although credit value adjustment (CVA) 

became mandatory in 2000, it received a little attention until the recent financial crises in which 

the profit and loss (P&L) swings due to CVA changes were measured in billons of dollars. 

Interest in CVA began to grow. Now CVA has become the first line of defense and the central 

part of counterparty risk management. 

CVA not only allows institutions to move beyond the traditional control mindset of credit 

risk limits and to quantify counterparty risk as a single measurable P&L number, but also offers 

an opportunity for banks to dynamically manage, price and hedge counterparty risk. The benefits 

of CVA are widely acknowledged. Many banks have set up internal credit risk trading desks to 

manage counterparty risk on derivatives. 

The earlier works on CVA are mainly focused on unilateral CVA that assumes that only 

one counterparty is defaultable and the other one is default-free. The unilateral treatment neglects 

the fact that both counterparties may default, i.e., counterparty risk can be bilateral. A trend that 

has become increasingly relevant and popular has been to consider the bilateral nature of 

counterparty credit risk. Although most institutions view bilateral considerations as important in 

order to agree on new transactions, Hull and White (2013) argue that bilateral CVA is more 

controversial than unilateral CVA as the possibility that a dealer might default is in theory a 

benefit to the dealer. 

CVA, by definition, is the difference between the risk-free portfolio value and the true (or 

risky or defaultable) portfolio value that takes into account the possibility of a counterparty’s 

default. The risk-free portfolio value is what brokers quote or what trading systems or models 
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normally report. The risky portfolio value, however, is a relatively less explored and less 

transparent area, which is the main challenge and core theme for CVA. In other words, central to 

CVA is risky valuation. 

In general, risky valuation can be classified into two categories: the default time 

approach (DTA) and the default probability approach (DPA). The DTA involves the default time 

explicitly. Most CVA models in the literature (Brigo and Capponi (2008), Lipton and Sepp 

(2009), Pykhtin and Zhu (2006) and Gregory (2009), etc.) are based on this approach.  

Although the DTA is very intuitive, it has the disadvantage that it explicitly involves the 

default time. We are very unlikely to have complete information about a firm’s default point, 

which is often inaccessible (see Duffie and Huang (1996), Jarrow and Protter (2004), etc.). 

Usually, valuation under the DTA is performed via Monte Carlo simulation. On the other hand, 

however, the DPA relies on the probability distribution of the default time rather than the default 

time itself. Sometimes the DPA yields simple closed form solutions. 

The current popular CVA methodology (Pykhtin and Zhu (2006) and Gregory (2009), 

etc.) is first derived using DTA and then discretized over a time grid in order to yield a feasible 

solution. The discretization, however, is inaccurate. In fact, this model has never been rigorously 

proved. Since CVA is used for financial accounting and pricing, its accuracy is essential. 

Moreover, this current model is based on a well-known assumption, in which credit exposure and 

counterparty’s credit quality are independent. Obviously, it can not capture wrong/right way risk 

properly.  

In this paper, we present a framework for risky valuation and CVA. In contrast to 

previous studies, the model relies on the DPA rather than the DTA. Our study shows that the 

pricing process of a defaultable contract normally has a backward recursive nature if its payoff 

could be positive or negative.  

An intuitive way of understanding these backward recursive behaviours is that we can 

think of that any contingent claim embeds two default options. In other words, when entering an 
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OTC derivatives transaction, one party grants the other party an option to default and, at the same 

time, also receives an option to default itself. In theory, default may occur at any time. Therefore, 

the default options are American style options that normally require a backward induction 

valuation. 

Wrong way risk occurs when exposure to a counterparty is adversely correlated with the 

credit quality of that counterparty, while right way risk occurs when exposure to a counterparty is 

positively correlated with the credit quality of that counterparty. For example, in wrong way risk 

exposure tends to increase when counterparty credit quality worsens, while in right way risk 

exposure tends to decrease when counterparty credit quality declines. Wrong/right way risk, as an 

additional source of risk, is rightly of concern to banks and regulators. Since this new model 

allows us to incorporate correlated and potentially simultaneous defaults into risky valuation, it 

can naturally capture wrong/right way risk. 

The rest of this paper is organized as follows: Section 2 discusses unilateral risky 

valuation and unilateral CVA. Section 2 elaborates bilateral risky valuation and bilateral CVA. 

