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Marginality, dividends, and the value in games with externalities✩

Frank Huettnera,�, André Casajusb,c

aESMT European School of Management and Technology, Schlossplatz 1, 10178 Berlin, Germany
bHHL Leipzig Graduate School of Management, Jahnallee 59, 04109 Leipzig, Germany

cDr. Hops Craft Beer Bar, Eichendor¤str. 7, 04277 Leipzig, Germany

Abstract

In the absence of externalities, marginality is equivalent to an independence property that
rests on Harsanyi�s dividends. These dividends identify the surplus inherent to each coali-
tion. Independence states that a player�s payo¤ stays the same if only dividends of coalitions
to which this player does not belong to change. We introduce notions of marginality and
independence for games with externalities. We measure a player�s contribution in an em-
bedded coalition by the change in the worth of this coalition that results when the player
is removed from the game. We provide a characterization result using e¢ ciency, anonymity,
and marginality or independence, which generalizes Young�s characterization of the Shapley
value. An application of our result yields a new characterization of the solution put forth
by Macho-Stadler et al. (J Econ Theor, 135, 2007, 339-356) without linearity, as well as for
almost all generalizations put forth in the literature. The introduced method also allows
us to investigate egalitarian solutions and to reveal how accounting for externalities may
result in a deviation from the Shapley value. This is exempli�ed with a new solution that
is designed in a way to not reward external e¤ects, while at the same time it cannot be
assumed that any partition is the default partition.

Keywords: Shapley value, potential, restriction operator, partition function form game,
externalities
2010 MSC: 91A12, JEL: C71, D60

1. Introduction

A large part of the literature on cooperative game theory circles around the notion of
marginality and its relation to the Shapley value. Marginality states that a player�s payo¤
has to be calculated from her marginal contributions. Although this is well in line with
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the economic tradition� e.g. Milnor (1952) argued that a reasonable outcome should be
bounded by her maximal and by her minimal marginal contributions� it was Shapley (1953)
who justi�ed the marginality principle by showing that the basic axioms of Anonymity,
E¢ ciency, additivity, and null player lead to a unique solution that assigns to each player
her average marginal contribution in coalitions. Young (1985) established the reverse: when
Anonymity, E¢ ciency, and marginality are required, the only possible solution is the Shapley
value. This is often seen as a justi�cation of the Shapley value, even though it might be
puzzling as to why a player�s merits in a game should solely be re�ected by her marginal
contributions. Indeed, the idea that player i should simply get her marginal contribution
within the grand coalition v (N)� v (N n i) is typically rejected based on the argument that
this contribution is created jointly with the others. Hence, this contribution also re�ects the
productivity of the other players. But why can we ignore this marginal contribution when
evaluating the other players, say j 2 N n i, as is required by the marginality principle?
A justi�cation of the marginality principle derives from Harsanyi (1959), who developed

the concept of dividends. Such a dividend � (S) identi�es the actual surplus of the particular
combination of the players in this coalition S by means of subtracting the dividends of all
proper subcoalitions from the worth of this coalition, � (S) � v (S) �

P
T(S � (T ). For

example, in a game with two players, 1 and 2, the worth created by these two players v (1; 2)
also encompasses their individual productivity, � (1) = v (1) and � (2) = v (2), so that
their joint dividend is obtained as � (1; 2) = v (1; 2)� v (1)� v (2). Note that the marginal
contribution of player i within S exactly equals the dividends that become possible when she
joins S, v (S)� v (S n i) =

P
T(S:T3i � (T ). In this sense, the marginal contribution re�ects

the surplus creation that player i is involved with. It further turns out that player i�s
marginal contributions, fv (S) � v (S n i)gS�N :S3i; determine the dividends that player i is
helping to create f� (S)gS�N :S3i. The independence character of Marginality can therefore
be justi�ed by the equivalent axiom: a player�s payo¤ shall not depend on surplus created
by coalitions without this player, i.e., a change in dividend � (T ) has no impact on player i�s
payo¤ if i =2 T .
In this paper, we generalize these ideas to games with externalities and establish a

characterization result analog to Young�s. In the presence of externalities, the worth of a
coalition w (S; �) depends on coalitions formed by the other players, i.e., it depends on the
partition � 2 �(N n S) ; where �(N n S) is the set of all partitions of N n S (Lucas and
Thrall, 1963). In order to express a player�s marginal contribution within a coalition, we now
have to clarify what to use as the worth of the coalition after the player has left, i.e., what
to use as an analog to v (S n i). de Clippel and Serrano (2008) argue that a player could join
any of the coalitions formed by the other players or stay alone and that these changes are the
marginal contributions of this player within a coalition. The associated �Weak Marginality�
property requires that if these changes remain the same for all coalitions to which a player
belongs to, then this player�s payo¤ should not change:

w (S; �)� w (S n i; �+i T ) = ~w (S; �)� ~w (S n i; �+i T )
for all S � N : S 3 i; all � 2 �(N n S) ; and all T 2 � [ ;

�
) 'i (w) = 'i ( ~w) ; (1)

where �+i T 2 �((N n S) [ i) denotes the partition obtained from � 2 �(N n S) when
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player i 2 S is added to component T 2 � [ ;, with �+i ; indicating that player i is added
as a singleton component. They �nd that this axiom is rather weak and does not single
out a solution concept together with E¢ ciency and Anonymity. We will argue that �Weak
Marginality�might even be too strong since it ignores the possibility that the players outside
of S regroup when player i 2 S leaves.
We suggest another notion of marginality that will be in harmony with a generalization

of Harsanyi�s dividends. The key is to understand that in a game without externalities,
the worth of a coalition when a player is removed can be seen as the worth that results
when player i was removed from the entire game, i.e., v (S n i) = v�i (S n i), where v�i
denotes the subgame of v that results when player i is removed. We de�ne the marginal
contribution of player i within embedded coalition (S; �) as the change that occurs to its
worth when player i is removed from the game, i.e., w (S; �) � wr�i (S n i; �), where wr�i
denotes the subgame of w when player i is removed. At this point, we need to clarify how to
derive a subgame when there are externalities. To this end, we use the concept of removal
operators, which is a generalization of so-called restriction operators introduced by Dutta
et al. (2010). A removal operator r speci�es how a subgame is derived from an original
game, resorting to the information w (S n i; �̂) ; �̂ 2 �((N n S) [ i) in order to determine
wr�i (S n i; �). Given a path independent removal operator, i.e., if it does not matter in
which order the players are removed, the de�nition of dividends becomes straight-forward,
�rS;� (w) � w (S; �)�

P
T(S �

r
T;�(w

r
�SnT ).

