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Abstract 

We develop a simulation-based procedure to test for stock return predictability with 
multiple regressors. The process governing the regressors is left completely free and the 
test procedure remains valid in small samples even in the presence of non-normalities and 
GARCH-type effects in the stock returns. The usefulness of the new procedure is 
demonstrated both in a simulation study and by examining the ability of a group of financial 
variables to predict excess stock returns. We find robust evidence of predictability during 
the period 1948–2014, driven entirely by the term spread. This empirical evidence, 
however, is much weaker over subsamples. 

 

Bank topics: Econometric and statistical methods; Asset pricing; Financial markets 
JEL codes: C12; C32; G14 

Résumé 

Nous développons une méthode de simulation pour tester la prévisibilité du rendement des 
actions à l’aide de multiples variables de régression. Le processus déterminant les variables 
de régression n’est aucunement restreint et la méthode de simulation reste valide à distance 
finie même en présence de distributions autres que la loi normale et d’effets GARCH sur 
le rendement des actions. L’utilité de la nouvelle méthode est démontrée à la fois dans une 
étude de simulation et par l’examen de la capacité d’un ensemble de variables financières 
à prévoir le rendement excédentaire des actions. Nous observons, pour la période 1948-
2014, des signes probants de prévisibilité qui s’expliquent entièrement par l’écart de taux. 
Toutefois, ces résultats empiriques sont beaucoup plus faibles dans le cas des sous-
échantillons. 

Sujets : Méthodes économétriques et statistiques; Évaluation des actifs; Marchés 
financiers 
Codes JEL : C12, C32, G14 

 

 

 

 



Non-Technical Summary

A long-standing question in finance is whether asset returns can be predicted by economic

and financial variables. This question has important and broad economic implications. How-

ever, the robustness of the evidence on asset return predictability remains controversial. A

common practice in the literature is to estimate an ordinary least squares (OLS) regression

of asset returns on the lagged values of the predictor variable under study. Such predictive

regressions are then evaluated using a t-test, which often appears significant when compared

to traditional critical values. As a result, the prevailing tone in the literature is that asset

returns are predictable using financial and economic variables.

Common features of the predictability regressions are the feedback from returns to the

future values of the predictor variable and the persistent behavior of the predictor vari-

able. The problem in this case is that the t-statistic often rejects the null hypothesis of

no predictability much too often. This problem has generated substantial interest in both

econometrics and empirical finance, and a number of econometric solutions have been pro-

posed. All of these proposed approaches, however, depend on a very specific model for the

predictor variable.

In sharp contrast, in this study, we propose a simulation-based procedure without any

modelling assumptions being imposed on the predictor variable. In addition, this new pro-

cedure does not impose any parametric assumptions on the distribution of stock return

innovations, and it can be applied for hypothesis testing in predictive regressions for multiple-

predictor models.

Our simulation experiments reveal that the proposed simulation-based test procedure
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has the correct rejection rate (size) and can be more powerful than the extant tests. We

apply the developed procedure to test the predictability of S&P 500 value-weighted index

using six widely used predictors, i.e., the dividend-price ratio, the earnings-price ratio, the

book-to-market ratio, the default yield, the term spread, and the short rate. Our empirical

application indicates robust evidence of stock return predictability. The takeaway message is

that, among the six predictors, only the term spread has predictive ability for excess returns.
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1 Introduction

A long-standing question in finance is whether asset returns can be predicted by economic

and financial variables. The null hypothesis of no predictability is typically examined in

the context of an ordinary least squares (OLS) regression of asset returns onto the lagged

value of the predictor variable under study. A common finding of such predictive regressions

is that the t-statistic often appears significant when compared to the conventional critical

values for the t-test. In this case, a researcher might conclude that the financial variable in

question has the ability to predict asset returns.

This inference relies on traditional asymptotic theory, which implies that the t-statistic

follows the standard normal distribution in large samples. Yet the large-sample theory

provides a poor approximation to the finite-sample distribution of the t-statistic when there is

feedback from returns to future values of the regressor and the regressor variable is persistent

(Mankiw and Shapiro, 1986; Stambaugh, 1999). The problem in this case is that the t-test

procedure rejects the null hypothesis much too often, even in fairly large samples. The most

prominent financial variables explored in the stock return predictability literature include

the dividend-price ratio, the earnings-price ratio, the book-to-market ratio, and various

interest rates and interest rate spreads. Given the empirical evidence of feedback and the

highly persistent nature of these variables, one can seriously doubt any statistical evidence

suggesting their predictive ability based on the conventional t-test.

A number of econometric solutions have been proposed to address the inference issues

with predictive regressions. These include procedures based on local-to-unity asymptotics

that provide better approximations to the sampling distribution of the t-statistic when the
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predictor is nearly integrated (Campbell and Yogo, 2006; Cavanagh et al., 1995; Torous et al.,

2004). Another strand of the predictive regression literature has proposed procedures that

attempt to estimate and correct the bias of the OLS estimator (Amihud and Hurvich, 2004;

Amihud et al., 2009; Lewellen, 2004; Polk et al., 2006; Stambaugh, 1999). What is common

to all of these approaches is that they depend on a very specific model for the regressor (i.e.,

a linear autoregressive model) and their behaviour under departures from that assumption

is an open question.

In sharp contrast, the sign and signed rank tests of Campbell and Dufour (1997) are

exact without any modelling assumptions whatsoever for the regressor variable. These La-

grange multiplier-type tests are far more general than most competing procedures based

on autoregressive and local-to-unity assumptions. For example, they allow for structural

breaks, time-varying parameters, and other unmodelled non-linearities in the regressor pro-

cess which may give the appearance of unit-root behaviour. Furthermore, the sign and

signed rank tests do not impose any parametric assumptions on the distribution of stock

return innovations. This setup allows for non-normalities and conditional heteroskedasticity

(e.g., GARCH or stochastic volatility) effects in the stock returns. It is well known that

financial asset returns are typically characterized by heavy tails in both their conditional

and unconditional distributions, and by time-varying conditional volatility (Cont, 2001). In

stock return prediction tests, these stylized facts are a clear and present motivation for the

use of sign and signed rank tests. Indeed, results from classical finite-sample non-parametric

statistics show that such tests are the only tests that yield valid inference when one wishes to

remain completely agnostic about distribution heterogeneities (Lehmann and Stein, 1949).

Furthermore, the non-parametric tests of Campbell and Dufour (1997) can be more powerful
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than the size-corrected t-test.

A practical limitation of the sign and signed rank tests, however, is that they are devel-

oped for the single-predictor case only. In this paper, we extend the ideas of Campbell and

Dufour (1997) to obtain small-sample tests for stock return predictability in the presence

of multiple predictors.1 The economic motivation underlying predictive regression is con-

troversial. The efficient markets hypothesis view argues that predictability of asset returns

indicates inefficiencies in the capital markets. The alternative view interprets return pre-

dictability as consistent with an efficient capital market where the returns reflect time-varying

expected returns. Regardless of the interpretation, asset predictability should be evaluated

based on all past information. The problem then consists of combining the predictability

tests for each considered regressor in such a way that controls the overall significance level

of the procedure.

Westfall and Young (1993) explain in great detail how bootstrap methods can be used

to solve the multiple testing problem that occurs when considering a set of null hypotheses

simultaneously. In this spirit, we propose a simulation-based procedure for controlling the

overall significance of stock return predictability tests with multiple regressors. We achieve

this by exploiting the technique of Monte Carlo tests (Barnard, 1963; Birnbaum, 1974; Dwass,

1957) to obtain provably exact randomized analogues of the Campbell and Dufour (1997)

tests. See Dufour and Khalaf (2001) for a survey of Monte Carlo test techniques.

Observe that the problems of the single-predictor setting are compounded by the presence

of multiple regressors, since there can be feedback from the return innovations to future

1Liu and Maynard (2007) extend the Campbell and Dufour (1997) single-predictor tests to a long-horizon
setting.
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values of all the regressors, and each of these regressors is potentially highly persistent. So

not surprisingly, the standard Wald test suffers from the same over-rejection problem as

the t-statistic in the single-predictor model. Amihud et al. (2009) propose a multi-predictor

augmented regression method (mARM) to correct the bias of the Wald test. They show

that estimating and correcting the bias yields a Wald test statistic with size closer to the

nominal level than “plain vanilla” OLS and bootstrapping. The mARM approach assumes

that the predictors follow a vector autoregressive (VAR) model, which is both Gaussian and

stationary. Under those strict stationarity conditions, the Amihud et al. (2009) method

works well, but its performance deteriorates as the persistence of the regressors approaches

the non-stationary boundary.

Other methods that have been proposed for multiple-predictor testing include the ex-

tended instrumental variables (IVX) procedure of Kostakis et al. (2015), the subsampling

approach of Wolf (2000), the jackknife of Zhu (2014), and the robust bootstrap and subsam-

pling methods of Camponovo et al. (2012). Just like the mARM of Amihud et al. (2009), all

of these methods heavily depend on the assumption that the predictors follow a linear VAR

model. On the contrary, the methods we propose cover a much wider class of applications

by leaving completely free the joint process governing the regressors. In fact, the developed

Monte Carlo test procedure inherits all the properties of the original Campbell and Dufour

(1997) distribution-free tests (e.g., robustness to non-normalities and GARCH-type effects

in the stock returns) in addition to being free of modelling assumptions on the regressors.

Our simulation experiments further reveal that the proposed non-parametric Monte Carlo

test procedure can be more powerful than the size-corrected Wald, mARM, and IVX test

procedures.
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Our final contribution is empirical. We apply the developed procedure to test the pre-

dictability of the excess returns on the S&P 500 value-weighted index using six widely used

predictors: the dividend-price ratio, the earnings-price ratio, the book-to-market ratio, the

default yield, the term spread, and the short rate. We use both monthly and quarterly data

for the 67-year sample period 1948-2014. In addition to the full sample, we also perform the

analysis over fixed 10-year and 20-year subsamples and 20-year rolling-window subsamples.

The standard Wald test overwhelmingly rejects the joint null hypothesis of no predictability,

but this evidence is questionable given the highly persistent and endogenous nature of the

employed predictors. Using the new test procedure, we find more trustworthy evidence of

stock return predictability at both the monthly and quarterly frequencies in the full-sample

period. Tests of the marginal significance reveal that among the six regressors, only the

term spread has predictive ability for both monthly and quarterly excess stock returns. The

takeaway message is that while the new joint tests reveal robust evidence of stock return

predictability, this evidence is entirely driven by the term spread. This empirical evidence,

however, turns out to be much weaker over the monthly and quarterly subsamples. These

results suggest that test power depends more on the span of the data rather than the number

of observations.

