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Abstract 

Two approaches have been taken in the literature to evaluate the relative importance of 
news shocks as a source of business cycle volatility. The first is an empirical approach that 
performs a structural vector autoregression to assess the relative importance of news 
shocks, while the second is a structural-model-based approach. The first approach suggests 
that anticipated technology shocks are an important source of business cycle volatility; the 
second finds anticipated technology shocks are incapable of generating any business cycle 
volatility. This paper challenges the latter conclusion by presenting a structural news shock 
model adapted to reproduce the cointegrating relationship between total factor productivity 
and the relative price of investment. With cointegrated neutral and investment-specific 
technology, anticipated shocks to the common stochastic trend explain approximately 22%, 
32%, 34% and 20% of the variance of output, investment, hours and consumption in the 
United States, respectively, reconciling the discrepancy between theory and data. 

Bank topics: Business fluctuations and cycles; Productivity 
JEL codes: E32 

Résumé 

Dans la littérature, deux approches méthodologiques ont servi à évaluer l’importance 
relative des chocs induits par de nouvelles informations sur le futur comme source de 
volatilité du cycle économique. La première est une approche empirique qui fait appel à 
une spécification en termes de vecteur autorégressif structurel afin d’évaluer l’importance 
relative de pareils chocs, tandis que la seconde se fonde sur un modèle structurel d’équilibre 
général. Les résultats de la première approche portent à croire que les chocs technologiques 
attendus constituent une source importante de volatilité du cycle économique, alors que 
selon la deuxième, les chocs technologiques attendus ne sont pas susceptibles de provoquer 
une quelconque volatilité du cycle économique. La présente étude remet en question cette 
dernière conclusion en exposant un modèle structurel d’équilibre général comprenant des 
chocs induits par de nouvelles informations, adapté de façon à reproduire la relation de 
cointégration entre la productivité totale des facteurs et le prix relatif de l’investissement. 
Si l’on tient compte de la cointégration des technologies neutres et des technologies 
spécifiques à l’investissement, les chocs attendus en déviation par rapport à la tendance 
stochastique commune expliquent respectivement environ 22, 32, 34 et 20 % de la variance 
de la production, de l’investissement, des heures et de la consommation aux États-Unis, ce 
qui concilie les prédictions de la théorie avec les données. 

Sujets : Cycles et fluctuations économiques; Productivité 
Code JEL : E32 



Non-Technical Summary

Motivation and Question
What drives business cycles? In the literature, two types of technology have been identified
as potential sources of business cycle volatility. These include neutral technologies, which
improve productivity economy-wide, and investment-specific technology, which improves pro-
ductivity exclusively in the investment sector. The literature has typically assumed that these
two technologies behave completely independently of each other. There are, however, plenty
of reasons to believe that these technologies might in fact move together over time. These
reasons include, but are not limited to, technological spillovers as innovations in one sector
are reapplied in another sector. Does the co-movement of these two technologies impact how
we understand the relative importance of anticipated changes in technology for the current
economy?

Methodology
This paper adapts a standard business cycle model to allow households and firms to antici-
pate and respond to future changes in both technological and non-technological disturbances.
The two technologies considered will follow a common time-varying trend, replicating what
is observed in the US data. The model parameters are chosen using Bayesian estimation,
a method that allows flexibility in the estimation process while also limiting estimates to a
reasonable range of parameter values. The relative importance of innovations to the common
trend are assessed by their contribution to the variance of key aggregates through a variance
decomposition. These results are then contrasted with an analogous model where these two
technologies move independently.

Key Contributions
This paper finds that anticipated changes to the common trend shared between neutral and
investment-specific technologies explain approximately 20–35 per cent of the business cycle
volatility in output, consumption, investment and hours worked. These results contrast with
the current stance in the news-cycle literature, where those who have taken a structural-
model-based approach have concluded that anticipated shifts in technology are incapable of
generating any business cycle volatility. Allowing these two technologies to move together
over time implies that anticipated increases in the growth rate of neutral technology gen-
erates a similar increase in investment-specific technology. This results in a strong increase
in both hours and investment prior to the innovation being realized. This overcomes one
of the shortcomings identified in the news-cycle literature, which has produced a variety of
mechanisms to generate a positive response in these variables to an anticipated increase in
productivity.

Future Research
The paper introduced here assumes that there is a common time-varying trend between neu-
tral and investment-specific technologies. There could exist, however, a multitude of common
time-varying trends between other sources of business cycle volatility. Any co-movement be-
tween two or more of these variables would undoubtedly challenge both these findings as well
as those concluded in the literature. Future research should explore the impact this would
have in the news-cycle literature.



1 Introduction

Can news about the future drive the business cycle? Empirical evidence from structural

vector autoregressions (SVARs) shows that anticipated technology shocks, either neutral

or investment-specific, are a non-trivial source of business cycle volatility (Beaudry and

Portier (2006), Barsky and Sims (2011) and Ben Zeev and Khan (2015)). This finding

stands in contrast with contributions that assess the relative importance of anticipated shocks

by estimating business cycle models. Examples include Schmitt-Grohé and Uribe (2012),

Fujiwara et al. (2011) and Khan and Tsoukalas (2012), who all conclude that anticipated

technology shocks are incapable of generating any business cycle volatility.

The vast majority of the business cycle research, including those listed above, have as-

sumed that both neutral and investment-specific technologies move independently over time.

There are, however, plenty of reasons to believe that these two technologies might in fact

move together over time, both in the short run, through technological spillovers, and in

the long run, through a common trend component. This paper reassesses the relative im-

portance of anticipated technology shocks in a standard news shock model where neutral

and investment-specific technologies follow a common stochastic trend, as found by Schmitt-

Grohé and Uribe (2011) for the United States.

The news shock model used here will be based on the model proposed by Schmitt-Grohé

and Uribe (2012), including the use of their data for ease of comparability. This model

will include Jaimovich and Rebelo’s (2009) preferences with habit persistence in consump-

tion, along with variable capital utilization rates and investment adjustment costs. Each of

these components has been identified in the business cycle literature as an essential element

required to produce a positive response in output, hours and investment in response to a

positive anticipated neutral technology shock. Most notably, this research finds that when

a vector error correction model (VECM) is incorporated into a standard news shock model,

news shocks to the common stochastic trend matter, and explain a non-trivial proportion

of output, consumption, investment and hours growth volatility. When both total factor

productivity (TFP) and investment-specific technology (IST) follow a common stochastic

trend, a positive anticipated shock to non-stationary TFP is accompanied by an anticipated

boost in IST. As a result, there is an anticipated drop in the relative price of investment

(RPI) at the very moment an anticipated TFP shock is realized. Knowing that the RPI will
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decline with a rise in TFP causes capital utilization to increase in the interim, and remain

high even after the shock is realized. During the interim, the high capital utilization rates

encourage hours to increase leading to an increase in output, allowing both consumption and

investment to rise simultaneously.