We �rst identify those removal operators that allow us to establish �meaningful�notions
of marginality. A removal operator r must be linear in its components and path independent
in order to guarantee that what we learn from a player�s marginal contributions, fw (S; �)�
wr�i (S n i; �)gS�N :S3i, is just the same as what we learn from the collection of dividends that
this player is helping to create f�rS;� (w)gS�N :S3i;�2�(NnS).
Our main result then shows that if such a removal operator r is also anonymous, the

corresponding r-Marginality, i.e.,

w (S; �)� wr�i (S n i; �) = ~w (S; �)� ~wr�i (S n i; �)
for all S � N : S 3 i; all � 2 �(N n S)

�
) 'i (w) = 'i ( ~w) ;

together with E¢ ciency and Anonymity is characteristic of the r-Shapley value. This r-
Shapley value is de�ned as the Shapley value applied to an auxiliary game with no ex-
ternalities vrw that is obtained from removing the player from the grand coalition, i.e.,
vrw (S) � wr�NnS (S; ;) for all S � N .
At �rst glance, it seems overly simplifying that all the information needed to compute

the solution for the game w should be found in fwr�NnS (S; ;)gS�N . But a closer inspection
reveals that these numbers contain condensed information about the whole game, in par-
ticular about the worths generated when � 6= ;. If, however, the removal operator discards
information about the original game, then so does the r-Shapley value. This insight that
some information is ignored is already found and highlighted by de Clippel and Serrano
(2008) for the speci�c removal operator wsingleton�i (S n i; �) � w (S n i; � [ i), which says that
removing a player must be evaluated as if this player would stay alone. Then, the auxiliary
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game only refers to embedded coalitions (S; �) for which � is atomistic, and the r-Shapley
value becomes the �externality free�Shapely value.
Although our axioms do not impose linearity on the solution directly, it is implicitly

required through the properties that must be placed on the removal operator. Nonethe-
less, such removal operators might come in a natural formulation, making the resulting
r-Marginality quite plausible. We illustrate this with the solution suggested by Macho-
Stadler et al. (2007) for which we provide a new characterization. Apart from that solution,
our approach allows for a characterization à la Young of virtually all generalizations of the
Shapley value put forth in the literature and aides their understanding. In particular, we are
able to identify the marginality principle characteristic of some solutions that are incompat-
ible with the de�nition of �Weak Marginality�suggested by de Clippel and Serrano (2008).
Finally, the introduced method also allows us to investigate egalitarian solutions and reveals
how accounting for externalities may result in a deviation from the Shapley value. This is
exempli�ed with a new solution that we introduce in order to determine payo¤s if exter-
nal e¤ects are not supposed to be rewarded, while at the same time it cannot be assumed
that the atomistic partition (or any other partition) is the default partition, i.e., there is no
partition in which no externalities are exercised.

2. The Shapley value, Marginality, and Independence of Alien Surplus

Before we present our main results, we �rst review Young�s characterization of the Shap-
ley value and clarify the independence character of Marginality mentioned in the introduc-
tion. Let N contain all possible player sets and coalitions; i.e., N denotes the set of all �nite
subsets of the countably in�nite universe of players: For Q;S; T;N 2 N , let q; s; t; and n
denote their cardinalities, respectively. For a given player set N 2 N , the worth w (S; �) of
a coalition S � N depends on the coalitions formed by the other players, i.e., it depends
on � 2 �(N n S) ; where �(N n S) is the set of all partitions of N n S (for S = N , we
denote the partition of the empty set by ;). A transferable utility game with externalities
w, henceforth TUX game (also known as game in partition function form) assigns a worth
to each embedded coalition (S; �) 2 E (N) = f(S; �) j S ( N and � 2 �(N n S)g [ fN; ;g,
i.e., w 2 W (N) � ff : E (N) ! R j f (;; �) = 0 for all � 2 �(N)g; the set of all TUX
games is denoted by W �

S
N2N W (N).

If their are no externalities, i.e., if w (S; �) = w (S; ~�) for all S � N and all �; ~� 2
�(N n S), then the game is a called TU game (also known as a game in characteristic
function) and we omit the partition when referring to the worth of a coalition. We denote
the subspace of TU games by V (N) �

�
f : 2N ! R j f (;) = 0

	
� W (N); let V � W

denote the collection of all TU games, V �
S
N2NV (N).

A solution is a mapping ' that assigns a payo¤ vector ' (w) 2 RN to any N 2 N and
w 2 W (N) : The Shapley value (Shapley, 1953), Sh, is de�ned for TU games and is given
by

Shi (v) �
X

S�N :S3i

(s� 1)! (n� s)!
n!

(v (S)� v (S n i)) (2)
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for all N 2 N ; v 2 V (N) ; and i 2 N . The Shapley value satis�es the following standard
properties for solution concepts, which state that the name of a player does not matter and
that the worth of the grand coalition is to be distributed.

Anonymity, A. For all N 2 N , w 2W (N) ; and permutations � of N , we have '(�(w)) =
�('(w)), where �(w)(S; �) = w(�(S); f�(T )jT 2 �g) for each embedded coalition (S; �) and
�(x)i = x�(i) for each x 2 R and each i 2 N .
E¢ ciency, E. For all N 2 N and w 2W (N) ; we have

P
i2N 'i (v) = w (N; ;) :

Since we can ignore the other players for the evaluation of the worth of a coalition S in
a TU game v, it is helpful to refer to the subgame in which those players are removed. For
v 2 V (N) and T � N , the subgame v�T 2 V (N n T ) is given by v�T (S) = v (S) for all
S � N n T . The Shapley value can be computed referring only to marginal contributions of
a player, i.e., it satis�es the following property.

Marginality. For all N 2 N , v; ~v 2 V (N) ; and i 2 N , we have:

v (S)� v�i (S n i) = ~v (S)� ~v�i (S n i)
for all S � N : S 3 i

�
) 'i (v) = 'i (~v) :

It was not clear until Young (1985) whether solutions that solely depend on a player�s
marginal contributions could di¤er from the Shapley value.

Theorem 1 (Young, 1985). The Shapley value is the unique solution for TU games that
satis�es E¢ ciency, Anonymity, and Marginality.

To gain a better intuition for this, it is helpful to study dividends (Harsanyi, 1959),
given by �T (v) � v�NnT (T )�

P
S(T �NnS

�
v�NnT

�
: Here, �T (v) identi�es the surplus that is

created by the very combination of the players in coalition T , as being the worth generated
by this coalition reduced by the surplus that is already created by subcoalitions. It is
well known that the Shapley value can also be computed from these dividends, Shi (v) =P

T�N :T3i �T (v) =t. Note that each player�s payo¤ only depends on the dividends of those
coalitions, to which this player belongs to. In other words, the surplus (i.e., dividends)
created without a player has no in�uence on this player�s payo¤. Thus, the Shapley value
satis�es the following independence property.

Independence of Alien Surplus. For all N 2 N , v; ~v 2 V (N) ; and i 2 N , the following
implication holds:

�T (v) = �T (~v) for all T � N : T 3 i ) 'i (v) = 'i (~v) :

Young (1985) noticed that Marginality �is a type of independence condition�. Indeed,
Marginality is equivalent to the independence property above. Since v (S) � v�i (S n i) =P

T�S:T3i �T (v), it is clear, that whenever the dividends f� (T )gT�N :T3i remain the same,
then the marginal contributions remain the same. On the other hand, one easily shows by
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induction that whenever a player�s marginal contributions stay the same, then the dividends
stay the same. Thus, the hypotheses of Marginality and Independence of Alien Surplus are
equivalent and so are the axioms.

Corollary 2. The Shapley value is the unique solution for TU games that satis�es E¢ -
ciency, Anonymity, and Independence of Alien Surplus.

