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Abstract

We study the coevolution of cooperation, preferences, and cooperative signals in an

environment where individuals engage in a signaling-extended prisoner’s dilemma.

We prove the existence of a cooperative equilibrium constituted by a (set of) limit

cycle(s) and stabilized by the dynamic interaction of multiple Bayesian equilibria.

This equilibrium: (1) exists under mild conditions, and (2) can stabilize a population

that is characterized by the heterogeneity of behavior, preferences, and signaling.

We thereby offer an explanation for the persistent regularities observed in laboratory

and field data on cooperative behavior. The cyclicity of the equilibrium offers an

alternative account for observed historical changes in (social norms of) cooperation

in societies which are not driven by social or environmental shocks.
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1 Introduction

Several theories have been proposed to explain the evolution of cooperation among hu-

mans when cooperation generates a public benefit at a private cost. In this research, the

prisoner’s dilemma game (henceforth PD) commonly serves as a metaphor for the problem

of cooperation. Since natural selection favors defection in this game, any extension that

allows for the emergence of cooperation represents a mechanism to promote cooperation.

It has been argued that the essential feature of any mechanism to foster cooperation is

that cooperative acts must occur more often between cooperators than expected, based on

population averages. In other words, the mechanism must induce a positive assortment

between cooperative types (Queller, 1985; Fletcher and Zwick, 2004).1

The mechanisms proffered in the literature may vary substantially in how they induce

this assortment. Positive assortment can, for instance, arise because of direct reciprocity

in repeated interactions (Trivers, 1971; Axelrod, 1984; Fudenberg and Maskin, 1986),

indirect reciprocity based on image scores (Alexander, 1987; Nowak and Sigmund, 1998;

Wedekind and Milinski, 2000; Panchanathan and Boyd, 2004), or network reciprocity

where players interact only with their neighbors (Nowak and May, 1992; Hubermann and

Glance, 1993; Nowak et al., 1994; Killingback et al., 1999).

In solving the puzzle of cooperation in social dilemmas the literature so far has primar-

ily focused on providing mechanisms that support the existence of a cooperative equilib-

rium. We extend this literature by providing an explanation for the following conspicuous

regularities of this puzzle. First, there is a persistent pattern showing that cooperation

is only partial, i.e., only a fraction of the population plays cooperatively when individual

rationality calls for defective behavior.2 Second, the elicitation of preferences in the lab-

oratory and in the field, as well as studies on revealed preferences, show that individuals

substantially differ in their cooperative attitudes (e.g., Andreoni and Miller, 1993; Cooper

et al., 1996; Ockenfels and Weimann, 1999, Fischbacher and Gächter, 2010). Thus, the

heterogeneity in behavior does not seem to result from mixed strategy play, but appears

to be a consequence of differences in preferences. Third, it is the rule rather than the

exception that human interactions are accompanied by communication, particularly if the

interaction is of a strategic nature. Humans also differ in this respect and show different

1Indeed, many models of the evolution of altruism share an underlying mathematical structure – that
of Hamilton’s Price equation formulation of inclusive fitness theory (Hamilton, 1964a,b). Hamilton’s
relatedness coefficient can be interpreted as the degree of positive assortment of types and need make no
reference to common descent (McElreath and Boyd, 2007).

2See Rapaport and Chammah, 1965, and Dawes, 1980, for reviews of these experiments in sociology
and psychology. For a survey of some of the studies by economists, see Roth, 1988.
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ways and intensity of preplay-communication in laboratory and field studies. Impor-

tantly, it has been shown that communication influences cooperative behavior (Dawes et

al., 1977; Ostrom and Walker, 1991; Brosig, 2002).3 In this paper we study the coevolu-

tion of these three behavioral dimensions and offer an explanation for the presence of the

aforementioned regularities.

All three phenomena take place at a population level, we therefore take an evolution-

ary perspective to study these related dimensions of heterogeneity. As a stylized social

dilemma, the action set of the PD incorporates the two diametrically opposed behaviors

of defection and cooperation. To account for the potential heterogeneity of preferences

in equilibrium, we consider an evolutionary model with two types of individuals: ‘op-

portunists,’ who maximize individual fitness, and ‘conditional cooperators,’ who have a

preference for joint cooperation.4 To emphasize the necessity to communicate about pref-

erences, we study the evolution of cooperation in social dilemmas in one-shot interactions

without social information, such as reputation, which puts other mechanisms like direct

or indirect reciprocity out of operation. Any mode of communication hardly comes with-

out any cost, be it material cost because of effort exerted, resources spent or forgone

opportunities. On the other hand, compliance to some code of conduct as a signal of

cooperativeness may cause internal costs if it contradicts an individual’s preferences. To

account for these aspects, we incorporate the communication of types via costly signal-

ing.5 Taken together, we study a population game with a PD preceded by a round of

communication as a stage game. In our evolutionary approach we analyze whether the

potential heterogeneity in behavior, preferences and communication can indeed be present

in an evolutionary stable equilibrium. If this turns out to be the case this would provide

a rationale for the observed regularities.

The standard criticism of many preference evolution models is that the evolutionary

stability of preferences which do not implement a Nash equilibrium in the fitness game

hinges on the assumption of (partial) observability of preferences (Dekel, Ely, and Yi-

lankaya, 2007). In our signaling framework preferences are not assumed to be observable

but, of course, might be revealed in (partially) separating equilibria. Importantly, we

do not assume that either type has a cost advantage in signaling cooperativeness neither

3It is a stylized fact in experimental research that the opportunity of communication has a robust and
strong positive impact on cooperation, for an overview see Sally, 1995.

4There is evidence from laboratory and field experiments that the majority of individuals can be
assigned to one of these two classes: Keser and van Winden, 2000; Fischbacher et al., 2001; Frey and
Meier, 2004; Fischbacher and Gächter, 2010.

5Costly signaling is present in many species, including humans (Zahavi, 1977; Grafen, 1990; Maynard
Smith, 1991; Johnstone, 1995; Wright, 1999).
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in fitness nor in utility terms. We depart from standard applications of the ‘indirect’

evolutionary approach pioneered by Güth and Yaari (1992) in one important manner. In-

stead of applying the static notion of evolutionary stable strategies (Maynard Smith and

Price, 1973), we explicitly study the dynamic stability of the Bayesian equilibria of the

signaling-extended PD. Importantly, considering (locally) the full set of Bayesian equi-

libria and their dynamic stability puts us in the position to study the transition across

different Bayesian equilibria.

As our main result we prove the existences of a cooperative equilibrium which is sta-

bilized by the dynamic interplay of separating, semi-pooling, and pooling equilibria of the

signaling-extended PD. This equilibrium is constituted by a (set of) limit cycle(s) and is

characterized by full heterogeneity with respect to behavior, preferences, and signaling.

In this equilibrium the share of cooperators and the share of signalers oscillates. In our

model such an equilibrium exists under mild conditions on signaling cost and other model

parameters. In particular, this equilibrium is the only cooperative equilibrium which ex-

ists if signaling is costless in terms of fitness. Quite surprisingly this equilibrium is also

consistent with cooperators bearing higher signaling than opportunists both in terms of

fitness and utility. Thus, contrary to previous results in the literature, sustaining cooper-

ation does not hinge on the assumption of some material cost advantage for cooperative

types. Furthermore, the oscillatory property of the (set of) limit cycle(s) offers interesting

insights into the economics of social change in (norms of) cooperation.

The remainder of the paper is organized as follows. The following section discusses the

related theoretical literature in more detail. Our model is presented in section 3. Section

4 presents the set of stable perfect Bayesian equilibria (PBE) for a given composition of

preferences. This share of conditional cooperators is endogenized in section 5. Before we

conclude in section 7, we discuss our findings in the penultimate section 6.

2 Related Theoretical Literature

In this section we focus on literature which considers the problem of cooperation in social

dilemmas under incomplete information regarding the opponent’s type. Most closely

related to our approach are the papers of Guttman (2003, 2013), Gintis et al. (2001), and

Panchanathan and Boyd (2004). Guttman (2003) is motivated by the seminal paper of

Kreps et al. (1982). Therein the authors show that if one of two players assigns a small

probability that the opponent will play the ‘tit-for-tat’ strategy then, in a finitely repeated

prisoner’s dilemma (PD), cooperation can be an equilibrium outcome for at least some of
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the stages. In an ‘indirect’ evolutionary framework Guttman endogenizes the uncertainty

assumed by Kreps et al. (1982) regarding the opponent’s preferences. More precisely,

the model considers a community consisting of ‘opportunists’ and ‘reciprocators’ who

have a preference for mutual cooperation. Furthermore, agents send a costless, random

signal that has some informational value for the receiver with respect to the recognition

of the opponent’s type. Players are randomly matched to play a finitely-repeated PD.

In the unique evolutionary equilibrium, both reciprocators and opportunists coexist.6

Although the evolutionary equilibrium is characterized by a heteromorphic population, the

equilibrium behavior of reciprocators and opportunists differs only in the last round, i.e.,

both types show almost identical behavior in equilibrium. Furthermore, if the likelihood

of emitting the cooperative signal is independent of the taste parameter measuring the

preference for mutual cooperation then the endogenization of the taste parameter leads

to an all-reciprocator equilibrium, and thereby to full cooperation. Thus, the model is

less suitable for explaining the regularities of heterogeneous preferences and behavior,

particularly in environments with very few repetitions.

Guttman (2013) studies the evolution of an inherited preference to match other agents’

contribution to the provision of public goods. Under complete information and randomly

matched groups, the unique evolutionary stable matching rate equals one. The model

provides a potential explanation for the existence of conditional cooperation, which does

not rely on reputation or group selection. However, as the informational assumptions are

rather strict, we circumvent this by considering a signaling environment where types are

only revealed by equilibrium play. Furthermore, the model predicts a unique preference

value and therefore cannot account for the heterogeneity in preferences and behavior,

which is the focus of our paper.

Contrary to Guttman (2003), Gintis et al. (2001) consider an environment with no

repeated or assortative matching. Furthermore, the signaling in their model is costly. In

a multi-player public good game individuals can signal their type by providing a group

benefit at a personal cost. These signals may in turn influence a partner’s acceptance

or rejection of potentially profitable allies. They show that an honest signaling of un-

derlying quality can be evolutionary stable. Necessary conditions for the existence are

that signaling is more costly to so-called high-quality types and that partners prefer to

ally with high-quality types. They show that the payoff difference between high and low

types is positive. As a consequence, the frequency of high types would increase over time.

6The survival of reciprocators hinges on the assumption that the costless signal emitted by all subjects
has some small but positive correlation with the actual type.
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This eventually undermines the separating equilibrium, since it has only limited support.7

More precisely, once the share of high types exceeds a certain threshold, high types no

longer find it a best response to signal their quality. As a consequence, cooperation could

break down. Without an exhaustive search for Nash equilibria and an analysis of their

dynamic stability – which is part of our approach – we just do not know. In the model of

Gintis et al. (2001), the monotonic increase in the share of high-quality types is stabilized

by the ad hoc introduction (see p.112, eq.(12)) of other forces on the population dynam-

ics. Indeed, without introducing the exogenous frequency dependency no heteromorphic

population could be stabilized.

The general theme of this strand of literature (see also Lotem et al., 2003; Pan-

chanathan and Boyd, 2004; Macfarlan et al., 2013) is that costly forms of generosity (like

contributions to public goods) serves as a signal of trustworthiness, facilitating the for-

mation of cooperative partnerships in the future. A general problem with the signaling

hypothesis is that it does not explain why quality is signaled by doing good (noted by

Gintis et al., 2001, themselves).8 Indeed, quality could be signaled by other costly activity

like conspicuous consumption.9 In contrast, in our approach the nature of the signaling

technology is not limited to forms of generosity. Moreover, to the best of our knowledge

there is no paper which offers an explanation of heterogeneity in preferences, behavior,

and communication and does not hinge on some ad hoc advantage for non-opportunists.

Another paper related to our approach is Janssen (2008) which studies the evolution

of cooperation in a one-shot PD environment based on the recognition of the opponent’s

trustworthiness. Agents costlessly display symbols and they learn which symbols are im-

portant to estimate an opponent’s trustworthiness. The simulation-based results show

both cooperative and defective behavior. In contrast, the evolution of agents’ taste pa-

rameters shows the tendency toward homogeneity, since almost all agents in the long run

value cooperation over defection (see the statistics of parameter α in Table 4). Since the

result hinges on the assumption that agents can withdraw from playing the game, it does

not apply to our idea of random interaction in an unstructured population that cannot

be circumvented.

7That is, the range of the share of high-quality types, such that the conditions for the existence of the
honest signaling equilibrium are met, is an open interval with a measure of less than one.

8Hopkins (2014) provides a potential solution to the problem. If the ability to reason about others’
mental state, i.e., having a “theory of mind,” is associated with empathy, then humans that possess these
attributes can signal their capability by pro-social acts.

9After all, the prominent example for costly signaling in the context of sexual selection is the peacock’s
tail.
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3 Model

In this section we will first describe the primitives of the Bayesian game played by the

randomly paired individuals. We thereafter present the evolutionary framework in which

we will study the induced population dynamics.

3.1 Underlying Bayesian Game

The game played by the paired individuals consists of two stages. In the first stage, the

communication stage, the two subjects simultaneously exchange messages. In the second

stage the two individuals play a one-shot prisoner’s dilemma. We describe the details of

the second stage first.

The classical prisoner’s dilemma is the most prominent and best-studied example of a

social dilemma. In this game players can either cooperate (C) or defect (D), i.e., the set

of actions available to player i is Ai = {C,D}. The resulting payoffs are given in the left

table of Figure 1. These payoffs reflect the material payoffs or fitness which are decisive

for the evolutionary success of different strategies. We consider two types of preferences.

These preferences represent a subject’s evaluation of these outcomes in terms of utility.

Opportunists are assumed to show preferences which are in line with material payoffs,

i.e., defection is the dominant strategy for those subjects. Without loss of generality

we assume that for those subjects utility and material payoffs coincide. Conditional

cooperators, however, have preferences over material outcomes which make cooperation a

best reply to an opponents’ cooperative behavior. In other words, such preferences make

mutual cooperation a Nash equilibrium. Note that any such preference if represented by

a utility function ui : Ai × A−i → R has the property that ui(C,C) > ui(D,C). If we

neglect the case where a cooperative preference makes cooperation the dominant strategy

of the game, then such preferences can be represented by a single parameter m which adds

sufficient utility to the mutual cooperation outcome. To be of any behavioral significance,

we assume m > α, such that mutual cooperation becomes a Nash equilibrium if two

cooperators interact.10 The resulting payoffs for this type of subjects are given in the right

table of Figure 1. Given this parameterization of individuals’ cooperative preferences, we

will refer to opportunists as low types and to conditional cooperators as high types.

Given the two types of individuals, the type space of player i is Θi = {H,L}, H for

high types, and L for low types. We therefore set as the state space of the Bayesian

10As Güth et al. (2000) noted in a different setting, the precise level of m is behaviorally irrelevant.
All m-types for whom the same inequality with respect to α holds, form an equivalence class concerning
the implied behavior.
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C D C D
C 1 −β C 1 +m −β
D 1 + α 0 D 1 + α 0

Figure 1: Material (left table) and utility (right table) payoff in the PD, α, β > 0 and
1 + β > α.

game Ω = Θ1 × Θ2. The preference for joint cooperation is assumed to be the private

information of the agent. Thus, the signaling function τi : Ω → Θi of player i is given

by τi(ω) = ωi, i.e., the individual signal contains information about the own type, but

no information about the opponent’s type. In the tradition of Harsanyi (1967, 1968a,

1968b), beliefs about the opponent’s type are common knowledge. Like Guttman (2003)

and Güth and Ockenfels (2005), we adopt the natural assumption that beliefs correspond

to actual frequencies of types in the population.

In the first stage, after receiving their signals, the two players can simultaneously

exchange messages about their preferences.11 As in the standard signaling model (Spence,

1973) we assume the existence of a social technology which enables individuals to signal

their positive attitude toward cooperation by incurring some costs. Indeed, note that

in no evolutionary stable equilibrium would individuals bear a cost to actually signal to

be an opportunist. Research on many species including humans (Zahavi, 1977; Grafen,

1990; Maynard Smith, 1991; Johnstone, 1995; Wright 1999) supports the assumption of

the existence of such a signaling technology. Thus, without loss of generality, we assume

that the message space of player i is given by Mi = {m, 0}, where the costless message 0

corresponds to not sending a message. The message m corresponds to the costly signal

to be a high type. Sending a message can be costly in terms of material or utility payoff.