We find that when TFP and IST are cointegrated, anticipated technology shocks regain

their relevance in generating business cycle volatility. In fact, when we allow for cointegration

between these two technologies, the shares of output, investment, consumption and hours

variance explained by these shocks are greater than the sum of variance explained by TFP and

IST without cointegration. After performing a Bayesian estimation, a variance decomposition

is performed to assess the relative importance of anticipated shocks to the common stochastic

trend. With cointegrated technologies, anticipated shocks to the common stochastic trend

explain approximately 22%, 32%, 34% and 20% of the variance of the growth rates of output,

investment, hours and consumption, respectively. These results suggest that anticipated

technological shocks play a significantly larger role in business cycles when TFP and RPI are

cointegrated than when they follow independent processes, as is the case for Schmitt-Grohé

and Uribe (2012) and Khan and Tsoukalas (2012). Thus, the relative importance of these

two shocks can be fully appreciated only when they are allowed to move together over the

business cycle.

Our analysis shows that allowing both neutral and investment-specific technologies to

move together over time, both in the short run, and in the long run, brings business cycle

models in line with the empirical evidence from SVARs, leading to a revival in the impor-

tance of anticipated technology shocks. The response of both hours and investment to an

anticipated technology shock is positive, and is enhanced when both neutral and investment-

specific technologies move together over time. Allowing these technologies to follow a com-

mon stochastic trend therefore provides an additional mechanism that can be used to coax a

positive response in hours and investment to an anticipated increase in neutral technology.

As a measure of fit, the estimated log data density for the model proposed (-4715.43) is

higher than the analogous measure (-5423.98) for the model where technologies move inde-

pendently. In addition, when these technologies move independently, both anticipated wage

markup shocks and anticipated and unanticipated marginal efficiency of investment (MEI)

shocks are found to explain a majority of the volatility in hours and investment growth,

respectively. This is corroborated by Schmitt Grohé and Uribe (2012), who propose a sim-
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ilar model to our benchmark without cointegrated technologies. In contrast, when neutral

and investment-specific technologies are allowed to move together over time, the ability of

wage markup and MEI shocks to explain volatility in these variables declines by two-thirds.

Therefore, allowing neutral and investment-specific technologies to follow a common stochas-

tic trend has important implications for our understanding of the importance of anticipated

technology shocks within a structural model framework.

The remainder of the paper will be organized as follows. Section 2 outlines the model

used to assess the relative importance of anticipated technology shocks. Section 3 outlines

the Bayesian estimation process used to estimate the parameter values. Section 4 outlines the

key results. Section 5 compares these results to the current stance in news shock literature.

Section 6 concludes.

2 Model

The benchmark dynamic stochastic general-equilibrium (DSGE) model used throughout

this paper incorporates both a cointegrating relationship between neutral and investment-

specific technologies and a mechanism that allows households to anticipate and respond

to future changes in fundamentals. Households in this model purchase consumption and

investment goods from their respective producers, and are the sole providers of labour and

capital services used by the firm. There will also be a variety of both anticipated and

unanticipated shocks. The menu of shocks included will consist of technology shocks (both

TFP and IST as discussed above) as well as a series of non-technological shocks, such as

wage markup shocks, preference shocks and changes in the MEI. Each of these shocks listed

is subject to both anticipated and unanticipated innovations. The growth rates of both TFP

and IST will be governed by a VECM. Our benchmark model is based on the results found by

Schmitt-Grohé and Uribe (2011) and hence shares many similarities with their work. Each

of the components listed above is now discussed in turn.

2.1 Households

The economy is populated with a large number of identical and infinitely-lived households,

which each period consume Ct consumption goods and provide Ht units of labour, with a
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lifetime utility given by

E0

∞∑
t=0

βtbt
[Ct − χCt−1 − φHt

θXt]
1−σ

1− σ
(1)

Xt = (Ct − χCt−1)ηX1−η
t−1 , (2)

where 0 ≤ η ≤ 1, 0 < β < 1, φ > 0, θ > 1 and σ > 0.

Here β is the households’ subjective discount factor, σ determines the curvature of the house-

hold utility, θ determines the level of labour supply elasticity and χ is the habit-persistence

parameter for consumption. We include a preference shock bt, which captures changes in

household preferences over time. These preferences were first developed by Jaimovich and

Rebelo (2009). The remaining parameter η and the latent variable Xt are the distinctive

elements that make up Jaimovich and Rebelo preferences. Parameter η (bound between 0

and 1) governs the sensitivity of a household’s labour supply decision to changes in wealth.

When the value of η approaches zero, we have preferences similar to those used by Green-

wood, Hercowitz and Huffman (1988) where the wealth effect on labour supply has been

removed. When η is close to 1 we have King, Plosser and Rebelo (1988) preferences, which

exhibit a strong wealth effect on labour supply. These preferences have become common in

news shock research due to their ability to generate an increase in labour supply in response

to positive news of future productivity.

Households maximize their lifetime utility subject to their budget constraint

Ct + PtI
g
t =

Wt

µWt
Ht +RtUtKt + Φt + Πt, (3)

where Wt and Rt are the wage and rental rates paid by the firm for Ht hours worked and

UtKt capital services provided, respectively. A portion 1/µw ≤ 1 of the households’ wages

are taken from households and then rebated back to households through the lump sum Φt.

Since households own the goods-producing firms, profits earned by these producers, Πt, are

accrued by the households. With this income, a representative household can either buy

consumption goods Ct or purchase investment goods It, which are both measured in units of

consumption goods, with Pt denoting the RPI.
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Households accumulate capital according to the following capital-accumulation equation:

Kt+1 = (1− δ(Ut))Kt + vtI
g
t (1− S(

Igt
Igt−1

)), (4)

where Kt is the households’ stock of capital, and Ut is the capital utilization rate. Included

in the capital-accumulation equation is also an investment-adjustment cost function S() :

S(x) =
κ

2
(x− µig)2, (5)

where κ ≥ 0, and µ̄i
g

is the growth rate of real investment along a balanced growth path.

Note that in the steady state, S = S ′ = 0, and S ′′ > 0. We allow the rate of capital

depreciation δ(Ut) to increase with the rate of capital utilization, assuming the following

convex function:

δ(Ut) = δ0 + δ1(Ut − 1) +
δ2

2
(Ut − 1)2 (6)

with δ0, δ1 and δ2 > 0. Last of all, vt indicates the marginal efficiency of investment at

period t. These MEI shocks, first suggested by Justiniano, Primiceri and Tambalotti (2011),

are introduced by conceptually dividing the process of creating capital into two stages of

production. The first phase of production involves transforming consumption goods into

investment goods, which is altered by IST. When production technology is linear, IST is

exactly identified by the RPI. However, these investment goods, fresh off the production

line, remain idle until matched with a firm. Shocks that affect this latter conversion are

referred to as our MEI shocks. As an example, a firm’s ability to access new capital can be

influenced by its ability to access the credit required to purchase new investment goods.