3. Player removal, Marginality, and independence in games with externalities

When i 2 S leaves the embedded coalition (S; �), it is unclear what partition of the other
players with i should be taken as a reference to de�ne i�s marginal contribution in (S; �).
To this end, we study removal operators. A removal operator is a mapping r : W ! W
that speci�es for each game w 2 W (N) and i 2 N a �subgame�wr�i 2 W (N n i). Given a
removal operator r, we can then de�ne the marginal contribution of i within S as

w (S; �)� wr�i (S n i; �) :

Following Dutta et al. (2010) in their de�nition of restriction operators, we let the worth
of wr�i (S n i; �) depend only on the worths that S n i can achieve in the original game,
i.e., wr�i (S n i; �) depends on w (S n i; �̂) ; �̂ 2 �((N n S) [ i). We deviate by making no
assumption on the coalitions formed by the players in (N n S) [ i. This is di¤erent for
restriction operators. Let �+i T 2 �((N n S) [ i) denote the partition obtained from � 2
�(N n S) when i 2 S is added to component T 2 � [ ;, where �+i ; means that i is added
as a singleton component,

�+i T �
�
(� n fTg) [ fT [ ig ; if T 2 �
� [ fig ; if T =2 �:

A restriction operator as de�ned by Dutta et al. (2010) is a removal operator with the
property that it relies only on the information w (S n i; �+i T ) ; T 2 �[;. For example, in a
game with N = f1; 2; 3; 4g, a restriction operator determines the worth wr�1 (2; 3j4) based on
w (2; 1j3j4) ; w (2; 13j4) ; and w (2; 14j3). A removal operator may also refer to w (2; 1j34) and
w (2; 134).
For every removal operator r, we can now de�ne a notion of r-Marginality for games

with externalities.

r-Marginality, Mr. For all N 2 N , w; ~w 2W (N) ; and i 2 N , we have:

w (S; �)� wr�i (S n i; �) = ~w (S; �)� ~wr�i (S n i; �)
for all S � N : S 3 i; all � 2 �(N n S)

�
) 'i (w) = 'i ( ~w) :

r-Marginality requires that if player i�s marginal contributions as speci�ed by the removal
operator r are the same in two games, then this player�s payo¤ should not change.
We further introduce a properties for removal operators. A removal operator is path

independent if the order in which the players are removed is irrelevant, i.e.,
�
wr�i

�r
�j =

6



�
wr�j

�r
�i for all N 2 N , w 2 W (N) ; and i; j 2 N . When r is a path independent removal

operator, we can refer to subgames where multiple players were removed, e.g. wr�SnT 2
W (N n T ) for T � S and (S; �) 2 E (N). A removal operator is anonymous if it is neutral
to player names, i.e., if �

�
wr�i

�
= (� (w))r��i. Finally, we say a removal operator r is linear

if wr�i is linear in its components, i.e., there are linear mappings f
r
i;�̂ such that

wr�i (S n i; �) =
X

�̂2�((NnS)[i)

f ri;�̂ (w (S n i; �̂)) :

Our insights rest on augmenting the insights on the relationship between marginal con-
tributions and Harsanyi dividends of TU games in the domain of TUX games. For path
independent removal operators, we can now introduce r-dividends �rS;� (w) for TUX games.
These dividends generalize the dividends for TU games and share some important concep-
tual and structural similarities. For all N 2 N , w 2 W (N), and (S; �) 2 E (N) ; we de�ne
�rS;� (w) recursively by �

r
;;� (w�S) = 0 and

�rS;� (w) � w (S; �)�
X
T(S

�rT;�
�
wr�SnT

�
: (3)

The dividend �rS;� (w) identi�es the surplus that is due to (S; �) in w by removing the surplus
already created by subcoalitions T � S when the players S n T would not be there (note
that � stays �xed).
The notion of r-dividends suggest an independence property that requires a player�s

payo¤ to depend solely on the surplus created with this player.

r-Independence of Alien Surplus, Ir. For all N 2 N , w; ~w 2W (N) ; and i 2 N , we have:

�rS;� (w) = �
r
S;� ( ~w)

for all S � N : S 3 i; all � 2 �(N n S)

�
) 'i (w) = 'i ( ~w) :

Marginality and Independence of Alien Surplus are equivalent if there are no externalities.
We can preserve this equivalence for speci�c removal operators.

Proposition 3. Let r be a path independent and linear removal operator. For all N 2 N ;
w; ~w 2W (N) ; and i 2 N; the following statements are equivalent:
(i) w (S; �) � ~wr�i (S n i; �) = w (S; �) � ~wr�i (S n i; �) for all (S; �) 2 E (N) such that

S 3 i.
(ii) �rT;�(w

r
�SnT ) = �

r
T;�( ~w

r
�SnT ) for all (S; �) 2 E (N) and T � S such that T 3 i:

The details of the proof are referred to the appendix. In the next section, we provide a
characterizations using this insight.
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4. Independence (or Marginality), E¢ ciency, and Anonymity are characteristic
of the r-Shapley value

Given a path independent removal operator r and TUX game w 2W (N), we can derive
the TU game vrw 2 V (N), given by

vrw (S) = w
r
�NnS (S; ;)

for S � N . This TU game captures a lot of information of the original TUX game and
applying the Shapley value to this game yields a natural extension of the Shapely value to
TUX games. The r-Shapley value, Shr, is de�ned as

Shr (w) = Sh (vrw) (4)

for all N 2 N and w 2W (N). It is exactly this solution, that is characterized by E¢ ciency,
Anonymity, and r-Independence of Alien Surplus or r-Marginality.

Theorem 4. Let r be a path independent, linear, and anonymous removal operator. Then,
the r-Shapley, Shr, value is the unique solution that satis�es E¢ ciency (E), Anonymity (A),
and (r-Independence of Alien Surplus (I r) or r-Marginality (M r)).

In the remainder of this section, we sketch the proof (some details are referred to the
appendix). A discussion of the Theorem and its applications are given in the next section.

Since �rS;;
�
wr�NnS

�
= �S (v

r
w), �

r is an extension of the Harsanyi dividends of the
TU game vrw to the TUX game w, and these dividends can be used to compute the r-Shapley
value,

Shr (w) =
X

S�N :S3i

�rS;;(w
r
�NnS)

s
: (5)

Proposition 3 and (5) guarantee that Shr satis�esMr. For the uniqueness result, we employ
a technique from Moulin (1988) and Pintér (2015). In contrast to the proof by Young (1985),
we do not need a basis (of unanimity games) of the vector space W (N). The proof is by
induction on the number of symmetric players in w. Suppose ' satis�es A, Ir, and E. If
all players are symmetric, A and E determine the payo¤ 'j (w) = w (N; ;) =n = Shrj (w).
To understand the induction step, suppose there are n � 1 symmetric players in w and let
{̂ be the player not symmetric to the others. We can obtain a modi�ed game ~w from w by
changing the dividends of the symmetric players so that they equal the dividends of {̂, while
keeping the dividends of {̂ in w and ~w unchanged. This way, all the n players are symmetric
in ~w and we know that payo¤s in ~w are given by the induction hypothesis, 'i ( ~w) = Sh

r
i ( ~w).

Using Ir, we further determine the payo¤ of {̂ in w, '{̂ (w) = Shr{̂ ( ~w). This way, we learn all
payo¤s in w except for the payo¤s of the symmetric players. E determines what they can
get,

P
j 6={̂ 'j (w) = w (N; ;) � '{̂ (w) =

P
j 6={̂ Sh

r
j (w) and A guarantees that ' shares this

equally among them as does Shr, 'j (w) =
P

j 6={̂ Sh
r
j (w) = (n� 1) = Shrj (w) for j 6= {̂.
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5. Discussion and application

In face of Young�s result and since the r-Shapley value is the Shapley value of vrw, it per-
haps appears less surprising at �rst glance that E¢ ciency, Symmetry, and r-Independence
of Alien Surplus are su¢ cient to single out a solution. However, the assumption that corre-
sponds to Independence of Alien Surplus for vrw would be a much stronger assumption than
r-Independence of Alien Surplus, namely:

�rS;;(w
r
�NnS) = �

r
S;;( ~w

r
�NnS) for all S � N : S 3 i) 'i (w) = 'i ( ~w) : (6)

In fact, replacing r-Independence of Alien Surplus with assumption (6) in Theorem 4 would
be a straight-forward extension of Young�s result. To see that (6) is a stronger than r-
Independence of Alien Surplus, note that (6) does not condition on �rT;�(w

r
�SnT ) for � 6= ;.