The paper is organized as follows: Section 2 establishes the statistical framework and

Section 3 develops the small-sample predictability tests based on signs and ranks. We begin

by assuming provisionally that the intercept value in the predictive regression model is

known. In this context, we show some key results about the finite-sample distribution of

test statistics that pinpoint the predictive ability of individual regressors. We also show

how to combine these marginal statistics to obtain a test of the joint null hypothesis of
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no predictability. Then, we drop the assumption of a known intercept. For this case, we

adopt a two-stage maximized Monte Carlo method (Dufour, 2006) to deal with the nuisance

intercept parameter. Section 4 presents the results of simulation experiments in which the

performance of the new test procedure is compared to the standard Wald test, the mARM-

based Wald test of Amihud et al. (2009), and the IVX-estimated “persistence-robust” Wald

test of Kostakis et al. (2015). Section 5 presents the empirical application to U.S. equity

data and Section 6 offers some concluding remarks. The Appendix contains the proofs of

the formal propositions.

2 Predictive regression model

Consider a stock return (or excess stock return) rt in period t and a K×1 vector of variables

xt−1 = (x1,t−1, ..., xK,t−1)
′ observed at t − 1 that could have the ability to predict rt. The

complete model specification involves the random variables r1, ..., rT , x0,x1, ...xT−1, and the

corresponding information vectors It = (x′0,x
′
1, ...,x

′
t, r1, ..., rt)

′, defined for t = 0, 1, ..., T−1,

with the convention that I0 = x0. Specifically, we consider the predictive regression model

rt = β0 + β′xt−1 + εt, (1)

where β = (β1, ..., βK)′ is K × 1 vector comprising the parameters of interest. The null

hypothesis of no predictability is formally stated as

H0 : β = 0
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which is to be tested against the two-sided alternative β 6= 0, the right-sided alternative

β > 0, or the left-sided alternative β < 0. Observe that H0 is a joint hypothesis, so a

rejection signifies that one or more variables in xt−1 have the ability to predict returns. In

our framework, there are no restrictions on the number K of potential predictors.

For one group of tests, we merely assume that the distribution of εt in (1) has a conditional

median equal to zero, i.e.,

Pr(εt ≥ 0 | It−1) = Pr(εt < 0 | It−1) = 1/2, (2)

and we also develop tests under the stronger assumption:

εt is symmetric around zero, given It−1. (3)

The tests derived under (2) should thus be interpreted as tests of whether the conditional

median of rt is predictable using xt−1. So, if we let Qτ (rt | It−1) denote the τth conditional

quantile of rt, then the first group of tests provide an assessment of H0 in the context of the

predictive quantile regression

Qτ (rt | It−1) = β0,τ + β′τxt−1,

when τ = 0.5 (the median).2 It is easy to see that (3) implies (2), but not vice versa. Observe

also that when εt has a well-defined first moment, then, under H0 and (3), the conditional

2Cenesizoglu and Timmermann (2008), Maynard et al. (2010), and Lee (2016) consider the more general
case of predictive quantile regressions defined for any quantile level τ ∈ (0, 1). The methods used in those
papers, however, can only handle a single predictor, whereas our tests allow for multiple predictors.
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mean and median (point of symmetry) of rt both equal β0 (Randles and Wolfe, 1979, Remark

1.3.11). In this case, the tests that rest on (3) yield an assessment of H0 in the context of

E(rt | It−1) = β0 + β′xt−1,

which corresponds to the usual predictive mean regression. It is interesting to note that

OLS-based procedures can only be justified by assuming that εt has well-defined first and

second moments, while no such moment assumptions are needed here.

In addition to heavy tails and other non-normalities, this setup allows for GARCH-type

effects of unknown form in the conditional distribution of returns. For example, a wide class

of GARCH and stochastic volatility models take the form εt = σtηt, where the innovations

{ηt} are independent and identically distributed (i.i.d.) according to a symmetric distribution

(e.g., normal or Student-t). Such specifications are fully compatible with (3) as long as the

random variable σt > 0 capturing conditional heteroskedasticity is a measurable function

of It−1. Of course, a far wider class with asymmetric innovations can be entertained under

(2). Here, the process governing the dynamics of σt over time need not even be stationary,

which allows for integrated GARCH-type effects. See Coudin and Dufour (2009) for more

discussion on this point.

To discuss some of the issues with testing H0, it is instructive to complement (1) with a

VAR model for the predictor variables so the entire system becomes

rt = β0 + β′xt−1 + σtηt,

xt = µ+ Φxt−1 + vt,

(4)
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where the contemporaneous covariance matrix of εt = (ηt,v
′
t)
′ is given by

Σε =

 1 σ′εv

σεv Σv

 .

If we define Y = (r1, ..., rT )′ and X = [ι,X1, ...,XK ], where ι is a column vector of ones

and Xi = (xi,0, ..., xi,T−1)
′, i = 1, ..., K, then the predictive regression in (4) can be written

as Y = Xγ + e. Here, the parameters are stacked in γ = [β0,β
′]′. The OLS estimate is

γ̂ = [β̂0, β̂
′]′ = (X ′X)−1X ′Y and the usual Wald statistic for testing H0 is computed as

Wald = β̂′
(
ĉov(β̂)

)−1
β̂,

where ĉov(β̂) is read from the estimated covariance matrix s2(X ′X)−1 and s2 is the estimated

residual variance. Note that the computation of the Wald statistic does not require any

information from the VAR part of (4), just like our approach.

The standard practice is to compare the computed value of the Wald test statistic to the

critical values of its asymptotic χ2(K) distribution. This procedure, however, may reject

the null of no predictability much too often, even with fairly large samples. The problem

largely originates from σεv 6= 0, in which case there is feedback from innovations that may

affect future values of the regressors, even though the innovations and the regressors are

contemporaneously uncorrelated. In this case, the OLS estimator is biased and the sampling

distribution of the Wald statistic differs from the χ2(K) distribution. The overrejection

problem is further exacerbated when the regressors are persistent, i.e., as the eigenvalues

of Φ become large in absolute value. This problem is well known, especially when K = 1
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(Mankiw and Shapiro, 1986; Stambaugh, 1999), in which case the square of the standard

t-statistic corresponds to the Wald statistic.

Amihud et al. (2009) focus on the small-sample bias of the OLS estimates β̂ in the

multiple-predictor regression context. Their multi-predictor augmented (by a VAR model)

regression method (mARM) is an iterative procedure that yields a reduced-biased estimator

of β in (4). The mARM-based estimator is used to form a bias-corrected Wald statistic

and this statistic is then compared to the usual asymptotic χ2(K) distribution. The mARM

approach to predictability testing is developed in the context of the linear system in (4),

assuming εt ∼ i.i.d. N(0,Σε) with σt constant over time (conditional homoskedasticity),

and that all the eigenvalues of the VAR persistence matrix Φ are less than 1 in absolute

value (stationarity of the regressors).

Another prominent approach to multiple predictability testing that has been developed in

the context of a system like (4) is the IVX procedure of Kostakis et al. (2015), which promises

robustness to the regressors’ degree of persistence. The idea is to construct instrumental vari-

ables (IVs) whose persistence is explicitly controlled. In this way, the problems arising from

the unknown Φ matrix of the original regressors in (4) can be avoided. With the constructed

IVs, one then performs a standard IV estimation of β. The resulting estimate along with

a Newey-West estimate of the long-run covariance matrix yields the IVX-estimated Wald

statistic, which follows the χ2(K) distribution asymptotically. Of course, there are several

regularity assumptions needed for this result to hold.

What distinguishes our approach is that: (i) besides the minimal assumptions in (2) and

(3), there are no restrictions on the distribution of εt; (ii) conditional heteroskedasticity of

unknown form is allowed; (iii) there are no restrictions on the data-generating process for xt;
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and (iv) the probability of rejecting the null when it is true (a Type I error) is kept under

control no matter the sample size.

3 Small-sample predictability tests

Our approach is based on sign and signed rank statistics defined for each considered regressor.

Let s[z] = 1 when z ≥ 0, and s[z] = 0 when z < 0, and consider a non-parametric analogue

of the t-statistic given by the following sign statistic:

Si(b) =
T∑
t=1

s
[
(rt − b)gi,t−1

]
, (5)

where gi,t = gi,t(It), t = 0, ..., T −1, is a sequence of measurable functions of the information

vector It. We specify gi,t = gt(xi,0, ..., xi,t) so that Si(b) pinpoints the predictive ability of

xi, i = 1, ..., K. The sign statistic in (5) belongs to a broader class of linear signed rank

statistics defined by

SRi(b) =
T∑
t=1

s
[
(rt − b)gi,t−1

]
ϕ
(
R+
t (b)

)
, (6)

where R+
t (b) is the rank of |rt − b| when |r1 − b|, ..., |rT − b| are placed in ascending order.

Observe that R+
1 (b), ..., R+

T (b) is an arrangement of the first T positive integers 1, 2, ..., T . A

general class of statistics is then defined from the set of scores ϕ(t), t = 1, ..., T , such that

0 ≤ ϕ(1) ≤ ... ≤ ϕ(T ) with ϕ(T ) > 0. The sign statistic (5) is obtained from the constant

score function ϕ(t) = 1. Another familiar member of this class is the following Wilcoxon

signed rank statistic:

Wi(b) =
T∑
t=1

s
[
(rt − b)gi,t−1

]
R+
t (b), (7)
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which is obtained with ϕ(t) = t, for t = 1, ..., T.

The motivation for using sign-based inference methods comes from the Lehmann and

Stein (1949) impossibility theorem. This result shows that a test with level α given a finite

number of observations in the presence of heteroskedasticity of unknown form must be a sign

test, or, more precisely, its level must be equal to α conditional on the absolute values of the

observations (which amounts to considering a test based on the signs of the observations).

For more on this result, see Pratt and Gibbons (1981, p. 218) and Dufour (2003).

When β0 is known, it is natural to complete the definitions of the test statistics in (5)

and (6) by setting b = β0 and gi,t = xi,t owing to power considerations. Indeed, this choice

makes the median of (rt−β0)xi,t−1 a function of βix
2
i,t−1 under the alternative hypothesis that

βi 6= 0. The power of Si(β0) and SRi(β0) will therefore tend to increase as the magnitude

of βi increases. For the more realistic case of an unknown β0 (developed in §3.2), we use

a two-stage procedure which proceeds by (i) building a confidence interval for β0, and (ii)

maximizing the p-value of the test statistic over this confidence interval. When inference

proceeds in this fashion, a straightforward extension of the arguments in Campbell and

Dufour (1997) suggests that better power can be achieved by setting

gi,t = xit − m̂it, for i = 1, ..., K, t = 0, ..., T − 1,

where m̂it = median{xi0, ..., xit} only depends on observations up to time t (so that git is a

function of It).
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3.1 Inference when β0 is known

Suppose for a moment that the value of β0 in model (1) is known. The following proposition

characterizes the exact distribution of Si(β0) and SRi(β0) in this case. From now on, let the

symbol “
d
=” stand for the equality in distribution.

Proposition 1. Suppose model (1) holds, and let gi,t = gi,t(It), i = 1, ..., K, t = 0, ..., T − 1,

be a sequence of measurable functions of It such that Pr(gi,t = 0) = 0 for i = 1, ..., K and

t = 0, ..., T − 1.