2.2 Firm

The consumption good in this economy is produced by an infinite number of identical and

perfectly competitive firms with unit mass according to the following production function

Yt = Zt(UtKt)
α(XZ

t Ht)
1−α, (7)

where α is between 0 and 1, implying constant returns-to-scale; Ht and UtKt denote labour

and capital services used by the firm. TFP consists of a stationary component Zt with only

a transitory effect on TFP, and a non-stationary trend component XZ
t . Given equation (7),
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TFP will be measured as

TFPt = Zt(X
Z
t )1−α. (8)

It consumption goods can be converted into investment goods according to the following

production function:

Igt = AtX
A
t It, (9)

where Igt is the quantity of investment goods produced, and AtX
A
t represents the level of

IST. Shocks to IST can be divided into two components, a stationary component At and a

non-stationary component XA
t .1 Since investment production is linear, the relative price of

the investment good in period t Pt is equal to

Pt =
1

AtXA
t

, (10)

where IST is measured as

ISTt = AtX
A
t . (11)

2.3 Exogenous Shock Process

In total, seven exogenous shocks processes have been incorporated into this model. There

are five stationary shocks: two technology shocks, Zt, and At; a shock to household pref-

erences bt; wage markup shock µwt ; and MEI shocks vt. Each of these exogenous processes

is subject to both anticipated and unanticipated shocks. These shocks xt ∈ {Z,A, b, µw, vt}
evolve according to the following law of motion:

ln(
xt
µ̄x

) = ρxln(xt−1) + εx0
t + εx4

t−4 + εx8
t−8, (12)

where 0 ≤ ρ < 1 is the level of persistence, and ex0
t is an unanticipated shock to xt. Two

news shocks, denoted εx4
t−4 and εx8

t−8, are anticipated four and eight quarters in advance. The

timing of our anticipated shocks follows the timing adopted by both Schmitt-Grohé and

Uribe (2012) and Khan and Tsoukalas (2012). µ̄x is the steady state value of variable xt.

1By assuming investment production of Igt = AtX
A
t I

ζ
t , Schmitt-Grohé and Uribe (2011) estimate the

curvature of investment production, where they conclude that ζ equals 1 and investment production is
linear.
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2.3.1 Common Trend Component

As shown by Schmitt-Grohé and Uribe (2012), there is strong empirical evidence that the

logarithms of TFP and the RPI are I(1) cointegrated in the United States. Thus there exists

a scalar Γ such that

TFP Γ
t Pt (13)

is a stationary I(0) process. With the definition for the Pt in equation (10) and TFPt in

equation (8) we can rewrite equation (13) as

ZtX
Z
t

(1−α)

AtXA
t

, (14)

which will also be I(0) stationary. With TFP and the RPI cointegrated, then it must also

hold that XZ
t and XA

t are also cointegrated.

Letting µZt equal the growth rate of XZ and µAt the growth rate of XA, we have

µZt =
XZ
t

XZ
t−1

and µAt =
XA
t

XA
t−1

. (15)

The growth rates µZt and µAt have the following law of motion

[
ln(µZt /µ̄

Z)

ln(µAt /µ̄
A)

]
=

[
ρ11 ρ12

ρ21 ρ22

][
ln(µZt−1/µ̄

Z)

ln(µAt−1/µ̄
A)

]
+

[
κ1

κ2

]
xcot−1 +

[
σ0
µZ
ε0
µZ ,t

σ0
µA
ε0
µA,t

]

+

[
σ4
µZ
ε4
µZ ,t−4

σ4
µA
ε4
µA,t−4

]
+

[
σ8
µZ
ε8
µZ ,t−8

σ8
µA
ε8
µA,t−8

]
, (16)

with the error correction term xcot calculated as

xcot = ψln(XZ
t )− ln(XA

t ). (17)

Here µ̄Z and µ̄A are the growth rates of TFP and IST along a balanced growth path. 0 < ρ11 < 1

and 0 < ρ22 < 1 determine the level of persistence for growth rates of TFP and IST, respectively,

while ρ12 and ρ21 determine the spillover between these two growth rates. Coefficients κ1 and
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κ2 determine the impact that changes in the common trend have on the growth rates µz and µa,

respectively. Their value will be discussed in our estimation process. ε0µzt and ε0µat are unanticipated

shocks to µzt and µat , respectively, and εk
µit

are anticipated shocks to µit for i = {A,Z} observed k

periods in advance. The VECM setup in this paper builds on the one presented by Schmitt-Grohé

and Uribe (2011), who do not include anticipated shocks.

With both TFP and IST following a common stochastic trend, many of the economic aggregates

are non-stationary. The trend in output, consumption, nominal investment and the wage and rental

rates equals

XY
t = XZ

t (XA
t )

α
1−α , (18)

whereas the trend of the capital stock, and the level of real investment, is

XI
t = XK

t = XY
t X

A
t . (19)

There is no growth in hours and utilization. The later is normalized to 1 in steady state. For

the remainder of the paper we work with the detrended version of our model, where all variables

are measured as deviations from the balanced growth path. Since we include multiple stochastic

trends, the evolution of a variable is a combination of the variable’s deviation from its balanced

growth path as well as the evolution of the stochastic trends XZ
t and XA

t .

3 Model Estimation

3.1 Parameterization

As mentioned in the introduction, a majority of the parameter values used in the benchmark

model are obtained by means of Bayesian estimation, while we set some of the better understood

parameters ourselves. The list of the estimated parameters includes the preference parameters θ,

hss, η and χ, where θ determines the elasticity of labour supply, hss determines the level of hours

worked in the steady state, η determines the level of inter-temporal substitution in consumption,

and χ is the habit-persistence parameter for consumption. Parameters governing the accumulation

of capital, including δ2, which determines how capital utilization impacts the depreciation of capital,

and κk, which is the investment adjustment cost parameter, are also estimated. In addition to these

parameters, the variance and persistence parameters governing the five stationary shocks are also

estimated. These include parameters ρz, ρa, ρv, ρb and ρµw , which govern the persistence of the

TFP, IST, MEI, preference and the wage markup shock, respectively. Furthermore, we estimate
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the relative size of both unanticipated and anticipated shocks to these five stationary series, which

are listed in Table 2. For the non-stationary shock process we estimate the persistence parameters

ρ11 and ρ22, the spillover parameters ρ12 and ρ21, the cointegration coefficients κ1 and κ2 and

the variance of the innovations, both anticipated and unanticipated. Aside from the parameters

mentioned above, other parameters are calibrated directly. These include δ0, δ1, uss, β, α, φ, σ,

µ̄w, µ̄Y and µ̄A.

Similar to Schmitt-Grohé and Uribe (2011), we normalize the steady-state utilization rate to

1 and set the parameter δ0 such that the quarterly depreciation rate in steady state is equal to

0.025. In addition, we set the household discount rate β equal to 0.985, and a value of 1 for the

risk-aversion parameter σ. α is set to 0.33 such that labour’s share of output is equal to 0.67.

The quarterly growth rate of output is estimated using seasonally adjusted non-farm output from

the first quarter of 1949 to the fourth quarter of 2006, available through the US Bureau of Labor

Statistics. With this information we calculate a quarterly growth rate of output µ̄y of 1.0049. The

quality-adjusted RPI is calculated by Fisher (2006), who utilizes the time series created by Gordon

(1989) and Cummins and Violante (2002), known as the Gordon-Cummins-Violante equipment

price deflator, along with US Bureau of Labor Statistics National Income and Product Accounts

Table estimates for the consumption goods deflator to derive quarterly time series data on the RPI.