Let kH , kL denote the utility signaling cost for high types and low types, respectively. To

distinguish utility and material signaling cost we denote material signaling cost by kfH
and kfL, respectively. Importantly, a priori we impose no restriction on the relation of

signaling cost in terms of utility or fitness across types. In particular, we allow for type-

independent signaling cost, i.e., kH = kL and kfH = kfL. Higher lying cost for opportunists,

for example, would suggest that kH ≤ kL. There is evidence that lying cost are large and

widespread (Abeler et al. 2015). The relation of material singling cost across types which

could reflect opportunity cost of a time-consuming signaling stage is more ambiguous.

We refer the reader to our discussion of the relation and the nature of signaling costs in

11Note that without communication, the impossibility result of Kandori (1992, Proposition 3) applies
to such an environment which states that the unique equilibrium is characterized by full defection, i.e.,
everybody always defects.
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section 6.

For a given type θi a strategy si of player i specifies an action depending on the

message received and a message to be sent, i.e., Si = {f : M−i → Ai} ×Mi. Utility

payoffs are given by ui(si, s−i, θi) = ui(ai, a−i, θi) − 1m · kθi , where a−i = s−i(mi), ∀i and
1m equals one if mi = m and zero otherwise. Material payoffs are given by ufi (si, s−i, θi) =

ufi (ai, a−i, θi)−1m·kfθi . Payoffs ui(ai, a−i, θi) and u
f
i (ai, a−i, θi) are given in Figure 1. Taken

together, this constitutes the Bayesian game Γ = 〈N, (Si), (ui),Ω, (Θi), (τi), (pi)〉, with
prior beliefs pi on Ω. The adoption of the assumption that the prior beliefs correspond

to actual frequencies in the population gives us pi(τ
−1
i (H)) = λ and pi(τ

−1
i (L)) = 1− λ,

where λ denotes the share of high types in the population. To distinguish the type-specific

strategies of a player we denote the set of strategies for high (low) types by SH (SL).

The (pure strategy) Bayesian Nash equilibria of Γ correspond to the Nash equilibria

of the strategic game ΓN = 〈N, (Si), (ũi)〉, where ũi = Eω[ui] denotes the expected utility

and Si is the set of all pairs of mappings (ψi, φi), where ψi : Θi × M−i → Ai and

φi : Θi →Mi. That is, Si is the set of plans of actions contingent on the own signal τi(ω)

and on the signal m−i ∈ M−i received from the opponent, represented by ψi. Moreover,

by φi it specifies which signal mi ∈ Mi to be sent contingent on the own type. Note

that for any player we can identify S by SH × SL, where the first entry specifies the

type-specific strategy for a high type and the second entry the type-specific strategy for

a low type. Let K = |S | = |SH ||SL| denote the number of pure strategies.

3.2 Population Dynamics

We now turn to the description of our evolutionary framework. We assume that the

symmetric signaling-extended one-shot PD ΓN is played recurrently in a large but finite

population by randomly matched pairs of individuals. Agents are assumed to only process

information on the outcomes of their own past interactions. In particular, they do not

process any information on the opponent’s identity or on outcomes in games in which they

were not involved. By these assumptions we refrain from imposing additional structure

on the interactions which may drive the emergence of cooperation and the properties of

cooperative equilibria. This allows us to study the interdependencies between preferences,

behavior, and communication in isolation.

Given our distinction between material payoffs and utility, we employ the indirect

evolutionary approach, pioneered by Güth and Yaari (1992),12 in which all players are as-

12The indirect evolutionary approach has also been applied in different strategic settings (ultimatum
game, Huck and Oechssler, 1999) or to analyze the evolutionary stability of altruistic preferences (Bester
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sumed to be rational, and the evolutionary forces determine the population’s composition

of players with different preferences. In other words, preferences determine behavior and

behavior in turn determines fitness. Recent criticism of this approach (Dekel et al., 2007)

is concerned with the assumption of the observability of agents’ preferences. However, in

our model preferences are not observable, we only assume that agents have correct beliefs

about the distribution of types in the population.

In our model, on the one hand evolutionary forces shape the composition of preferences

in the population, i.e., the share of high types λ. On the other hand, selection also

shapes the composition of strategies in the population, which individuals apply in the

signaling-extended PD. We make the natural assumption that the inherited behavior

evolves independently across types. This assumption excludes biases like the case that a

certain strategy as a high type it is more likely to be played for some low type strategies

than for others. We will refer to (pH ,pL) as the population state, where pθ denotes the

vector of shares in the population which play strategy sθ ∈ Sθ. In modeling the dynamics

of the population state and λ we build on the general selection dynamics defined on

∆|SH | ×∆|SL| × [0, 1] in terms of growth-rates. That is, ṗsθ = gsθ(pH ,pL, λ) · psθ , sθ ∈ Sθ

and λ̇ = h(pH ,pL, λ) · λ · (1− λ)13, where the functions gsθ , h : X1 ×X2 ×X3 → R with

open domains X1, X2, and X3 containing ∆|SH |, ∆|SL|, and [0, 1] specify the respective

growth rate per time unit. Taken together, this gives rise to the following coupled system

of differential equations:

ṗsθ = gsθ(pH ,pL, λ) · psθ , sθ ∈ Sθ, θ ∈ {H,L} (1)

λ̇ = h(pH ,pL, λ) · λ · (1− λ) (2)

Given the non-negativity of a population state and the share λ, in this context the liter-

ature on dynamic systems commonly imposes some regularity conditions which guarantee

that starting from an interior point the system remains in ∆|SH |×∆|SL|×[0, 1]. The follow-

ing assumptions are a weaker notion of Samuelson and Zhang’s (1992) regularity condition.

We make the assumptions
∑

sθ∈Sθ
ṗsθ = 0, ∀(pH ,pL, λ) ∈ ∆|SH |×∆|SL|×[0, 1], θ ∈ {H,L}

and λ̇+ ˙(1− λ) = 0. Moreover, we assume that psθ = 0 implies ṗsθ ≥ 0. Analogously, λ = 0

and Güth, 1998), of altruistic and spiteful preferences (Possajennikov, 2000) or of risk preferences (Wärn-
eryd, 2002).

13For the sake of a more convenient representation we refrain from modeling the shares of low types
and high types separately since one is the residual of the other as both add up to one. As a technical
consequence the additional factor (1− λ) arises if we want to place the condition of Lipschitz continuity
on the function h(pH ,pL, λ). Lipschitz continuity of h(pH ,pL, λ) then implies the Lipschitz continuity
for the relevant growth rate function for high and low types, i.e., h(pH ,pL, λ) ·(1−λ) and h(pH ,pL, λ) ·λ.
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implies λ̇ ≥ 0 and λ = 1 implies λ̇ ≤ 0. We also make the standard assumption of Lips-

chitz continuity of ṗsθ and λ̇ which guarantees the existence and uniqueness of a solution

for the dynamic system (1)–(2) by the Picard-Lindelöf theorem. Let ξ : R×C → C denote

the induced solution mapping of the system (1)–(2), where C = ∆|SH | × ∆|SL| × [0, 1].

We are ultimately interested in stable sets of the dynamic system (R, C, ξ). As a classi-

cal notion of stability we will apply the concept of asymptotic stability. Intuitively, this

concept requires that any small perturbations of the set induce a movement back to the

set. Formally, a closed set A ⊂ C is asymptotically stable if it is Lyapunov stable and if

there exists a neighborhood B∗ of A such that ξ(t, x0)
t→∞−−−→ A for all x0 ∈ B∗ ∪ C.14

So far no relation between payoffs and changes in the population state or in the share

of high types has been imposed. We make the common assumption that the dynamics

of the population state and the share of high types satisfy payoff-monotonicity. Payoff-

monotonicity captures the idea that a pure strategy with a higher payoff grows at a higher

rate. Importantly, in the indirect evolutionary approach payoff-monotonicity for gsθ refers

to utility payoffs, as behavior in the underlying game ΓN is driven by the evaluation of

material payoffs according to subjects’ preferences. In contrast, payoff-monotonicity of

h refers to material payoffs as the ultimate survival of a preference is determined by the

induced fitness of the subject carrying that preference. When material payoffs differ across

individuals of the same type we assume for simplicity that payoff-monotonicity refers to

the average material payoffs within each type. Formally, gsθ(pH ,pL, λ) > gs′
θ
(pH ,pL, λ)

if and only if Πθ(sθ) > Πθ(s
′
θ), where Πθ(sθ) =

∑

tθ∈Sθ
ptθu(sθ, tθ, θ) denotes the expected

payoff for the type-specific strategy sθ. Analogously, λ̇ > 0 if and only if Πf
H > Πf

L, where

Πf
θ =

∑

sθ∈Sθ
psθΠ

f
θ (sθ) with Πf

θ (sθ) =
∑

tθ∈Sθ
ptθu

f (sθ, tθ, θ).

Note that for payoff-monotonicity to also be satisfied at the boundaries of ∆KH
×∆KL

×
[0, 1], Samuelson and Zhang (1992) assume that the limits lim

psθ→0

ṗsθ
psθ

exist and are finite.

In our setup this corresponds to the upper bounds for the growth-rate functions gsθ . How-

ever, this is sufficient but is not necessary for payoff-monotonicity. Note further that the

assumption of bounded growth-rate functions implies that limpsθ↓0
ṗsθ = 0 irrespective of

the payoff associated with this strategy. We make the assumption of bounded growth-rate

functions only for those strategies with inferior payoffs, allowing the growth-rate functions

for a strategy sθ with maximal payoff to be unbounded, which is not in contradiction to

the Lipschitz continuity and payoff-monotonicity of the dynamics ṗsθ . Given humans’

14ξ(t, x0)
t→∞−−−→ A is defined as the distance d(ξ(t, x0), A) converging to zero as t → ∞. A closed set

A ⊂ C is Lyapunov stable if every neighborhood B ⊂ A contains a neighborhood B0 of A such that
γ+(B0 ∩ C) ⊂ B, where γ+(Z) is defined as the union of all semi-orbits γ+(z) with z ∈ Z.

10



cognitive abilities to consider counterfactuals and their potential for seizing profitable

opportunities via behavioral innovations we think that the following assumption is more

appropriate. If at psθ = 0, Πθ(sθ) > Πθ(tθ), ∀tθ 6= sθ ∈ Sθ then limpsθ↓0
ṗsθ ∈ (0,∞).

In some sense this assumption reflects the common economic wisdom that there are no

$10 bills lying on the street. We will refer to this assumption as the social innovation

assumption. Note at this point that this assumption is sufficient but not necessary to

prove our main results in the realm of the very general class of regular payoff-monotone

selection dynamics. We will elaborate on this in section 6.

Finally, we assume that the dynamics of the population state (pH ,pL) is much faster

than the adjustment of the composition of preferences λ in the population. This is a

common assumption in applications of the indirect evolutionary approach as the adjust-

ment of behavior is presumably faster than the dynamics of underlying preferences. This

assumption allows us to make use of the adiabatic elimination technique (see e.g., Haken,

1977). Under this assumption system (1) is said to be slaved by system (2). However,

the slaved system reacts to system (2). Since we are looking for stable points or sets

of the system (1)–(2), the adiabatic technique allows us to solve (2) approximately by

putting ṗsθ = 0, ∀sθ ∈ Sθ, θ ∈ {H,L}. In other words, we study the dynamics of the

type composition λ̇ under the assumption that the fast dynamics of the composition of

strategies (ṗL, ṗH) has reached a stationary point. Intuitively, this assumption guaran-

tees that the dynamic system (R, C, ξ) will mostly be in the region of attraction of one of

the stable (sets of) population states. Formally, let P (λ) denote the union of all stable

(sets of) population states with ṗsθ = 0, ∀sθ ∈ Sθ, θ ∈ {H,L} at any given λ and let

Uι ⊂ X1 × X2 × X3 denote an open ι-neighborhood of ∪λP (λ) × [0, 1], with ι > 0. We

will assume the following:

‖(ṗH , ṗL)‖
‖λ̇‖

>
√
2 · σ ≫ 1, ∀(pH ,pL, λ) ∈ X1 ×X2 ×X3 \ Uι, (3)

where σ parameterizes the relative speed of the two dynamic processes. As a next step

we first derive the stable (sets of) populations states for any fixed composition of types

λ̃ in section 4. That is, we study the system (1) for λ ≡ λ̃. In section 5 we study the

induced dynamics of λ.

11



4 Stable Bayesian Nash Equilibria with Exogenous

Proportion of High Types

In this section we present the stable (sets of) population states for each λ ∈ (0, 1). Note

that these (sets of) states correspond to the symmetric Nash equilibria of the mixed

extension of ΓN . In the game ΓN , a strategy is a type-continent and signal-contingent

plan. Given the two actions C and D, the two types and the two signals, there are 64 pure

strategies. Since defection is the dominant strategy for low types, we can eliminate all

strategies which specify cooperative behavior for any signal received for the contingency

of being a low type. Thus, SH = {CCs,CDs,DCs,DDs,CCns, CDns,DCns,DDns}
and SL reduces to S̃L = {s, ns}, where the first entry in, for instance, CDs specifies

the action if the cooperative signal is received, the second entry refers to the action in

the event of no signal, and finally s or ns indicate whether the signal is sent or not.

CDs, s will denote the corresponding type-contingent strategy. Hence, there are K̃ = 16

type-contingent strategies remaining.

It turns out that in our signaling-extended PD ΓN , there exists one stable separating

and three stable pooling equilibria. There are also stable semi-pooling equilibria, however,

only one of them is relevant for our subsequent analysis. We will introduce this equilibrium

in the next chapter when we endogenize the proportion of high types.15 The following

Proposition 1 reports the stable signaling equilibrium and the stable pooling equilibria.

Proposition 1 In the signaling extended prisoner’s dilemma there exist the following

stable Perfect Bayesian Equilibria:

(i) Cooperative Separating Equilibrium (CSE): pCDs,ns = 1

(ii) Cooperative High-Pooling Equilibrium (CHPE): pCDs,s = 1− pCCs,s ≥ kL
(1+α)λ

(iii) Cooperative Low-Pooling Equilibrium (CLPE): pCCns,ns + pDCns,ns = 1

(iv) Defective Low-Pooling Equilibrium (DLPE): pDDns,ns = 1−pCDs,ns ≤ 1
λ
min

{

kH+β
1+m+β

, kH
1+α

}

Table 1 presents the conditions for the existence and the λ-support16 of these equilibria.

Proof. We leave the derivation and the analysis of stability to Appendix B.

15For a derivation of all semi-pooling equilibria assuming kH ≤ kL we re-
fer the reader to Appendix D of our working paper version available under
http://wwwuser.gwdg.de/∼cege/Diskussionspapiere/DP221 Appendix D.pdf.

16Here, the λ-support of an equilibrium corresponds to the set of all λ such that the equilibrium under
consideration exists.
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Strategies λ-support Differences in utility payoffs
Condition for Existence Differences in average material payoffs

Cooperative Separating Equilibrium

CDs, ns kH
1+m ≤ λ ≤ kL

1+α ∆Π(CDs, ns) = λ(1 +m)− kH

kH < 1 +m ∆Πf (CDs, ns) = λ− k
f
H

Cooperative High-Pooling Equilibrium

CCs, s λ ≥ max{ kL
1+α ,

β
β+m−α} ∆Π(CCs, s) = ∆Π(CDs, s)

= kL − kH − (λ(α−m) + (1− λ)β)
CDs, s kL < 1 + α ∆Πf (CCs, s) = ∆Πf (CDs, s)

= k
f
L − k

f
H − (λα+ (1− λ)β)

Cooperative Low-Pooling Equilibrium

CCns, ns λ ≥ β
β+m−α ∆Π(CCns, ns) = ∆Π(DCns, ns)

= −(λ(α−m) + (1− λ)β)
DCns, ns ∆Πf (CCns, ns) = ∆Πf (DCns, ns)

= −(λα+ (1− λ)β) < 0

Defective Low-Pooling Equilibrium

CDns, ns 0 < λ < 1 ∆Π(CDns, ns) = ∆Π(DDns, ns) = 0
DDns, ns ∆Πf (CDns, ns) = ∆Πf (DDns, ns) = 0

Table 1: Separating and pooling equilibria. Note that the equilibria are only stable in the
interior of their support. ∆Π = ΠH − ΠL and superscript f indicates fitness payoffs.