(i) If H0 and Assumption (2) are satisfied, then, given gi,0, ..., gi,T−1, the sign statistic

Si(β0) defined by (5) is such that

Si(β0)
d
=

T∑
t=1

s
[
ε̃tgi,t−1

] d
=

T∑
t=1

Bt,

for each i = 1, ..., K.

(ii) If H0 and the additional Assumption (3) are satisfied, then, given gi,0, ..., gi,T−1 and

|r1 − β0|, ..., |rT − β0|, the signed rank statistic SRi(β0) defined by (6) is such that

SRi(β0)
d
=

T∑
t=1

s
[
ε̃tgi,t−1

]
ϕ
(
R+
t (β0)

) d
=

T∑
t=1

Btϕ(t),

for each i = 1, ..., K

Here ε̃1, ..., ε̃T are independent median-zero random variables, i.e., Pr(ε̃t ≥ 0) = Pr(ε̃t <

0) = 1/2 for t = 1, ..., T ; and B1, ..., BT are independent Bernoulli variables such that

Pr(Bt = 1) = Pr(Bt = 0) = 1/2, for t = 1, ..., T.
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This proposition shows that the null distribution of Si(β0) is independent of gi,0, ..., gi,T−1,

for i = 1, ..., K, while the null distribution of SRi(β0) is independent of gi,0, ..., gi,T−1 and

|r1 − β0|, ..., |rT − β0|, for i = 1, ..., K. This is the key property that allows us to construct

conditional tests that account for the dependence among a joint collection of test statistics,

where the individual statistics comprising the collection are defined for i = 1, ..., K.

Indeed, part (i) of Proposition 1 shows that the statistic Si(β0) follows a binomial distri-

bution Bi(T, 1/2) under the null hypothesis. As T grows large, the binomial distribution of

Si(β0) can be approximated by a normal with mean T/2 and variance T/4, i.e.,

S∗i (β0) =
Si(β0)− T/2√

T/4
→ N(0, 1) as T →∞.

More generally, standard results found in Randles and Wolfe (1979, §10.2) show that under

the conditions of Proposition 1, the standardized linear signed rank statistic

SR∗i (β0) =

[
SRi(β0)−

1

2

T∑
t=1

ϕ(t)

]/√√√√1

4

T∑
t=1

ϕ2(t)

has a limiting standard normal distribution. If we let Φ(·) denote the standard normal

cumulative distribution function, the associated p-values can be defined as: pSi (β0) = 2
(
1−

Φ(|S∗i (β0)|)
)

and pSRi (β0) = 2
(
1 − Φ(|SR∗i (β0)|)

)
for a two-sided alternative; pSi (β0) = 1 −

Φ(S∗i (β0)) and pSRi (β0) = 1 − Φ(SR∗i (β0)) for a right-sided alternative; pSi (β0) = Φ(S∗i (β0))

and pSRi (β0) = Φ(SR∗i (β0)) for a left-sided alternative. We carry on assuming that H0 is

tested against a two-sided alternative. (For left- and right-sided alternatives, simply use the

appropriate p-value as defined above.)
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Test statistics like Si(β0) in (5) and SRi(β0) in (6) will have power to detect predictive

ability in the direction of xi. To obtain power against all xis, we consider two methods

of combining the marginal p-values associated with each individual test statistic. The first

method rejects H0 when at least one of the individual p-values is sufficiently small. Specifi-

cally, if we let S refer to either the S or SR statistic and define

pSmin(β0) = min
{
pS1 (β0), ..., p

S
K(β0)

}
and Smin(β0) = 1− pSmin(β0), (8)

then we reject H0 when pSmin(β0) is small, or, equivalently, when Smin(β0) is large. The

intuition here is that the null hypothesis of no predictability should be rejected if at least

one of the individual p-values is significant. This method of combining tests was suggested

by Tippett (1931) and Wilkinson (1951).

The second combination method we consider–originally suggested by Fisher (1932) and

Pearson (1933)–is based on the product of the individual p-values:

pS×(β0) =
K∏
i=1

pSi (β0) and S×(β0) = 1− pS×(β0), (9)

which may provide more information about departures from H0 compared to using only the

minimum p-value. Indeed, the product of several p-values may indicate a rejection of the

joint null hypothesis even though the individual p-values may not be small enough to be

significant on their own. For further discussion and recent examples of the test combination

technique, see Folks (1984), Westfall and Young (1993), Dufour et al. (2015) and Gungor

and Luger (2015).
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The p-values pS1 (β0), ..., p
S
K(β0) are obviously not statistically independent and may have

a very complex dependence structure. Nevertheless, if we choose the individual levels αi

such that
∑K

i=1 αi = α, then, by Bonferroni’s inequality, we have

Pr

(
K⋃
i=1

pSi (β0) ≤ αi

)
≤ α,

such that the induced test, which consists of rejecting H0 when any of the individual tests

rejects, has level α.3 For example, if we set each individual level at α/K, then the overall

probability of committing a Type I error does not exceed α. Such p-value adjustments,

however, yield a test lacking in power as K grows; see Savin (1984) for a survey discussion

of these issues.

To resolve the multiple comparison issue, we propose a Monte Carlo (MC) test procedure

based on the combination of the individual p-values (either through the minimum or the

product rule). The idea is to treat the combination like any other pivotal statistic for the

purpose of MC resampling (Barnard, 1963; Birnbaum, 1974; Dwass, 1957). This approach

bears resemblance to a double bootstrap scheme (cf. MacKinnon, 2009), which is typically

quite expensive computationally as it requires a second layer of simulations to obtain the p-

value of the combined (first-level) bootstrap p-values. Here, though, we only require a single

layer of simulations, since the individual p-values are available analytically. A remarkable

feature of the MC test combination procedure is that it remains exact even if the individual

p-values based on Φ(·) may only be approximate.4 Indeed, the MC procedure implicitly

3Here we follow the terminology in Lehmann and Romano (2005, Ch. 3) and say that a test of H0 has
size α if Pr( Rejecting H0 |H0 true ) = α, and that it has level α if Pr( Rejecting H0 |H0 true ) ≤ α.

4Recall that an exact p-value has a standard uniform distribution.
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accounts for the fact that the individual p-values may not be exact and yields an overall

p-value for the combined statistic that itself is exact. The key is the following result, which

is an immediate corollary of the first proposition.

Proposition 2. Suppose model (1) holds, and let gi,t = gi,t(It), i = 1, ..., K, t = 0, ..., T − 1,

be a sequence of measurable functions of It such that Pr(gi,t = 0) = 0 for i = 1, ..., K and

t = 0, ..., T − 1.

(i) If H0 and Assumption (2) are satisfied, then, given gi,0, ..., gi,T−1, i = 1, ..., K, the

Smin(β0) and S×(β0) statistics defined as in (8) and (9) are such that

Smin(β0)
d
= S̃min(β0) = 1−min

{
p̃S1 (β0), ..., p̃

S
K(β0)

}
,

S×(β0)
d
= S̃×(β0) = 1−

K∏
i=1

p̃Si (β0),

where, for i = 1, ..., K,

p̃Si (β0) = 2
(
1− Φ(|S̃∗i (β0)|)

)
,

S̃∗i (β0) =
S̃i(β0)− T/2√

T/4
,

S̃i(β0) =
T∑
t=1

s
[
ε̃tgi,t−1

]
.

(ii) If H0 and the additional Assumption (3) are satisfied, then, given gi,0, ..., gi,T−1, i =

1, ..., K, and |r1 − β0|, ..., |rt − β0|, the SRmin(β0) and SR×(β0) statistics defined as in
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(8) and (9) are such that

SRmin(β0)
d
= S̃Rmin(β0) = 1−min

{
p̃SR1 (β0), ..., p̃

SR
K (β0)

}
,

SR×(β0)
d
= S̃R×(β0) = 1−

K∏
i=1

p̃SRi (β0),

where, for i = 1, ..., K,

p̃SRi (β0) = 2
(
1− Φ(|S̃R

∗
i (β0)|)

)
,

S̃R
∗
i (β0) =

[
S̃Ri(β0)−

1

2

T∑
t=1

ϕ(t)

]/√√√√1

4

T∑
t=1

ϕ2(t),

S̃Ri(β0) =
T∑
t=1

s
[
ε̃tgi,t−1

]
ϕ
(
R+
t (β0)

)
.

Here again ε̃1, ..., ε̃T are independent median-zero random variables, i.e., Pr(ε̃t ≥ 0) =

Pr(ε̃t < 0) = 1/2 for t = 1, ..., T ; and B1, ..., BT are independent Bernoulli variables such

that Pr(Bt = 1) = Pr(Bt = 0) = 1/2, t = 1, ..., T.

This proposition shows how to obtain the building blocks S̃i(β0) and S̃Ri(β0), for i = 1, ..., K.

Note that the simulated terms ε̃t may simply be set as i.i.d. according to any contin-

uous median-zero distribution like the standard normal, for example. An important re-

mark about these results is that the same values of ε̃1, ..., ε̃T serve to compute all the simu-

lated statistics. For instance, the same value of ε̃t is used to compute all the time-t values

s
[
ε̃tg1,t−1

]
, ..., s

[
ε̃tgK,t−1

]
appearing in the definitions of S̃i(β0) and S̃Ri(β0), for i = 1, ..., K.

This requirement is needed to preserve the contemporaneous dependence among the indi-
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vidual statistics.

Let S•(β0) denote any one of the combined statistics Smin(β0), S×(β0), SRmin(β0), or

SR×(β0) featured in Proposition 2. In principle, critical values for the combined statistics

could be found from the conditional distribution of S•(β0) derived from the 2T equally

likely possibilities represented by S̃•(β0). Determination of this distribution from a complete

enumeration of all possible realizations is obviously impractical. The MC test technique

circumvents this problem while still yielding an exact p-value for S•(β0).

The MC test proceeds by generating M − 1 artificial statistics S̃•1(β0), ..., S̃•M−1(β0),

each one according to Proposition 2. Note that the distribution of these statistics is discrete,

meaning that ties can occur among the resampled values. A test with size α can neverthe-

less be obtained by applying the following tie-breaking rule (Dufour, 2006). Draw M i.i.d.

variates Um, m = 1, ...,M , from the standard uniform distribution U(0, 1), randomly pair

the U and S•(β0) statistics (actual and artificial), and compute the lexicographic rank of(
S•(β0), UM

)
according to

R̃M [S•(β0)] = 1 +
M−1∑
j=1

I
[
S•(β0) > S̃•j(β0)

]
+

M−1∑
j=1

I
[
S•(β0) = S̃•j(β0)

]
× I
[
UM > Uj

]
, (10)

where I[A] is the indicator function of event A.