In other words, in the presence of E¢ ciency and Symmetry, the information that is stored
in these numbers is discarded for the determination of a player�s payo¤.
Depending on the removal operator, (6) could become a very simple and strong state-

ment. For example, for the removal operator wsingleton�i (S n i; �) � w (S n i; � [ i), which
says that removing a player must be evaluated as if this player would stay alone, the aux-
iliary game only refers to embedded coalitions (S; �) for which � is atomistic, vrw (S) =
w (S; fj j j 2 N n Sg). Then, (6) reads as follows:

w (S; [N n S])� w (S n i; [N n S] [ i) = ~w (S; [N n S])� ~w (S n i; [N n S] [ i)
for all S � N : S 3 i and with [N n S] = fj j j 2 N n Sg

�
) 'i (w) = 'i ( ~w) :

(7)
This is a much stronger assumption than singleton-Marginality, which also conditions on
w (S; �) for nonatomistic �:

w (S; �)� w (S n i; � [ i) = ~w (S; �)� ~w (S n i; � [ i)
for all S � N : S 3 i and all � 2 �(N n S)

�
) 'i (w) = 'i ( ~w)

de Clippel and Serrano (2008) already notice and stress that in the presence of E¢ ciency
and Anonymity, singleton-Marginality must be strenghened to (7). This can be stated more
general. The r-Shapley value satis�es condition (6) and whenever the removal operator
systematically ignores information of the game, (6) conditions on less information than
r-Marginality, so that a player i�s payo¤ depends less input.
Although our axioms do not impose linearity on the solution directly, it might be im-

plicitly required through the assumptions that must be placed on the removal operator.
Nonetheless, such removal operators might come in a natural formulation such that the
averaging that is at work appears quite plausible. We �rst illustrate this for various gen-
eralizations o¤ered in the literature. Thereafter, we show how deviations from the Shapley
value can be motivated by externalities.

5.1. Characterizations of Various Generalizations of the Shapley value
Macho-Stadler et al. (2007) and Skibski et al. (2018) put forth a solution that emerges

from a coalition formation procedure following the Chinese restaurant process. This process
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can be described as follows. Consider a �Chinese restaurant� with n round tables each
seating n persons. The players arrive at the restaurant in some order. The �rst player
takes a seat at one of the tables. Any following player takes seat at an empty table or
joins any of the already present players with the same probability. Note that this way it
is more likely that a player takes seat at a table with more players. This process induces
an anonymous probability distribution over partitions. Concretely, after n players have
entered the room, each table is a component of � 2 �(N) and � has the probability
p (�) �

Q
T2� (t� 1)!=n!. Using this probability distribution, we can compute an average

TU game �vw in which each coalitions gets the expected value of w (S; �) over all partitions
� 2 �(N n S), i.e., �vw (S) �

P
�2�(NnS) p (�)w (S; �) for S � N . The average Shapley value

Sh? is de�ned as the Shapley value of this TU game,

Sh? (w) � Sh (�vw)

for all N 2 N ; w 2W (N).
Now, let � (j) denote the component of � 2 �(N n S) that contains j 2 N n S. Then,

�+i �(j) 2 �((N n S) [ i) is the partition obtained from � 2 �(N n S) if player i is added
and joins the component of player j in �, where �+i �(i) means that i forms a singleton
component. Macho-Stadler et al. (2007) observe that the average Shapley value satis�es the
following marginality property.

?-Marginality, M?. For all N 2 N , w; v 2W (N) ; and i 2 N , we have:

w (S; �)� 1

n� s+ 1
X

j2(NnS)[i

w
�
S n i; �+i �(j)

�
= ~w (S; �)� 1

n� s+ 1
X

j2(NnS)[i

~w
�
S n i; �+i �(j)

�
for all S � N;S 3 i; and all � 2 �(N n S) implies 'i (w) = 'i (v) :
Here, the marginal contribution of player i within coalition S is derived from the assumption
that when player i leaves S, player i may equally likely be attracted by every player j
outside of S or by himself, and joins into player j�s coalition or player i stays alone. Thus,
?-Marginality does not directly impose an average over partitions but stipulates that the
players are equally likely teaming up with other individuals (and their peers). This is
particularly plausible if � represents the clusters of a network and player i is expected to
form new links to players in N n S after cutting ties to the players in S.
Obviously, ?-Marginality is induced by the ?-removal operator given by w?�i (S n i; �) =
1

n�s+1
P

j2(NnS)[iw
�
S n i; �+i �(j)

�
for all (S n i; �) 2 E (N n i). From Theorem 4, we obtain

a new characterization of the average Shapley value.

Corollary 5. The average Shapley value, Sh?, is the unique solution satisfying E¢ ciency
(E), Anonymity (A), and ?-Marginality (M ?).

Again, it is helpful to have a look at condition (6) for the ?-removal operator. To this end,
we examplarily determine w?�NnS (S; ;) for a game with for players, N = f1; 2; 3; 4g. We note
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that w?�1 (234; ;) = w (234; 1) and w?�12 (34; ;) = w?�2 (234; 1) =
1
2
w (34; 12) + 1

2
w (34; 1j2).

By the same logic, we recursively obtain

w?�123 (4; ;) = w?�12 (4; 3)

=
w?�1 (4; 23) + w

?
�1 (4; 2j3)

2

=
w(4;213)+w(4;231)+w(4;1j23)

3
+ w(4;12j3)+w(4;2j13)+w(4;1j2j3)

3

2

=
X

�2�(f1;2;3g)

p (�)w (4; �)

Perhaps not surprisingly, one can show that the auxiliary game is just the average game,

v?w (S) = w
?
�NnS (S; ;) =

X
�2�(NnS)

p (�)w (S; �) = �vw (S) :

Thus, condition (6) just reads

�vw (S)� �vw (S n i) = �v ~w (S)� �v ~w (S n i)
for all S � N : S 3 i

�
) 'i (w) = 'i ( ~w) : (8)

According to (8) player i�s performance is measured in terms of marginal contributions to
the average worth of a coalition. In contrast to this, ?-Marginality states that player i�s
performance is measured in terms of marginal contributions in a coalition where the worth
of a coalition without player i�s is the average over various coalitions.
Further characterizations can be derived from Theorem 4. The power of these char-

acterizations lies in the fact that each marginality property reveals how externalities are
aggregated to a measure of the merits of a player in a game. In particular, a player whose
marginal contributions are zero is considered a null player. For example, a ?-Null player is a
player who when reaching out to players outside her embedded coalition is expected to have
no impact on the worth of this embedded coalition. In chronological order, we list further
concepts studied in the literature:

1. Using the removal operator, wstable average�i (S n i; �) = 1
j�j+1

P
T2�[;w (S n i; �+i T ), we

obtain the marginality property characteristic of the solution introduced by Bolger
(1989);

2. Using the removal operator, wregroup switch�i (S n i; �) = j�(NnS)j
j�((NnS)[i)j

P
T2�[;w (S n i; �+i T ),

we obtain the marginality property characteristic of the solution introduced by Albizuri
et al. (2005);

3. Using the singleton removal operator, wsingleton�i (S n i; �) = w (S n i; � [ i), we obtain
the �Marginality�property and the characterization result of de Clippel and Serrano
(2008, Proposition 3), which is an axiomatization of the �externality free value�intro-
duced by Pham Do and Norde (2007);
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4. Using a linear combination of the average and the singleton removal operators, w��i (S n i; �) =
wsingleton�i (S n i; �) + �wstable average�i (S n i; �), � � 0, we obtain the marginality property
characteristic of the solutions selected by Dutta et al. (2010, Theorem 2);

5. Using the removal operator, waltogether�i (S n i; �) = w (S n i; f(N n S) [ ig), we obtain
the marginality property characteristic of the solution put forth by McQuillin (2009);

6. Using the removal operator, wregroup average�i (S n i; �) = 1
j�((NnS)[i)j

P
�̂2j�((NnS)[i)jw (S n i; �̂),

we obtain the marginality property characteristic of the solution introduced by Hu and
Yang (2010).