Section 3 presents numerical results. The conclusions are given in Section 4. . All proofs and a 

practical framework that embraces netting agreements, margining agreements and wrong/right 

way risk are contained in the appendices. 

 

1. Unilateral Risky Valuation and Unilateral CVA 

We consider a filtered probability space (  , F ,  
0ttF , P ) satisfying the usual 

conditions, where   denotes a sample space; F  denotes a  -algebra; P  denotes a 

probability measure;  
0ttF  denotes a filtration. 

The default model is based on the reduced-form approach proposed by Duffie and 

Singleton (1999) and Jarrow and Turnbell (1994), which does not explain the event of default 

endogenously, but characterizes it exogenously by a jump process. The stopping (or default) time 
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  of a firm is modeled as a Cox arrival process (also known as a doubly stochastic Poisson 

process) whose first jump occurs at default and is defined as, 

  
t

s dssht
0

),(:inf      (1) 

where )(th  or ),( tth   denotes the stochastic hazard rate or arrival intensity dependent on an 

exogenous common state 
t , and   is a unit exponential random variable independent of 

t .  

It is well-known that the survival probability from time t to s in this framework is defined 

by 







 

s

t
duuhZtsPstp )(exp),|(:),(                   (2a) 

 The default probability for the period (t, s) in this framework is defined by 







 

s

t
duuhstpZtsPstq )(exp1),(1),|(:),(               (2b) 

Two counterparties are denoted as A and B. Let valuation date be t. Consider a financial 

contract that promises to pay a 0TX  from party B to party A at maturity date T, and nothing 

before date T. All calculations in the paper are from the perspective of party A. The risk free value 

of the financial contract is given by 

 tFT
F XTtDEtV ),()(                 (3a) 

where 





  duurTtD

T

t
)(exp),(     (3b) 

where  tE F  denotes the expectation conditional on the tF , ),( TtD denotes the risk-free 

discount factor at time t for the maturity T and )(ur denotes the risk-free short rate at time u 

( Tut  ). 

Next, we turn to risky valuation. In a unilateral credit risk case, we assume that party A is 

default-free and party B is defaultable. Risky valuation can be generally classified into two 
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categories: the default time approach (DTA) and the default probability (intensity) approach 

(DPA).  

The DTA involves the default time explicitly. If there has been no default before time T 

(i.e., T ), the value of the contract at T is the payoff 
TX . If a default happens before T (i.e., 

Tt  ), a recovery payoff is made at the default time   as a fraction of the market value
2
 

given by )(V  where   is the default recovery rate and )(V  is the market value at default. 

Under a risk-neutral measure, the value of this defaultable contract is the discounted expectation 

of all the payoffs and is given by 

  tTTT VtDXTtDEtV F|1)(),(1),()(                      (4) 

where Y  is an indicator function that is equal to one if Y is true and zero otherwise. 

Although the DTA is very intuitive, it has the disadvantage that it explicitly involves the 

default time/jump. We are very unlikely to have complete information about a firm’s default 

point, which is often inaccessible. Usually, valuation under the DTA is performed via Monte 

Carlo simulation.  

The DPA relies on the probability distribution of the default time rather than the default 

time itself. We divide the time period (t, T) into n very small time intervals ( t ) and assume that 

a default may occur only at the end of each very small period. In our derivation, we use the 

approximation   yy 1exp  for very small y. The survival and the default probabilities for the 

period ( t , tt  ) are given by 

  tthtthtttptp  )(1)(exp),(:)(ˆ               (5a) 

  tthtthtttqtq  )()(exp1),(:)(ˆ               (5b) 

The binomial default rule considers only two possible states: default or survival. For the 

one-period ),( ttt   economy, at time tt  the asset either defaults with the default 

                                    
2
 Here we use the recovery of market value (RMV) assumption.  
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probability ),( tttq   or survives with the survival probability ),( tttp  . The survival payoff 

is equal to the market value )( ttV   and the default payoff is a fraction of the market value: 

)()( ttVtt  . Under a risk-neutral measure, the value of the asset at t is the expectation of 

all the payoffs discounted at the risk-free rate and is given by 

      tt ttVttyEttVtqttpttrEtV FF )()(exp)()(ˆ)()(ˆ)(exp)(                  (6) 

where   )()()(1)()()( tctrtthtrty    denotes the risky rate and  )(1)()( tthtc   is called 

the (short) credit spread.  