Upon recognizing that the pairs
(
S̃•1(β0), U1

)
, ...,

(
S̃•M−1(β0), UM−1

)
,
(
S•(β0), UM

)
are

exchangeable under the conditions of Proposition 2, we then know from Lemma 2.3 in Dufour

(2006) that the lexicographic ranks are uniformly distributed over the integers 1, ...,M ; i.e.,
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Pr
(
R̃M [S•(β0)] = j

)
= 1/M , for j = 1, ...,M . So the MC p-value can be defined as

p̃M
[
S•(β0)

]
=
M − R̃M [S•(β0)] + 1

M
, (11)

where R̃M [S•(β0)] is the rank of
(
S•(β0), UM

)
, computed according to (10). If αM is an

integer, then the critical region p̃M
[
S•(β0)

]
≤ α has exactly size α in the sense that

Pr
(
p̃M
[
S•(β0)

]
≤ α

)
= α, (12)

under the conditions of Proposition 2.

3.2 Inference when β0 is unknown

A straightforward way of dealing with an unknown β0 is to replace it by the estimate β̌0 =

median{r1, ..., rT}, and to base inference on p̃M
[
S•(β̌0)

]
. These MC p-values based on the

aligned sign and signed rank statistics are quite natural, so we will examine their size and

power properties in the simulation study. However, we do not have any theoretical results

to justify their use (either in finite samples or asymptotically), and it seems doubtful that

such a theory is even possible given the generality of our statistical framework. To simplify

the notation, we will use Smmin, Sm× , Wm
min, Wm

× to refer to these plug-in (median-estimate)

tests based on (5) and (7).

To obtain tests that remain truly exact even when β0 is unknown, we adopt a two-stage

maximized p-value approach (Dufour, 2006). The first stage consists of establishing a set

of admissible values for the nuisance parameter. Next, the p-value of the test statistic is
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maximized over this set. The idea of this two-stage approach can be understood by viewing

the null hypothesis as a union of point null hypotheses:

H0 :
⋃
b∈B

H0(b), (13)

where H0(b) : β = 0, β0 = b. Here B ⊆ R denotes a set of admissible values for β0 that are

compatible with H0. The expression in (13) makes clear that β0 is a nuisance parameter in

the present context, since it is not pinned down to a specific value under H0. To test such

a hypothesis, which contains several distributions, we can appeal to a minimax argument

stated as, “reject the null hypothesis whenever, for all admissible values of the nuisance

parameter under the null, the corresponding point null hypothesis is rejected” (Savin, 1984).

With any of the signed rank test statistics, this would mean maximizing the MC p-value

p̃M
[
S•(b)

]
over b ∈ B. The rationale is that

sup
b∈B

p̃M
[
S•(b)

]
≤ α =⇒ p̃M

[
S•(β0)

]
≤ α,

where the latter is the MC p-value of the test statistic based on the true parameter value.

Moreover, Pr
(
p̃M [S•(b)] ≤ α

)
= α under H0(b) and for all b ∈ B. So if αM is an integer, it

then follows that

Pr

(
sup
b∈B

p̃M
[
S•(b)

]
≤ α

)
≤ α

under the conditions of Proposition 2. The decision rule in this case would be to reject H0

if the maximized p-value is ≤ α. Otherwise, accept H0 since there is not sufficient evidence

to reject it. Note that this test has level α, meaning it is conservative.
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Campbell and Dufour (1997), and more recently Beaulieu et al. (2007), suggest replacing

the first-stage B appearing in (13) by an exact confidence interval for β0 that is valid at

least under the null hypothesis. This can be interpreted as plugging in an estimator of the

(perhaps unknown) set of admissible β0 values.5 Let CIβ0(α1) denote a confidence interval

for β0 with level 1 − α1, i.e., such that Pr
(
β0 ∈ CIβ0(α1)

)
≥ 1 − α1 under H0. From

Bonferroni’s inequality, we then have the following results (see the Appendix for the proof).

Proposition 3. Suppose model (1) holds, and let gi,t = gi,t(It), i = 1, ..., K, t = 0, ..., T − 1,

be a sequence of measurable functions of It such that Pr(gi,t = 0) = 0 for i = 1, ..., K and

t = 0, ..., T − 1.

(i) Suppose further that H0 and Assumption (2) are satisfied, and CIβ0(α1) is a confidence

interval for β0 such that Pr
(
β0 ∈ CIβ0(α1)

)
≥ 1 − α1 under H0 and Assumption

(2). If αM is an integer, then, given gi,0, ..., gi,T−1, i = 1, ..., K, the critical region

supb∈CIβ0 (α1) p̃M
[
S•(b)

]
≤ α2 is such that

Pr

(
sup

b∈CIβ0 (α1)

p̃M
[
S•(b)

]
≤ α2

)
≤ α1 + α2,

where p̃M [S•(b)] is the MC p-value of the combined sign statistics computed as in (11).

(ii) Suppose furthermore that H0 and Assumption (3) are satisfied, and CIβ0(α1) is a confi-

dence interval for β0 such that Pr
(
β0 ∈ CIβ0(α1)

)
≥ 1−α1 under H0 and Assumption

(3). If αM is an integer, then, given gi,0, ..., gi,T−1, i = 1, ..., K, and |r1−b|, ..., |rT −b|,
5Note also that this is the main idea of the Bonferroni methods frequently used to deal with nuisance

parameters in predictive regressions; see, for example, Cavanagh et al. (1995) and Campbell and Yogo (2006).
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for b ∈ CIβ0(α1), the critical region supb∈CIβ0 (α1) p̃M
[
SR•(b)

]
≤ α2 is such that

Pr

(
sup

b∈CIβ0 (α1)

p̃M
[
SR•(b)

]
≤ α2

)
≤ α1 + α2,

where p̃M [SR•(b)] is the MC p-value of the combined linear signed rank statistics com-

puted according to (11).

The first-stage confidence intervals appearing in this proposition can be obtained by

considering the special cases of (5) and (7) in which gi,t = 1. Specifically, the exact confidence

interval for β0 used in part (i) of Proposition 3 is constructed from the order statistics

r(1), ..., r(T ). If we choose δ such that Pr(B ≤ δ) = α1/2 = Pr(B ≥ T − δ), where B follows a

binomial distribution Bi(T, 1/2), then [r(δ+1), r(T−δ)] is a (1−α1)100% confidence interval for

β0 which is valid under H0 and Assumption (2). This confidence interval simply reports all

the values b that are not rejected by the sign test
∑T

t=1 s[rt−b] of the hypothesis that r1, ..., rT

are random variables each with a distribution whose median equals b; see Pratt and Gibbons

(1981, p. 92–96) and Hettmansperger (1984, p. 12–15) for details. If the sample size is large

enough (> 20), a normal approximation can be used to find δ as δ
.

= T/2 − zα1/2

√
T/4,

where zα1/2 is the upper α1/2 percentile of the standard normal distribution.

When the innovations εt are further assumed symmetric as in (3), a tighter confidence

interval for β0 can be obtained by inverting a Wilcoxon signed rank test W =
∑T

t=1 s[rt −

b]R+
t (b). This confidence interval [used in part (ii) of Proposition 3] is easily constructed

from the N = T (T + 1)/2 Walsh averages (ri + rj)/2, 1 ≤ i ≤ j ≤ T . If ω(1), ..., ω(N ) are

the ordered Walsh averages and Pr(W ≤ δ) = α1/2 = Pr(W ≥ N − δ), then [ω(δ+1), ω(N−δ)]
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is the (1 − α1)100% confidence interval for β0 based on the W test. The distribution of

the Wilcoxon variate has been tabulated for various values of T ; see, for example, Wilcoxon

et al. (1970). As before though, the normal approximation can be used to find

δ
.

=
T (T + 1)

2
− zα1/2

√
T (T + 1)(2T + 1)

24
,

which works well even in small samples; see Hettmansperger (1984, p. 38–41) for further

details. In what follows, we use the maximized p-values over first-stage confidence intervals

based on the normal approximation. Note that the sample median β̌0 is always an element

of CIβ0(α1), whether this confidence interval is constructed by inverting the sign test or the

Wilcoxon signed rank test.

4 Simulation results

This section presents the results of simulation experiments to examine the performance of

the proposed tests for stock return predictability. Here we simply use Smin, S×, Wmin,

W× to refer to the two-stage MC tests, implemented with the sign statistic in (5) and the

Wilcoxon signed rank statistic in (7) according to Proposition 3. The tests are performed at

the nominal α = 5% significance level with M − 1 = 99 MC samples. We compute Smin, S×,

Wmin, and W× by grid search. A useful remark for practical applications is that the search

for the maximal p-value can be stopped and the null hypothesis can no longer be rejected

at level α as soon as a grid point yields a non-rejection. For instance, if p̃M [Smin(β̌0)] ≤ α2

then supb∈CIβ0 (α1) p̃M
[
Smin(b)

]
≤ α2 and H0 is not significant at the overall level α.

26



The data-generating process is the system in (4) comprising the predictive regression

model with two potential predictors governed by a VAR model. For convenience, the com-

plete specification is given here as

rt = β0 + β1x1,t−1 + β2x2,t−1 + σtηt,

x1t = µ1 + φ11x1,t−1 + φ12x2,t−1 + v1t,

x2t = µ2 + φ21x1,t−1 + φ22x2,t−1 + v2t,

(14)

for t = 1, ..., T , and the recursion is started with (x1,0, x2,0)
′ = (µ1, µ2)

′ + (v1,0, v2,0)
′. The

vectors εt = (ηt, v1t, v2t)
′ are i.i.d. over time according to a multivariate normal or Student-t

distribution with 3 degrees of freedom. In both cases, the multivariate innovation distribution

(denoted by D) has mean zero and contemporaneous scale matrix given by

Σε =


1 ρx1r 0

ρx1r 1 ρx1x2

0 ρx1x2 1

 .

The parameter ρx1r controls the strength of feedback from ηt to future values of the regres-

sors appearing on the right-hand side of the predictive regression in (14), and ρx1x2 is the

innovation correlation between the two predictor variables. The intercept of the predictive

regression in (14) is set as β0 = 0, but this is not assumed known and the procedures in §3.2

dealing with an unknown β0 are applied. The parameters of the VAR component in (14)

are set as µ1 = µ2 = 0, φ12 = φ21 = 0, and the other parameters are varied to examine their

effects.
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We consider two cases for the conditional variance of returns. In the i.i.d. case, we have

σt = 1 so the predictor variables may only affect the conditional location (mean and median)

of rt. Next we allow for stochastic volatility effects of the form σt = exp(x2,t−1/100). The

exponential function guarantees that σt > 0 and the division by 100 is simply a scaling

factor. In this conditional heteroskedasticity (“het”) case, one of the predictor variables has

predictive ability for the volatility (uncertainty) of returns, even though it may not predict

mean returns. To see the plausibility of this specification, consider the “het” model under

β1 = β2 = 0 (the null hypothesis). The τth conditional quantile of rt is then given by

Qτ (rt | It−1) = β0,τ +Qτ (εt | It−1),

where Qτ (εt | It−1) = exp(x2,t−1/100)Qτ (ηt) and Qτ (ηt) is the quantile of the innovation

ηt at a given quantile level τ ∈ (0, 1). In this case, the conditional median of rt equals

β0 no matter the predictors, since Q0.5(εt | It−1) = Q0.5(ηt) = 0 under (2). Furthermore,

Q0.5(rt | It−1) = E(rt | It−1) = 0 under (3). Note, however, that x2,t−1 influences the outer

quantiles of rt since |Qτ (εt | It−1)| = exp(x2,t−1/100)|Qτ (ηt)| is an increasing function of

|τ−0.5|.6 This setup is motivated by the empirical evidence in Cenesizoglu and Timmermann

(2008), Maynard et al. (2010), and Lee (2016) who find that many economic variables have

far greater predictive ability for the outer quantiles of the return distribution compared to

the centre of the return distribution.