The solution 6 above does not satisfy �Weak Marginality� as de�ned in (1). To see
why, recall that a removal operator can refer to the worth of S n i for all partitions �̂ 2
�((N n S) [ i). This is not the case for the removal operators in 1, 3, 4, 5 and in Corollary
5 for which the induced solutions satisfy �Weak Marginality�. These removal operators
make use of less information and only draw information from w (S n i; �+i T ) ; T 2 � [ ;;
i.e., these removal operators are restriction operators as studied in Dutta et al. (2010).

5.2. Deviation from the Shapley value
van den Brink (2007) has shown that the Shapley value and the equal division value

given by

EDi (w) �
w (N; ;)
n

for all N 2 N , w 2 W (N) ; and i 2 N , share similar characteristics for TU games. To
see why, consider the following property that is entailed from the trivial removal operator
w0�i (S n i; �) = 0.
0-Marginality, M0. For all N 2 N , w; ~w 2W (N) ; and i 2 N , we have:

w (S; �) = ~w (S; �) for all S � N : S 3 i; and all � 2 �(N n S) ) 'i (w) = 'i ( ~w) :

On the domain of TU games, 0-Marginality coincides with Coalitional Marginality dis-
cussed by van den Brink (2007). Obviously, Theorem 4 applies and we obtain a generalization
of (van den Brink, 2007, Theorem 3.3) from TU games to TUX games.

Corollary 6. The equal division value, ED, is the unique solution satisfying E¢ ciency (E),
Anonymity (A), and 0-Marginality (M 0).

The previous corollary indicates that accounting externalities can lead to a deviation
from the Shapley value. This is a consequence of the fact that in a TUX game, it is hard
to separate the productive value of a player from this player�s external e¤ect. Whereas de
Clippel and Serrano (2008) suggest that deviating from singletons constitutes the creation
of external e¤ects, we may argue that if there is no �natural�partition of the players (in
particular, if the atomistic partition is not viewed as the default), it is unclear what could
be the actual productivity if externalities have to be discarded. We now introduce a solution
for this purpose, i.e., a solution with the ambition to distribute w (N; ;) without rewarding
external e¤ects and without making an assumption about the natural partition of players.

12



Consider the following partial order ���on the set of all embedded coalitions E :

(T; �) � (S; �) if T � S and ��SnT = �; (9)

where ��SnT is the partition obtained from � when canceling the players in S n T , ��SnT �
fT n S j T 2 �g. If (T; �) � (S; �), then the embedded coalition can mimic the con�guration
(T; �) simply by sending the players in T n S to their blocks in �. The corresponding �-
unanimity game

u�T;� (S; �) �
�
1; if T � S and ��SnT = �
0; else.

(10)

has a natural interpretation: the players in coalition T can generate $1 if the others are
grouped according to � and there is no other value generation possible. Now, every embedded
coalition that can mimic (T; �) can also generate $1. For example, suppose that some j =2 T
leaves his coalition � (j) 2 � and joins coalition T . Then it should still be possible to
generate $1; because the players from T can agree with player j that it is best that he goes
out to his original coalition and works there. Accordingly, one could argue that player j
neither contributes nor destroys anything when moving around, and hence should receive
zero payo¤. The solution �-Shapley value does exactly this and gives 1=t to each player in
coalition T in game u�T;� and zero to the others. In general, we de�ne the �-Shapley value
as

Sh�i (w) �
X

(T;�)2E(N):T3i

m�
w (T; �)

t
: (11)

where m�
w (T; �) denotes the Möbius inverse given by

m�
w (T; �) � w (T; �)�

X
(S;�)�(T;�)

m�
w (S; �) : (12)

It transpires that Sh� is compatible with the removal operator given by

w��i (S n i; �) �
X

(T;�)2E(N):(T;�)�(S;�);T�Sni

m�
w (T; �) ; (13)

since w (S; �)�w��i (S n i; �) = ~w (S; �)� ~w��i (S n i; �) for all S 3 i and � 2 �(N n S) then
indeed means that w and ~w have identical same Möbius inverse for all coalitions including
T , i.e., m�

w (T; �) = m�
~w (T; �) for all T 3 i and � 2 �(N n T ). Interestingly, the removal

operator above has a simple expression.

Lemma 7. For the �-removal operator, we have w��i (S n i; �) =
P

T2�[;w (S n i; �+i T ).

This suggests the following notion of marginality:

�-Marginality, M�. For all N 2 N , w; ~w 2W (N) ; and i 2 N , we have:

w (S; �)� ~w (S; �) =
P

T2�[; [w (S n i; �+i T )� ~w (S n i; �+i T )]
for all S � N;S 3 i; and all � 2 �(N n S)

�
) 'i (w) = 'i ( ~w) :
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Suppose each embedded coalition (S; �) has the ability to deploy its players to any other
block T 2 � [ ;, resulting in the worth of w (S n i; �+i T ). Aggregated over all target
coalitions, this re�ects the extend to which this player contributes only in the form of external
e¤ects

P
T2�[;w (S n i; �+i T ). If a player�s true value is not supposed to be measured by

the extend to which this player can generate external e¤ects on (S; �), but instead if we are
interested in rewarding a player according to this player�s genuine creation of worth, then
we have to discard these external e¤ects. In particular, if the worth of a player�s embedded
coalitions only changes by the extend to which this player can exercise external e¤ects, we
can claim that the genuine productivity of this player did not change. According to �-
Marginality, the player�s payo¤ should not change neither. From Theorem 4 and Lemma 7,
we single out the �-Shapley value as the only solution that achieves this goal.

Theorem 8. The �-Shapley value, Sh�, is the unique solution satisfying E¢ ciency (E),
Symmetry (A), and �-Marginality (M�).

The�-Shapley value does not coincide with the Shapley value if there are no externalities.
In order to see this more lucidly, we determine the auxiliary game for a game with four
players. Note that w��1 (234; ;) = w (234; 1), w��12 (34; ;) = w��2 (234; 1) = w (34; 12) +
w (234; 1j2), and

w��123 (4; ;) = w��12 (4; 3)
= w��1 (4; 23) + w

�
�1 (4; 2j3)

= w (4; 123) + w (4; 1j23) + w (4; 12j3) + w (4; 13j2) + w (4; 1j2j3)

In general, we have
v�w (S) = w

�
�NnS (S; ;) =

X
�2�(NnS)

w (S; �) ; (14)

so that applying the �-Shapley value to a game without externalities actually becomes

Sh�i (v) =
X

S�N :S3i

(s� 1)! (n� s)!
n!