With this information, the estimated growth in the RPI is set equal to 0.9957, which implies a

0.43% drop in the price of investment each quarter along a balanced growth path. With constant

returns to scale in investment production, this implies estimated value µ̄A equal to 1.0043. With

our estimates for µ̄A and µ̄Y we set the value of µ̄Z such that the growth of output matches the

data along a balanced growth path. Given the model setup, and the values above for β, µ̄Y and

µ̄A, we set

δ1 =
1

β
(µ̄Y )σµ̄A + δ0 − 1 (20)

in order for the first-order conditions for both capital and utilization to be satisfied.

Given our estimates for µ̄A, and the implied value for µ̄z, we set ψ equal to ln(µ̄A)/ln(µ̄Z) such

that the common trend component of IST and TFP disappears in the steady state. The steady-

state wage markup rate µ̄W is set equal to 1.1, which is the value used by Schmitt-Grohé and Uribe

(2011).

The time-series data used in our Bayesian estimation will include the log difference in gross

domestic product, consumption and real investment, where each variable just mentioned is divided

by the US population age 16 and over. We also include the log difference of TFP and the RPI as well

as the log difference in hours in our list of observables. Growth in output, investment, consumption
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and hours worked is included in the set of observables to capture the general movement of the

economy. The growth rate for the RPI is included in the set of observables so as to pin down

plausible movements in IST. As demonstrated by Justiniano, Primiceri and Tambalotti (2011), the

relative importance of IST in generating business cycle volatility is heavily dependent on whether

growth rates in the RPI are included in the set of observables. When the growth rate of the RPI

is included, the Bayesian estimation pins down movements of IST to the inverse of the RPI. In

fact, when their model is re-estimated with the RPI included in the set of observables, IST loses its

ability to explain business cycle dynamics. As done by Schmitt-Grohé and Uribe (2012), we include

the growth rate of TFP adjusted for capital utilization in the set of observables, which allows the

estimation process to guide our estimates of the cointegration coefficients κ1 and κ2.

Each of these time series is observed quarterly. Altogether we include six observables in our

Bayesian estimation. This data set YT includes

YT =



∆ln(Yt)

∆ln(Ct)

∆ln(It)

∆ln(Pt)

∆ln(ht)

∆ln(TFPt)


+



σME
Y

0

0

0

0

0


. (21)

Bayesian estimation requires prior distributions for the estimated parameters. Many of the

prior distributions used are those used by Khan and Tsoukalas (2012), whose model structure is

similar to that of Schmitt-Grohé and Uribe (2012). A comprehensive list of the prior distributions

used in our benchmark estimation are outlined in Table 2. The persistence parameters for the five

stationary shock processes ρz, ρa, ρv, ρb and ρµw , are given a beta prior distribution, with a mean

of 0.6 and a variance of 0.2. As for the parameters governing the VECM model which determines the

growth rates for the two technology shocks (i.e., ρ11, ρ22, ρ12, ρ21, κ1, κ2), we assume normal prior

distributions with a mean set equal to the maximum likelihood estimates produced by Schmitt-

Grohé and Uribe (2011) and a standard deviation equal to the standard error of their estimates.

We set the standard deviation of the unanticipated and anticipated stationary TFP shocks such

that in total, the sum of the standard deviations of these shocks adds up to a value similar to

that estimated by Kydland and Prescott (1982). Given this goal, we choose an inverse gamma

distribution with a mean of 0.5 and a variance of 2 for the standard deviation of an unanticipated

shock to stationary TFP. For anticipated disturbances to stationary TFP we likewise assume an
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inverse-gamma distribution with a mean of 0.1 and a variance of 2. By choosing these values, we

assume that unanticipated shocks account for over 90% of the volatility of TFP. For transparency,

we use the same distributions described above for both anticipated and unanticipated shocks for

the standard deviation of all other shock processes used in our Bayesian estimation.

For the preferences parameter θ, we assume a gamma distribution with a mean of 3 and a

variance of 0.75. For the habit-persistence parameter χ we assume a beta distribution with mean of

0.5 and a standard deviation of 0.1. As for the Jaimovich and Rebelo (2009) parameter η, we assume

a beta distribution with a mean of 0.5 and a standard deviation of 0.2, bounded by 0.001 and 0.999.

As for steady-state hours, a normal distribution with a mean of 0.2 and a standard deviation of 0.05

is used. The investment-adjustment parameters κk and the depreciation parameter δ2 are given a

gamma distribution, with a mean of 2.5 and a standard deviation of 8 and a normal distribution

with a mean of 0.08 and a standard deviation of 0.01, respectively. Lastly, we allow for measurement

error for output volatility εME
it , where we assume that these measurement errors are bound between

zero and one-quarter of the variance of the log difference of quarterly output with a uniform prior

distribution. Given the model introduced in Section 2, as well as the data set YT and the listed set

of prior distributions for those parameters being estimated, we have all the elements required to

estimate the posterior density of our parameter set.

3.2 Estimation Results and Posterior Distributions

The estimation process employed by Dynare applies a random walk Metropolis-Hastings Monte

Carlo Markov Chain algorithm to estimate the posterior distribution of our estimated variables. In

the case of our analysis, we run five parallel chains with 100,000 simulations each, where the first half

of the draws are discarded. The results of the Bayesian estimation are available in Table 3, which

lists the prior and posterior distribution along with a 95% confidence interval around the posterior

mean. Of particular interest is the Jaimovich and Rebelo preference parameter η. With η = 0.12,

the wealth effect on household labour supply is insubstantial. With an estimated value of χ of

0.7, households’ consumption is characterized by habit persistence. For the remaining preference

parameter θ and the steady state hours hss we estimate a value of 2.96 and 0.18, respectively, which

leaves these estimates roughly in line with those found in the literature. The estimated value for the

investment adjustment cost parameter κ is 42.99. The high cost of adjusting capital is due to joint

timing of TFP and IST resulting from the cointegrating relationship in the benchmark model. The

depreciation parameter δ2 has an estimated value of 0.076, reflecting curvature in the depreciation

function. The persistence parameters for the five stationary shocks (ρZ , ρA, ρv, ρµw , and ρb) range

between 0.37 for stationary IST shocks, to as high as 0.99 for wage markup shocks.
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For the parameters governing the movement of our two non-stationary components, XZ
t and

XA
t , estimates for the persistence parameters ρ11 and ρ22 suggest that growth in TFP has little

to no persistence while IST has a moderate level of persistence with ρ11 = 0.27 and ρ22 = 0.55,

respectively. These values are roughly in line with the values found by Schmitt-Grohé and Uribe’s

(2011) maximum likelihood estimation for these parameters. Perhaps the most important values

are those estimated for κ1 and κ2, which determine the impact our common trend component xt

has on both growth rates, and ρ12 and ρ21, which determine the degree of spillover between shocks.

For κ1 and κ2 we estimate values of 0.13 and 0.45, and for the spillover parameters ρ12 and ρ21, we

estimate values of 0.07 and 0.58, respectively. These estimates imply that growth rates for neutral

and investment-specific technologies move together over time. Estimates for the yet to be discussed

standard deviations for both anticipated and unanticipated shocks are available in Table 3.