In the cooperative separating equilibrium, players apply the strategy CDs, ns. Thus,

high types recognize each other and cooperate only among themselves. The intuition

behind the fact that the support of this equilibrium has both a lower and an upper bound

is as follows: If there are too few high types then the cooperative outcome among them

cannot compensate for the signaling costs. If, on the other hand, there are too many

high types, signaling becomes sufficiently profitable for low types. In the cooperative low-

pooling equilibrium, nobody signals and high types cooperate. This equilibrium exists if

there are a sufficient number of high types. Only then can high types be compensated

for the loss from playing cooperatively against low types by the cooperative outcome

among each other. In the defective low-pooling equilibrium, nobody sends the cooperative

signal and everybody defects and earns a payoff of zero. Again, because of the lack of

distinguishability in equilibrium, this equilibrium is indeed a set where CDns, ns and

13



DDns, ns might be played. This equilibrium set reflects the benchmark solution in the

PD without communication and exists for all population compositions between high types

and low types. In the cooperative high-pooling equilibrium, everybody signals and high

types cooperate. This equilibrium exists if there are a sufficient number of high types.

If the latter’s proportion is large enough, they can compensate for the loss from being

cooperative against low types by the cooperative outcome among each other.

5 Endogenous Proportion of High Types

We now analyze the dynamics of the share of high types (λ) in the population for which

we assume that the dynamics have reached a stable equilibrium, as we assumed that

inner motives evolve far more slowly than behavioral frequencies. For the sake of a more

convenient presentation, we will assume that kL, kH < 1 + α which is sufficient for the

existences of all equilibria presented in Table 1. In other words, we focus on the more

meaningful case of signaling devices which are less costly than the maximum material

gain from sending the cooperative signal, i.e., ufi (D,C, θ)− ufi (D,D, θ).

The evolution of the proportion of conditional cooperators is determined by their

relative fitness. Fitness is measured by the material payoffs as presented in Figure 1.

Analogous to the derivation of the PBE, the differentials in these fitness payoffs among

high and low types are the driving force for the evolution of their respective shares. These

fitness-payoff differentials are given in Table 1 and depicted as functions of λ in Figure 2.

A stable inner equilibrium, i.e., an equilibrium where both high types and low types

coexist, may be realized around one stable PBE or by the interplay of several PBEs.

We first concentrate on the first case (Proposition 2) before turning to the second case

(Proposition 3). In the first case, the difference in fitness payoffs between high and low

types must vanish to constitute a stationary point at this particular value of the share

of high types, λ∗. For stability, in the neighborhood of an equilibrium λ∗, high types

must earn strictly more than low types for λ < λ∗ and strictly less for λ > λ∗. The only

candidate where a stable heteromorphic population is supported by a single PBE is one

associated with the cooperative high-pooling equilibrium (CHPE) at 1− α−(kf
L
−kf

H
)

α−β
. This

is illustrated in Figure 2. All other equilibria are characterized by either strictly negative

or strictly increasing payoff differentials. The CHPE exists and is stable if 1− α−(kf
L
−kf

H
)

α−β

is inside the λ-support of this equilibrium and the fitness differential decreases in λ, which

is the case if α− β > 0 (see Table 1). Taking these conditions together yields:
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Proposition 2 The set
{

(pH ,pL, λ)|λ =
kf
L
−kf

H
−β

α−β
, pCCs,s + pCDs,s = 1, pCDs ≥ kL

(1+α)λ

}

is a stable equilibrium set if and only if max{β + kL
1+α

(α− β), β
β+m−α

m} < kfL − kfH < α.

In this equilibrium (CHPE) both types send the signal and high types cooperate.

Proof. Stability requires a negative slope of the fitness difference function, i.e., α− β > 0

(see Table 1). Let us first consider kL
1+α

≤ β
β+m−α

. In this case, the within-support

condition amounts to β
β+m−α

< 1−α−(kf
L
−kf

H
)

α−β
< 1, rearranging yields β

β+m−α
m < kfL−kfH <

α.

If on the other hand kL
1+α

> β
β+m−α

, the within-support condition amounts to kL
1+α

<

1− α−(kf
L
−kf

H
)

α−β
< 1, rearranging yields β + kL

1+α
(α− β) < kfL − kfH < α.

Note that the first pair of inequalities implies that α − β > 0, because β
β+m−α

m <

α ⇐⇒ m(β − α) < α(β − α) ⇐⇒ β − α < 0. Thus, the two pairs of inequalities are

necessary and sufficient.

1
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cooperative low pooling 

equilibrium 

cooperative separating 

equilibrium 

defective low pooling 

equilibrium 

Figure 2: Differences in material payoffs under the conditions of Proposition 2.

The conditions in Proposition 2 reveal that the existence of inner stable equilibria

requires that the material signaling costs for high types must exceed the corresponding

costs for low types. The spread in signaling costs, however, does not have to compensate

for the entire incentive to defect on cooperative behavior (α) for partial cooperation to

be supported by the CHPE. Note that the necessary difference in material signaling costs

increases in α and β. In other words, the higher the temptation to defect and the higher

the suckers’ payoff in absolute terms, the higher the required disadvantage in terms of
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material signaling cost for low types will be. Interestingly, although the precise level of m

is not decisive with respect to its behavioral consequence, its level plays a role for partial

cooperation induced by the CHPE. The needed spread in signaling costs weakly decreases

in the strength of the preference for conditional cooperation m. That is, if high types are

more inclined to conditionally cooperate, the signaling device needs to be materially less

disadvantageous for low types.

The equilibrium supported by the CHPE is characterized by partial cooperation and

the heterogeneity of preferences. However, the equilibrium only exists if we low types bear

substantial material signaling costs exceeding those of high types by more than the suckers’

payoff in absolute terms. The equilibrium also requires α > β. Moreover, the CHPE,

like any pooling equilibrium, cannot account for heterogeneity regarding communication.

All limitations will be overcome by the second case, i.e., when there is an equilibrium

constituted by the interplay of several stable PBEs.
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cooperative low pooling 

equilibrium 

cooperative separating 

equilibrium 

defective low pooling 

equilibrium 

  f

H L
 



1

H
k

m 1

L
k

m


  
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f f
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k k  



Figure 3: Differences in material payoffs under the conditions of Proposition 3 for kfL > kfH .

In our case, we may have such an equilibrium only at λ∗ ≡ kL
1+α

where two equilibria

interplay: the cooperative separating equilibrium and the cooperative high-pooling equi-

librium (see Figure 3). In more detail, high types may earn higher material payoffs in

the cooperative separating equilibrium by realizing the gains from mutual cooperation.

This induces a growth of their share in the population. At λ∗ this equilibrium ceases to

exist since low types start to find it profitable to send the cooperative signal. Hence, the

system (pH(t),pH(t), λ(t)) could be attracted by the cooperative high-pooling equilib-
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rium. If high types face a material disadvantage in this equilibrium caused by the signal’s

loss of its discriminatory power, then their share will decrease. This cyclic process may

eventually converge, kept alive only by random drift or may lead to a limit cycle where

even without random forces a cyclic process is established. In what follows, we derive the

conditions under which either of these two cyclic processes exists.

At this point we introduce the aforementioned semi-pooling equilibrium which exists

at λ∗. Its existence and its potential stability make it relevant for the dynamic analysis

around λ∗. In this equilibrium all high types play CDs and there is pooling among low

types in the sense that some send the signal others don’t.17

For the interaction of the CSE and CHPE it is necessary that the supports of these

two equilibria are adjacent, which corresponds to the following condition:

kL
1 + α

>
β

β +m− α
(4)

Moreover, note that the material payoff differences reported in Table 1 imply that

(a) kfH <
kL

1 + α
and (b) kfL − kfH < β +

kL
1 + α

(α− β) (5)

are necessary and sufficient conditions for the difference between material payoffs of the

high types and of the low types being (a) positive in the CSE and (b) negative in the

CHPE, respectively, in the relevant neighborhoods of λ∗. In addition, at λ∗ the difference

in the average material payoffs of the semi-pooling equilibrium strictly decreases in the

share of signal senders among the low types, ps, and coincides with the corresponding

difference of the cooperative separating equilibrium and the cooperative high-pooling

equilibrium if ps = 0 and ps = 1, respectively. For λ∗ a fixed point thus exists and is

unique at p∗s ≡
λ∗−kf

H

λ∗(1+α−β)+β−kf
L

for any payoff-monotone dynamic. This fixed point can be

either stable or unstable. For the latter we can show that there is a limit cycle around

this point as long as the dynamics of (pH ,pL) are sufficiently fast.

Proposition 3 Let the cyclicity conditions (4) and (5) hold. There exists a k̄H > kL

such that if kH < k̄H , then

(i) for kfH(1 + α− β) < kfL − β, (p∗
H ,p

∗
L, λ

∗) is a stable equilibrium point,

(ii) for kfH(1 + α − β) > kfL − β, there exists a σ > 0 such that there is a stable (set

of) limit cycle(s) around (p∗
H ,p

∗
L, λ

∗) for all σ > σ. The limit cycles are characterized

by pCDs,s + pCDs,ns = 1,

17For further details see Appendix B
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where λ∗ = kL
1+α

, and (p∗
H ,p

∗
L) ∈ ∆|SH | ×∆|SL| with pCDs,s = 1− pCDs,ns = p∗s.

Proof. The strategy of the proof is as follows. Our ultimate goal is to establish the

conditions for asymptotic stability of (p∗
H ,p

∗
L, λ

∗), where p∗
H = {(psH ) ∈ ∆8|pCDs = 1},

p∗
L = (p∗s, 1 − p∗s), with p

∗
s =

λ∗−kf
H

λ∗(1+α−β)+β−kf
L

, and λ∗ = kL
1+α

and the asymptotic stability

of a set A which contains (p∗
H ,p

∗
L, λ

∗) if this fixed point is itself unstable according to

the dynamics given by (1)–(2). We will prove this by first concentrating on the two-

dimensional dynamics resulting from restricting the dynamic system (1)–(2) to pCDs=1,

i.e., we consider the following two-dimensional dynamic system:18

ṗs = gs(ps, λ) · ps · (1− ps) (6)

λ̇ = h(ps, λ) · λ · (1− λ), (7)

We will then extend the argument in several steps to the full-dimensional case.

The proof proceeds in six steps. In the first step we show that under certain conditions

the dynamic system (6)–(7) has an asymptotically stable fixed point at (p∗s, λ
∗) (Lemma

1). In step two we prove for the dynamic system (6)–(7) the existence of an asymptoti-

cally stable set A2 ⊂ [0, 1]2 which contains (λ∗, p∗s) (Lemma 2) under certain conditions.

Moreover, we show that the forward orbit of any point (λ, ps) ∈ A2 circles around the

fixed point (p∗s, λ
∗). By step three we show that under condition (ii) A2 contains either

a stable limit cycle or a neutrally-stable center (Lemma 3). Step four extends the result

to the dynamic system (1)–(2) restricted to pCCs + pCDs = 1 (Lemma 4). In Lemma 5

we show the payoff superiority of the strategies CCs and CDs in a full-dimensional set

containing A2. Finally, we prove the existence of a full-dimensional Lyapunov stable set

A with the property that for any state (pH ,pL, λ) ∈ A the strategies CCs and CDs

earn the highest payoffs (Lemma 6). As a consequence, any perturbation from pCDs = 1

other than CCs will vanish. By Lemma 4 this finishes the proof. We will assume for the

remainder of the proof that the cyclicity conditions (4) and (5) hold.

Step One

Lemma 1 p∗s =
λ∗−kf

H

λ∗(1+α−β)+β−kf
L

, λ∗ = kL
1+α

is a fixed point of the dynamic system (6)–

(7). The fixed point is asymptotically stable if kfH(1 + α − β) < kfL − β. It is unstable if

kfH(1 + α− β) > kfL − β.

18The additional factor (1− ps) results from the fact that pns = 1− ps, see footnote 13.
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Proof. Given our assumption that payoff-monotonicity in the dynamics across types, i.e.,

λ̇, refers to average material payoffs for each type, we have λ̇ = 0 if and only if Πf
H(CDs) =

psΠ
f
L(s) + (1− ps)Π

f
L(ns). Moreover, ṗs = 0 if and only if ΠL(s) = ΠL(ns). This gives us

the following system of equations:

ṗs = 0 ⇔ λ(1 + α)− kL = 0 (8)

λ̇ = 0 ⇔ λ− kfH − (1− λ)βps = ps
(

λ(1 + α)− kfL
)

(9)

⇔ λ(1− ps(1 + α− β)) = kfH + βps − psk
f
L (10)

The equivalences (8)–(9) hold for ps, λ ∈ (0, 1). Solving ṗs = λ̇ = 0 yields p∗s and λ
∗ as

the unique fixed point of the dynamic system (6)–(7). Since we assumed that kL < 1+α,

we have λ∗ ∈ (0, 1). Cyclicity conditions (5a) and (5b) guarantee that p∗s ∈ (0, 1).

In order to study the stability of this solution, we linearize the system (6)–(7) at λ∗

and p∗s and study the eigenvalues of the corresponding characteristic matrix. This gives

us

χ1,2 =
1−p∗s(1+α−β)

2
λ∗(1−λ∗) ± (11)

√

(

1−p∗s(1+α−β)
2

λ∗(1−λ∗)
)2

−(1+α)(λ∗(1+α−β)+β−kfL)λ∗(1−λ∗)p∗(1−p∗) (12)

as eigenvalues of the characteristic matrix. Since the last term of the radicand is positive

by cyclicity conditions (5), the fixed point (p∗s, λ
∗) is stable if 1 − p∗s(1 + α − β) < 0

and unstable if 1 − p∗s(1 + α − β) > 0. Inserting p∗s into the condition for stability and

reformulating gives us:
β−kf

L
+kf

H
(1+α−β)

λ∗(1+α−β)+β−kf
L

< 0. Again, since λ∗(1 + α− β) + β − kfL > 0 this

reduces to kfH(1 + α− β) + β − kfL < 0.

In the next step we focus on the case where the fixed point (p∗s, λ
∗) is unstable.

Step Two

We introduce the following definition, where σ corresponds to the parameter in (3).

Definition A2(µ, σ) =
{

(ps, λ) ∈ [0, 1]2
∣

∣

∣
λ ∈ (λ−(ps), λ

+(ps))
}

with λ−(ps) and λ+(ps)

being characterized by the differential equations and boundary conditions:

∂λ+(ps)

∂ps
= max

{

µ

σ
, (1 + µ)

λ̇

ṗs

}

and λ+(0) = λ∗ + µ (13)

∂λ−(ps)

∂ps
= max

{

µ

σ
, (1 + µ)

λ̇

ṗs

}

and λ−(1) = λ∗ − µ (14)
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where ṗs and λ̇ are given by equations (6) and (7), and µ > 0, σ > 1.

First, as long as λ̇/ṗs ≥ µ
σ(1+µ)

the boundary functions λ−(ps) and λ+(ps) solve the

differential equation ∂λ(ps)/∂ps = (1 + µ)λ̇/ṗs. Note that payoff-monontonicity implies

ṗs(ps, λ) 6= 0 for all λ 6= λ∗ as long as ps ∈ (0, 1). Importantly, given that pCDs = 1, we will

show below that signaling earns low types the highest payoff for population states ps = 0

and λ ∈ (λ∗, 1). Hence, ṗs(0, λ) > 0, ∀λ ∈ (λ∗, 1) by the social innovation assumption.