Similarly, we have 

  ttttVtttyEttV  F)2()(exp)(                    (7) 

Note that  tty  )(exp  is ttF  -measurable. By definition, an ttF  -measurable 

random variable is a random variable whose value is known at time tt  . Based on the taking 

out what is known and tower properties of conditional expectation, we have 

  
     

  ti

ttt

t

ttVttityE

ttVtttyEttyE

ttVttyEtV

F

FF

F

)2())(exp

)2()(exp)(exp

)()(exp)(

1

0






 

                  (8) 

By recursively deriving from t forward over T and taking the limit as t  approaches zero, 

the risky value of the asset can be expressed as 













  t

T

t
TVduuyEtV F)()(exp)(            (9) 

 We may think of )(uy  as the risk-adjusted short rate. Equation (9) is the same as 

Equation (10) in Duffie and Singleton [1999], which is the market model for pricing risky bonds. 

Using the DPA, we obtain a closed-form solution for pricing an asset subject to credit risk.  Other 

good examples of the DPA are the CDS model proposed by J.P. Morgan (1999) and a more 

generic risky model presented by Xiao (2013a). 
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In theory, a default may happen at any time, i.e., a risky contract is continuously 

defaultable. This Continuous Time Risky Valuation Model is accurate but sometimes complex 

and expensive. For simplicity, people sometimes prefer the Discrete Time Risky Valuation Model 

that assumes that a default may only happen at some discrete times. A natural selection is to 

assume that a default may occur only on the payment dates. Fortunately, the level of accuracy for 

this discrete approximation is well inside the typical bid-ask spread for most applications (see 

O’Kane and Turnbull (2003)). From now on, we will focus on the discrete setting only, but many 

of the points we make are equally applicable to the continuous setting. 

For a derivative contract, usually its payoff may be either an asset or a liability to each 

party. Thus, we further relax the assumption and suppose that 
TX  may be positive or negative. 

In the case of 0TX , the survival value is equal to the payoff 
TX  and the default payoff 

is a fraction of the payoff 
TX . Whereas in the case of 0TX , the contract value is the payoff 

itself, because the default risk of party B is irrelevant for unilateral risky valuation in this case. 

Therefore, we have 

Proposition 1: The unilateral risky value of the single-payment contract in a discrete-time setting 

is given by 

 tFTXTtFEtV ),()(       (10a) 

where 

  )(1),(11),(),( 0 TTtqTtDTtF
TX  

    (10b) 

Proof: See the appendix. 

Here ),( TtF  can be regarded as a risk-adjusted discount factor. Proposition 1 says that 

the unilateral risky valuation of the single payoff contract has a dependence on the sign of the 

payoff. If the payoff is positive, the risky value is equal to the risk-free value minus the 

discounted potential loss. Otherwise, the risky value is equal to the risk-free value. 
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Proposition 1 can be easily extended from one-period to multiple-periods. Suppose that a 

defaultable contract has m cash flows. Let the m cash flows be represented as 1X ,…, mX  with 

payment dates 1T ,…, mT . Each cash flow may be positive or negative. We have the following 

proposition. 

Proposition 2: The unilateral risky value of the multiple-payment contract is given by 

   



 
m

i ti

i

j jj XTTFEtV
1

1

0 1),()( F        (11a) 

where 0
Tt   and 

  )(1),(11),(),( 110))((11 11  
 jjjTVXjjjj TTTqTTDTTF

jj
        (11b) 

Proof: See the appendix. 

The risky valuation in Proposition 2 has a backward nature. The intermediate values are 

vital to determine the final price. For a discrete time interval, the current risky value has a 

dependence on the future risky value. Only on the final payment date mT , the value of the 

contract and the maximum amount of information needed to determine the risk-adjusted discount 

factor are revealed. The coupled valuation behavior allows us to capture wrong/right way risk 

properly where counterparty credit quality and market prices may be correlated. This type of 

problem can be best solved by working backwards in time, with the later risky value feeding into 

the earlier ones, so that the process builds on itself in a recursive fashion, which is referred to as 

backward induction. The most popular backward induction valuation algorithms are lattice/tree 

and least square Monte Carlo.  