4 Model Results

4.1 Variance Decomposition

With the parameter set estimated in the previous section, we can now begin our analysis

regarding the impact both anticipated and unanticipated shocks have on our model. The variance

decomposition of the benchmark model is available in Table 4.2 Anticipated and unanticipated

shocks to stationary IST explain very little of the variance of the observables included in our

estimation. Anticipated and unanticipated preference shocks are also not important. Wage markup

shocks are an important source of volatility in the growth rate for hours, with 9% of the volatility

explained by unanticipated wage markup shocks and roughly 22% explained by anticipated wage

markup shocks. Lastly, anticipated MEI shocks explain 7% of the volatility of investment growth,

which is much lower than the results found by both Schmitt-Grohé and Uribe (2012) and Khan

and Tsoukalas (2012).

Table 4 demonstrates that shocks to the common trend shared between TFP and IST are

of particular importance. Taken together, anticipated and unanticipated shocks to the common

trend explain 66% of output growth, 77% of investment growth, 70% consumption growth and

approximately 51% of the growth in hours worked. Of particular interest, this research finds that

shocks to the common stochastic trend explain approximately 90% of the variance in RPI growth.

2For each variance decomposition calculated in this section, the parameter values are set at the mean
of each parameter’s posterior distributions. The variance decompositions mentioned throughout this paper
are contemporaneous in that they focus on the explanatory power of each shock in explaining volatility in
observables and a not forecast error variance decomposition.
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Thus it appears that the assumption that IST can be identified by the inverse of the RPI is

particularly problematic.

Our main finding is that anticipated shocks to the common trend are an important source of

business cycle volatility despite the inclusion of wage markup shocks in our model. Anticipated

shocks to the common trend explain approximately 22%, 32%, 20% and 34% of the volatility

of output, investment, consumption and hours growth, respectively. These findings contrast with

those of Schmitt-Grohé and Uribe (2012) and Khan and Tsoukalas (2012), who find that anticipated

technology shocks have only a very small role to play in business cycle fluctuations. Therefore, our

analysis suggests that allowing for cointegration is important to the study of technology and news

shocks.

4.1.1 No Cointegration

To test whether cointegration is important in generating the variance decomposition listed in Table

4, we set κ1 = κ2 = ρ12 = ρ21 = 0 in equation (16) and re-estimated our benchmark model with

these new restrictions. As can be seen in Table 6, anticipated shocks to either TFP or IST, station-

ary or otherwise, play a limited role in generating business cycle volatility. Instead, anticipated MEI

shocks, as found by Schmitt-Grohé and Uribe (2012), have regained their relevance in explaining

business cycle volatilities, with anticipated MEI shocks now accounting for 55% of the volatility

of investment growth. The relative importance of anticipated wage markup shocks in explaining

volatility in hours growth has increased dramatically to 98%. Furthermore, when comparing the

log data densities of these two models, the model that allows cointegrated technologies is preferred,

with a value of -4715, compared with the much lower value of -5424 observed for the model without

cointegrated technologies. To illustrate the impact cointegration between TFP and IST has on the

time path of these two variables, we now look at the impulse-response functions.

4.2 Impulse Responses

Figure 1 plots the impact of a one-standard-error innovation to ε4
µZ ,t

(left panel) and ε4
µA,t

(right panel) on TFP growth µZt , IST growth µAt and the common trend xcot . With cointegration

between non-stationary neutral and investment-specific technologies, an anticipated change in the

non-stationary TFP generates an expectation that the RPI will fall in five quarters. An anticipated

increase in the growth rate of IST is, however, not followed by an increase in both technologies

but rather by a sudden deceleration in neutral technological growth. This is a result of the error-

13



correction term XCo as well as our positive estimates for both κ1 and κ2. One explanation is

that when these new investment-specific technologies are being implemented and older forms of

production are dismantled, measured productivity declines as these new technologies are installed.

Only when enough time has passed and these new technologies are fully implemented do both

technologies settle along a balanced growth path. With the error-correction term determined in

levels, it begins to decelerate only when the growth rates of TFP and IST reach their steady state.

Thus the growth rates of these two technologies continue to cycle around their steady-state level

until the error-correction term equals zero.

As can be seen in Figure 1, both technologies increase in response one-standard-error innovation

to non-stationary TFP. The impulse-response functions for consumption, hours, investment, output

and capital utilization are shown in Figure 2, where variables are plotted in percentage deviations

from the balanced growth path. News of future innovations to the growth rate of neutral technology

are met with an increase in all variables observed. Like the vast majority of news shock models,

ours includes endogenous capital utilization, Jaimovich and Rebelo preferences and investment

adjustment costs. These three features have been shown to promote a positive response in hours

worked and investment in response to a positive anticipated neutral technology shock. Other

mechanisms exist that can generate an increase in output prior to the realized neutral technology

shock. For example, the inclusion of knowledge capital by Gunn and Johri (2011) generates an

increase in output in response to news of future productivity gains. Given that a µz news shock

announces a fall in the RPI, there is an additional incentive to increase capital utilization since

it will soon be much cheaper to replace depreciated capital. This immediate positive response of

utilization raises output immediately. This increase in output is large enough to accommodate an

increase in consumption and an increase in investment in the interim period.

As expected, the responses in Figure 2 show that prior to the shock being realized, output,

consumption, capital utilization and investment and hours increase in response to news of a future

increase in the common stochastic trend. To get a sense of the effects of cointegration on our model

results, Figures 3 and 4 simulate the impulse-response functions implied by a four-period-ahead

anticipated shock to µZ and µA when there is neither cointegration nor technological spillovers

(dashed line). These results are derived by re-performing the Bayesian estimation process above

with κ1, κ2, ρ12 and ρ21 set equal to zero. The solid lines in Figures 3 and 4 plot the impulse-

response functions to a four-period-ahead anticipated shock to µZ and µA. Figure 3 makes clear

that cointegration enhances the responses to a news shock regarding future TFP. Notice the much

stronger response of capital utilization and hours when TFP and IST are cointegrated. As explained

above, when TFP and IST are cointegrated, an anticipated increase in TFP comes with an antic-
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ipated decrease in the RPI, which makes utilization less costly. Higher utilization rates drive up

wage rates, causing households to increase their labour supply. Each of these effects allows output,

hours and consumption to rise simultaneously in response to an anticipated technology shock.

The mechanisms governing the response to an anticipated shock to µA is somewhat more in-

volved. The response in technology to an anticipated growth rate shock to IST causes output,

consumption and capital utilization to all decrease as this new technology is being diffused into

production. During the interim, households, aware of a pending decrease in productivity, increase

hours and decrease real investment immediately to avoid the future slump in production. Finally,

perhaps the most prominent feature is that capital utilization rates decline in response to an an-

ticipated increase in IST growth. Capital utilization rates decrease during the interim period as

forward-looking households attempt to shore up their capital stock prior to the anticipated decline

in the economy.