We provide results for selected subsets of the cases for which φ = 0.95, 0.99, 1; ρx1r = 0,

6Here x2,t−1 has predictive ability for the conditional variance of rt, which is close to the notion of
Granger causality in volatility (Granger et al., 1986). In turn, such a mechanism implies the (outer) quantile
predictability.
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−0.9, −0.99; ρx1x2 = 0, −0.1, 0.1; and T = 100, 200. In each case, the reported results are

based on 1000 simulation replications of the data-generating configuration.

Given a desired level α, Proposition 3 shows that there is a tradeoff between the width

of the first-stage confidence interval CIβ0(α1) and the significance level α2 = α − α1 of the

second-stage tests based on the elements of CIβ0(α1). While the choice of α1, α2 has no effect

on the overall level (as long as α1+α2 = α), it does matter for power. Table 1 illustrates this

tradeoff for different testing strategies with α1, α2 taking values 1, ..., 4 such that α = 5%.

These results for the MC signed-rank tests Smin, S×, Wmin, W× were obtained by generating

data according to (14) with β0 = µ1 = µ2 = 0; φ12 = φ21 = 0; φ11 = φ22 = 0.95; ρx1r = −0.9;

ρx1x2 = 0. The sample size is T = 200, the innovations εt are i.i.d. according to a trivariate

Student-t distribution with 3 degrees of freedom, and σt = 1.

The results in Table 1 suggest that it is better to take a wider confidence interval for

β0 in order to have a tighter critical value in the second stage. Indeed, by shrinking α1,

there is a clear gain in power from 20 to nearly 30 percentage points depending on the test.

Similar results were obtained by Campbell and Dufour (1997) in a single predictor context.

We therefore carry on with the testing strategy represented by α1 = 1%, α2 = 4%.

The size and power results are presented in Tables 2 and 3, respectively. Here we use

the standard Wald test, the Amihud et al. (2009) mARM-based Wald test, and the Kostakis

et al. (2015) IVX-estimated Wald test as benchmarks for comparison purposes. The main

takeaways from the size experiments in Table 2 are summarized as follows.

1. All the tests respect the nominal 5% level constraint in the i.i.d. case with no feedback

(ρx1r = 0). When departing from that case, however, the Wald, mARM, and IVX tests
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tend to over-reject. This problem is abundantly clear in the presence of conditional

heteroskedasticty (the “het” cases) where the Wald, mARM, and IVX tests have re-

jection rates anywhere between 20% and 30%. Note also that doubling the sample size

from T = 100 to T = 200 does not improve matters for the Wald, mARM, and IVX

tests in these conditional heteroskedasticty cases.

2. The over-rejection problem with the Wald test tends to be exacerbated when: (i) there

is an increase in the strength of feedback from ρx1r = 0 to ρx1r = −0.9 to ρx1r = −0.99;

and (ii) there is an increase in regressor persistence from φ11 = 0.95 to φ11 = 0.99 to

φ11 = 1. The mARM-based Wald test appears more robust than the Wald test to the

presence of feedback, but nevertheless tends to become oversized when the regressor

persistence reaches φ11 = 0.99 and φ11 = 1. The IVX test is relatively more robust

than the mARM test to increases in regressor persistence. Interestingly, the empirical

size of the Wald, mARM, and IVX tests is almost the same whether the innovations

are i.i.d normal or i.i.d. t3.

3. The plug-in Smmin, Sm× , Wm
min, Wm

× tests appear well behaved with empirical size close

to the nominal 5% level in the i.i.d. cases regardless of the innovation distribution

(normal or t3), the regressor persistence (φ11), or the strength of feedback (ρx1r). This

is perhaps not surprising given that the sample median is a consistent estimator of

β0 in these i.i.d. cases (cf. Mizera and Wellner, 1998). In the “het” cases, however,

the plug-in tests display slight over-rejections. For instance, Smmin and Sm× tests have

empirical size close to 10%. Obviously this is nowhere near as bad as the behaviour of

the Wald, mARM, and IVX tests in the “het” cases.
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4. The Smin, S×, Wmin, W× tests based on a first-stage confidence interval for β0 are the

only tests that are completely robust (i.e., invariant) to the strength of feedback, the

degree of regressor persistence, and the presence of non-normalities and conditional

heteroskedasticity. Indeed, the empirical size of these conservative tests is always

strictly less than the nominal 5% significance level, in accordance with the developed

theory.

Given the size distortions seen in Table 2, the power results for the Wald, mARM, IVX,

and even the Smmin, Sm× , Wm
min, Wm

× tests are based on size-corrected critical values. Such

adjustments were not applied to the Smin, S×, Wmin, W× tests, since the probability of a

Type I error with these tests is ≤ α. The main findings that emerge from Table 3 can be

summarized as follows.

1. The Wald, mARM, and IVX tests have the best power among all the tests in the

i.i.d. settings, with the mARM test outperforming the Wald and IVX tests. Of course,

power improves for all the tests as the sample size increases. It is interesting to observe

that the power of the Wald, mARM, and IVX tests remains about the same whether

the innovations are i.i.d. normal or i.i.d. t3. On the contrary, the power of the signed

rank tests improves dramatically as the innovation tail-heaviness increases.

2. Indeed, the signed rank tests do much better than the Wald, mARM, and IVX tests

in the “het” cases. In fact, we see that the presence of conditional heteroskedasticity

diminishes the relative power of the Wald, mARM, and IVX tests. It is remarkable

that even the conservative Smin, S×, Wmin, W× tests outperform the Wald-mARM-IVX

group, often by a wide margin. The conventional wisdom that non-parametric tests
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perform well in the presence of heavy tails is thus corroborated. Notice as well that

the power performance improves considerably when the plug-in Smmin, Sm× , Wm
min, Wm

×

tests are used instead of the two-stage tests.

3. An examination of the Smin, S×, Wmin, W× tests shows that they tend to suffer when

the correlation between regressor innovations (ρx1x2) becomes negative and to benefit

when this correlation increases. Comparing the Smin and S× tests, we see that when

β1 = β2 the signed rank tests perform somewhat better if they are combined using

the product of the marginal p-values rather than the minimum p-value. This can be

gleaned at once from the last line of Table 3, for instance.

5 Empirical results

To further illustrate the new test procedure, we examine the predictability of excess stock

returns using U.S. data. Our empirical investigation uses six predictors that are widely used

in the stock return predictability literature: (i) the dividend-price ratio, (ii) the earnings-price

ratio, (iii) the book-to-market ratio, (iv) the default yield spread, (v) the term spread, and

(vi) the short rate. These data are in fact a subset of those used by Welch and Goyal (2008)

and updated through the year 2014. Here we consider monthly and quarterly data obtained

from Amit Goyal’s website for the 67-year time span from January 1948 to December 2014.

Earlier studies point out that the predictive power of the employed variables may not be

robust over time (Lettau and Ludvigson, 2001; Welch and Goyal, 2008). So in addition to the

entire 67-year period, we also examine return predictability over fixed 10-year and 20-year
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subsamples7 and 20-year rolling window subsamples. A brief description of the variables

used is given below; see Welch and Goyal (2008) for full details.

• Excess returns: Excess stock return (r) is defined as the rate of return on the S&P 500

value-weighted index minus the 3-month Treasury bill rate.

• Dividend-price ratio: The d/p predictor is the natural logarithm of the dividend-price

ratio, where dividends are 12-month moving sums of dividends paid on the S&P 500

index.

• Earnings-price ratio: The e/p predictor is the natural logarithm of earnings-price ratio,

where earnings are 12-month moving sums of earnings on the S&P 500 Index.

• Book-to-market ratio: The btm predictor is the ratio of book value to market value for

the Dow Jones Industrial Average.

• Default yield spread: The dfy predictor is the difference between BAA and AAA-rated

corporate bond yields.

• Term spread: The tms predictor is defined as the difference between the long-term

yield on government bonds and the 3-month Treasury bill rate.

• Short rate: The tbl predictor is the short-term interest rate, taken as the 3-month

Treasury bill rate.

Figure 1 plots the time-series of excess returns at the monthly (panel a) and quarterly

(panel b) frequencies. The monthly time-series plots of the six predictors are presented in

7The last fixed subsample is slightly shorter due to the time span covered by the data.
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Figure 2 and the quarterly ones are shown in Figure 3. The predictors appear very persistent

with a tendency to wander off for long periods. The notable exception is the term spread in

panel (e), which seems to be far more mean-reverting than the five other predictors. This

can also be ascertained from panels (a) and (b) of Table 4, which report some summary

statistics (mean, standard deviation, first-order autocorrelation) and the correlations among

the variables at the monthly and quarterly frequencies. The autocorrelation of excess stock

returns is near zero, whereas the predictors are highly persistent, with autocorrelations close

to one. Even at the quarterly frequency, the predictors remain very persistent. Indeed, it is

only the default yield (dfy) and the term spread (tms) that appear somewhat less persistent,

with autocorrelation coefficients 0.88 and 0.84, respectively. The autocorrelation of the other

predictors is at least 0.95 at either frequency.

Table 5 summarizes some of the distributional properties of the monthly and quarterly

excess stock returns for the full sample and fixed subsamples. The reported statistics in-

clude the mean, standard deviation, skewness, kurtosis, Jarque-Bera normality test statistic,

first-order autocorrelation, and the Ljung-Box portmanteau test statistic Q2(k) for squared

returns using k = 6 and k = 12 lags. The latter statistic is used to detect serial dependence

in the volatility of excess returns. Besides the well-known Jarque-Bera joint test, we assess

the normality of the excess return distribution with the D’Agostino (1970) test for skewness

and the Anscombe and Glynn (1983) test for kurtosis. Both of these test statistics are ap-

proximately normally distributed when the population data follows a normal distribution.

In Table 5, bold entries indicate statistical significance at the 10% level.

Over the full sample period, there is some evidence of negative skewness in both the

monthly and quarterly return data. In the 10-year and 20-year subsamples, however, the
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evidence inidicates that returns are symmetrically distributed. The monthly stock returns

tend to be heavy-tailed, both in the full sample and the subsamples. In contrast, the quar-

terly returns exhibit relatively less kurtosis. Finally, the Ljung-Box tests clearly indicate the

presence of conditional heteroskedasticity at the monthly frequency and less so at the quar-

terly frequency. These findings are completely in line with the huge body of literature that

documents GARCH-type or stochastic volatility effects in stock returns (cf. Cont, 2001).