For an intuitive explanation, we can posit that a defaultable contract under the unilateral 

credit risk assumption has an embedded default option (see Sorensen and Bollier (1994)). In other 

words, one party entering a defaultable financial transaction actually grants the other party an 

option to default. If we assume that a default may occur at any time, the default option is an 
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American style option. American options normally have backward recursive natures and require 

backward induction valuations.  

The similarity between American style financial options and American style default 

options is that both require a backward recursive valuation procedure. The difference between 

them is in the optimal strategy. The American financial option seeks an optimal value by 

comparing the exercise value with the continuation value, whereas the American default option 

seeks an optimal discount factor based on the option value in time. 

The unilateral CVA, by definition, can be expressed as 

   



 
m

i ti

i

j jji

F XTTFTtDEtVtVtCVA
1

1

0 1),(),()()()( F       (12) 

Proposition 2 provides a general form for pricing a unilateral defaultable contract. 

Applying it to a particular situation in which we assume that all the payoffs are nonnegative, we 

derive the following corollary: 

Corollary 1: If all the payoffs are nonnegative, the risky value of the multiple-payments contract 

is given by 

   



 
m

i ti

i

j jj XTTFEtV
1

1

0 1),()( F     (13a) 

where 0
Tt   and 

  )(1),(1),(),( 1111   jjjjjjj TTTqTTDTTF                 (13b) 

The proof of this corollary is easily obtained according to Proposition 2 by setting 

  0)( 11   jj TVX , since the value of the contract at any time is also nonnegative. 

The CVA in this case is given by 

    



  
m

i ti

i

j jjji

F XTTTqTtDEtVtVtCVA
1

1

0 11 ))(1)(,(11),()()()( F   (14) 

The current popular CVA model (e.g., equation (17) in Pykhtin and Zhu (2007) and 

equation (3) in Gregory (2009)) is quite different from above either equation (12) or equation (14). 

As a matter of fact, the current CVA model has never been rigorously proved. In order to reflect 
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the economic value of counterparty credit risk, to measure the profit and loss of a bank and to 

provide proper incentives to traders, a good CVA model must be not only rigorous and accurate 

but also feasible to implement. 

 

2. Bilateral Risky Valuation and Bilateral CVA 

There is ample evidence that corporate defaults are correlated. The default of a firm’s 

counterparty might affect its own default probability. Thus, default correlation and dependence 

arise due to the counterparty relations. Default correlation can be positive or negative. The effect 

of positive correlation is usually called contagion, whereas the latter is referred to as competition 

effect. 

Two counterparties are denoted as A and B. The binomial default rule considers only two 

possible states: default or survival. Therefore, the default indicator jY  for party j (j=A, B) follows 

a Bernoulli distribution, which takes value 1 with default probability jq  and value 0 with survival 

probability jp , i.e.,  jj pYP  }0{  and jj qYP  }1{ . The marginal default distributions can be 

determined by the reduced-form models. The joint distributions of a bivariate Bernoulli variable 

can be easily obtained via the marginal distributions by introducing extra correlations. 

Consider a pair of random variables ( AY , BY ) that has a bivariate Bernoulli distribution. 

The joint probability representations are given by 

ABBABA ppYYPp  )0,0(:00      (15a) 

ABBABA qpYYPp  )1,0(:01      (15b) 

 ABBABA pqYYPp  )0,1(:10      (15c) 

 ABBABA qqYYPp  )1,1(:11      (15d) 

where 
jj qYE )( ,

jjj qp2 ,   BBAAABBAABBBAAAB pqpqqYqYE   ))((:  where AB  

denotes the default correlation coefficient and  
AB  denotes the default covariance. 
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Table 1. Payoffs of a bilaterally defaultable contract 

This table displays all possible payoffs at time T. In the case of 0TX , there are a total of four 

possible states at time T: i) Both A and B survive with probability 00p . The contract value is 

equal to the payoff TX . ii) A defaults but B survives with probability 10p . The contract value is 

TB X , where B  represents the non-default recovery rate
3
. B =0 represents the one-way 

settlement rule, while B =1 represents the two-way settlement rule. iii) A survives but B defaults 

with probability 01p . The contract value is 
TB X , where B  represents the default recovery rate. 

iv) Both A and B default with probability 11p . The contract value is 
TAB X , where AB  denotes 

the joint recovery rate when both parties A and B default simultaneously. A similar logic applies 

to the case of 0TX .  