5 Comparison with Current Research

At the forefront of news shock research is the work done by Schmitt-Grohé and Uribe (2012),

whose model is similar to the benchmark model with the following exceptions: First, their re-

search only has disturbances to the stochastic growth rate of investment technology, while our

research includes both stationary and non-stationary IST shocks. Second, their model has decreas-

ing returns-to-scale in consumption production, unlike the constant returns to scale in equation

(7). Third, they first perform a maximum likelihood estimation of their parameters and then use

these values as the prior distribution means for their Bayesian estimation. This process assigns an

abnormally high weight to MEI innovations. Instead, the Bayesian estimation process used here

is more in line with that of Khan and Tsoukalas (2012), with the same standard deviation and

persistence for each of the stationary shocks considered. Last of all, our benchmark model includes

a cointegrating relationship between TFP and IST, while their work has these two series evolving

independently. To a lesser extent we can also compare our benchmark model results with Khan

and Tsoukalas (2012), who draw similar conclusions to Schmitt-Grohé and Uribe (2012); but unlike

our benchmark model, they incorporate a series of nominal frictions into their news shock model.

These two papers challenge the empirical findings of Beaudry and Portier (2006), who through a

VAR empirical exercise find that approximately half of the volatility of output can be explained by

anticipated changes in either type of technology. Schmitt-Grohé and Uribe (2012) as well as Khan

and Tsoukalas (2012) find that anticipated changes in productivity, regardless of the sector, were

unable to generate substantial volatility in hours, consumption, investment and output. Both pa-

pers find that only unanticipated technology shocks, rather than anticipated technology shocks, are
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relevant to understanding business cycle dynamics. To help understand the relevance of including

cointegration into a standard news shock model, this section compares the model results outlined

in the previous section to those found in these studies, beginning with Schmitt-Grohé and Uribe

(2012).

Schmitt-Grohé and Uribe (2012) find that anticipated shocks to both stationary and non-

stationary TFP and IST are unable to explain any variation in the observables included in their

estimation process. Instead, a high weight is assigned to anticipated shocks to both MEI and wage

markup shocks. In their variance decomposition, they conclude that approximately 19% of the

volatility of investment growth is due to movements in the MEI. Of particular interest is the abil-

ity of anticipated wage-markup shocks to explain growth rate volatility in output, consumption,

investment and hours worked, with 17%, 18%, 12% and 67% of the volatility of these observables

explained by anticipated shocks to wage markups in their model. Schmitt-Grohé and Uribe (2012)

argue that the high weight assigned to anticipated wage markup shocks in their variance decompo-

sition may be due to the history of prolonged negotiations between workers and their employers.

An anticipated rise in the wage markup (a drop in the real wage income earned by the household)

implies that output, investment and consumption all fall in the interim. Since their Bayesian esti-

mation assigns a value for the Jaimovich and Rebelo parameter η close to zero, the wealth effect of

a future drop in wages does not impact the households’ labour supply decision prior to the shock

being realized. Similar to Schmitt-Grohé and Uribe (2012), we find that shocks to stationary IST

are not important, while both anticipated and unanticipated wage markups shocks are of particular

importantance in explaining volatility in the growth rate of hours. This is despite a stronger wealth

effect on labour supply.

Schmitt-Grohé and Uribe’s (2012) results are close to those found when the benchmark model

has all components linking non-stationary TFP and IST removed from the VECM model outlined

in equation (16). When we re-perform the Bayesian estimation outlined in Table 3 with all forms

of cointegration and spillover removed (see Table 5), our results fall qualitatively in line with those

found by Schmitt-Grohé and Uribe (2012). As demonstrated in Table 6, the relative importance

of anticipated wage markup shocks increases substantially. When the common stochastic process

is removed, anticipated wage markup shocks now explain approximately 79% of the volatility of

output and 78% of the volatility in consumption growth and, most significantly, 98% of the volatility

of hours growth. Anticipated MEI shocks have also increased in significance, explaining 55% of

the volatility of investment growth, while explaining very little of the growth rates of output,

consumption and hours worked. This is roughly in line with Schmitt-Grohé and Uribe’s (2012)

findings.
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In contrast to Schmitt-Grohé and Uribe (2012), Khan and Tsoukalas (2012) present an alter-

native DSGE model with nominal frictions in both prices and wages. They conclude, like Schmitt-

Grohé and Uribe (2012), that the majority of movement in output growth can be attributed to

changes in the MEI, explaining an estimated 47% of the unconditional variance of output growth

in their model. However, unlike Schmitt-Grohé and Uribe (2012), Khan and Tsoukalas (2012)

conclude that anticipated shocks to MEI lack the ability to cause volatility in any of the observ-

ables included in their paper. Anticipated changes in wage markups are, again like Schmitt-Grohé

and Uribe (2012), a source of business cycle volatility and explain approximately 8%, 14% and

60% of the variance of output growth, consumption growth and hours growth, respectively. These

estimates can be found in the variance decomposition outlined in Table 3 of their paper. Similar

to Khan and Tsoukalas (2012), this research finds that anticipated wage markups are an impor-

tance source of volatility in hours growth despite the inclusion of cointegrating technologies and

the gained relevance of anticipated technology shocks.

These results suggest that allowing both neutral and investment-specific technologies to move

together over time, both in the short run, and in the long run, leads to a revival in the relative

importance of anticipated technology shocks, as found empirically. Through their SVAR-based

approach to evaluate the relative importance of news shocks, Khan and Ben Zeev (2015) argue

that a structural mechanism needs to be incorporated within the news shock DSGE models so as

to enhance the role of anticipated IST shocks in generating business cycle volatility. The model

present here finds that at most, 34% of aggregate fluctuations can be explained by anticipated

technology shocks, compared with 60–70% explained by anticipated IST shocks found by Khan and

Ben Zeev (2015) in their VAR exercise. While falling short of their estimates, this paper proposes

that incorporating a common stochastic trend between neutral and investment-specific technologies

provides a possible mechanism to enhance the role of anticipated IST shocks within a DSGE model.

This is done by associating an increase in future TFP with an anticipated increase in IST.

Last of all, this paper assumes that there exists a single common stochastic trend between TFP

and IST, as is done by Schmitt-Grohé and Uribe (2011). Fisher (2009), in his comment on the work

done by Beaudry and Lucke (2009), calls to our attention that the chosen number of cointegrating

relationships can have important implications for the relative importance of one shock over another

when analyzing the variance decomposition. By assuming that there exists a single cointegrating

relationship between neutral and investment-specific technologies, this paper therefore assumes that

the remaining shocks do not share a common stochastic trend nor have a cointegrated relationship

with either TFP or the RPI. There could, for example, exist a cointegrating relationship between

neutral technology and wage markup shocks, or between MEI and the RPI. Extending this research
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to include multiple cointegrating relationships will have important implications not only for this

research, but also for the work done by Schmitt-Grohé and Uribe (2012) as well as Khan and

Tsoukalas (2012). This is left for future research.