Following Amihud et al. (2009), we report in Table 6 the parameter estimates from the

system of equations in (4) along with Newey-West standard errors in parentheses. The

first column in panels (a) and (b) show the one-month and one-quarter ahead predictive

regression results, respectively. The remaining columns display the parameter estimates of

the VAR model estimated using equation-by-equation OLS. The entries in bold represent

cases of significance at the 5% level. First, notice that based on the Newey-West adjusted

t-statistics, only the short rate appears to be a significant predictor of stock returns. Looking

at the persistence estimates along the main diagonal in panel (a), we see that the predictors

are highly persistent with autoregressive coefficients between 0.918 and 1.007. They appear

relatively less persistent at the quarterly frequency, with autocorrelation coefficients between

0.768 and 0.997 in panel (b).

Table 7 shows the estimated residual correlations from model (4). The first column

showing the residual correlations between the stock returns and the predictors gives an

indication of the strength of feedback. Not surprisingly, financial ratios such as d/p, e/p,

b/m are highly and negatively correlated with returns since the stock price appears in the

denominator of these ratios. Observe also that the conditional correlations in Table 7 are

much higher than their unconditional counterparts in Table 4. The results in Tables 6
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and 7 are in line with the literature that highlights the persistence and endogeneity of the

usual predictors appearing in stock return predictive regressions. Indeed, the evidence of

high persistence seen along the main diagonal in Table 6 combined with the strong residual

correlations shown in Table 7 is an early warning that the Wald test may not be reliable.

Table 8 reports the results from the application of the developed sign and signed rank

tests along with the standard Wald test (in the last column). For the full sample period, the

Wald test strongly rejects the null hypothesis with p-values essentially equal to zero, both

at the monthly and quarterly frequency. The plug-in Smmin and Wm
min tests tend to agree

with the Wald test with p-values ≤ 8%. On the contrary, the two-stage tests disagree with

those rejections, except for the Wmin test, which has p-values ≤ 9% using the full 67-year

sample. The subsample analysis reveals a more nuanced picture. Indeed, the plug-in tests

show some evidence of predictability in the 20-year subperiods, but hardly any with the

10-year subperiods, and the two-stage tests clearly indicate non-rejections. The Wald test

continues to consistently reject the null hypothesis of no predictability, except in the 10-year

subperiod from January 1988 to December 1997.

More striking yet are the 20-year rolling-window predictability test results in Figures 4

and 5. Here the solid black lines show the p-values of the sign and signed rank tests based

on the minimum p-value rule, the solid grey lines indicate the p-values of those tests based

on the product of the individual p-values, the dashed grey lines show the p-values of the

Wald test, and the horizontal dotted line shows the nominal 5% significance level. The

figures clearly show the tendency of the Wald test to almost always reject the null, except

36



during the most recent times.8 In sharp contrast, the wild fluctuations in the p-values of the

proposed tests point to rejections only infrequently. Most of these rejections occur during

the very early period 1968–1972. The plug-in tests also tend to reject the null hypothesis in

the late 1980s to early 1990s; however, this is not supported by the two-stage tests.

In addition to the evidence of joint predictability over the full 67-year sample period,

one may also want to know which predictors drive these results. So next, we investigate

the source of the predictability by evaluating the marginal p-value of each predictor in a

univariate regression setup. The reported marginal p-values in Table 9 reveal that, among

the six regressors, it is only the term spread (tms) that has predictive ability for both monthly

and quarterly excess stock returns. Another way to see this is from Table 10. When the

term spread is excluded from the information set and the joint tests are conducted with

the five remaining regressors–the cases with K = 5 in Table 10–the p-values of the joint

predictability tests cease to reject the null hypothesis.

The evidence uncovered here about the strong predictive ability of the term spread agrees

with the findings of Fama and French (1989), Fama (1990), Schwert (1990), Campbell and

Thompson (2008), and Rapach et al. (2016). In particular, Fama and French (1989) argue

that the term spread captures cyclical variation in expected returns because of its covariation

with short-term business cycle fluctuations. Estrella and Hardouvelis (1991) also show a

strong association between future changes in real economic activity and the term spread.

The takeaway message from our empirical application is that, although the new tests

uncover robust evidence of stock return predictability at both the monthly and quarterly

8More specifically, at the 5% level, the Wald test rejects the null 503 times (155 times) out of the 564
monthly (188 quarterly) rolling regressions.

37



frequencies, this evidence is entirely driven by the term spread. Moreover, the empirical

evidence of predictive ability does not consistently hold up over subsamples. Taken together,

these results suggest that there is indeed a predictable component in excess stock returns,

but one that only holds over a long time span.9

6 Concluding remarks

Investigations of stock return predictability have to contend with several problems that can

undermine the reliability of statistical inference in small samples. Chief among these is

that typically there is feedback from returns to future values of the regressors, and these

endogenous regressors are highly persistent over time. In such circumstances, OLS yields

biased estimates and standard testing procedures may reject the null hypothesis of no pre-

dictability much too often. This over-rejection problem can be further exacerbated by the

presence of time-varying conditional non-normalities and other stock return distribution het-

erogeneities, like GARCH-type or stochastic volatility effects. Indeed, the standard Wald

test and even the Amihud et al. (2009) bias-corrected Wald test and the Kostakis et al.

(2015) IVX-estimated “persistence-robust” Wald test can fail substantially in controlling

test size under such conditions.

In this paper, we have developed a small-sample testing procedure that is truly robust

(i.e., invariant) to all these sources of size distortions in predictability testing. Furthermore,

the proposed tests display good power properties under a variety of data-generating config-

9It is interesting to note the similarity of this finding with Shiller and Perron (1985), who show that the
power of random walk tests depends more on the span of the data rather than the number of observations.
Observe also that the random walk hypothesis is a special case of the present framework. For instance, to
test whether, say, pt follows a random walk, simply recast (1) as pt − pt−1 = β0 + β1pt−1 + σtεt and apply
the Campbell and Dufour (1997) sign and signed rank tests.
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urations. This is achieved with tests based on signs and signed ranks for each considered

regressor and by using Monte Carlo resampling techniques to combine the marginal p-values

in a way that controls the overall significance level. It is important to remember that the

Lehmann and Stein (1949) impossibility theorem shows that such sign-based tests are the

only ones that yield valid inference in the presence of non-normalities and heteroskedasticity

of unknown form. Another remarkable feature of the proposed test procedure is that no

modelling assumptions whatsoever are made for the regressor variables. This means that

the predictors may exhibit any degree of persistence and may be subject to unmodelled

structural breaks, time-varying parameters, or any other non-linearities.

Appendix: Proofs

Proof of Proposition 1: (i) Suppose model (1) holds, and let gi,t = gi,t(It), i = 1, ..., K,

t = 0, ..., T − 1, be a sequence of measurable functions of It such that Pr(gi,t = 0) = 0 for

i = 1, ..., K and t = 0, ..., T − 1. Let si,t = s
[
(rt − β0)gi,t−1

]
and consider the distribution of

the vector (
si,1, ..., si,T−1, si,T

)
.

Conditional on IT−1 = (x0,x1, ...,xT−1, r1, ..., rT−1)
′, the variables si,1, ..., si,T−1, gi,T−1 are

fixed. So under H0 and given IT−1, we have that s
[
(rT − β0)gi,T−1

] d
= s

[
εTgi,T−1

]
. The

assumption in (2) that the distribution of εT has a conditional median equal to zero further

implies that s
[
εTgi,T−1

] d
= s

[
ε̃Tgi,T−1

] d
= BT , where ε̃T is any random variable such that

Pr(ε̃T ≥ 0) = Pr(ε̃T < 0) = 1/2 and BT is a Bernoulli variable such that Pr(BT = 0) =

Pr(BT = 1) = 1/2. It follows that if H0 and Assumption (2) are satisfied, then, given IT−1,
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we have

(
si,1, ..., si,T−1, si,T

) d
=
(
si,1, ..., si,T−1, s[ε̃Tgi,T−1]

) d
=
(
si,1, ..., si,T−1, BT

)
.

Applying the same argument recursively to
(
si,1, ..., si,τ , BT

)
for τ = T −1, ..., 1, we find that

(
si,1, ..., si,T−1, si,T

) d
=
(
s[ε̃1gi,0], ..., s[ε̃T−1gi,T−2], s[ε̃Tgi,T−1]

) d
=
(
B1, ..., BT−1, BT

)
,

where ε̃1, ..., ε̃T are mutually independent random variables such that Pr(ε̃t ≥ 0) = Pr(ε̃t <

0) = 1/2; and B1, ..., BT are mutually independent Bernoulli variables on {0, 1} with Pr(Bt =

0) = Pr(Bt = 1) = 1/2. Thus the distribution of (si,1, ..., si,T ) is independent of gi,0, ..., gi,T−1.

Furthermore, we have that Si(β0)
d
=
∑T

t=1 s
[
ε̃tgi,t−1

] d
=
∑T

t=1Bt, for each i = 1, ..., K, since

X
d
= Y ⇒ f(X)

d
= f(Y) for any measurable function f(·) defined on the common support

of X and Y (Randles and Wolfe, 1979, Theorem 1.3.7).

(ii) Define dt to be the position of the integer t in the realization of the vector(
R+

1 (β0), ..., R
+
T (β0)

)
, t = 1, ..., T . Thus

T∑
t=1

si,tϕ
(
R+
t (β0)

)
=

T∑
t=1

si,dtϕ(t).

Conditional on |r1 − β0|, ..., |rT − β0|, the vector of scores
(
ϕ(R+

1 (β0)), ..., ϕ(R+
T (β0))

)
is a

fixed permutation of
(
ϕ(1), ..., ϕ(T )

)
. So under the conditions of part (i) and given |r1 −
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β0|, ..., |rT − β0|, we have that

T∑
t=1

si,tϕ
(
R+
t (β0)

) d
=

T∑
t=1

s[ε̃tgi,t−1]ϕ
(
R+
t (β0)

) d
=

T∑
t=1

Btϕ(t).

The symmetry assumption in (3) further implies that si,t is independent of |rt − β0| and

thus of R+
t (β0) and ϕ(R+

t (β0)) (Randles and Wolfe, 1979, Lemma 2.4.2). Moreover, this fact

applies to each of the T mutually independent elements of (si,1, ..., si,T ). Therefore, it is also

the case unconditionally that

SRi(β0)
d
=

T∑
t=1

s
[
ε̃tgi,t−1

]
ϕ
(
R+
t (β0)

) d
=

T∑
t=1

Btϕ(t),

for each i = 1, ..., K, since the distribution of
∑T

t=1Btϕ(t) does not depend on |r1 −

β0|, ..., |rT − β0|.

Proof of Proposition 2: Follows immediately upon recognizing that the elements of{
pS1 (β0), ..., p

S
K(β0)

}
and

{
pSR1 (β0), ..., p

SR
K (β0)

}
are pivotal, i.e., free of nuisance parameters.