State 0,0  BA YY  0,1  BA YY  1,0  BA YY  1,1  BA YY  

Comments A & B survive A defaults, B survives A survives, B defaults A & B default 

Probability 00p  
10p  

01p  
11p  

Payoff 

0TX  TX  
TB X  

TB X  
TAB X  

0TX   TX  
TA X  

TA X  
TAB X  

 

                                    
3 There are two default settlement rules in the market. The one-way payment rule was specified 

by the early ISDA master agreement. The non-defaulting party is not obligated to compensate the 

defaulting party if the remaining market value of the instrument is positive for the defaulting 

party. The two-way payment rule is based on current ISDA documentation. The non-defaulting 

party will pay the full market value of the instrument to the defaulting party if the contract has 

positive value to the defaulting party. 



13 

 

Suppose that a financial contract that promises to pay a TX  from party B to party A at 

maturity date T, and nothing before date T where tT  . The payoff TX  may be positive or 

negative, i.e. the contract may be either an asset or a liability to each party. All calculations are 

from the perspective of party A. 

At time T, there are a total of four ( 422  ) possible states shown in Table 1. The risky 

value of the contract is the discounted expectation of the payoffs and is given by the following 

proposition. 

Proposition 3: The bilateral risky value of the single-payment contract is given by 

    tt FF TAXBXT XTtkTtkTtDEXTtKEtV
TT

),(1),(1),(),()( 00     (16a) 

where 

 )()()(1),(),(),()(

),(),()(),(),()(),(),(),(

TTTTtTtqTtqT

TtqTtpTTtpTtqTTtpTtpTtk

ABBBABABAB

ABBABBABB








  (16b) 

 )()()(1),(),(),()(

),(),()(),(),()(),(),(),(

TTTTtTtqTtqT

TtqTtpTTtpTtqTTtpTtpTtk

ABAAABABAB

BAABAAABA








  (16c) 

Proof: See the appendix. 

We may think of ),( TtK as the risk-adjusted discount factor. Proposition 3 tells us that 

the bilateral risky price of a single-payment contract can be expressed as the present value of the 

payoff discounted by a risk-adjusted discount factor that has a switching-type dependence on the 

sign of the payoff. 

Using a similar derivation as in Proposition 2, we can easily extend Proposition 3 from 

one-period to multiple-periods. Suppose that a defaultable contract has m cash flows. Let the m 

cash flows be represented as iX  with payment dates iT , where i = 1,…,m. Each cash flow may 

be positive or negative. The bilateral risky value of the multiple-payment contract is given by 

Proposition 4: The bilateral risky value of the multiple-payment contract is given by 

   



 
m

i ti

i

j jj XTTKEtV
1

1

0 1),()( F     (17a) 
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where 0
Tt   and 

 ),(1),(1),(),( 10))((10))((11 1111  
 jjATVXjjBTVXjjjj TTkTTkTTDTTK

jjjj
     (17b) 

where ),( 1jjA TTk and ),( 1jjB TTk  are defined in Proposition 3. 

Proof: The proof is similar to Proposition 2 by replacing ),( 1jj TTF  with ),( 1jj TTK . 

Proposition 4 says that the pricing process of a multiple-payment contract has a backward 

nature since there is no way of knowing which risk-adjusted discounting rate should be used 

without knowledge of the future value. Only on the maturity date, the value of the contract and 

the decision strategy are clear. Therefore, the evaluation must be done in a backward fashion, 

working from the final payment date towards the present. This type of valuation process is 

referred to as backward induction.  

There is a common misconception in the market. Many people believe that the cash flows 

of a defaultable financial contract can be priced independently and then be summed up to give the 

final risky price of the contract. We emphasize here that this conclusion is only true of the 

financial contracts whose payoffs are always positive. In the cases where the promised payoffs 

could be positive or negative, the valuation requires not only a backward recursive induction 

procedure, but also a strategic selection of different discount factors according to the market 

value in time. This coupled valuation process allows us to capture correlation between 

counterparties and market factors. 