Analogously, given that pCDs = 1, strategy ns earns low types the highest payoff for

population states with ps = 1 and λ ∈ (0, λ∗). Hence, ṗs(1, λ) < 0, ∀λ ∈ (0, λ∗). Thus,

1 + µ)λ̇/ṗs is well defined. Existence and uniqueness of a solution to the differential

equation are guaranteed by the Picard-Lindelöf theorem. Second, for λ̇/ṗs <
µ

σ(1+µ)
the

boundary functions are linear functions with slope µ/σ. Consequently, λ−(ps) and λ
+(ps)

are well defined. See Figure 4 for an illustration (see Appendix A for details).
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Figure 4: Vector field for modified replicator dynamics. Parameters: m = 2, α = 0.9, β =
0.5, kH = kfH = 0.25, kL = kfL = 0.8, σ = 19, nn = 20, np = 1, µ = 1/30.

Lemma 2 Let kfH(1 + α − β) > kfL − β. There exists an µ such that for all µ ∈ (0, µ)

there exists a σ(µ) > 0 such that A2(µ, σ) is an asymptotically stable set of (6)–(7) for

all σ > σ(µ).

Proof. As a first step we partition the unit square [0, 1]2 according to the dynamics of ps

and λ. Note that the function λ(ps) =
ps(β−kf

L
)+kf

H

1−ps(1+α−β)
which solves (9) has a singularity at

pcrits = 1
1+α−β

. Moreover, λ(ps) → kf
L
−β

1+α−β
as ps → ±∞ and λ(0) = kfH . Also note that
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λ(0) = kfH < kL
1+α

= λ∗, because of the cyclicity condition (5a). Additionally, we have

λ(1) =
kf
H
+β−kf

L

β−α
. We distinguish two cases. First, pcrits ∈ (0, 1) implies that β < α and

thereby that λ(1) < λ∗ because kfL − β < kfH(1 + α− β) < kfH + (α− β)λ∗ where the first

inequality follows from the assumption of this Lemma and the second from the cyclicity

condition (5a). Second, if pcrits /∈ [0, 1] then β > α. This implies that λ(1) > λ∗ because

of kfL − β < kfH + (α− β)λ∗ < kfH(1 + α− β). Given equation (10) these insights imply:

λ̇ > 0 ⇔











λ >
kf
H
+ps(β−kf

L
)

1−ps(1+α−β)
, ps < pcrits

λ <
kf
H
+ps(β−kf

L
)

1−ps(1+α−β)
, ps > pcrits

(15)

Finally, ṗs = 0 if and only if λ = λ∗. See Figure 5 for an illustration.

In a second step we show that we can choose µ and σ such that A2(µ, σ) ⊂ [0, 1]×[λ∗−
2µ, λ∗ + 2µ]. Let us first focus on λ+(ps). According to equations (6)–(7), We may have

ṗs = 0 only if ps ∈ {0, 1} or λ = λ∗. Our adiabatic-elimination assumption guarantees

that ‖ṗs‖

‖λ̇‖
> σ outside an ι-neighborhood of 0 × [0, 1], 1 × [0, 1], and (0, 1) × λ∗ in [0, 1]2.

This is because
√
2‖ṗs‖

‖λ̇‖
= ‖(ṗs,ṗns)‖

‖λ̇‖
= ‖(ṗH ,ṗL)‖

‖λ̇‖
>

√
2σ. Thus, we have:

∂λ+(ps)

∂ps
≤ max

{

µ

σ
,
1 + µ

σ

}

=
1 + µ

σ
, ∀ps ∈ [ι, 1− ι] (16)

Moreover, ΠL(s) > ΠL(ns) for ps = 0 and λ > λ∗. Thus, our social innovation

assumption implies for λ > λ∗ and ps = 0 we have ṗs > 0. Thus, for any λ′ > λ∗, ‖λ̇‖
‖ṗs‖

is

bounded above for all (ps, λ) ∈ [0, ι] × [λ′, 1]. As a consequence, for ps ∈ [0, ι], λ+(ps) is

bounded by a linear function in ι. For a sufficiently small ι, if ps > 1 − ι then λ+(ps) is

given by a linear function with slope µ/σ because of λ̇ < 0. Taken together, for any µ > 0

we can set ι sufficiently small and σ(µ) sufficiently large such that λ+(1) < λ∗ + 2µ. By

an analogous argument we can guarantee that λ−(0) > λ∗ − 2µ because ΠL(s) < ΠL(ns)

for ps = 1 and λ < λ∗.

The upper bound µ must satisfy the following conditions:

(i) λ+(1) in the support of CHPE, λ−(0) in the support of CSE

⇐ λ∗ − 2µ >
kH

1 +m
and λ∗ + 2µ < 1 (17)

(ii) λ̇(0, λ) > 0, ∀λ ∈ (λ∗ − 2µ, λ∗), λ̇(1, λ) < 0, ∀λ ∈ (λ∗, λ∗ + 2µ)

⇐ λ∗ − 2µ > kfH and λ∗ + 2µ <
kfH + β − kfL

β − α
(18)

21



Condition (i) guarantees that the boundary functions of A2(µ, σ) will limit the trajec-

tories to end up in the support of the CSE while approaching ps = 0, and in the support

of the CHPE while approaching ps = 1, respectively. The sufficiency of equation (17)

follows from the definitions of λ+(ps), and λ
−(ps). Condition (ii) implies λ̇ > 0(< 0) for

trajectories in A2(µ, σ) near the CSE (CHPE). The sufficiency of (18) results from (15).

The existence of a µ > 0 which satisfies inequalities (17) and (18) is guaranteed by the

non-empty support for the CSE and by the cyclicity conditions (5a), and (5b). In sum-

mary, for µ < µ and σ > σ(µ), A2(µ, σ) is partitioned into four segments: (1) ṗs, λ̇ > 0,

(2) ṗs > 0, λ̇ < 0, (3) ṗs, λ̇ < 0, and (4) ṗs < 0, λ̇ > 0 (see Figure 5).

In the last step we show that for µ < µ and σ > σ(µ) any trajectory at the boundaries

λ+(ps) and λ
−(ps) points into A2(µ, σ). Note that by definition λ+(ps) > λ∗. For λ > λ∗,

we have ṗs > 0 for all ps < 1 including zero due to the social innovation assumption.

Hence, as long as λ̇ > 0 the definition of λ+(ps) implies ∂λ+(ps)
∂ps

≥ (1 + µ) λ̇
ṗs
> λ̇

ṗs
. That

is, the slope of the boundary function λ+(ps) is strictly greater than the slope of any

trajectory at the boundary λ+(ps). Thus, at the boundary λ+(ps) the trajectories point

into A2(µ, σ) for λ̇ > 0. If λ̇ ≤ 0 the definition of λ+(ps) implies ∂λ+(ps)
∂ps

= µ
σ
> 0 > λ̇

ṗs
.

Hence, any trajectory intersecting λ+(ps) points into A2(µ, σ) for λ̇ ≤ 0. Note that µ < µ

and σ > σ(µ) guarantee that the trajectory at (1, λ+(1)) points into A2(µ, σ). A similar

argument establishes the analogous results for λ−(ps).

Hence, A2(µ, σ) is asymptotically stable with respect to the dynamics (6)–(7). See

Figure 4 for an example.

Step Three

In what follows, we need the concept of strict circulation. let ξ2(·, ps, λ) denote the

induced solution mapping of the dynamic system (6)–(7). We say that a forward orbit of

system (6)–(7) strictly circulates around (p∗s, λ
∗) ∈ A2(µ, σ) if starting from any point in

(ps, λ) ∈ A2(µ, σ) the trajectory ξ2(·, ps, λ) in the phase plane moves either clockwise or

counterclockwise relative to (p∗s, λ
∗) for all t > 0 but never changes direction. Formally, let

x(t) ≡ ξ2(t, ps, λ)− (p∗s, λ
∗) then ξ2(·, ps, λ) strictly circulates around (p∗s, λ

∗) ∈ A2(µ, σ) if

x1(t)x2(t+dt)−x2(t)x1(t+dt) < 0, ∀t > 0, or x1(t)x2(t+dt)−x2(t)x1(t+dt) > 0, ∀t > 0,

where dt > 0 is sufficiently small.

Lemma 3 Let kfH(1 +α− β) > kfL − β, µ ∈ (0, µ), and σ > σ(µ). Then for any (ps, λ) ∈
A2(µ, σ) the trajectory ξ2(·, ps, λ) of the dynamic system (6)–(7) strictly circulates around

(p∗s, λ
∗) and converges to a limit cycle or a neutrally-stable center in A2(µ, σ).
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Proof. First we show that ξ2(·, ps, λ) with (ps, λ) ∈ A2(µ, σ) strictly circulates around

(p∗s, λ
∗). Remember that ṗs > 0 if and only if λ > λ∗ and that the condition for λ̇ > 0 is

given by equation (15). Note that kfH(1+α−β) > kfL−β also implies that ∂λ(ps)/∂ps > 0,

where λ(ps) solves λ̇ = 0. Thus, for µ ∈ (0, µ), and σ > σ(µ) the loci of λ̇ = 0 and ṗs = 0

partition A2(µ, σ) into four segments as shown in Figure 5 which depicts a generic phase

plane for the dynamics (6)–(7). Clearly, for sufficiently small dt > 0 in any of the four

segments we have x1(t)x2(t+ dt)− x2(t)x1(t+ dt) < 0, ∀t > 0.

Figure 5: Dynamics in A2(µ, σ) for kfH(1 + α − β) > kfL − β, i.e., for an unstable fixed
point at (p∗s, λ

∗).

We now turn to the convergence of all forward orbits in A2(µ, σ). As a consequence

of the Poincaré-Bendixson Theorem,19 A2(µ, σ) contains at least one limit cycle. This is

because the condition kfH(1 + α − β) > kfL − β implies that (p∗s, λ
∗) is a repellor because

both eigenvalues in equations (11)–(12) have positive real parts. Thus, there exists an

open neighborhood V of (p∗s, λ
∗) such that all trajectories that intersect the boundary ∂V

point to the interior of the set A2(µ, σ)\V . Moreover, the asymptotic stability of A2(µ, σ)

(Lemma 2) implies that any trajectory that intersects the boundary of A2(µ, σ) points

to the interior of A2(µ, σ). Applying the Poincaré-Bendixson Theorem to A2(µ, σ) \ V
implies the existence of at least one limit cycle. Since all trajectories circulate around

(p∗s, λ
∗) and A2(µ, σ)\V is an attractor they must converge to a limit cycle or a neutrally

stable center in A2(µ, σ).

In the next three steps we provide the extension of Lemma 1 and Lemma 3 to the full-

dimensional case. In a first step (Lemma 4) under the restriction to pCDs + pCCs = 1 we

19See Bendixson (1901).
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show the existence of a set A3 ⊃ A2(µ, σ) which allows for small positive pCCs such that

any trajectory in this set converges to A2(µ, σ). In Lemma 5, allowing for an arbitrary

perturbation from pCDs = 1, we show that as long as the population state is close to

pCDs + pCCs = 1 and pCDs is not too small the strategies CDs and CCs will earn the

highest payoffs. This holds for all ps ∈ [0, 1] and in a neighborhood of λ∗. Thus, if we

set µ sufficiently low and σ > σ(µ) then A2(µ, σ) will satisfy these conditions, i.e., the

strategies CDs and CCs will earn the highest payoffs. In the last step (Lemma 6) we show

based on Lemma 5 the existence of a Lyapunov stable set A ⊃ A3 with the property that

ṗ¬CCs < 0 for all (pH,pL, λ) ∈ A, where p¬CCs ≥ 0 refers to the sum of perturbations

from pCDs = 1 others than CCs. Thus, Lemma 6 informs us that we can essentially

restrict to the case considered in Lemma 4.

Step Four

In order to state the first result, let ξ3(·,pH ,pL, λ) denote the induced solution map-

ping of the dynamic system (1)–(2) under the restriction to pCDs + pCCs = 1.

Lemma 4 Let µ < µ and σ > σ(µ). Then there exist ν > 0 such that ξ3(t,pH ,pL, λ)
t→∞−−−→

A2(µ, σ), ∀(pH ,pL, λ) ∈ A3 = ∪3
i=1A3(i), where A3(1) = A1 ∩ B, A3(2) = D ∩ B, and

A3(3) = A2 ∩ B with

A1 =

{

(pH ,pL, λ) ∈ C
∣

∣

∣
(ps, λ) ∈ A2(µ, σ), pCCs > 1− kL

λ(1 + α)
, pCCs + pCDs = 1

}

A2 =

{

(pH ,pL, λ) ∈ C
∣

∣

∣
(ps, λ) ∈ A2(µ, σ), pCCs < 1− kL

λ(1 + α)
, pCCs + pCDs = 1

}

B =
{

(pH ,pL, λ) ∈ C
∣

∣

∣
(ps, λ) ∈ A2(µ, σ), pCDs ≥ 1− ν, pCCs + pCDs = 1

}

D =

{

(pH ,pL, λ) ∈ C
∣

∣

∣
(ps, λ) ∈ A2(µ, σ), pCCs = 1− kL

λ(1 + α)
, pCCs + pCDs = 1

}

.

Proof. Figure 6 illustrates the construction of A3 and the partition A(i). Note that the

specification of the partition is indeed not necessary to prove the convergence result.

However, the construction is informative for Lemma 6 where the construction of A builds

on this partition.

Given our assumption that payoff-monotonicity in the dynamics across types, i.e., λ̇,

refers to average material payoffs for each type and focusing on ps, λ ∈ (0, 1), we have

λ̇ = 0 if and only if pCDsΠ
f
H(CDs)+pCCsΠ

f
H(CCs) = psΠ

f
L(s)+(1−ps)Πf

L(ns). Moreover,

24



Figure 6: Partition of A3.

ṗs = 0 if and only if ΠL(s) = ΠL(ns). This gives us the following system of inequalities:

ṗs ≥ 0 ⇔ pCCs ≤ 1− kL
λ(1 + α)

(19)

λ̇ ≤ 0 ⇔ (1− pCCs)(λ− kfH − (1− λ)βps) + pCCs(λ− kfH − (1− λ)β) ≤ (20)

ps
(

λ(1 + α)− kfL
)

+ (1− ps)λ(1 + α)pCCs (21)

The last inequality informs us that λ̇ ≤ 0 if and only if ps

(

(1 − pCCs)
(

(1 − λ)β + λ(1 +

α)
)

− kfL

)

≥ λ − kfH , where the left-hand side is strictly positive in a neighborhood of

λ∗ by cyclicity condition (5a). As a consequence, λ̇ > 0 for all (pH ,pH , λ) ∈ A3 for

ps ≈ 0. Moreover, by cyclicity condition (5b) λ̇ < 0 for all (pH ,pH , λ) ∈ A3 for ps ≈ 1

and pCCs ≈ 0, i.e., for sufficiently small perturbation νCCs. Taken together, A3(1) is

characterized by ṗs < 0, λ̇ < 0 for ps ≈ 1, and λ̇ > 0 for ps ≈ 0, A3(2) by ṗs = 0. Finally,

A3(3) is characterized by ṗs > 0, λ̇ < 0 for ps ≈ 1, and λ̇ > 0 for ps ≈ 0.

Under the restriction to pCCs + pCDs = 1 payoffs for CDs and CCs are given by:

ΠH(CCs) = λ(pCCs + pCDs)(1 +m) + (1− λ)(−β)− kH (22)

ΠH(CDs) = λ(pCCs + pCDs)(1 +m) + (1− λ)ps(−β)− kH (23)
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Thus, ΠH(CDs) > ΠH(CCs), ∀ps ∈ [0, 1), λ ∈ (0, 1). For sufficiently small µ it follows

that λ ∈ (0, 1) for all (pH ,pL, λ) ∈ A3. Hence, equality in payoffs results only for ps = 1.

Under the restriction to pCDs + pCCs = 1 this translates into ṗCDs > 0 and ṗCCs < 0 for

all (pH ,pL, λ) ∈ A3 with ps < 1.

Note that µ < µ and σ > σ(µ) guarantee that A2(µ, σ) is an asymptotically stable set

of (6)–(7) by Lemma 3. Continuity of the dynamics implies then that for sufficiently small

ν the attractor-property of A2(µ, σ) translates to A3 with respect to ps and λ. Taken

together with ṗCDs > 0 for all (pH ,pL, λ) ∈ A3 with ps < 1 this implies the convergence of

ξ3(t,pH ,pH , λ) to A2(µ, σ) for all (pH ,pL, λ) ∈ A3. In other words, under the restriction

to pCDs + pCCs = 1 small perturbations from A2(µ, σ) with respect to pCCs vanish and

the system will eventually be attracted by a stable fixed point (Lemma 1) or a stable (set

of) limit cycle(s) (Lemma 3) in A2(µ, σ).