Proof of Proposition 3: The proof closely follows that of Campbell and Dufour (1997,

Proposition 2). We will begin by establishing part (i) for the S• statistic. All the probability

statements made here are conditional on gi,0, ..., gi,T−1, i = 1, ..., K. We wish to show that

Pr
(

supb∈CIβ0 (α1) p̃M [S•(b)] ≤ α2

)
≤ α1 +α2 under the conditions of Proposition 3. This will

be true if Pr (A) ≤ α1 +α2, where A is the event p̃M [S•(b)] ≤ α2 for all b ∈ CIβ0(α1). Define

the set I = {b : b ∈ CIβ0(α1) and p̃M [S•(b)] > α2}. Then, via Bonferroni’s inequality, we
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have that

Pr (β0 ∈ I) = 1− Pr
(
β0 /∈ CIβ0(α1) or p̃M

[
S•(β0) ≤ α2

])
≥ 1− Pr (β0 /∈ CIβ0(α1))− Pr

(
p̃M
[
S•(β0) ≤ α2

])
≥ 1− α1 − α2,

since Pr (β0 ∈ CIβ0(α1)) ≥ 1 − α1 by definition of the first-stage confidence interval for β0,

and Pr
(
p̃M
[
S•(β0) ≤ α2

])
= α2 from (12). Observe that Pr (A) = Pr (Bc), where B is the

event p̃M [S•(b)] > α2 for some b ∈ CIβ0(α1). Note also that β0 ∈ I ⇒ B. Hence

Pr (B) ≥ Pr (β0 ∈ I) ≥ 1− α1 − α2,

which implies the desired result: Pr (A) ≤ α1 + α2.

The proof of part (ii) for the SR• statistic is identical except that the probability state-

ments are conditional on gi,0, ..., gi,T−1, i = 1, ..., K, and |r1− b|, ..., |rT − b|, for b ∈ CIβ0(α1).
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Table 1: Power comparison of different testing strategies

β1 β2 α1 α2 Smin S× Wmin W×

-0.1 0.0 0.01 0.04 32.1 33.1 47.9 47.9

0.02 0.03 31.2 33.7 46.4 47.0

0.03 0.02 24.5 25.3 39.6 40.6

0.04 0.01 12.6 12.1 20.8 21.6

-0.1 -0.1 0.01 0.04 47.4 54.6 65.4 70.8

0.02 0.03 43.7 52.2 61.0 66.4

0.03 0.02 37.4 44.4 53.0 60.8

0.04 0.01 23.7 31.5 37.2 45.5

Notes: This table reports the power (in percentages) of the proposed MC signed-rank tests Smin, S×, Wmin,
W× with M = 100 under various choices for α1, α2 such that α1 +α2 = 5%. The data are generated according
to (14) with β0 = µ1 = µ2 = 0; φ12 = φ21 = 0; φ11 = φ22 = 0.95; ρx1r = −0.9; ρx1x2

= 0. The sample size is
T = 200, the innovations εt are i.i.d. according to a trivariate Student-t distribution with 3 degrees of freedom,
and σt = 1 so the returns are conditionally homoskedastic. The reported results are based on 1000 simulation
replications of each data-generating configuration.
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Table 2: Empirical size of predictability tests

φ11 ρx1r σt D T Wald mARM IVX Sm
min Sm

× Wm
min Wm

× Smin S× Wmin W×

0.95 0 iid N 100 5.2 4.8 5.2 5.4 4.5 4.7 4.3 0.1 0.0 0.4 0.4

200 4.7 4.5 4.5 4.2 4.2 4.1 3.4 0.3 0.2 0.6 0.5

t3 100 5.5 3.7 4.7 4.2 4.0 4.2 3.9 0.0 0.1 0.2 0.1

200 5.0 4.2 4.6 4.1 4.2 4.7 4.8 0.0 0.0 0.5 0.6

het N 100 22.9 21.3 21.7 8.2 7.3 5.5 5.3 0.3 0.3 0.3 0.4

200 25.4 24.4 24.9 8.7 9.7 6.5 6.3 0.3 0.2 1.1 1.0

0.95 -0.9 iid N 100 14.2 7.1 6.4 4.8 4.2 5.4 4.3 0.1 0.0 0.3 0.5

200 10.1 6.8 6.9 5.6 5.0 5.4 4.2 0.4 0.1 0.9 0.6

t3 100 14.3 6.2 7.5 5.3 5.2 5.8 5.4 0.1 0.0 0.4 0.4

200 9.8 7.5 6.6 5.2 4.4 4.0 3.8 0.0 0.0 0.1 0.1

het N 100 25.4 19.9 22.4 9.3 10.1 8.4 8.6 0.2 0.3 0.9 0.7

200 26.5 25.4 25.2 10.1 10.1 6.3 6.4 0.3 0.2 0.8 0.9

0.95 -0.99 iid N 100 15.8 6.7 7.3 5.8 4.5 5.7 4.8 0.0 0.0 0.5 0.4

200 9.9 6.2 5.9 4.7 4.5 4.7 4.2 0.1 0.2 0.6 0.3

t3 100 13.2 5.9 7.4 5.2 4.5 5.7 5.3 0.1 0.1 0.3 0.3

200 10.7 6.2 6.1 5.8 6.0 6.2 5.2 0.2 0.1 0.6 0.4

het N 100 27.0 19.6 22.2 8.2 8.1 6.9 6.3 0.1 0.4 0.6 0.7

200 27.9 24.2 24.4 10.0 8.8 7.2 6.8 0.3 0.4 1.2 1.0

0.99 -0.99 iid N 100 23.4 10.2 7.4 4.8 4.8 5.6 5.0 0.0 0.0 0.0 0.1

200 18.9 5.1 6.8 4.8 4.2 5.7 4.4 0.0 0.0 0.6 0.4

t3 100 22.2 9.3 7.2 4.4 3.5 5.3 4.1 0.0 0.1 0.3 0.2

200 19.2 6.8 7.5 5.2 6.0 5.4 4.8 0.1 0.1 0.3 0.3

het N 100 30.3 20.7 21.7 8.7 8.5 6.4 5.6 0.0 0.0 0.4 0.5

200 29.6 23.3 25.9 10.8 9.7 7.5 6.5 0.5 0.9 1.0 1.0

1.00 -0.99 iid N 100 28.1 13.6 7.4 5.1 4.1 5.0 4.3 0.0 0.0 0.2 0.1

200 27.3 9.8 6.4 5.2 4.0 5.2 4.9 0.2 0.1 0.8 0.8

t3 100 27.4 12.6 7.2 4.5 4.0 4.6 3.2 0.0 0.0 0.2 0.1

200 29.1 10.7 7.2 5.0 5.2 5.4 5.7 0.2 0.1 0.4 0.5

het N 100 31.0 23.5 21.8 7.4 7.9 5.2 5.4 0.1 0.1 0.2 0.2

200 30.8 24.8 25.8 10.2 8.4 7.2 5.7 0.2 0.5 0.7 0.4

Notes: This table reports the empirical size (in percentages) of the standard Wald test, the Amihud et al.
(2009) mARM-based Wald test, the Kostakis et al. (2015) IVX-estimated Wald test, and the proposed MC
signed-rank tests with M = 100 for a given nominal level α = 5%. The data are generated according to (14)
with β0 = µ1 = µ2 = 0; β1 = β2 = 0 (the null hypothesis); φ12 = φ21 = 0; φ22 = 0.95; ρx1x2 = 0; the
other parameter values and the sample sizes are listed in columns 1–5. The innovations εt in (14) are i.i.d.
according to either a trivariate normal distribution (N) or a Student-t distribution with 3 degrees of freedom
(t3). The “iid” case corresponds to σt = 1, while “het” refers to the conditional heteroskedasticity case obtained
with σt = exp(x2,t−1/100) in (14). The reported results are based on 1000 simulation replications of each
data-generating configuration.
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Table 4: Summary statistics of employed variables

r d/p e/p b/m dfy tms tbl

Panel (a) Monthly data

Summary statistics

Mean 0.01 -3.48 -2.75 0.54 0.01 0.02 0.04

Std dev 0.04 0.44 0.45 0.25 0.00 0.01 0.03

Autocorr. 0.03 1.00 0.99 0.99 0.97 0.96 0.99

Correlation matrix

r 1

d/p -0.003 1

e/p -0.009 0.780 1

b/m -0.024 0.884 0.816 1

dfy 0.029 0.122 -0.028 0.255 1

tms 0.051 -0.260 -0.361 -0.313 0.270 1

tbl -0.047 0.264 0.349 0.444 0.444 -0.421 1

Panel (b) Quarterly data

Summary statistics

Mean 0.03 -3.48 -2.75 0.55 0.01 0.02 0.04

Std dev 0.08 0.44 0.46 0.25 0.04 0.01 0.03

Autocorr. 0.09 0.98 0.95 0.98 0.88 0.84 0.95

Correlation matrix

R 1

d/p -0.019 1

e/p 0.001 0.772 1

b/m -0.043 0.886 0.791 1

dfy -0.010 0.121 -0.029 0.273 1

tms 0.088 -0.268 -0.354 -0.305 0.257 1

tbl -0.063 0.270 0.352 0.437 0.437 -0.423 1

Notes: This table presents the mean, standard deviation, first-order autocorrelation, and the correlations among
the variables over the full-sample period from January 1948 to December 2014. The employed variables include
excess returns (r), dividend-price ratio (d/p), earnings-price ratio (e/p), book-to-market ratio (b/m), default
yield spread (dfy), term spread (tms), and short rate (tbl). Panels (a) and (b) report the results with monthly
and quarterly data, respectively.
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Table 5: Statistical properties of excess stock returns

Mean Std dev Skewness Kurtosis JB Autocorr. Q2(6) Q2(12)