 The bilateral CVA of the multiple-payment contract can be expressed as 

      



 
m

i ti

i

j jjtii

F XTTKEXTtDEtVtVtCVA
1

1

0 1),(),()()()( FF      (18) 

 

3. Numerical Results 

In this section, we present some numerical results for CVA calculation based on the 

theory described above. First, we study the impact of margin agreements on CVA. The testing 
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portfolio consists of a number of interest rate and equity derivatives. The number of simulation 

scenarios (or paths) is 20,000. The time buckets are set weekly. If the computational requirements 

exceed the system limit, one can reduce both the number of scenarios and the number of time 

buckets. The time buckets can be designed fine-granularity at the short end (e.g., daily and then 

weekly) and coarse-granularity at the far end (e.g. monthly and then yearly). The rationale is that 

the calculation becomes less accurate due to the accumulated error from simulation discretization, 

and inherited errors from calibration of the underlying models, such as those due to the change of 

macro-economic climate. The collateral margin period of risk is assumed to be 14 days (2 weeks). 

For risk-neutral simulation, we use a Hull-White model for interest rate and a CIR (Cox-

Ingersoll-Ross) model for hazard rate scenario generations a modified GBM (Geometric 

Brownian Motion) model for equity and collateral evolution. The results are presented in the 

following tables. Table 2 illustrates that if party A has an infinite collateral threshold AH  

i.e., no collateral requirement on A, the CVA value increases while the threshold BH  increases. 

Table 3 shows that if party B has an infinite collateral threshold BH , the CVA value actually 

decreases while the threshold AH  increases. This reflects the bilateral impact of the collaterals 

on the CVA. The impact is mixed in Table 4 when both parties have finite collateral thresholds. 

 

Table 2. The impact of collateral threshold BH  on the CVA 

This table shows that given an infinite AH , the CVA increases while BH  increases, where BH  

denotes the collateral threshold of party B and AH  denotes the collateral threshold of party A. 

Collateral Threshold BH  10.1 Mil 15.1 Mil 20.1 Mil Infinite ( ) 

CVA 19,550.91 20,528.65 21,368.44 22,059.30 

 

Table 3. The impact of collateral threshold AH  on the CVA 
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This table shows that given an infinite BH , the CVA decreases while AH  increases, where BH  

denotes the collateral threshold of party B and AH  denotes the collateral threshold of party A. 

Collateral Threshold AH  10.1 Mil 15.1 Mil 20.1 Mil Infinite ( ) 

CVA 28,283.64 25,608.92 23,979.11 22,059.30 

 

Table 4. The impact of the both collateral thresholds on the CVA 

The CVA may increase or decrease while both collateral thresholds change, where BH  denotes 

the collateral threshold of party B and AH  denotes the collateral threshold of party A. This 

reflects the fact that the collaterals have bilateral impacts on the CVA.  

Collateral Threshold BH  10.1 Mil 15.1 Mil 20.1 Mil Infinite ( ) 

Collateral Threshold AH  10.1 Mil 15.1 Mil 20.1 Mil Infinite ( ) 

CVA 25,752.98 22,448.45 23,288.24 22,059.30 

 

Next, we examine the impact of wrong way risk. Wrong way risk occurs when exposure 

to a counterparty is adversely correlated with the credit quality of that counterparty, while right 

way risk occurs when exposure to a counterparty is positively correlated with the credit quality of 

that counterparty. Wrong/right way risk, as an additional source of risk, is rightly of concern to 

banks and regulators. 

Some financial markets are closely interlinked, while others are not. For example, CDS 

price movements have a feedback effect on the equity market, as a trading strategy commonly 

employed by banks and other market participants consists of selling a CDS on a reference entity 

and hedging the resulting credit exposure by shorting the stock. On the other hand, Moody’s 

Investor’s Service (2000) presents statistics that suggest that the correlations between interest 

rates and CDS spreads are very small.  
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 To capture wrong/right way risk, we need to determine the dependency between 

counterparties and to correlate the credit spreads or hazard rates with the other market risk factors, 

e.g. equities, commodities, etc., in the scenario generation. 

We use an equity swap as an example. Assume the correlation between the underlying 

equity price and the credit quality (hazard rate) of party B is  . The impact of the correlation on 

the CVA is show in Table 5. The results say that the CVA increases when the absolute value of 

the negative correlation increases. 

 

Table 5. The impact of wrong way risk on the CVA 

This table shows that the CVA increases while the negative correlation  increases in the 

absolute value. We use an equity swap as an example and assume that there is a negative 

correlation between the equity price and the credit quality of party B. 