Step Five

Lemma 5 There exist ε, ν > 0 and pCDs ∈ (0, 1 − ν) such that ṗCDs + ṗCCs ≥ 0 for all

(pH ,pL, λ) ∈
{

(pH ,pL, λ) ∈ C
∣

∣ pCDs + pCCs ≥ 1 − ν, pCDs ≥ pCDs, ps ∈ [0, 1], λ ∈
(λ∗ − ε, λ∗ + ε)

}

, where ṗCDs + ṗCCs = 0 if and only if pCDs + pCCs = 1.

Proof. We look at payoffs under the restriction to pCDs + pCCs = 1. We observe that for

all λ ∈ [0, 1] and ps ∈ [0, 1]:

ΠH(CDs) ≥ ΠH(CCs); ΠH(DDs) ≥ ΠH(DCs) (24)

ΠH(CDns) ≥ ΠH(CCns); ΠH(DDns) ≥ ΠH(DCns) (25)

Note that all inequalities are strict for ps ∈ (0, 1). Note further that

ΠH(CCs) > ΠH(DDs) ⇔ λ >
β

m− α + β
(26)

ΠH(CCs) > ΠH(CDns) ⇔ pCDs >
kH + (1− λ)(1− ps)β

λ(1 +m)
(27)

⇐ pCDs >
kH + (1− λ)β

λ(1 +m)
(28)
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Moreover,

ΠH(CCs) > ΠH(DDns) ⇔ pCDs >
kH + β − λ(m− α + β)

λ(1 + α)
(29)

Note that (26) is satisfied at λ∗ because of the cyclicity condition (4). As a first step we

want to determine the condition for the existence of a lower bound p̂CDs < 1 such that (28)

and (29) are satisfied at λ∗ for pCDs ≥ p̂CDs. Continuity in λ then implies that this also

holds in a small neighborhood of λ∗. Evaluated at λ∗ the RHSs of (28) and (29) are less

than unity if and only if kH < λ∗(1+m+β)−β ≡ kH . Thus, for kH < kH payoff inequalities

in (27) and (29) are satisfied at λ∗ if pCDs > p̂CDs ≡ max
{

kH+(1−λ)β
λ(1+m)

, kH+β−λ(m−α+β)
λ(1+α)

}

< 1.

Importantly, the cyclicity condition (4) implies that kH > kL. Thus, although sufficient

for a lower bound less than unity we don’t have to assume that high types have a cost

advantage, i.e., kH < kL.

Hence, for kH < kH there exists an ε > 0 and a p̂CDs < 1 such that the payoff-

inequalities (26), (28), and (29) hold strictly for all λ ∈ (λ∗ − ε, λ∗ + ε) and pCDs > p̂CDs.

Taken together this gives us for all λ ∈ (λ∗ − ε, λ∗ + ε), ps ∈ [0, 1], and pCDs > p̂CDs:

ΠH(CDs) ≥ ΠH(CCs) > ΠH(DDs) ≥ ΠH(DCs) (30)

ΠH(CCs) > ΠH(CDns) ≥ ΠH(CCns); ΠH(CCs) > ΠH(DDns) ≥ ΠH(DCns) (31)

That is, under the restriction pCCs + pCDs = 1 the strategies CDs and CCs earn the

strictly highest payoffs as long as pCDs is sufficiently high and λ is close to λ∗. Strictness

implies that this is also true in a small neighborhood of pCCs+pCDs = 1. Thus, there exists

a ν > 0 such that strategies CDs and CCs earn the strictly highest payoffs as long as

pCCs+pCDs ≥ 1−ν and pCDs > pCDs, for a sufficiently high pCDs ∈
(kH+β−(λ−ε)(m−α+β)

(λ−ε)(1+α)
, 1−

ν
)

. As a consequence, payoff-monotonicity implies that ṗCDs + ṗCCs ≥ 0, where equality

occurs if and only if pCCs + pCDs = 1.

Step Six

If ṗCDs + ṗCCs > 0 would imply that ṗCDs > 0 we could simply choose a sufficiently

small µ and σ > σ(µ) such that continuity of the dynamics and attractor-property of

A2(µ, σ) would imply that any trajectory in a neighborhood would converge to A2(µ, σ).

However, if ps = 1 we have

ΠH(CDs)− ΠH(CCs) = λ
(

(pDCns + pDDns)β − (pCCns + pCDns)(m− α)
)

, (32)
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which can be negative. Thus, given some small perturbation ν > 0 the share pCCs could

grow while pCDs decreases. As a consequence, the condition of pCDs > pCDs could be

violated which in turn could compromise the convergence toward A2(µ, σ). In the proof

of the following Lemma we show that the growth of pCCs is bounded either because the

dynamics are led by the attractor-property of A2(µ, σ) or the system is in the basin

of attraction of the high-pooling equilibrium or by an argument which makes use of

our assumption about the emergence of social innovations. To formalize this idea let

CHPE(λ) denote the cooperative equilibrium set at λ, i.e., CHPE(λ) =
{

(pH ,pL, λ) ∈
C
∣

∣ pCDs + pCCs = 1, pCDs ≥ kL
λ(1+α)

, ps = 1
}

.

Lemma 6 Let µ < µ and σ > σ(µ). There exists a Lyapunov stable set A of the dynamic

system (1)–(2) such that: (i) A2(µ, σ) ⊂ A, (ii) Ao is an open subset in X1 ×X2 ×X3,

and (iii) ṗCCs + ṗCDs > 0, ∀(pH ,pL, λ) ∈ A \ A2(µ, σ).

Proof. The strategy of the proof of Lyapunov stability is as follows. We will construct

three disjointed sets A(i), i = 1, 2, 3 and set A = ∪iA(i). Then we show that starting

from any point in A(1) the trajectory will eventually enter A(2), starting from any point

in A(2) the trajectory will eventually enter A(3) or reenter A(1), and starting from any

point in A(3) the trajectory will eventually enter A(1) or A(2). This cycle establishes

that A is a Lyapunov stable set.

The disjointed sets A(i), i = 1, 2, 3 correspond to their lower dimensional counterparts

A3(i), i = 1, 2, 3. However, there are two caveats that need to be taken into account.

First, as explained in detail above, considering the full-dimensional case introduces the

possibility of a set of states (pH ,pL, λ) near ps = 1 with positive measure such that the

share of pCCs increases while pCDs decreases. Second, the loci of ṗs = 0 and λ̇ = 0 in

Figure 6 tremble along the evolution of the aggregate share p¬CCs. We will take care of

the first issue by adjusting the definitions of A3(1) and A3(3) appropriately. The second

issue will be resolved by adjusting the definitions of the underlying sets which form the

basis for the construction of A(i), i = 1, 2, 3. Consider the following sets.

A1 =

{

(pH ,pL, λ) ∈ C
∣

∣

∣
(ps, λ) ∈ A2(µ, σ), pCDs <

kL
λ(1 + α)

− ν¬CCs

}

A2 =

{

(pH ,pL, λ) ∈ C
∣

∣

∣
(ps, λ) ∈ A2(µ, σ), pCDs >

kL
λ(1 + α)

+ ν¬CCs

}

B =
{

(pH ,pL, λ) ∈ C
∣

∣

∣
(ps, λ) ∈ A2(µ, σ), pCDs ≥ 1− ν

}

D =

{

(pH ,pL, λ) ∈ C
∣

∣

∣
(ps, λ) ∈ A2(µ, σ),

kL
λ(1 + α)

− ν¬CCs ≤ pCDs ≤
kL

λ(1 + α)
+ ν¬CCs

}

,
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where 0 < ν, νCCs, ν¬CCs ≪ 1. That is, perturbations from pCCs = 0 are denoted νCCS,

the aggregate of all others by ν¬CCS.

Essentially, the sets B,D are the full-dimensional counterparts of the homonymous

sets of Lemma 4 whereas A1, A2 are full-dimensional perturbations of A.

To solve the aforementioned problems near ps = 1 we introduce two additional sets:

E =
{

(pH ,pL, λ) ∈ C
∣

∣

∣
(ps, λ) ∈ A2(µ, σ), pCDs + pCCs ≥ 1− ν¬CCs, pCCs ≤ νCCs + Lps

}

F = U ε̂,

where L > 0 and Uε̂ denotes the ε̂-neighborhood of
⋃

λ

CHPE(λ) and ε̂ < ε̂(x) = min
λ
ε(λ),

with λ ∈ [λ∗ + 2µ− x, λ∗ + 2µ], x ∈ [0, 2µ] and where ε(λ) denotes the size of the basin

of attraction of the CHPE(λ). Note that since the cooperative pooling equilibrium set is

asymptotically stable the size of the basin of attraction, i.e., the minimum distance from

all population states converging to the equilibrium set is strictly positive for all λ in the

λ-support (see Table 1). Thus, ε̂(x) is well defined and strictly positive for x < 2µ.

The partition A(i) is defined by setting A(1) = A1 ∩B ∩E ∩F c, A(2) = D ∩B ∩F c,

and A(3) = (A2 ∩ B) ∪ F . Since D = Ac
1 ∩ Ac

2, A(i) ∩ A(j) = ∅ for i 6= j. Note that the

locus of ṗs = 0 is contained in D for any ν¬CCs but might change its position with the

composition of ν¬CCs. In order to make use of Lemma 5 we set 2µ < ε and choose ν such

that ṗCDs + ṗCCs > 0 for all (pH ,pL, λ) ∈ B. As a consequence, it follows that ṗ¬CCs < 0

for all (pH ,pL, λ) ∈ A \ F . Since F is a subset of the aggregated basin of attraction of

the CHPE we also have ṗ¬CCs < 0 for all (pH ,pL, λ) ∈ F . We now turn to the details of

the evolution of pCDs and pCCs which are relevant for states near ps ≈ 1. In full generality

the payoff difference between CDs and CCs is given by:

λ
(

(pDCns + pDDns)β − (pCCns + pCDns)(m− α)
)

+ (1− λ)(1− ps)β. (33)

Thus, for any small perturbation ν¬CCs > 0 from pCDs + pCCs = 1 we have

ΠH(CDs)− ΠH(CCs) ≥ −λν¬CCs(m− α) + (1− λ)(1− ps)β. (34)

Therefore CCs can earn strictly higher payoffs than CDs only if ps > 1 − λν¬CCs(m−α)
(1−λ)β

.

Hence, for λ ∈ (λ∗−2µ, λ∗+2µ) a necessary condition for CCs earning the highest payoffs

is

ps > 1− (λ∗ + 2µ)(m− α)

(1− λ∗ − 2µ)β
ν¬CCs ≡ p

s

ν¬CCs→0−−−−−→ 1. (35)
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Turning to the dynamics in A w.r.t. ps and λ, note that in the full-dimensional case

we have

ṗs < 0 ⇔ pCDs <
kL

λ(1 + α)
− pCDns + pDCs + pDCns (36)

⇒
{

pCDs <
kL

λ(1+α)
− ν¬CCs ⇒ ṗs < 0

pCDs >
kL

λ(1+α)
+ ν¬CCs ⇒ ṗs > 0

(37)

λ̇ < 0 ⇔
∑

sH∈SH

psHΠ
f
H(sH) < psΠ

f
L(s) + (1− ps)Π

f
L(ns) (38)

For the same reason as given in the proof of Lemma 4 it holds that for sufficiently

small ν, λ̇ < 0 for all (pH ,pL, λ) ∈ A with ps ≈ 1, and λ̇ > 0 for all (pH ,pL, λ) ∈ A
with ps ≈ 0. In summary, it holds that ṗs < 0 in A(1), ṗs > 0 in A(3), and for both sets

λ̇ < 0 if ps ≈ 1 and λ̇ > 0 if ps ≈ 0. Furthermore, ṗ¬CCs < 0 for all (pH ,pL, λ) ∈ A and

ṗCDs > 0 for all (pH ,pL, λ) ∈ A if ps satisfies (35).

We will now put these pieces together to prove the Lyapunov stability of A. Note that

for sufficiently small ν the continuity of the dynamics (1)–(2) and the attractor-property

of A2(µ, σ) ensure that λ and ps remain in A2(µ, σ) as long as pCDs ≥ 1 − ν holds. Let

us start with any state (pH ,pL, λ) ∈ A(1) with ps ≈ 1. If this state happens to be in the

basin of attraction of the CHPE (though not being in F ) the trajectory will eventually

leave this basin since λ̇ < 0 in A(1) and the size of the basin of attraction converges to

zero as λ approaches λ∗. This is because the CHPE exists only for λ > λ∗. Thus, let us

assume that (pH ,pL, λ) is not in the aggregated basin of attraction of the CHPE. Hence,

at this state not only λ̇ < 0 but also ṗs < 0.

We now turn to the details of the evolution of pCDs and pCCs which are relevant

for states with ps ≈ 1 since in this case ps might lie above the threshold given by the

boundary condition in inequality (35). By definition λ < kL
(1+α)

1
pCDs+ν¬CCs

≡ λ in A(1). As

a consequence, for any λ′ < λ there is a constant L > 0 such that
∣

∣

ṗCCs

ṗs

∣

∣ =
∣

∣

ṗCCs

ṗns

∣

∣ < L for

all ps ∈ (p
s
, 1] and λ ∈ [λ′, λ−2µ]. This is because the numerator is bounded above by the

Lipschitz continuity of the growth-rate functions or by the social innovation assumption.

With respect to the denominator ΠL(s) − Π(ns) < 0 and ps ≈ 1 imply by the social

innovation assumption that ṗns > 0 for all λ < λ. Fixing some λ′ < λ implies that

ṗns > 0 for all λ ∈ [λ′, λ − 2µ] which in turn implies a lower bound above zero for ṗns.

Hence, if initially pCCs < νCCs the share for strategy CCs in this region cannot grow

above νCCs + Lps. By setting νCCs and ν¬CCs sufficiently low we can ensure that pCCs

will not exceed ν. That is, we set νCCs, ν¬CCs > 0 such that ν > νCCs + L(1 − p
s
).
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Since A(1) ∩ F = ∅ we can indeed choose a λ′ below λ. Once ps falls below p
s
it follows

that ṗCDs > 0. Thus, given the stability at the boundary with respect to ps and λ and

ṗ¬CCs < 0 any trajectory can leave A(1) only by entering A(2) which occurs once ps has

fallen sufficiently such that λ starts to increase, i.e., λ̇ < 0.

Now consider any state in A(2). If this state is in the aggregated basin of attraction

of the CHPE then the trajectory will eventually reenter A(1) for the same reason as

given above. If it is in the aggregated basin of attraction of the CSE then λ̇ > 0 and

the trajectory will leave this basin to remain in A(2) or to enter A(3). Let us therefore

assume that the trajectory is in neither of the two basins of attraction. The only potential

attractor remaining is the fixed point p∗s, λ
∗ in A2(µ, σ). Hence, either the trajectory

converges to this fixed point or leaves A(2). In the latter case the trajectory either

reenters A(1) or enters A(3).

Now consider any state in A(3). Again, if this state is in the aggregated basin of

attraction of the CHPE then the trajectory will eventually reenter A(1). For any other

state, ṗs > 0 by definition of A(3). The stability at the boundary with respect to ps

and λ guarantees that either the trajectory enters A(2) or it passes the threshold of ps

such that pCCS could start to rise. However, we will choose the size of F captured by ε̂

together with the magnitude of the perturbation, ν¬CCS, such that any trajectory passing

this threshold will be in the F .

We now turn to a critical point for the construction of A, i.e., the selection of the

appropriate level of x. There are two conditions in addition to ε̂ < ε̂(x) and ν > νCCs +

L(1− p
s
) that need to be satisfied.