(Bn�sv (S)�Bn�s+1v (S n i))

where the nth Bell number Bn = j�(N)j is the number of partitions of a set with n elements.
Note that Bn�s �Bn�s+1 is decreasing in s; e.g., the contribution in the grand coalition

is fully rewarded Bn�nv (N) � Bn�n+1v (N n i) = v (N) � v (N n i), while Bn�2v (fi; jg) �
Bn�1v (j) � Bn�2v (fi; jg) for large n, i.e., the �-Shapley value roughly satis�es coalitional
monotonicity on small coalitions and treats their impact similar to the equal division value
(see Corollary 6). The intuition behind this is clear: the more players outside a coalition
can in�uence a coalition�s worth through external e¤ects, the more di¢ cult it becomes to
attribute productivity to its source if external e¤ects are not regarded as source of produc-
tivity.
From (14), we further see that whenever w (S; �) = 0 for S 6= N and nonatomistic parti-

tions �, the �-Shapley value coincides with the �externality free�Shapley value Shsingleton.
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In other words, the �externality free�Shapley value is obtained from the �-Shapley value
if the singleton partitions are declared to be the default and all other worths are set to
zero, i.e., Shsingleton (w) = Sh� ( _w) where _w (S; �) = w (S; �) if � is atomistic or S = N , and
_w (S; �) = 0 otherwise. This indicates once more that the �-Shapley value can be seen as
the externality free Shapley value if there is no default partition.

Appendix A. Computing r-dividends

The following lemmas contain several properties of r-dividends that constitute the nec-
essary ingredients to establish Proposition 3. These properties are familiar from dividends
for TU games. First, �rS;� (w) can be computed utilizing the inclusion-exclusion principle.

Lemma 9. Let r be a path independent removal operator. For all N 2 N , w 2 W (N),
(S; �) 2 E (N) ; we have

�rS;� (w) =
X
T�S

(�1)s�twr�SnT (T; �) : (A.1)

Based on the previous lemma, we can relate the dividends �r with marginal contributions.

Lemma 10. Let r be a path independent and additive removal operator. For all N 2 N ;
(S; �) 2 E (N) ; w 2W (N) ; and i 2 S; we have

w (S; �)� wr�i (S n i; �) =
X

T�S:T3i
�rT;�

�
wr�SnT

�
: (A.2)

Appendix A.1. Proof of Lemma 9
We show the �rst claim by induction on jN j. Induction basis: The claim is obvious from

(3) for n � 1: Induction hypothesis (IH): Let Lemma 9 hold true for all n � `:
Induction step: Let N 2 N by such that n = `+ 1 and w 2W (N) : For (S; �) 2 E (N) ;

we obtain

�rS;� (w)
(3)
=w (S; �)�

X
T(S

�rT;�
�
wr�SnT

�
IH
=w (S; �)�

X
T(S

X
Q�T

(�1)t�q wr�SnQ (Q; �)

=w (S; �)�
X
Q(S

wr�SnQ (Q; �)
X

T :Q�T(S
(�1)t�q :

Using
P

T :Q�T(S (�1)
t�q =

Ps�1
t=q (�1)

t�q
�
s� q
t� q

�
=
Ps�1�q

t=0 (�1)t
�
s� q
t

�
= (�1)s�q+1

concludes the proof,

�rS;� (w) = w (S; �) +
X
Q(S

(�1)s�q wr�SnQ (Q; �) : Q.E.D.
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Appendix A.2. Proof of Lemma 10

FixN 2 N ; S; �; w 2W (N) ; and i 2 S:We showwr�i (S n i; �) =
P

Q�Sni �
r
Q;��SnQ

�
wr�SnQ

�
:

The claim then follows from (3). For any �̂ 2 �((N n S) [ i) ; we have

wr�i (S n i; �̂)
(3)
=
X
Q�Sni

�rQ;�̂
�
wr�(Sni)nQ

�
and since r is additive, we get

wr�i (S n i; �) =
X
Q�Sni

f ri;�̂

��
�rQ;�̂

�
wr�(Sni)nQ

��
�̂2�((NnS)[i)

�
: (A.3)

For all Q � S n i and all �̂ 2 �((N n S) [ i) ; we further have

�rQ;�̂
�
wr�(Sni)nQ

� (A.1)
=

X
P�Q

(�1)q�pwr�(Sni)nP (P; �̂)

which inserted in (A.3) and applying linearity of r and of � gives

wr�i (S n i; �) =
X
Q�Sni

X
P�Q

(�1)q�p f ri;�̂
��
wr�(Sni)nP (P; �̂)

�
�̂2�((NnS)[i)

�
:

Note that
�
wr�SnP

�
(P; �) =

�
wr�(Sni)nP

�r
�i
(P; �) = f ri;�̂

��
wr�(Sni)nP (P; �̂)

�
�̂2�((NnS)[i)

�
and the previous equation becomes

wr�i (S n i; �) =
X
Q�Sni

X
P�Q

(�1)q�p
�
wr�SnP

�
(P; �)

(A.1)
=

X
Q�Sni

�rQ;��SnQ
�
wr�SnQ

�
Q.E.D.

Appendix B. Proof of Proposition 3

By Lemma 10, (ii) implies (i). Now, suppose w and ~w are such that (i) holds true. We

establish (ii) by induction on jSj. Induction basis: Let jSj = 1. Then, w (i; �)�wr�i (;; �)
(A.2)
=

�ri;� (w)
(i)
= �ri;� ( ~w)

(A.2)
= ~w (i; �) � ~wr�i (;; �). Induction hypothesis (IH): (i))(ii) if jSj � `:

Induction step: Let jSj = `+ 1. We get

0
(i)
= w (S; �)� wr�i (S n i; �)�

�
~w (S; �)� ~wr�i (S n i; �)

�
(A.2)
=

X
T�S:T3i

�rT;�
�
wr�SnT

�
�

X
T�S:T3i

�rT;�
�
~wr�SnT

�
IH
= �rS;� (w)� �rS;� ( ~w)

which concludes the proof. Q.E.D.
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Appendix C. Proof of Theorem 4

Proposition 3 and (5) guarantee that Shr satis�es Mr. Since r and Sh are anonymous,
Shr satis�es A. By (4) and E¢ ciency of Sh, Shr satis�es E.
Now let ' satisfy A, E, and Mr. We need to show that ' = Shr. By Proposition 3,

a modi�cation of dividends �rT;�
�
wr�SnT

�
, T � N n i, does not alter the payo¤ of player i

according to '. In the following, we will make such modi�cations. The proof proceeds by
induction on #w, being the maximal number of players being symmetric to each other in w,

#w � max
S�N : all players in S are symmetric w

jSj ;

where j and j0 are symmetric in w if w (S; �) = w (� (S; �)) for any transposition � that
swaps j and j0.
Induction basis: For #w = n, ' = Shr follows from A and E, 'i (w) = w (N; ;) =n =

Shri (w) for all i 2 N . Induction hypothesis: For all w such that #w > `, we have ' = Shr:
Induction step: Let w be such that #w = ` and let S� denote a set of ` symmetric

players, jS�j = `. Since ` < n, there is some {̂ =2 S�. We now manipulate w in a way
to make the players in S� symmetric to {̂ without changing {̂�s marginal contributions, i.e.,
by Proposition 3, without changing �rT;�

�
wr�SnT

�
for T 3 {̂. To this end, we de�ne ~w via

r-dividends.
Pick some |̂ 2 S�, and de�ne for all (S; �) 2 E (N) such that S 3 |̂, and T � S set