Correlation   0 -50% -100% 

CVA 165.15 205.95 236.99 

 

4. Conclusion 

This article presents a framework for pricing risky contracts and their CVAs. The model 

relies on the probability distribution of the default jump rather than the default jump itself, 

because the default jump is normally inaccessible. We find that the valuation of risky assets and 

their CVAs, in most situations, has a backward recursive nature and requires a backward 

induction valuation. An intuitive explanation is that two counterparties implicitly sell each other 

an option to default when entering into an OTC derivative transaction. If we assume that a default 

may occur at any time, the default options are American style options. If we assume that a default 

may only happen on the payment dates, the default options are Bermudan style options. Both 

Bermudan and American options require backward induction valuations.  
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Based on our theory, we propose a novel cash-flow-based framework (see appendix) for 

calculating bilateral CVA at the counterparty portfolio level. This framework can easily 

incorporate various credit mitigation techniques, such as netting agreements and margin 

agreements, and can capture wrong/right way risk. Numerical results show that these credit 

mitigation techniques and wrong/right way risk have significant impacts on CVA.  

 

Appendix 

A. Proofs 

 Proof of Proposition 1: Under the unilateral credit risk assumption, we only consider the 

default risk when the asset is in the money. Assume that a default may only occur on the payment 

date. Therefore, the risky value of the asset at t is the discounted expectation of all possible 

payoffs and is given by 
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where  

  )(1),(11),(),( 0 TTtqTtDTtF
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   (A1b) 

Proof of Proposition 2: Let 0Tt  . On the first payment day, let )( 1TV  denote the risky 

value of the asset excluding the current cash flow 1X . According to Proposition 1, the risky value 

of the asset at t is given by 

  tF)(),()( 1110 TVXTTFEtV      (A2a) 

where 
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Similarly, we have 
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 Note that ),( 10 TTF  is 
1TF -measurable. According to the taking out what is known and 

tower properties of conditional expectation, we have 
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 By recursively deriving from 2T  forward over mT , where mm XTV )( , we have 
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Proof of Proposition 3: We assume that a default may only occur on the payment date. 

At time T, there are four possible states: 1) both A and B survive, 2) A defaults but B survives, 3) 

A survives but B defaults, and 4) both A and B default. The joint distributions of A and B are 

given by (15). Depending on whether the payoff is in the money or out of the money at T, we 

have 




    tTAXBXtT

tTABAAX

tTABBBX

XTtkTtkTtDEXTtKE

XTtpTTtpTTtpTTtp

XTtpTTtpTTtpTTtpTtDEtV

TT

T

T

FF

F

F

),(1),(1),(),(

),()(),()(),()(),(1

),()(),()(),()(),(1),()(

00

111001000

111001000

















  (A6a) 

where 

 )()()(1),(),(),()(

),(),()(),(),()(),(),(),(

TTTTtTtqTtqT

TtqTtpTTtpTtqTTtpTtpTtk

ABBBABABAB

ABBABBABB








 (A6b) 

 )()()(1),(),(),()(

),(),()(),(),()(),(),(),(

TTTTtTtqTtqT

TtqTtpTTtpTtqTTtpTtpTtk

ABAAABABAB

BAABAAABA








  (A6c) 

 

B. A practical framework for calculating bilateral CVA 

We develop a practical framework for calculating bilateral CVA at counterparty portfolio 

level based on the theory described above. The framework incorporates netting and margin 

agreements, and captures right/wrong way risk.  
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Two parties are denoted as A and B. All calculations are from the perspective of party A. 

Let the valuation date be t. The CVA computation procedure consists of the following steps. 

B.1. Risk-neutral Monte Carlo scenario generation 

One core element of the trading credit risk modeling is the Monte Carlo scenario 

generation (market evolution). This must be able to run a large number of scenarios for each risk 

factor with flexibility over parameterization of processes and treatment of correlation between 

underlying factors. Credit exposure may be calculated under real probability measure, while CVA 

or pricing counterparty credit risk should be conducted under risk-neutral probability measure.  

Due to the extensive computational intensity of pricing counterparty risk, there will 

inevitably be some compromise of limiting the number of market scenarios (paths) and the 

number of simulation dates (also called “time buckets” or “time nodes”). The time buckets are 

normally designed fine-granularity at the short end and coarse-granularity at the far end. The 

details of scenario generation are beyond the scope of this paper. 