6 Conclusion

This research began by asking whether the cointegrating relationship shared by TFP and RPI

challenged our current understanding of how anticipated shocks generate volatility in US aggre-

gates. In answering this question, we adapted a canonical news shock model to reproduce the

cointegrating relationship observed between TFP and the RPI in the United States. We esti-

mate this new model using Bayesian methods and find overwhelmingly that anticipated shocks to

the common stochastic trend account for a significant portion of business cycle volatility. With

cointegration, anticipated technology shocks matter, with roughly 20% to 34% of the volatility of

output, consumption, investment and hours growth explained by anticipated shocks to the common

stochastic trend. Without cointegration, these values drop to roughly 1%, closely matching the re-

sults found by Schmitt-Grohé and Uribe (2012) and Khan and Tsoukalas (2012), who both found

that anticipated technology shocks (of any kind) lack the ability to generate any business cycle

volatility. Thus, allowing for a cointegrating relationship between TFP and the RPI challenges

the current understanding of the relative importance of news shocks, with anticipated technology

shocks regaining their relevance for explaining business cycle volatility in the United States.
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7 Appendix
United States Data

Time series data pertaining to growth in output, investment, hours worked, consumption, TFP

and the RPI are gathered from the data set provided by Schmitt-Grohé and Uribe (2011) paper

Business Cycles With A Common Trend in Neutral and Investment-Specific Productivity. Access

to their data is made available through the Authors’ respective websites.
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Figure 1
Benchmark Model

5 10 15 20

−
1

0
1

2
3

Non−Stationary TFP shock

Quarters

%
 D

ev
ia

tio
n 

fr
om

 S
te

ad
y 

S
ta

te

5 10 15 20

−
3

−
2

−
1

0
1

2

Non−Stationary IST shock

Quarters
%

 D
ev

ia
tio

n 
fr

om
 S

te
ad

y 
S

ta
te

Impulse-response functions of µZ (solid line) and µA (dashed line) and the cointegrating term
xco (dotted line) to a one-standard-error innovation to ε4µZ ,t (left) and a one-standard-error
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Figure 2
Four-Quarter Anticipated News Shocks to µZ and µA

Benchmark model

5 10 15 20

−2
0

2
4

Output

Quarters

5 10 15 20

−2
0

2
4

6

Consumption

Quarters

5 10 15 20

−0
.1

0.0
0.1

0.2

Hours

Quarters

5 10 15 20

0
5

10
15

Real Investment

Quarters

5 10 15 20

−1
0

1
2

3
4

Total Factor Productivity

Quarters

5 10 15 20

−4
−2

0
2

4
6

8

Investment−Specific Technology

Quarters

5 10 15 20

−1
0

1
2

3

Utilization

Quarters

Impulse-response functions of a one-standard-error innovation to ε4µZ ,t (solid) and a one-

standard-error innovation to ε4µA,t (dashed), measured as a percentage deviation from the
respective balanced growth path.

23



Figure 3
Four-Quarter Anticipated News Shocks to µZ

With and Without Cointegration

5 10 15 20

0
1

2
3

4
5

Output

Quarters

 

5 10 15 20

0
1

2
3

4
5

6

Consumption

Quarters

 

5 10 15 20

−0
.05

0.0
0

0.0
5

0.1
0

0.1
5

0.2
0

0.2
5

Hours

Quarters

 

5 10 15 20

0
5

10
15

Real Investment

Quarters

 

5 10 15 20

0
1

2
3

4

Total Factor Productivity

Quarters

 

5 10 15 20

0
2

4
6

8

Investment−Specific Technology

Quarters

 

5 10 15 20

0.0
0.5

1.0
1.5

2.0
2.5

Utilization

Quarters

Impulse-response functions of a one-standard-error innovation to ε4µZ ,t (solid) with cointe-

gration between TFP and IST and a one-standard-error innovation to ε4µZ ,t (dashed) with
no cointegration between these two technologies. Each impulse response is measured as a
percentage deviation from the respective balanced growth path.
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Figure 4
Four-Quarter Anticipated News Shocks to µA

With and Without Cointegration
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percentage deviation from the respective balanced growth path.

25



Table 1
Calibrated Parameters

Parameter Value Description
σ 1 Risk aversion
µ̄W 1.10 Steady state wage markup
µ̄Y 1.0049 Per capita output growth along a balanced growth path
δ0 0.025 Depreciation rate in steady state
µ̄A 1.0043 Per capita IST growth along a balanced growth path
µ̄Z 1.0028 Per capita TFP growth along a balanced growth path
β 0.985 Subjective discount factor
uss 1.00 Steady state capital utilization rate
α 0.33 Capital share of output
ψ = ln(µ̄A)/ln(µ̄Z) 1.5582 Cointegration coefficient
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Table 2
Priors

Parameter Description
Prior
Distribution

Lower
Bound

Upper
Bound

Mean Variance

θ Gamma 3 0.75
χ Beta 0.5 0.1
δ2 Beta 0.01 0.99 0.08 0.01
η Uniform 0.01 0.99 0.5 0.2
hss Normal 0.3 0.03
κ Gamma 2 8
ρZ Beta 0.60 0.20
ρA Beta 0.60 0.20
ρv Beta 0.60 0.20
ρb Beta 0.60 0.20
ρµW Beta 0.60 0.20
ρ11 Normal 0 1 0.13 0.22
ρ22 Normal 0 1 0.58 0.22
ρ12 Normal 0.08 0.10
ρ21 Normal 1.07 0.7
κ1 Normal 0.03 0.08
κ2 Normal 0.39 0.28
σ0
i Inv Gamma 0.5 2
σki Inv Gamma 0.1 2

σ0
i refers to the variance of an unanticipated shock to disturbance i = {Z,A, b, v, µW , µZ , µA}.
σki refers to the variance of an anticipated shock to disturbance i known k = {4, 8} periods
in advance.
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Table 3
Bayesian Estimation

Prior Standard Posterior
Parameter Distribution Mean Deviation Mean 5% 95%

θ Normal 3 0.75 2.962 2.911 3.013
χ Gamma 0.5 0.1 0.7 0.675 0.725
δ2 Uniform 0.08 0.0404 0.076 0.075 0.077
η Beta 0.50 0.20 0.116 0.079 0.153
hss Normal 0.2 0.05 0.18 0.178 0.182
κ Gamma 2 8 42.994 39.329 46.659
ρZ Beta 0.6 0.2 0.998 0.962 1.034
ρA Beta 0.6 0.2 0.369 0.34 0.398
ρv Beta 0.6 0.2 0.798 0.789 0.807
ρb Uniform 0.6 0.2 0.736 0.717 0.755
ρµW Beta 0.6 0.2 0.993 0.96 1.026
ρ11 Normal 0.13 0.22 0.274 0.259 0.289
ρ22 Normal 0.58 0.22 0.554 0.534 0.574
ρ21 Uniform 1.07 0.70 0.58 0.56 0.6
ρ12 Uniform 0.08 0.10 0.068 0.048 0.088
κ1 Normal 0.03 0.08 0.133 0.12 0.146
κ2 Normal 0.39 0.28 0.448 0.434 0.462
σ0
z Inverse Gamma 0.5 2 0.061 0.06 0.062
σ0
a Inverse Gamma 0.5 2 0.062 0.061 0.063
σ0
V Inverse Gamma 0.5 2 0.71 0.675 0.745
σ0
b Inverse Gamma 0.5 2 0.07 0.056 0.084
σ0
µw Inverse Gamma 0.5 2 0.089 0.027 0.151
σ0
µZ Inverse Gamma 0.5 2 0.061 0.056 0.066