~�rT;� � �r�T;��

�
wr��Sn�T

�
; where � is the transposition that swaps {̂ and |̂; and keeps the

other players �xed; and de�ne ~�rT;� � �rT;�
�
wr�SnT

�
for the remaining dividends. Note that

~�rT;� � �rT;�
�
wr�SnT

�
whenever T 3 {̂. We construct ~w by

~w (S; �) �
X
T�S

~�rT;�: (C.1)

It further is clear that the players |̂ and {̂ are symmetric in ~w. Now, we show that the
marginal contributions of {̂ are the same in ~w as in w, because we do not know whether
�rT;�(w

r
�SnT ) = �rT;�( ~w

r
�SnT ) for T 3 {̂. If |̂ =2 S; then ~w (S n {̂; �̂) = w (S n {̂; �̂) for all

�̂ 2 �((N n S) [ {̂) so that ~wr�{̂ (S n {̂; �) = wr�{̂ (S n {̂; �). Moreover, ~w (S; �) =
P

T�S ~�
r
T;� =P

T�S �
r
T;�(w

r
�SnT ) = w (S; �). If {̂; |̂ 2 S, we have

~w (S; �)� ~wr�{̂ (S n {̂; �) = ~w (S; �)� ~wr�|̂ (S n |̂; �)

because {̂ and |̂ are symmetric in ~w. Since ~w (S n |̂; �̂) = w (S n |̂; �̂) for all �̂ 2 �((N n S) [ |̂),
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we have ~wr�|̂(S n |̂; �) = wr�|̂(S n |̂; �) and we obtain

~w (S; �)� ~wr�{̂ (S n {̂; �) = ~w (S; �)� wr�|̂ (S n |̂; �)
(A.2)
= ~w (S; �)� w (S; �) +

X
T�S:T3|̂

�rT;�
�
wr�SnT

�
(C.1)
=

X
T�S

~�rT;� � w (S; �) +
X

T�S:T3|̂

�rT;�
�
wr�SnT

�
(3)
=
X
T�S

~�rT;� �
X
T�S

�rT;�
�
wr�SnT

�
+

X
T�S:T3|̂

�rT;�
�
wr�SnT

�
:

Now
P

T�S ~�
r
T;��

P
T�S �

r
T;�(w

r
�SnT ) =

P
T�S:T3|̂ ~�

r
T;��

P
T�S:T3|̂ �

r
T;�(w

r
�SnT ) because ~�

r
T;� =

�rT;�(w
r
�SnT ) if |̂ =2 T , and we get

~w (S; �)� ~wr�{̂ (S n {̂; �) =
X

T�S:T3|̂

~�rT;� =
X

T�S:T3|̂

�r�T;��
�
wr��Sn�T

�
:

Note that {̂; |̂ 2 S means �� = �, and
P

T�S:T3|̂ �
r
�T;��(w

r
��Sn�T ) becomes

P
T�S:T3{̂ �

r
T;�(w

r
�SnT ).

Hence

~w (S; �)� ~wr�{̂ (S n {̂; �) =
X

T�S:T3{̂

�rT;�(w
r
�SnT )

(3)
= w (S; �)� wr�{̂ (S n {̂; �) :

We can successively apply the above procedure for all j 2 S, arriving at ~w in which all
players S�[ {̂ are symmetric and for which ~w (S; �)� ~wr�{̂ (S n {̂; �) = w (S; �)�wr�{̂ (S n {̂; �).
By Mr, '{̂ ( ~w) = '{̂ (w). The argument can be repeated for all i 2 N n S� so that
'i (w) = Shri (w) for all i 2 N n S�. This also determines the payo¤ accruing to these
players,

P
i2NnS� 'i (w) =

P
i2NnS� Sh

r
i (w) and, using E, it determines the payo¤s left for

the symmetric players in S�;
P

j2S� 'j (w) = w (N; ;)�
P

i2NnS� 'i (w). Using A, we �nally
determine their payo¤s as 'j (w) = 1

#w

P
j2S� 'j (w) =

1
#w

P
j2S� Sh

r
j (w) = Shrj (w) for

j 2 S�. Hence, ' = Shr. Q.E.D.

Appendix D. Proof of Corollary 5

Clearly, the r? is linear and anonymous. Because of linearity, it su¢ ces to show path
independence for Dirac games, which are de�ned by

�T;� (S; �) =

�
1; if (S; �) = (T; �) ;
0; else.

For all N 2 N ; i; j 2 N; i 6= j, and (T; �) 2 E (N) ; T 6= ;; we have

(�T;� )
?
�i

(??)
=

8>>><>>>:
1

n� t�T;��i ; if i 2 N n T; � (i) = fig ;
j� (i)j
n� t �T;��i i 2 N n T; � (i) 6= fig ;
0Nni; i 2 T:

(D.1)
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where 0Nni 2 V (N n i) denotes the null game. If i 2 T or j 2 T; we have
�
(�T;� )

?
�i
�?
�j

(D.1)
=

0Nnfi;jg: For i; j 2 N n T; we get

�
(�T;� )

?
�i
�?
�j

(D.1)
=

8>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>:

1

(n� t) (n� 1� t)�T;�nfi;jg; � (i) = � (j) = fi; jg ;
j� (i)j (j� (i)j � 1)
(n� t) (n� 1� t)�T;��fi;jg ; � (i) = � (j) 6= fi; jg ;

1

(n� t) (n� 1� t)�T;��fi;jg ; � (i) 6= � (j) ; � (i) = fig ; � (j) = fjg ;
j� (i)j

(n� t) (n� 1� t)�T;��fi;jg ; � (i) 6= � (j) ; � (i) = fig ; � (j) 6= fjg ;
j� (i)j

(n� t) (n� 1� t)�T;��fi;jg ; � (i) 6= � (j) ; � (i) 6= fig ; � (j) = fjg ;
j� (i)j j� (j)j

(n� t) (n� 1� t)�T;��fi;jg ; � (i) 6= � (j) ; � (i) 6= fig ; � (j) 6= fjg :

Hence, the order of removing i and j from the game does not matter.
Q.E.D.

Appendix E. Proof of Lemma 7

Note that for given (T; �) and S � T , there is only a single partition � = ��SnT such
that (T; �) � (S; �). Alonso Meijide et al. (2019, Proposition 4.1) use this and show that
the Möbius inverse for � is calculated in a similar way as dividends for TU games,

m�
w (T; �) =

X
(S0;�0)�(T;�)

(�1)t�s
0
w (S 0; �0) :

Insertion into the de�nition of w��i (S n i; �), (13), gives

w��i (S n i; �) =
X

(T;�):(T;�)�(S;�);T�Sni

X
(S0;�0)�(T;�)

(�1)t�s
0
w (S 0; �0)

=
X

(S0;�0)�(S;�)

X
T :S0�T�Sni

X
�2�(NnT ):�0�TnS0=�;��SnT=�

(�1)t�s
0
w (S 0; �0)

=
X

(S0;�0)�(S;�)

X
T :S0�T�Sni

(�1)t�s
0
w (S 0; �0)

The last term vanishes unless S 0 = S n i; becauseX
T :S0�T�Sni

(�1)t�s
0
=

s�1X
t=s0

(�1)t�s
0
�
s� 1� s0
t� s0

�
=

�
0 s 6= s0 � 1
1 s = s0 � 1

so that

w��i (S n i; �) =
X

(Sni;�0)�(S;�)

w (S n i; �0) =
X

�02�((NnS)[i):�0�i=�

w (S n i; �0) : (E.1)
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Appendix F. Proof of Theorem 8

First we establish that U =
�
u�T;�

	
(T;�)2E(N) is a basis ofW (N) with coe¢ cients

�
m�
w (T; �)

	
(T;�)2E(N).