ε̂ >
λ∗ + 2µ

1− λ∗ − 2µ

m− α

β
ν¬CCs (39)

ε̂ > 1− kL
1 + α

1

λ∗ + 2µ− x
+ ν¬CCs − νCCs (40)

The first condition ensures that when the system is in A(3) and enters the region

where CCs could grow, i.e., for ps sufficiently close to one it will be in the aggregated

basin of attraction of the CHPEs (see (35)). The second condition ensures that once the

system is in F which implies that λ decreases and eventually reaches the boundary of F

with respect to λ, i.e. λ∗+2µ−x, then the system will enter the set A(2). Since ε̂(x) is a

decreasing function with ε̂(0) > 0 and ε̂(µ) = 0 there exists an x which satisfies conditions

(39), (40), and ν > νCCs + L(1− p
s
) if we set µ, νCCs, and ν¬CCs sufficiently low.

Thus, we have shown that starting from any state in A the trajectory stays in A
which establishes its Lyapunov stability. We have also shown that p¬CCs

t→∞−−−→ 0 since
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ṗ¬CCs < 0 for all (pH ,pL, λ) ∈ A and the only potential attractors in A are subsets of

A2(µ, σ). Finally, by definition of A, A2(µ, σ) ⊂ A and Ao is open in X1 ×X2 ×X3.

Lemma 6 finishes the proof of the proposition. The central insight of it is that we

constructed a set A which contains A2(µ, σ) such that starting from any point within this

set the forward orbit is contained in A. Moreover, the strategies CCs and CDs earn the

strictly highest payoffs. Hence, as a consequence of payoff monotonicity the perturbation

ν¬CCs will eventually vanish. Thus, we can concentrate on the dynamics of (1)–(2) under

the restriction to pCCs + pCDs = 1 for which we have shown in Lemma 4 that for small

perturbations from pCDs = 1 any trajectory in A3 converges to A2(µ, σ). Taken together

with the openness of Ao in X1 ×X2 ×X3 this proves the local stability of the fixed point

(Lemma 1) and the (set of) limit cycle(s) (Lemma 3) for the dynamic system (1)–(2).

To separate the case of a (set of) limit cycle(s) from equilibria which are supported by a

single BPE as in Proposition 2 and 3(i) we will refer to this equilibrium as the transitional

equilibrium. Before we take a closer look at the conditions of Proposition 3, Corollary

1 provides comparative statics for λ∗ and characterizes the transitional equilibrium of

Proposition 3 in terms of type-contingent behavior and signaling. It also characterizes

how the dynamic system converges to the equilibria.

Corollary 1 (1) The equilibrium share of high types λ∗ increases in the utility signaling

cost for low types (kL) and decreases in the incentive to defect (α). (2) In the transitional

equilibrium, high-type individuals cooperate not only among each other but also with those

low-type individuals who signal to be of the high type. (3) While approaching the stable

equilibrium point or the transitional equilibrium any trajectory eventually circulates around

the fixed point (p∗
H ,p

∗
L, λ

∗). As a consequence, the share of high types, the frequency of

cooperation, and the proportion of low-type individuals who signal to be of the high type

oscillate.

Conditions (i) and (ii) in Proposition 3 separate the two cases regarding the stability of

the semi-pooling equilibrium. Under condition (ii) it is unstable and therefore the cyclicity

conditions (4)–(5) ensure the existence of a stable (set of) limit cycle(s). If, however,

condition (i) holds, the semi-pooling equilibrium is stable. Without further specifying

the dynamics, we can only show the local stability of this equilibrium. Therefore, a stable

(set of) limit cycle(s) might still exist even for the case of a stable fixed point as in

Proposition 3(i). Figures 7 and 8 depict an example of each of the cases (i) and (ii). The

dynamics correspond to a modified version of the replicator dynamics.20

20The details of the modification can be found in Appendix A.
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Figure 7: Proposition 3(i) – stable semi-pooling equilibrium: Evolution of population
state and share of high types for modified replicator dynamics. Left panel, short run;
right panel, long run. Parameters: m = 2, α = 0.9, β = 0.5, kH = kfH = 0.25, kL =
kfL = 0.9, σ = 10, nn = 200, np = 0.1.
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Figure 8: Proposition 3(ii) – stable limit cycle: Evolution of population state and share of
high types for modified replicator dynamics. Left panel, short run; right panel, long run.
Parameters: m = 2, α = 0.9, β = 0.5, kH = kfH = 0.25, kL = kfL = 0.8, σ = 10, nn =
200, np = 1.

Turning to the existence of the transitional equilibrium, the cyclicity condition (4)

reveals the importance of the strength of the cooperative preference, measured by m, also

for the existence of the transitional equilibrium. More precisely, the higher the m, the

more likely this condition is satisfied. Furthermore, if the utility cost of signaling for low

types kL are sufficiently high then conditions (4) and (5a) will be satisfied. If material

signaling costs do not differ too much across types, conditions (5b) and (ii) in Proposition

3 will be satisfied. Conditions (5b) and (ii) in Proposition 3 also hold for a sufficiently

high β. The Corollary 2 summarizes these insights.
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Corollary 2 If (1) for low types the utility costs of signaling are sufficiently high

and do not differ too much across types, or (2) the preference for cooperation is suffi-

ciently strong and the material signaling costs are sufficiently low for both types then the

transitional equilibrium exists.

Note that the conditions in Proposition 2 and Proposition 3 are mutually exclusive,

i.e., there is at most one stable inner equilibrium. Contrary to the transitional equilibrium,

the equilibrium in Proposition 2 and the semi-pooling equilibrium in Proposition 3 require

α > β, i.e., the temptation payoff needs to exceed the sucker’s payoff in absolute terms.

Both equilibria also require that high types have a sufficiently high cost advantage in

signaling over low types in terms of fitness, i.e., kfH < kfL. Indeed, quite surprisingly

the transitional equilibrium is consistent with high types bearing higher signaling cost

in terms of fitness than low types. Moreover, if we do not impose any fitness cost for

signaling, i.e., kfH = kfL = 0 then the transitional equilibrium still exists but no other

cooperative equilibria.

6 Discussion

Since we place our analysis of the emergence of cooperation in social dilemmas in an

environment which cannot rely on direct or indirect reciprocity, communication and the

implied potential for conditional cooperators to recognize each other are necessary for

cooperation to evolve. Thus, we will focus on discussing the nature of signaling costs and

their relation across types.21 We will also discuss the properties of the different cooperative

equilibria in light of their potential to account for the three empirical regularities in

cooperation in the realm of social dilemmas. Moreover, we discuss the relevance of the

social innovation assumption for our results. We end this section with a brief comment

on the endogeneity of the strength of the cooperative preference.

Let us consider the relation of signaling costs first. The transitional equilibrium is

least restrictive regarding the difference in the material signaling costs, it even allows for

a higher fitness cost for high types. That is, the existence of the transitional equilibrium

is consistent with both kL < kH , and k
f
L < kfH , which we find quite striking. We provide

21The literature also discusses alternative modes of communication: There are models (e.g., Güth, 1995
; Sethi, 1996) which assume that cooperators can simply recognize each other. There is, however, mixed
evidence as to what extent humans can unveil incomplete information about cooperative preferences (see
Frank et al., 1993; Ockenfels and Selten, 2000; Brosig, 2002). Other models make use of an unsubverted
signal like in Arthur Robson’s ‘secret handshake’ model (Robson, 1990). These types of models are prone
to what Ken Binmore calls the ‘transparent disposition fallacy’ (Binmore, 1994).
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a numerical example in Appendix A for our modified replicator dynamics. Contrary to

this surprising property, in the standard application of signaling theory it is necessary

for a separating equilibrium to exist: that types with higher quality bear lower signaling

costs. This is not true in our signaling-extended PD. The reason for this is our distinction

between the material cost of signaling and the costs in utility terms. This distinction

separates the conditions for the existence of the different stable population states which

are based on the utility cost from the conditions on the evolutionary (dis)advantage of

high types which also refer to material signaling costs.

Regarding the nature of signaling cost, it turned out that the transitional equilibrium,

as the only cooperative equilibrium, might exist even if signaling is materially costless.

However, a positive share of cooperators in equilibrium requires positive signaling cost

in terms of utility for opportunists. A signal which presumably has no or a negligible

material cost might consist of giving a smile or some other positive gesture, or a brief

chat at the beginning of a pairwise encounter. According to Frank (1988), cooperators

are endowed with an advanced emotional system. This system not only provides the

motivation for the cooperative behavior, but also enables them to signal their cooperative

attitude.22 Thus, if it is at all possible for opportunists to send the signal, they would

have a much higher non-material signaling cost. These costs may refer, for example, to

the psychological cost resulting from the effort to fake or hide emotions23 or cognitive

dissonances caused by the discrepancy between preplay-communication and the action

taken in the PD. Regarding the latter, there is evidence that lying cost are large and

widespread (Abeler et al. 2014). Taken together, this would warrant the assumption of

kL > kH , and in particular kL > 0 which implies a positive share of high types in the

equilibria of Proposition 3.

Additional to these psychological costs, a cooperative signal may also be associated

with material cost, for instance, if the signal is too time-consuming and results in material

opportunity costs. Another example of material signaling cost is provided by Gintis et al.

(2001) where individuals can signal their type by the contribution to a multi-player public

good game. In general, many acts of courtesy may indeed be understood as a signal for a

cooperative attitude. Very often, such acts imply forgoing some (material) advantages for

22In a laboratory experiment Brosig (2002) finds that cooperative individuals are somewhat better at
predicting their partner’s decisions in one-shot prisoner’s dilemma games than the individualistic ones.
This, of course, is also consistent with a better ability to signal. Scharleman et al. (2001) and Eckel and
Wilson (2003), for example, explored the reaction of individuals to seeing the faces of the people with
whom they were supposedly interacting. Their results support the potential of smiles as a mechanism to
allow subjects to read the intentions of others.

23It has been proposed by behavioral scientists that the display of spontaneous positive emotion can
serve as a relatively honest signal to identify cooperators. See, for instance, Frank et al. (1993).
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the benefit of others. It is a priori not clear which type bears higher opportunity costs,

leaving the relation of kfL and kfH ambiguous.

Taken together, our model can capture any kind of costly behavior prior to the PD,

which is socially accepted as the appropriate signaling device. The selection of any par-

ticular device appears to be a problem of coordination and is beyond the scope of this

paper. However, such devices are apparently used.

With respect to the empirical regularities in cooperation, i.e., the heterogeneity of

preferences, behavior, and pre-play communication, the semi-pooling equilibrium and the

transitional equilibrium of Proposition 3 can account for full heterogeneity. Thus, our

model provides a potential explanation for these qualitative properties. The transitional

equilibrium is least demanding with respect to model parameters. First, all other co-

operative equilibria require that the incentive to defect (α) exceeds the sucker’s payoff

in absolute terms (β). Second, all other cooperative equilibria only exist if low types

face a disadvantage in material signaling cost. Thus, contrary to previous results in the

literature, sustaining cooperation in the transitional equilibrium does not hinge on the

assumption of some material cost advantage for cooperative types. These properties un-

derline the appeal of the transitional equilibrium. Interestingly, since the transitional

equilibrium is constituted by a (set of) limit cycle(s), it also offers a potential explanation

for significant self-sustaining oscillations in signaling behavior, in the share of cooperators

and therefore in the degree of cooperation in a population (see Figure 8).

Evidence from laboratory experiments on cooperation in social dilemmas provides

two insights relevant to our analysis. First, conditional cooperators as identified in public

goods experiments correspond to the individuals with the cooperative preference in our

model. They account for around 50% of the participants.24 This empirically identified

share of conditional cooperators can be used to partially calibrate our model as it implies

a condition for the relation of low types’ signaling cost and the temptation to defect.

Second, the variation in the incentive structure across various prisoner’s dilemma exper-

iments indicates that the share of conditional cooperators decreases in the magnitude of

the incentive to defect (α) which is in line with our comparative statics results with re-

spect to λ∗ in Proposition 3. This is, for instance, demonstrated by the meta-analysis of

Sally (1995) on prisoner’s dilemmas where the probability of cooperation is shown to de-

crease in the temptation to defect. Experiments on social dilemmas with the opportunity

for preplay-communication also indicate that (cooperative) signaling is more pronounced

among subjects classified as cooperative types. This is consistent with the qualitative

24Fischbacher et al. (2001) report 50%; Herrmann and Thöni (2009), 47.7%–60%, and Fischbacher and
Gächter (2010), 55%.
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property of the semi-pooling and the transitional equilibrium where all high types signal

but only a potentially oscillating fraction among low types do so.

Turning to our assumption that humans are capable of profitable social innovation, we

want to emphasize that this assumption is sufficient but not necessary to prove our results

in full generality for the large class of payoff-monotone and regular selection dynamics.

We give an example in Appendix A which satisfies payoff monotonicity and regularity

but violates our social innovation assumption. However, there are payoff-monotone and

regular dynamics for which, for example, the cooperative high-pooling equilibrium is not

stable or no transitional equilibrium exists.

Finally, in our model the size of the parameter m measuring the strength of the

preference for cooperation is not driven by evolutionary forces, since no fitness payoff

difference depends on it. However, the size of the parameter does determine the range

in which cooperative equilibria exist. Hence, if two separate populations with different

levels of m are considered, the one with the higher value is more likely to evolve toward

a cooperative state. Thus, the population with the stronger preference for cooperation

would have an evolutionary edge over the other. Furthermore, if in the course of time

both populations start interacting with each other, a cooperative population might induce

cooperation in a defective population, and vice versa. Such an analysis could generate

insights into the migrational effects on cooperation.

7 Conclusion

This paper aims at shedding light on three persistent patterns attributed to cooperative

behavior in social dilemmas: heterogeneity in (1) preferences (coexistence of opportunists

and conditional cooperators); (2) behavior (presence of cooperation and defection); and

(3) communication. We study an evolutionary model where individuals are able to signal

their preference for joint cooperation before engaging in a one-shot prisoner’s dilemma.

We locally derive the full set of Bayesian equilibria in the signaling-extended prisoner’s

dilemma and study their dynamic stability. This exhaustive search puts us in a position

to study the transition across different Bayesian equilibria.

This dynamic perspective enables the identification of a richer set of cooperative evo-

lutionary equilibria. As our main result we prove the existence of a stable equilibrium

which is based on the dynamic interplay of a separating, a semi-pooling, and a pooling

equilibria. This equilibrium which we refer to as the transitional equilibrium is consti-

tuted by a (set of) limit cycle(s). It is characterized by heterogeneity with respect to
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all three dimensions: preferences, behavior, and signaling. More precisely, in the transi-

tional equilibrium conditional cooperators collaborate not only among each other but also

with those opportunists who signal they are a cooperator. These characteristics, but also

the comparative statics for the transitional equilibrium, are consistent with experimental

evidence for cooperation in social dilemmas.

The transitional equilibrium exists under mild conditions, and is least demanding in

terms of differences in the signaling costs between conditional cooperators and oppor-

tunists. For a transitional equilibrium to exist it suffices, for instance, that the coop-

erative preference is sufficiently strong and the material signaling costs for both types

of individuals are sufficiently low. Importantly, and quite surprisingly, the transitional

equilibrium is consistent with conditional cooperators bearing higher signaling costs than

opportunists both in terms of fitness and utility. Thus, our model provides an explanation

for the emergence of cooperation which does not hinge on some sort of ad hoc advantage

for cooperative types. Our analysis also revealed that this equilibrium is more likely to

exist in societies with a strong cooperative norm among conditional cooperators and with

members who are capable of profitable behavioral innovations.

Since cooperative equilibria exist when agents may signal their cooperative attitude,

large societies aiming for more cooperation are not completely limited to the reduction

of anonymity in social interaction (and hence, giving up some of the advantages of large

societies) or the use of formal institutions. Politics may provide support in the solution

to the coordination problem of choosing a suitable signaling device. Furthermore, it may

try to influence the cost structure of the signaling device in use such that the emergence

of cooperation becomes more likely or is accelerated. Even if politics cannot alter the

underlying incentives of the social dilemma to the extent that the dilemma aspect would

indeed vanish, partial reduction of the incentive to defect or partial insurance for the

sucker’s payoff may be sufficient to allow for cooperation to evolve. Finally, politics might

have some leverage on strengthening the cooperative preference which will also increase

the chance for cooperation.