σ0
µA Inverse Gamma 0.5 2 0.063 0.053 0.073

σ1
Z Inverse Gamma 0.1 2 0.016 0.012 0.02
σ2
Z Inverse Gamma 0.1 2 0.017 0.014 0.02
σ1
A Inverse Gamma 0.1 2 0.061 0.017 0.033
σ2
A Inverse Gamma 0.1 2 0.061 0.013 0.033
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Table 3 Continued
Bayesian Estimation

Prior Standard Posterior
Parameter Distribution Mean Deviation Mean 5% 95%

σ1
v Inverse Gamma 0.1 2 0.1 0.013 0.187
σ2
v Inverse Gamma 0.1 2 0.593 0.478 0.708
σ1
b Inverse Gamma 0.1 2 0.025 0.019 0.031
σ2
b Inverse Gamma 0.1 2 0.022 0.016 0.028
σ1
µW Inverse Gamma 0.1 2 0.051 0 0.129

σ2
µW Inverse Gamma 0.1 2 0.158 0 0.379

σ1
µA Inverse Gamma 0.1 2 0.026 0.01 0.042

σ2
µA Inverse Gamma 0.1 2 0.026 0.014 0.038

σ1
µZ Inverse Gamma 0.1 2 0.019 0.012 0.026

σ2
µZ Inverse Gamma 0.1 2 0.04 0.028 0.052

σME
Y Uniform 1

8
σ̂Y 0.072 0.25 0.25 0.25
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Table 4
Variance Decomposition: Benchmark Model

gy gc gi gh grpi gtfp

Stationary TFP
ε0Z 18 18.87 3.05 7.33 0 38.81∑
i=4,8 ε

i
Z 1.23 1.17 0.33 5.11 0 5.54

Stationary IST
ε0A 3.11 0.01 0.03 2.87 7.85 0∑
i=4,8 ε

i
A 0.99 0.02 0.02 1.06 2.24 0

Preferences
ε0b 1 1.74 0.14 0.49 0 0∑
i=4,8 ε

i
b 0.6 0.93 0.02 0.63 0 0

Wage Markup
ε0µW 1.61 1.69 0.27 8.81 0 0∑
i=4,8 ε

i
µW 3.55 3.89 0.73 21.64 0 0

MEI
ε0v 2.87 0.62 11.47 0.44 0 0∑
i=4,8 ε

i
v 1.15 0.85 7.39 0.71 0 0

Common Trend
ε0µZ + ε0µA 44.3 50.41 44.06 16.62 50.58 28.66∑

i=4,8{εiµZ + εiµA} 21.6 19.82 32.47 34.29 39.33 27

Here, gi is the growth rate of variable i = {y, c, i, h, rpi, tfp}. The variance decomposition
is calculated at the mode of the posterior distribution.
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Table 5
Bayesian Estimation With No Cointegration or Spillover Effects

Prior Standard Posterior
Parameter Distribution Mean Deviation Mean 5% 95%

θ Normal 3 0.75 3.54 3.43 3.65
χ Gamma 0.5 0.1 0.475 0.473 0.477
δ2 Normal 0.08 0.01 0.074 0.072 0.076
η Beta 0.50 0.2 0.523 0.519 0.527
hss Normal 0.2 0.05 0.209 0.205 0.213
κ Gamma 2 8 9.96 9.186 10.734
ρZ Beta 0.6 0.2 0.659 0.651 0.667
ρA Beta 0.6 0.2 0.508 0.483 0.533
ρv Beta 0.6 0.2 0.567 0.555 0.579
ρb Beta 0.6 0.2 0.609 0.595 0.623
ρµW Beta 0.6 0.2 0.661 0.647 0.675
ρ11 Normal 0.13 0.22 0.198 0.182 0.214
ρ22 Normal 0.58 0.22 0.611 0.576 0.646
σ0
z Inverse Gamma 0.5 2 0.061 0.059 0.063
σ0
a Inverse Gamma 0.5 2 0.061 0.059 0.063
σ0
V Inverse Gamma 0.5 2 1.509 1.105 1.913
σ0
b Inverse Gamma 0.5 2 0.068 0.052 0.084
σ0
µw Inverse Gamma 0.5 2 0.116 0 0.402
σ0
µZ Inverse Gamma 0.5 2 0.062 0.056 0.068

σ0
µA Inverse Gamma 0.5 2 0.061 0 0.165

σ1
Z Inverse Gamma 0.1 2 0.019 0.013 0.025
σ2
Z Inverse Gamma 0.1 2 0.019 0.015 0.023
σ1
A Inverse Gamma 0.1 2 0.061 0.012 0.028
σ2
A Inverse Gamma 0.1 2 0.061 0.017 0.025
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Table 5 Continued
Bayesian Estimation

Prior Standard Posterior
Parameter Distribution Mean Deviation Mean 5% 95%

σ1
v Inverse Gamma 0.1 2 0.156 0.042 0.27
σ2
v Inverse Gamma 0.1 2 1.429 1.157 1.701
σ1
b Inverse Gamma 0.1 2 0.022 0.004 0.04
σ2
b Inverse Gamma 0.1 2 0.022 0.002 0.042
σ1
µW Inverse Gamma 0.1 2 0.558 0.505 0.611

σ2
µW Inverse Gamma 0.1 2 1.401 1.119 1.683

σ1
µA Inverse Gamma 0.1 2 0.023 0.015 0.031

σ2
µA Inverse Gamma 0.1 2 0.025 0 0.176

σ1
µZ Inverse Gamma 0.1 2 0.021 0.009 0.033

σ2
µZ Inverse Gamma 0.1 2 0.021 0.015 0.027

σME
Y Uniform 1

8
σ̂Y 0.072 0.25 0.25 0.25
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Table 6
No Cointegration

κ1 = κ2 = ρ21 = ρ12 = 0

gy gc gi gh grpi gtfp

Stationary TFP
ε0Z 4.91 4.62 0.23 0.24 0 59.91∑

i=4,8 ε
i
Z 0.63 0.57 0.05 0.16 0 11.9

Stationary IST
ε0A 0.28 0.07 0.08 0.04 35.61 0∑

i=4,8 ε
i
A 0.12 0.02 0.04 0.02 10.04 0

Preferences
ε0b 0.27 0.46 0.09 0.01 0 0∑

i=4,8 ε
i
b 0.16 0.22 0.02 0.02 0 0

Wage Markup
ε0µW 0.53 0.52 0.01 0.61 0 0∑

i=4,8 ε
i
µW 78.64 78.19 3.96 97.79 0 0

MEI
ε0v 4.21 2.58 34.15 0.27 0 0∑

i=4,8 ε
i
v 4.84 8.06 54.66 0.69 0 0

Non-Stationary TFP
ε0µZ 4.21 3.43 0.63 0.04 0 22.77∑

i=4,8 ε
i
µZ 0.53 0.39 0.13 0.07 0 5.42

Non-Stationary IST
ε0µA 0.5 0.72 4.7 0.04 43.02 0∑

i=4,8 ε
i
µA 0.17 0.16 1.24 0.02 11.33 0

Here, gi is the growth rate of variable i = {y, c, i, h, rpi, tfp}. The variance decomposition
is calculated at the mode of the posterior distribution.
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