For all (S; �) 2 E (N), we getX
(T;�)2E(N)

m�
w (T; �)uT;� (S; �)

(10)
=m�

w (S; �) +
X

(T;�)�(S;�)

m�
w (T; �)

(12)
= w (S; �)�

X
(S0;�0)�(S;�)

m�
w (S

0; �0) +
X

(T;�)�(S;�)

m�
w (T; �)

=w (S; �) :

Thus, U spans W (N), and since dim E (N) = jE (N)j = jUj, U is a basis of E (N). Conse-
quently, the coe¢ cientsm�

w (T; �) are the unique coe¢ cients such thatw =
P

(T;�)2E(N)m
�
w (T; �)u

�
T;� .

Hence,

Sh�i
�
u�T;�

�
=

X
(T;�)2E(N):T3i

m�
u�T;�

(T; �) =
1

t
;

and consequentlyX
i2N

Sh�i (w) =
X
i2N

X
(T;�)2E(N):T3i

m�
w (T; �)

1

t
=

X
(T;�)2E

m�
w (T; �)

(12)
= w (N; ;) ;

i.e., Sh� satis�es E. Moreover, it is clear from the de�nition that Sh� satis�es A. Now let
(*) w (S; �)� ~w (S; �) = w��i (S n i; �)� ~w

�
�i (S n i; �) for all S 3 i and � 2 �(N n S). Then,

Sh�i (w)� Sh
�
i ( ~w) =

X
(T;�)2E(N):T3i

1

t

�
m�
w (T; �)�m�

~w (T; �)
�

and since T 3 i implies

m�
w (T; �)�m�

~w (T; �)
(12)
= w (T; �)�

X
(S;�)�(T;�)

m�
w (S; �)�

0@ ~w (T; �)� X
(S;�)�(T;�)

m�
~w (S; �)

1A
(13)
= w (S; �)� w��i (S n i; �)�

�
~w (S; �)� ~w��i (S n i; �)

�
(*)
= 0;

we get Sh�i (w) = Sh
�
i ( ~w). With Lemma 7, we �nd that Sh

� satis�es M�. It remains to
show that (13) de�nes a path independent restriction. It su¢ ces to show this for u�T;� . We
have �

u�T;�
��
�i

(13)
=

�
u�T;��i ; if i 2 N n T; � (i) = fig ;
0; i 2 T:

Thus, if i 2 T or j 2 T , then
��
u�T;�

��
�i

��
�j
= 0 =

��
u�T;�

��
�j

��
�i
. If fi; jg 2 N n T , then��

u�T;�
��
�i

��
�j
= u�T;��ij =

��
u�T;�

��
�j

��
�i
.

20



References

Albizuri, M. J., Arin, J., Rubio, J., 2005. An axiom system for a value for games in partition function form.
International Game Theory Review 7, 63�73.

Alonso Meijide, J. M., Alvarez-Mozos, M., Gloria Fiestras-Janeiro, M., Jimenez-Losada, A., 01 2019. A new
order on embedded coalitions: Properties and applications. SSRN Electronic Journal.

Bolger, E. M., 1989. A set of axioms for a value for partition function games. International Journal of Game
Theory 18, 37�44.

van den Brink, R., 2007. Null or nullifying players: The di¤erence between the Shapley value and equal
division solutions. Journal of Economic Theory 136, 767�775.

de Clippel, G., Serrano, R., 2008. Marginal contributions and externalities in the value. Econometrica 76 (6),
1413�1436.

Dutta, B., Ehlers, L., Kar, A., 2010. Externalities, potential, value and consistency. Journal of Economic
Theory 145 (6), 2380�2411.

Harsanyi, J. C., 1959. A bargaining model for cooperative n-person games. In: Tucker, A. W., Luce, R. D.
(Eds.), Contributions to the Theory of Games IV. Vol. 2. Princeton University Press, Princeton NJ, pp.
325�355.

Hu, C.-C., Yang, Y.-Y., 2010. An axiomatic characterization of a value for games in partition function form.
SERIEs 1 (4), 475�487.

Lucas, W. F., Thrall, R. M., 1963. n-person games in partition function form. Naval Research Logistics
Quarterly X, 281�298.

Macho-Stadler, I., Pérez-Castrillo, D., Wettstein, D., 2007. Sharing the surplus: An extension of the Shapley
value for environments with externalities. Journal of Economic Theory 135 (1), 339�356.

McQuillin, B., 2009. The extended and generalized Shapley value: Simultaneous consideration of coalitional
externalities and coalitional structure. Journal of Economic Theory 144, 696�721.

Milnor, J., 1952. Reasonable outcomes for n-person games. Tech. Rep. RM-916, RAND Corporation.
Moulin, H., 1988. Axioms of cooperative decision making. Cambridge Universitiy Press, New York.
Pham Do, K. H., Norde, H., 2007. The Shapley value for partition function form games. International Game
Theory Review 9, 353�360.

Pintér, M., 2015. Young�s axiomatization of the Shapley value: a new proof. Annals of Operations Research
235 (1), 665�673.

Shapley, L. S., 1953. A value for n-person games. In: Kuhn, H., Tucker, A. (Eds.), Contributions to the
Theory of Games. Vol. II. Princeton University Press, Princeton, pp. 307�317.

Skibski, O., Michalak, T. P., Woolbridge, M., 2018. The stochastic Shapley value for coalitional games with
externalities. Games and Economic Bahavior 108, 65�80.

Young, H. P., 1985. Monotonic solutions of cooperative games. International Journal of Game Theory 14,
65�72.

21



 

 

Recent ESMT Working Papers 

 ESMT No. 

Consumer choice under limited attention when alternatives have different 
information costs 

Frank Huettner, ESMT Berlin 

Tamer Boyacı, ESMT Berlin 

Yalçın Akçay, Melbourne Business School 

16-04 (R3) 

Opaque queues: Service systems with rationally inattentive customers 

Caner Canyakmaz, ESMT Berlin 

Tamer Boyaci, ESMT Berlin 

The Coleman-Shapley-index: Being decisive within the coalition of the interested 

André Casajus, HHL Leipzig Graduate School of Management 

Frank Huettner, ESMT Berlin 

Reverse privatization as a reaction to the competitive environment: Evidence 
from solid waste collection in Germany 

Juri Demuth, E.CA Economics 

Hans W. Friederiszick, ESMT Berlin and E.CA Economics 

Steffen Reinhold, E.CA Economics 

18-04 

 

 

18-03 

 

 

18-02 

Knowing me, knowing you: Inventor mobility and the formation of technology-
oriented alliances 

Stefan Wagner, ESMT Berlin 

Martin C. Goossen, Tilburg University 

18-01 

 

 

 
 

 

 

 
 

 


	Introduction
	The Shapley value, Marginality, and Independence of Alien Surplus
	Player removal, Marginality, and independence in games with externalities
	Independence (or Marginality), Efficiency, and Anonymity are characteristic of the r-Shapley value
	Discussion and application
	Characterizations of Various Generalizations of the Shapley value
	Deviation from the Shapley value

	Computing r-dividends
	Proof of Lemma 9
	Proof of Lemma 10

	Proof of Proposition 3
	Proof of Theorem 4
	Proof of Corollary 5
	Proof of Lemma 7
	Proof of Theorem 8
	Working paper cover.pdf
	Marginality, dividends, and the value in games with externalities