B.2. Cash flow generation 

For ease of illustration, we choose a vanilla interest rate swap, as interest rate swaps 

collectively account for around two-thirds of both the notional and market value of all 

outstanding derivatives (FinPricing (2015)) 

Assume that party A pays a fixed rate, while party B pays a floating-rate. Assume that 

there are M time buckets ( MTTT ,...,, 10 ) in each scenario and N cash flows in the sample swap. 

Let consider scenario j first. 

For swaplet i, there are four important dates: the fixing date fit , , the starting date sit , , 

the ending date eit ,  and the payment date pit , . In general, these dates are not coincidently at the 

simulation time buckets. The time relationship between swaplet i and the simulation time buckets 

is illustrated in Figure B1. 
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Figure B1: An interest rate swaplet 

This figure illustrates the time relationship between an interest rate swaplet and the simulation 

time buckets. The floating leg of the swaplet is reset at the fixing date fit ,  with the starting date 

sit , , the ending date eit , , and the payment date pit , . The simulation time buckets are 

11
,...,,

 kii
TTT . The simulated interest rate curve is starting at fit , . Both fixed rate payments and 

floating-rate payments occur on the same payment dates. 

 

The cash flow of swaplet i is determined at the fixing date fit ,  that is assumed to be 

between the simulation time buckets jT  and 1jT . First, we need to create an interest rate curve 

observed at fit ,  by interpolating the interest rate curves simulated at jT  and 1jT  via either 

Brownian Bridge or linear interpolation. The linear interpolation is the expectation of the 

Brownian Bridge. Then we can calculate the payoff of swaplet i at scenario j as 

  ),(),;( ,,,,,, eisieisifiij ttRtttFN       (B1) 

where N denotes the notional; ),;( ,,, eisifi tttF  denotes the simply compounded forward rate reset 

at fit ,  for the forward period ( sit , , eit , ); ),( ,, eisi tt  denotes the accrual factor or day count 

fraction for the period ( sit , , eit , ) and R denotes the fixed rate. 

 
jT 1jT kT 1kTfit , sit , eit , pit ,

Terms 

R
ates 

Interest rate curve simulated at fit ,  
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The cash flow amount calculated by (B1) is paid on the payment date pit , . This value 

should be allocated into the nearest previous time bucket kT  as: 

 ),(
~

,,,, pikijikj tTD       (B2) 

where ),( , pik tTD  denotes the risk-free discount factor based on the interest rate curve simulated 

at kT . 

 Cash flow generation for products without early-exercise provision is quite 

straightforward. For early-exercise products, one can use the approach proposed by Longstaff and 

Schwartz (2001) to obtain the optimal exercise boundaries and then the payoffs. 

B3.  Aggregation and netting agreements 

After generating cash flows for each deal, we need to aggregate them at counterparty 

portfolio level at each scenario and each time bucket. The cash flows are aggregated by either 

netting or nonnetting based on the netting agreements. A netting agreement is a provision that 

allows the offset of settlement payments and receipts on all contracts between two counterparties. 

Another important use of netting is the close-out netting that allows the offset of close-out values. 

For netting, we add all cash flows together at the same scenario and the same time bucket 

to recognize offsetting. The aggregated cash flow under netting at scenario j and time bucket k is 

given by 

 
i

ikjkj ,,,

~~       (B3) 

For nonnetting, we divided cash flows into positive and negative groups and add them 

separately. In other words, the offsetting is not recognized. The aggregated cash flows under 

nonnetting at scenario j and time bucket k are given by 
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B4.  Margin (or collateral) agreements 

For a more detailed discussion on pricing collateralized contract/portfolio, see Xiao 

(2013b). 

B5.  CVA Calculation 

 After aggregating all cash flows via netting, one can price a portfolio in the same manner 

as pricing a single deal. We assume that the reader is familiar with the least square Monte Carlo 

valuation model proposed by Longstaff and Schwartz (2001) and thus do not repeat some well-

known procedures for brevity. 

If the counterparty portfolio is collateralized, we can calculate the risky value based on 

equation (21) of Xiao (2013b). If there is no collateral agreement, we can price the portfolio 

according to Proposition 4 in this paper. 

CVA is by definition the difference between the risk-free portfolio value and the true (or 

risky or defaultable) portfolio value. 
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