As an additional insight, the oscillatory property of the transitional equilibrium pro-

vides an explanation for significant self-sustaining cycles in cooperative behavior, prefer-

ences, and signaling in equilibrium. Thus, it offers a micro-founded, alternative account

for widely observed repeated historical changes in (social norms of) cooperation in so-

cieties which are not driven by social or environmental shocks.25. We leave a deeper

25Among such exogenous forces are: prominent leaders (e.g., Acemoglu and Jackson, 2014), conflict
(e.g., Rohner et al., 2013), natural disasters (e.g., Quarantelli and Dynes, 1977), or technological innova-
tions (e.g., Müller and von Wangenheim, 2017)
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exploration of this relation for future research. The application of our theoretical frame-

work to the study of migrational effects on social norm dynamics and its implication for

the economic state of a society should also be considered as an insightful line of research.
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[25] Güth, W. (1995). “An evolutionary approach to explaining cooperative behavior by

reciprocal incentives.” International Journal of Game Theory, 24(4), 323-344.
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[37] Herrmann, B., C. Thöni. (2009). “Measuring conditional cooperation: a replication

study in Russia.” Experimental Economics, 12(1), 87-92.

[38] Hopkins, E. (2014). “Competitive Altruism, Mentalizing, and Signaling.” American

Economic Journal: Microeconomics, 6(4), 272-92.

[39] Huberman, B. A., N. S. Glance. (1993). “Evolutionary games and computer simula-

tions.” Proceedings of the National Academy of Sciences, 90(16), 7716-7718.

[40] Huck, S., J. Oechssler. (1999). “The indirect evolutionary approach to explaining fair

allocations.” Games and Economic Behavior, 28(1), 13-24.

[41] Janssen, M. A. (2008). “Evolution of cooperation in a one-shot Prisoner’s Dilemma

based on recognition of trustworthy and untrustworthy agents.” Journal of Economic

Behavior & Organization, 65(3), 458-471.

[42] Johnstone, R. A. (1995). “Sexual selection, honest advertisement and the handicap

principle.” Biological Reviews, 70(1), 65.

[43] Kandori, M. (1992). “Social norms and community enforcement.” Review of Eco-

nomic Studies, 59(1), 63-80.

[44] Keser, C., F. Van Winden. (2000). “Conditional cooperation and voluntary contri-

butions to public goods.” Scandinavian Journal of Economics, 102(1), 23-39.

[45] Killingback, T., M. Doebeli, N. Knowlton. (1999). “Variable investment, the contin-

uous prisoner’s dilemma, and the origin of cooperation.” Proceedings of the Royal

Society of London B: Biological Sciences, 266(1430), 1723-1728.

[46] Kreps, D. M., P. Milgrom, J. Roberts, R. Wilson. (1982). “Rational cooperation in

the finitely repeated prisoners’ dilemma.” Journal of Economic Theory, 27(2), 245-

252.

42



[47] Lotem, A., M. A. Fishman, L. Stone, L. (2003). “From reciprocity to unconditional

altruism through signalling benefits.” Proceedings of the Royal Society of London B:

Biological Sciences, 270(1511), 199-205.

[48] Macfarlan, S. J., R. Quinlan, M. Remiker. (2013). “Cooperative behaviour and proso-

cial reputation dynamics in a Dominican village.” Proceedings of the Royal Society

of London B: Biological Sciences, 280(1761), 20130557.

[49] Maynard Smith, J., G. R. Price. (1973). “The Logic of Animal Conflict.” Nature,

246, 15-18

[50] Maynard Smith, J. (1991). “Honest signalling: the Philip Sidney game.” Animal

Behaviour, 42(6), 1034-1035.

[51] McElreath, R., R. Boyd. (2007). Modeling the Evolution of Social Behavior. Prince-

ton: Princeton University Press.

[52] Müller, S., G. von Wangenheim. (2017). “The impact of market innovations on the

dissemination of social norms: the sustainability case.” Journal of Evolutionary Eco-

nomics, 27(4), 663-690.

[53] Nowak, M. A., R. M. May. (1992). “Evolutionary games and spatial chaos.” Nature,

359(6398), 826-829.

[54] Nowak, M. A., S. Bonhoeffer, R. M. May. (1994). “Spatial games and the maintenance

of cooperation.” Proceedings of the National Academy of Sciences, 91(11), 4877-4881.

[55] Nowak, M. A., K. Sigmund. (1998). “Evolution of indirect reciprocity by image scor-

ing.” Nature, 393(6685), 573-577.

[56] Ockenfels, A., J. Weimann. (1999). “Types and patterns: an experimental East-West-

German comparison of cooperation and solidarity.” Journal of Public Economics,

71(2), 275-287.

[57] Ockenfels, A., R. Selten. (2000). “An experiment on the hypothesis of involuntary

truth-signalling in bargaining.” Games and Economic Behavior, 33, 90-116.

[58] Ostrom, E., J. Walker. (1991). “Communication in a commons: cooperation without

external enforcement.” Laboratory Research in Political Economy, 287-322.

[59] Panchanathan, K., R. Boyd. (2004). “Indirect reciprocity can stabilize cooperation

without the second-order free rider problem.” Nature, 432(7016), 499-502.

43



[60] Possajennikov, A. (2000). “On the evolutionary stability of altruistic and spiteful

preferences.” Journal of Economic Behavior & Organization, 42(1), 125-129.

[61] Quarantelli, E. L., R. R. Dynes (1977). “Response to social crisis and disaster.”

Annual Review of Sociology, 3(1), 23-49.

[62] Queller, D. C. (1985). “Kinship, reciprocity and synergism in the evolution of social

behaviour.” Nature, 318, 366-367.

[63] Rapaport, A., A. M. Chammah. (1965). Prisoner’s Dilemma. Ann Arbor: Univ. of

Michigan Press.

[64] Robson, A. J. (1990). “Efficiency in evolutionary games: Darwin, Nash and the secret

handshake.” Journal of Theoretical Biology, 144, 376-396.

[65] Rohner, D., M. Thoenig, F. Zilibotti. (2013). “War signals: A theory of trade, trust,

and conflict.” Review of Economic Studies, 80(3), 1114-1147.

[66] Roth, A. (1988). “Laboratory experimentation in economics: A methodological

overview.” Economic Journal, 98, 974-1031.

[67] Sally, D. (1995). “Conversation and cooperation in social dilemmas a meta-analysis

of experiments from 1958 to 1992.” Rationality and Society, 7(1), 58-92.

[68] Samuelson, L. (1997). Evolutionary games and equilibrium selection. Cambridge:

MIT Press.

[69] Samuelson, L., J. Zhang. (1992). “Evolutionary stability in asymmetric games.” Jour-

nal of Economic Theory, 57(2), 363-391.

[70] Scharlemann, J. P., C. C. Eckel, A. Kacelnik, R. K. Wilson. (2001). “The value of

a smile: Game theory with a human face.” Journal of Economic Psychology, 22(5),

617-640.

[71] Sethi, R. (1996). “Evolutionary stability and social norms.” Journal of Economic

Behavior & Organization, 29(1), 113-140.

[72] Spence, M. (1973). “Job market signaling.” Quarterly Journal of Economics, 87(3),

355-374.

[73] Trivers, R. L. (1971). “The evolution of reciprocal altruism.” Quarterly Review of

Biology, 46(1), 35-57.

44



[74] Wärneryd, K. (2002). “Rent, risk, and replication: Preference adaptation in winner-

take-all markets.” Games and Economic Behavior, 41(2), 344-364.

[75] Wedekind, C., M. Milinski. (2000). “Cooperation through image scoring in humans.”

Science, 288(5467), 850-852.

[76] Wright, J. 1999. “Altruism as a signal: Zahavi’s alternative to kin selection and

reciprocity.” Journal of Avian Biology, 30(1), 108-115.

[77] Zahavi, A. (1977). “The cost of honesty: further remarks on the handicap principle.”

Journal of Theoretical Biology, 67(3), 603-605.

45



A Dynamics and Examples

A.1 Modified replicator dynamics

We modify the standard replicator dynamics by setting:

ṗsθ = σ ·
(

Πθ(sθ)− Πθ

)

· psθ + insθ
(pH ,pL, λ)− psθ

∑

s′
θ
∈Sθ

ins′
θ
(pH ,pL, λ) (A.1)

λ̇ =
(

Πf
H − Πf

L

)

· λ · (1− λ), (A.2)

where Πθ =
∑

sθ∈Sθ

psθΠθ(sθ) and insθ : X1 × X2 × X3 → R with insθ
(pH ,pL, λ) = np ·

max{0, (1− nn · psθ)3} ·max{0,Πsθ − max
s′
θ
6=sθ

Πs′
θ
}.

A.2 A stable limit cycle with kL < kH and kfL < kfH
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Figure 9: Proposition 3(ii) – stable limit cycle: Evolution of population state and share
of high types for modified replicator dynamics. Left panel, short run; right panel, long
run. Parameters: m = 1, α = 1/4, β = 1, kH = 35/32, kL = 15/16, kfL = 1/8, kfH =
9/16, σ = 20, nn = 200, np = 0.1.

A.3 A stable limit cycle without social innovations

ṗsθ = σ ·
(

Πθ(sθ)− Πθ

)

· psθ · e(p
∗

sθ
−psθ )(λ−λ∗) (A.3)

λ̇ =
(

Πf
H − Πf

L

)

· λ · (1− λ), (A.4)

where p∗sθ = p∗s for sL = s and zero otherwise.
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B Separating and Pooling Equilibria – Existence and

Stability

In this section we derive the separating and the pooling equilibria with respect to the

signaling behavior of the signaling-extended PD for a given share of high types λ ∈
(0, 1). That is, we study for a given λ the existence and asymptotic stability of (sets of)

population states (pH ,pL) for the dynamics given by equation (1). We will also study

the existence and stability of semi-pooling equilibria at λ∗.

To prove stability or instability of an equilibrium we will rely on phase diagrams. We

will prove instability by arguing that the system cannot be Lyapunov-stable. In case of an

equilibrium point in the interior of the support of the equilibrium the involved strategies

earn strictly higher payoffs then non-equilibrium strategies. Small perturbations will

not alter this property. Payoff-monotone dynamics will decrease the share of the non-

equilibrium strategies. Hence, in that case, to analyzing the stability properties it suffices

to consider the involved equilibrium strategies and whether the dynamics will reestablish

the equilibrium values given a small perturbation. At the boundaries of the support of an

equilibrium point a non-equilibrium strategy will earn the same profits as the equilibrium

strategies. In that case these strategies need to be included in the analysis. However,

with respect to all other strategies the previous argument still applies.

Note that by the assumption of independence of the evolution of strategy shares across

types, the expected payoff for each type-contingent strategy is additively separable in

the payoffs for the two types. We will make use of this property when discussing the

stability of equilibria. That is, to prove the (in)stability of a certain equilibrium (set) we

will consider contingent-wise changes of behavior. Furthermore, we will write expected

payoff as linear combination of type-contingent payoffs. That is, if a type-contingent

strategy s ∈ S is identified with the pair (sH , sL) of type-contingent strategies then

Πs = λΠH(sH) + (1− λ)ΠL(sL). Finally, in the phase diagrams thick solid lines or points

correspond to equilibrium sets or points, respectively. Iso-profit lines are depicted by

thick dotted lines.

Before we restrict to the different cases of equilibria separately we present the payoffs

ΠH(sH) and ΠL(sL) for all type-contingent strategies in full generality.
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Type-contingent payoffs for a generic population state:

ΠH(CCs) = λ
(

(1 +m)
∑

pC··,· + (−β)
∑

pD··,·

)

+ (1− λ)(−β)− kH

ΠH(CDs) = λ
(

(1 +m)
∑

pC·s,· + (1 + α)
∑

pC·ns,· − β
∑

pD·s,·

)

− (1− λ)β
∑

p···,s − kH

ΠH(DCs) = λ
(

(1 + α)
∑

pC·s,· + (1 +m)
∑

pC·ns,· − β
∑

pD·ns,·

)

− (1− λ)β
∑

p···,ns − kH

ΠH(DDs) = λ(1 + α)
∑

pC··,· − kH

ΠH(CCns) = λ
(

(1 +m)
∑

p·C·,· + (−β)
∑

p·D·,·

)

+ (1− λ)(−β)− kH

ΠH(CDns) = λ
(

(1 +m)
∑

p·Cs,· + (1 + α)
∑

p·Cns,· − β
∑

p·Ds,·

)

− (1− λ)β
∑

p···,s − kH

ΠH(DCns) = λ
(

(1 + α)
∑

p·Cs,· + (1 +m)
∑

p·Cns,· − β
∑

p·Dns,·

)

− (1− λ)β
∑

p···,ns − kH

ΠH(DDns) = λ(1 + α)
∑

p·C·,· − kH

ΠL(s) = λ(1 + α)
∑

pC··,·

ΠL(ns) = λ(1 + α)p·C·,·

B.1 Separating Equilibria

A separating equilibrium is defined by
∑

p··s,ns = 1 or
∑

p··ns,s = 1.

B.1.1 High types signal, low types do not signal:
∑

p··s,ns = 1

Existence

Note that for λ ∈ (0, 1) and pCCs,ns, pCDs,ns, pDCs,ns, pDDs,ns > 0, it follows that ΠCCs,ns <

ΠCDs,ns, ΠDCs,ns < ΠDDs,ns, ΠCCns,ns < ΠCDns,ns, and ΠDCs,ns < ΠDDs,ns. After deletion

of these strictly dominated strategies, payoffs of the remaining strategies are given by:

ΠCDs,ns = λ
[

λ[pCDs,ns(1 +m)− pDDs,nsβ]− kH
]

; ΠDDs,ns = λ
[

λ(pCDs,ns)(1 + α)− kH
]

ΠCDns,ns = λ
[

− (pCDs,ns + pDDs,ns)β
]

; ΠDDns,ns = 0

For a separating equilibrium where high types send the signal and low types do not, only

two undominated strategies are left, CDs, ns and DDs, ns , i.e. pCDs,ns + pDDs,ns = 1.

Thus, CDns, ns would earn strictly less than DDns, ns.

1. Let us first analyze the case pCDs,ns = 1. In that case the following three conditions

are necessary and sufficient for this to constitute an equilibrium:
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(i) ΠCDs,ns > ΠDDs,ns, which is always satisfied, because of m > α.

(ii) ΠCDs,ns ≥ ΠDDns,ns ⇔ λ ≥ kH
1+m

.

(iii) ΠCDs,ns ≥ ΠCDs,s ⇔ λ ≤ kL
1+α

.

Thus, the three conditions are equivalent to kH
1+m

≤ λ ≤ kL
1+α

. Note that for kH < k̄H

the λ-support for this equilibrium is not empty.

2. Let us now analyze the case pDDs,ns = 1. In that case DDns, ns would earn strictly

higher payoffs, hence such an equilibrium cannot exist.

3. Finally, we consider a mixed equilibrium, i.e., pCDs,ns+pDDs,ns = 1. In that case the

following three conditions are necessary and sufficient for this to be an equilibrium:

(i) ΠCDs,ns = ΠDDs,ns ⇔ pCDs,ns =
β

β+m−α
.

(ii) ΠDDs,ns ≥ ΠDDns,ns ⇔ pCDs,ns ≥ λβ+kH
λ(1+m+β)

.

(iii) ΠCDs,ns ≥ ΠCDs,s ⇔ pCDs,ns ≤ kL
λ(1+α)

.

At pCDs,ns = β
β+m−α

the last two conditions are equivalent to β+m−α
β(1+α)

kH ≤ λ ≤
β+m−α
β(1+α)

kL.

Stability

Case 1: This equilibrium is certainly stable in the interior range kH
1+m

< λ < kL
1+α

since all

payoff inequalities hold strictly. At the upper bound λ = kL
1+α

, the strategies CDs, ns

and CDs, s earn the same profits, i.e., low types are indifferent between signaling

and not sending the signal. Consider a small perturbation such that CDs, s is played

with a small positive probability. To reestablish pCDs,ns = 1, the share of high types

playing CDs must decrease, because ΠL(s)−ΠL(ns) = λpCDs(1+α)−kL. However,
for small perturbations CDs is still dominant for high types. Hence, CDs persists

as part of the equilibrium strategy and there is no force reestablishing the non-

signaling contingency for low types. Thus, the separating equilibrium is not stable

at the upper bound. A similar argument establishes that it is also not stable at the

lower bound. At the lower bound kH
1+m

, the strategies CDs, ns and DDns, ns earn

the same profits, i.e., high types are indifferent between cooperating and incurring

the cost of the signal on the one hand, and defecting and no signaling on the other.

Consider a random drift, such that pDDns,ns > 0. This drift will lower profits for

CDs, ns and leaves profits for DDns, ns unchanged. Hence, the equilibrium will

not be restored. In other words, this equilibrium is not stable at λ = kH
1+m

.
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Case 3: In this equilibrium with pCDs,ns =
β

β+m−α
, pDDs,ns =

m−α
β+m−α

we have the following

differences in type-specific payoffs:

ΠH(CDs)− ΠH(DDs) ≥ 0 ⇔ pCDs ≥
β − (1− λ)βpns
λ(m− α− β)

ΠL(ns)− ΠL(s) ≥ 0 ⇔ pCDs ≤
kL

λ(1 + α)
,

we obtain the following phase diagram. Note that for the support of that equi-

librium kL
λ(1+α)

> kH+λβ−(1−λ)βpns

λ(m−α−β)
holds. Note further that the upper bound of the

support λ ≤ m−α+β
β

kL
1+α

implies β
m−α+β

≤ kL
λ(1+α)

. Additionally, kH+λβ
λ(1+m+β)

≤ β
m−α+β

⇔
kH

λ(1+α)
≤ β

m−α+β
. As the diagram clearly indicates, this equilibrium is unstable for

all λ in the support.
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Figure 10: Dynamics for a separating equilibrium where high types signal and low types
don’t.

B.1.2 High types do not signal, low types signal:
∑

p··ns,s = 1

Existence

Let us again first study the signaling contingency for high types. Note that for λ ∈ (0, 1)

and pCCns,s, pCDns,s, pDCns,s, pDDns,s > 0, it follows that ΠCCs,s < ΠDCs,s, ΠCDs,s < ΠDDs,s,

ΠCCns,s < ΠDCns,s, and ΠCDns,s < ΠDDns,s. After deletion of these strictly dominated

strategies, payoffs for low types to signal is −kL, whereas signaling yields an expected

payoff of λpDCns,s(1 + α). Thus, strategies that imply no signaling for low types generate

strictly higher payoffs. Hence, such an equilibrium cannot exist.
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B.2 Pooling Equilibria

B.2.1 High types and low types do not signal:
∑

p··ns,ns = 1

Existence

Let us again first study the signaling contingency for high types. Note that in a pool-

ing equilibrium where nobody sends the signal, CCns, ns and DCns, ns (CDns, ns and

DDns, ns) will always earn the same profits irrespective of the chosen signal and the

particular composition. We will denote profits by ΠCCns,ns/DCns,ns, and ΠCDns,ns/DDns,ns.

Since those pairs are indistinguishable we only have to consider the following cases:

1. pCCns,ns + pDCns,ns = 1.

(i) In that case ΠCCns,ns/DCns,ns > ΠCCs,ns/DCs,ns, ΠCDns,ns/DDns,ns > ΠCDs,ns/DDs,ns,

and ΠCCns,ns/DCns,ns > ΠCCns,s/DCns,s, because pCDns,ns = 0.

(ii) ΠCCns,ns/DCns,ns ≥ ΠCDns,ns/DDns,ns ⇔ λ ≥ β
β+m−α

. Because of ΠCCns,ns/DCns,ns >

ΠCDns,ns/DDns,ns > ΠCDs,ns/DDs,ns, the condition λ ≥ β
β+m−α

is necessary and

sufficient.

2. pCDns,ns + pDDns,ns = 1.

(i) In that case ΠCCns,ns/DCns,ns < ΠCDns,ns/DDns,ns, because pCCns,ns+ pCDns,ns =

0.

(ii) ΠCDns,ns/DDns,ns ≥ ΠCDs,ns/DDs,ns ⇔ λpCDns,ns ≤ kH
1+α

.

(iii) ΠCDns,ns/DDns,ns ≥ ΠCCs,ns/DCs,ns ⇔ λpCDns,ns ≤ β+kH
1+m+β

.

(iv) ΠCDns,ns/DDns,ns ≥ ΠCDns,s/DDns,s ⇔ λpCDns,ns ≤ kL
1+α

.

Note that, kL
1+α

> kH
1+α

. Thus, (ii) and (iii) are necessary and sufficient.

3. pCDns,ns + pDDns,ns + pCCns,ns + pDCns,ns = 1.

(i) In that case all no-signaling strategies earn the same payoff: λ
[

λ[(pCCns,ns +

pCDns,ns)(1+m+β)−β
]

+(1−λ)
[

λ(pCCns,ns+pDCns,ns)(1+α)
]

= λ
[

λ(pCCns,ns+

pCDns,ns)(1 + α)
]

+ (1 − λ)
[

λ(pCCns,ns + pDCns,ns)(1 + α)
]

⇔ λ(pCCns,ns +

pDCns,ns) =
β

β+m−α
.

(ii) ΠCCns,ns/DCns,ns ≥ ΠCCs,ns/DCs,ns ⇔ λ(pCDns,ns − pDCns,ns) ≤ kH
1+m+β

.

(iii) ΠCDns,ns/DDns,ns ≥ ΠCDs,ns/DDs,ns ⇔ λ(pCDns,ns − pDCns,ns) ≤ kH
1+α

.
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(iv) ΠCDns,ns/DDns,ns/CCns,ns/DCns,ns ≥ ΠCDns,s/DDns,s/CCns,s/DCns,s ⇔ λ(pCDns,ns −
pDCns,ns) ≤ kL

1+α
.

Note that, because of kL ≥ kH and m > α, (ii) implies (iii) and (iv). Thus, such an

equilibrium exists if and only if λ(pCCns,ns + pDCns,ns) = β
β+m−α

and λ(pCDns,ns −
pDCns,ns) ≤ kH

1+m+β
.

Stability

Case 1: The equilibrium set is stable for λ > β
m−α+β

since all inequalities hold strictly, i.e., for

any small perturbation the equilibrium strategies earn strictly more than any other

strategy. Note that the pre-perturbation shares are not necessarily reestablished,

but that the sum of their shares equals unity. At the boundary λ = β
m−α+β

there

are too few high types and the agents become indifferent between cooperation and

defection, i.e., ΠCCns,ns/DCns,ns = ΠCDns,ns/DDns,ns. Note that it is still a strictly

best response not to signal contingent on being a low type. Given the following

differences in type-specific payoffs:

ΠH(CCns)− ΠH(CDns) ≥ 0 ⇔ pCCns ≥
β

λ(m− α) + β
− pDCns,

we obtain the following phase diagram.

CCns
p

DCns
p

 
 

/

/ 0

H

H

CCns DCns

CDns DDns



 

1

1

Figure 11: Dynamics I for a pooling equilibrium where no type signals.

Note that at λ = β
m−α+β

a perturbation from CCns, ns towards DDns, ns decreases

the payoffs for the equilibrium strategies strictly more than for DDns, ns and de-

creases profits for all other strategies weakly more, i.e., those strategies still earn
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strictly less than DDns, ns, and the share of DDns, ns increases. Hence, there is

no force reestablishing the equilibrium set. Note that the iso-profit line is shifted

toward the boundary as λ approaches the lower limit of the support β
m−α+β

. As

the diagram clearly indicates, this equilibrium is stable for all λ > β
m−α+β

in the

support.

Case 2: The equilibrium set is stable for pCDns,ns <
1
λ
min{ kH+β

1+m+β
, kH
1+α

} since all inequalities

strictly hold, i.e., for any small perturbation the equilibrium strategies earn strictly

more than any other strategy.

Given the following differences in type-specific payoffs:

ΠH(CDns)− ΠH(DDns) = −β(1− λ)ps ≤ 0

ΠL(ns)− ΠL(s) = kL − λ(1 + α)pCDns ≥ 0 ⇔ pCDns ≤
kL

λ(1 + α)
,

we obtain the following phase diagram. As the diagram clearly indicates, this equi-

librium set is stable for all λ in the support.
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Figure 12: Dynamics II for a pooling equilibrium where no type signals.

Case 3: Observe that the payoffs for the equilibrium strategies can be written as linear

functions in pCCns,ns + pDCns,ns.

Given the following differences in type-specific payoffs:

ΠH(CCns)− ΠH(CDns) ≥ 0 ⇔ pDCns ≤
β

λ(m− α + β)
− pCCns,
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we obtain the following phase diagram. All other payoff differences of equilibrium

strategies vanish. The figure incorporates the two conditions for existence, i.e.,

λ(pCCns,ns+pDCns,ns) =
β

β+m−α
and λ(pCDns,ns−pDCns,ns) ≤ kH

1+m+β
. As the diagram

clearly indicates, this equilibrium set is unstable.
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Figure 13: Dynamics III for a pooling equilibrium where no type signals.

B.2.2 High types and low types signal:
∑

p··s,s = 1

Existence

Let us again first study the signaling contingency for high types. Note that in a pooling

equilibrium where everybody sends the signal, CCs, s and CDs, s (DCs, s and DDs, s)

will always earn the same profits irrespective of the chosen signal and the particular

composition. We will denote profits by ΠCCs,s/CDs,s, and ΠDCs,s/DDs,s. Since those pairs

are indistinguishable we only have to consider the following cases:

1. pCCs,s + pCDs,s = 1.

(i) ΠCCs,s/CDs,s ≥ ΠCCns,s/CDns,s ⇔ λpCDs,s
≥ kH

1+m+β
.

(ii) ΠCCs,s/CDs,s ≥ ΠDCs,s/DDs,s ⇔ λ ≥ β
β+m−α

.

(iii) ΠCCs,s/CDs,s ≥ ΠDCns,s/DDns,s ⇔ λ ≥ β+kH
β+m−α+pCDs,s(1+α)

.

(iv) ΠCCs,s/CDs,s ≥ ΠCCs,ns/CDs,ns ⇔ λ ≥ kL
pCDs,s(1+α)

.

Note that (iv) implies (i), for (iv) to be satisfied a strictly positive share needs to

play CDs, s. Furthermore, (ii) and (iv) imply (iii). Hence, since pCDs,s ∈ [0, 1] such

an equilibrium exists for λ ≥ max{ kL
1+α

, β
β+m−α

}.
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2. pDCs,s+pDDs,s = 1. This cannot constitute an equilibrium, because not sending the

signal contingent on being a low type yields strictly higher payoffs.

3. pCDs,s + pDDs,s + pCCs,s + pDCs,s = 1.

In that case all signaling strategies earn the same payoff: λ
[

λ(pCCs,s+pCDs,s)(1+m+

β)−β−kH
]

+(1−λ)
[

λ(pCCs,s+pCDs,s)(1+α)−kL
]

= λ
[

λ(pCCs,s+pCDs,s)(1+m+

β)−β−kH
]

+(1−λ)
[

λ(pCCs,s+pCDs,s)(1+α)−kL
]

⇔ λ(pCCs,s+pCDs,s) =
β

β+m−α
.

The following conditions are necessary and sufficient for existence.

(i) ΠCCs,s/CDs,s ≥ ΠCCns,s/CDns,s ⇔ λ(pCDs,s − pDCs,s) ≥ kH
1+m+β

.

(ii) ΠDCs,s/DDs,s ≥ ΠDCns,s/DDns,s ⇔ λ(pCDs,s − pDCs,s) ≥ kH
1+α

.

(iii) ΠCDs,s/DDs,s/CCs,s/DCs,s ≥ ΠCDs,ns/DDs,ns/CCs,ns/DCs,ns ⇔ λ(pCDs,s − pDCs,s) ≥
kL
1+α

.

Note that (ii) implies (i), and (iii) implies (ii). Hence, such an equilibrium exists if

and only if λ(pCCs,s + pCDs,s) =
β

β+m−α
,and λ(pCDs,s − pDCs,s) ≥ kL

1+α
.

Stability

Case 1: Note that at pCDs = kL
λ(1+α)

low types are indifferent between signaling and no

signaling. As soon as low types start not to signal which is ensured by our social

innovation assumption, CDs earns strictly higher payoffs than CCs such that the

incentive for low types to signal will be restored. However, at λ = kL
(1+α)

, pCDs

equals 1 and therefore cannot increase. Thus, this equilibrium is unstable at the

upper bound kL
(1+α)

. If λ = β
m−α+β

, then high types given a received signal are

indifferent between cooperative and defective play. For a small increase in the share

pDCs,s + pDDs,s, the profits for the equilibrium strategies will decline more than the

profits for DCs, s/DDs, s. Since the equilibrium strategies and DCs, s/DDs, s will

still earn higher profits than any other, there is no force bringing back the system

to pCCs,s + pCDs,s = 1. Hence, the equilibrium is unstable at λ = β
m−α+β

.

Given the following differences in type-specific payoffs:

ΠH(CCs)− ΠH(CDs) = −β(1− λ)pns ≤ 0

ΠL(ns)− ΠL(s) ≥ 0 ⇔ pCDs ≤
kL

λ(1 + α)
,

we obtain the following phase diagram.
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Figure 14: Dynamics for a pooling equilibrium where both types signals.

As the diagram clearly indicates, this equilibrium set is stable for λ >

max{ kL
pCDs,s(1+α)

, β
β+m−α

}.

Case 2: Let pCCs + pCDs = x and pDCs + pDDs = y. Note that y = 1− x, because of pCCs +

pCDs + pDCs + pDDs = 1. Thus, we can write payoffs for high types as: ΠH(CCs) =

ΠH(CDs) = λx(1 + m + β) − β − kH , and ΠH(DCs) = ΠH(DDs) = λx(1 +

α)− kH . Given any perturbation that violates the equilibrium condition λ(pCCs +

pCDs) =
β

m−α+β
the equilibrium set will not be restored because ΠH(CCs/CDs)−

ΠH(DCs/DDs) = λx(m− α + β)− β ≥ 0 ⇔ λx ≥ β
m−α+β

. Thus, an increase in x

is self-enforcing.

B.3 Semi-Pooling Equilibria at λ∗

We can focus on the strategies involved in the cooperative separating and in the cooper-

ative high-pooling equilibrium, i.e., the strategies CDs, ns, CCs, ns, and CDs, s. This is

because we show in the proof of Proposition 3 that any perturbation from pCCs+pCDs = 1

will eventually vanish. Since for these strategies high types always signal a semi-pooling

equilibrium can only arise in case of pooling among low types.

Under the restriction to pCDs,ns + pCCs,ns + pCDs,s = 1 the difference in profits for low

types at λ∗ is given by ΠL(ns) − ΠL(s) = λ∗(1 + α − kL)(1 − pCDs,ns − pCDs,s). Thus,

indifference of low types implies pCDs,ns + pCDs,s = 1. Evaluating the profits of high

types under this restriction reveals that all non-signaling strategies except DDs with zero

profits earn strictly negative payoffs. The remaining three signaling strategies at λ∗ earn
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the following profits: Π(CCs) = λ∗(1+m)− β(1− λ∗)− kH ≤ λ∗(1+m)− β(1− λ∗)ps −
kH = Π(CDs), and Π(DCs) = kL − kH − β(1 − λ∗)pns ≤ Π(DDs), where inequalities

are strict if low types pool. Thus the relevant comparison is between CDs and DDs.

Note that Π(CDs) > Π(DDs) ⇔ kL
1+α

> βps
βps+m−α

. This inequality holds because of

the cyclic condition (4), i.e., kL
1+α

> β
β+m−α

. Thus, the remaining payoff constraint is

Π(CDs) ≥ Π(DDns) = 0 which reduces to an upper bound for the signaling cost for high

types, i.e., kH ≤ kL
1+α

(1 +m+ βps)− βps. Note that this inequality follow from kH < kH .

Hence, for kH < kH there exists a semi-pooling equilibrium at λ∗ characterized by

pCDs,s + pCDs,ns = 1. This equilibrium is clearly stable since CDs earns the strictly

highest payoff and low types are indifferent between sending the signal or not if pCDs = 1.

Any perturbation from pCDs = 1 will vanish. This might in the meantime induce a shift

in the share ps but this has no impact on the dominance of CDs. Hence, the system will

eventually be led back to the equilibrium set pCDs,s + pCDs,ns = 1.
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