Panel (a) Monthly excess returns

67-year period

Jan 1948 – Dec 2014 0.01 0.04 -0.43 4.62 113.23 0.04 41.31 52.59

10-year subperiods

Jan 1948 – Dec 1957 0.01 0.04 -0.15 2.52 1.60 -0.03 4.41 11.84

Jan 1958 – Dec 1967 0.01 0.03 -0.54 3.76 8.68 0.09 16.38 17.03

Jan 1968 – Dec 1977 0.00 0.05 0.28 4.12 7.82 0.03 23.92 28.93

Jan 1978 – Dec 1987 0.01 0.05 -0.68 5.90 51.24 0.05 0.17 6.56

Jan 1988 – Dec 1997 0.01 0.03 -0.13 3.41 1.21 -0.17 14.49 23.33

Jan 1998 – Dec 2007 0 0.04 -0.53 3.76 8.48 0.02 14.31 19.45

Jan 2008 – Dec 2014 0.01 0.05 -0.79 4.15 13.34 0.19 21.99 23.93

20-year subperiods

Jan 1948 – Dec 1967 0.01 0.04 -0.27 3.05 3.02 0.02 11.81 17.96

Jan 1968 – Dec 1987 0.00 0.05 -0.24 5.04 43.90 0.04 5.12 12.96

Jan 1988 – Dec 2014 0.01 0.04 -0.59 4.17 37.13 0.04 49.51 54.55

Panel (b) Quarterly excess returns

67-year period

1948Q1 – 2014Q4 0.02 0.79 -0.59 3.93 25.29 0.10 15.23 24.36

20-year subperiods

Jan 1948 – Dec 1967 0.03 0.07 -0.71 3.95 9.67 0.14 4.81 11.03

Jan 1968 – Dec 1987 0.01 0.09 -0.38 3.67 3.47 0.13 6.49 12.38

Jan 1988 – Dec 2014 0.02 0.08 -0.57 3.61 7.50 0.05 13.12 15.73

Notes: This table reports on the statistical properties of monthly and quarterly excess returns from January
1948 to December 2014. In addition to the full 67-year sample, 10-year and 20-year subsamples are also
considered. In each period, the sample skewness and kurtosis are tested against normally distributed data
using the D’Agostino (1970) test and the Anscombe and Glynn (1983) test, respectively. JB refers to the
Jarque-Bera normality test based on both the sample skewness and kurtosis. Finally, Q2(6) and Q2(12) are
the Ljung-Box test statistics with 6 and 12 lags to test for serial dependence in return volatility. Bold face
numbers indicate statistical significance at the nominal 10% level.
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Table 6: Parameter estimates

const. d/pt−1 e/pt−1 b/mt−1 dfyt−1 tmst−1 tblt−1 Adj. R2

Panel (a) Monthly data

rt 0.099 0.015 0.011 -0.025 0.712 0.096 -0.163 0.020
(0.038) (0.009) (0.008) (0.019) (0.826) (0.157) (0.082)

d/pt -0.062 0.980 0.005 0.019 -0.684 -0.095 0.055 0.990
(0.040) (0.010) (0.008) (0.020) (0.854) (0.164) (0.087)

e/pt -0.237 -0.028 0.962 0.108 -5.519 0.842 0.338 0.984
(0.069) (0.020) (0.031) (0.033) (1.634) (0.285) (0.143)

b/mt 0.099 -0.004 0.000 1.000 0.712 -0.027 0.071 0.988
(0.025) (0.005) (0.004) (0.012) (0.446) (0.096) (0.048)

dfyt 0.000 0.000 0.000 0.000 0.971 -0.004 0.003 0.945
(0.001) (0.000) (0.000) (0.001) (0.035) (0.005) (0.003)

tmst 0.003 0.001 0.000 -0.002 0.228 0.918 -0.013 0.920
(0.003) (0.001) (0.001) (0.002) (0.086) (0.020) (0.008)

tblt 0.099 -0.001 0.000 0.003 0.712 0.054 1.007 0.983
(0.004) (0.001) (0.001) (0.002) (0.101) (0.027) (0.010)

Panel (b) Quarterly data

rt 0.253 0.045 0.019 -0.052 1.826 0.343 -0.457 0.043
(0.141) (0.027) (0.027) (0.070) (2.520) (0.455) (0.233)

d/pt -0.154 0.937 0.027 0.038 -1.673 -0.347 0.124 0.966
(0.154) (0.029) (0.028) (0.075) (2.624) (0.475) (0.253)

e/pt -0.957 -0.087 0.822 0.441 -15.990 2.356 0.848 0.918
(0.341) (0.068) (0.119) (0.163) (6.358) (1.102) (0.588)

b/mt 0.253 -0.010 -0.006 0.997 1.826 -0.401 0.103 0.961
(0.076) (0.016) (0.011) (0.039) (1.765) (0.316) (0.138)

dfyt -0.002 -0.001 0.001 0.001 0.842 0.007 0.015 0.792
(0.004) (0.001) (0.001) (0.002) (0.079) (0.012) (0.007)

tmst 0.009 0.003 -0.002 -0.007 0.466 0.768 -0.003 0.723
(0.010) (0.002) (0.002) (0.005) (0.145) (0.055) (0.021)

tblt 0.253 -0.003 0.001 0.008 1.826 0.129 0.973 0.907
(0.013) (0.003) (0.002) (0.007) (0.180) (0.072) (0.024)

Notes: This table presents the OLS parameter estimates from the multipredictor model over the sample period
from January 1948 to December 2014. The predictors of excess stock returns are log dividend-price ratio (d/p),
log earnings-price ratio (e/p), book-to-market (b/m), default yield spread (dfy), term spread (tms), and short
rate (tbl). The numbers in parentheses are the Newey-West adjusted standard deviations. Bold face numbers
indicate significant t-statistics at the 5% level.
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Table 7: Residual correlation matrix

r d/p e/p b/m dfy tms tbl

Panel (a) Monthly data

r 1

d/p -0.988 1

e/p -0.644 0.634 1

b/m -0.749 0.734 0.538 1

dfy -0.035 0.038 -0.150 -0.042 1

tms 0.035 -0.031 0.019 -0.051 0.066 1

tbl -0.132 0.122 0.114 0.174 -0.262 -0.762 1

Panel (b) Quarterly data

r 1

d/p -0.974 1

e/p -0.376 0.376 1

b/m -0.795 0.781 0.378 1

dfy -0.137 0.136 -0.296 -0.006 1

tms 0.080 -0.049 -0.011 -0.063 0.101 1

tbl -0.127 0.090 0.139 0.178 -0.324 -0.837 1

Notes: This table presents estimated correlation between the innovations of returns and the predictor variables
over the sample period from January 1948 to December 2014. The predictors of excess stock returns (r) are
log dividend-price ratio (d/p), log earnings-price ratio (e/p), book-to-market (b/m), default yield spread (dfy),
term spread (tms), and short rate (tbl).
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Table 8: Joint predictability tests using all six predictors

Sm
min Sm

× Wm
min Wm

× Smin S× Wmin W× Wald

Panel (a) Monthly excess returns

67-year period

Jan 1948 – Dec 2014 0.04 0.06 0.02 0.17 0.34 0.39 0.09 0.26 0.00

10-year subperiods

Jan 1948 – Dec 1957 0.06 0.09 0.18 0.10 0.85 0.89 0.84 0.65 0.06

Jan 1958 – Dec 1967 0.10 0.17 0.04 0.02 0.92 0.95 0.97 0.98 0.07

Jan 1968 – Dec 1977 0.25 0.09 0.09 0.02 0.33 0.41 0.17 0.20 0.00

Jan 1978 – Dec 1987 0.33 0.24 0.22 0.17 0.56 0.56 0.29 0.43 0.00

Jan 1988 – Dec 1997 0.16 0.15 0.34 0.11 0.77 0.63 0.91 0.93 0.49

Jan 1998 – Dec 2007 0.06 0.07 0.34 0.30 0.95 0.92 0.88 0.79 0.03

Jan 2008 – Dec 2014 0.58 0.79 0.67 0.66 0.82 0.94 0.86 0.86 0.02

20-year subperiods

Jan 1948 – Dec 1967 0.06 0.05 0.02 0.01 0.49 0.44 0.21 0.45 0.04

Jan 1968 – Dec 1987 0.21 0.08 0.03 0.06 0.55 0.55 0.29 0.17 0.00

Jan 1988 – Dec 2014 0.45 0.23 0.16 0.07 0.86 0.97 0.87 0.91 0.06

Panel (b) Quarterly excess returns

67-year period

1948Q1 – 2014Q4 0.08 0.22 0.02 0.06 0.22 0.47 0.05 0.19 0.00

20-year subperiods

1948Q1 – 1967Q4 0.01 0.07 0.01 0.03 0.26 0.36 0.07 0.27 0.02

1968Q1 – 1987Q4 0.11 0.13 0.04 0.09 0.85 0.79 0.48 0.27 0.00

1988Q1 – 2014Q4 0.03 0.03 0.17 0.26 0.95 0.95 0.75 0.8 0.07

Notes: This table reports the p-values of the proposed non-parametric tests and the standard Wald test. The
variables are defined at the monthly and the quarterly frequency from January 1948 to December 2014. Bold
face numbers indicate joint significance at the nominal 5% level.
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Table 9. Marginal p-values of each predictor in a univariate regression setup

d/pt−1 e/pt−1 b/mt−1 dfyt−1 tmst−1 tblt−1

Panel (a) Monthly excess returns

Sm 0.41 0.48 0.08 1.00 0.01 0.27

Wm 0.58 0.78 0.40 0.49 0.01 0.20

S 0.99 0.99 0.82 0.97 0.08 0.99

W 1.00 0.98 0.95 1.00 0.04 0.99

Wald 0.03 0.11 0.33 0.61 0.05 0.01

Panel (b) Quarterly excess returns

Sm 0.47 0.88 0.22 0.75 0.01 0.51

Wm 0.22 0.40 0.83 0.90 0.01 0.29

S 1.00 1.00 1.00 0.90 0.08 0.95

W 1.00 0.99 1.00 1.00 0.02 1.00

Wald 0.03 0.16 0.23 0.55 0.08 0.03

Notes: This table shows the marginal p-values for each predictor obtained with the proposed tests and the
standard Wald test. Bold face numbers indicate statistical significance at the nominal 5% level.

Table 10. Joint predictability tests with and without the term spread

Sm
min Sm

× Wm
min Wm

× Smin S× Wmin W×

Panel (a) Monthly excess returns

K = 6 0.04 0.06 0.02 0.17 0.34 0.34 0.09 0.26

K = 5 0.20 0.25 0.59 0.57 0.55 0.64 0.81 0.81

Panel (b) Quarterly excess returns

K = 6 0.08 0.22 0.02 0.06 0.22 0.47 0.05 0.19

K = 5 0.64 0.77 0.64 0.59 0.94 0.9 0.97 0.97

Notes: This table shows the p-values of the joint sign and signed rank tests. When K = 6, the tests are
based on all six predictors. The cases with K = 5 are when the term spread (tms) is excluded and the joint
predictability tests are performed with the remaining 5 predictors (d/p, e/p, b/m, dfy, tbl). Bold face numbers
indicate joint significance at the nominal 5% level.
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Figure 1: Excess stock returns

(a) Monthly

(b) Quarterly

Figure 1 shows the monthly (panel a) and quarterly (panel b) time series of excess returns on the S&P
value-weighted index over the period from January 1948 to December 2014.
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Figure 2: Monthly predictors

(a) Dividend-price ratio (b) Earnings-price ratio

(c) Book-to-market ratio (d) Default yield

(e) Term spread (f) Short rate

Figure 2 shows the monthly time series of the six predictors over the period from January 1948 to December
2014. Panels (a)–(f) show the dividend price ratio (d/p), the earnings-price ratio (e/p), the book-to-market
ratio (b/m), the default yield (dfy), the term spread (tms), and the short rate (tbl), respectively.
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Figure 3: Quarterly predictors

(a) Dividend-price ratio (b) Earnings-price ratio

(c) Book-to-market ratio (d) Default yield

(e) Term spread (f) Short rate

Figure 3 shows the quarterly time series of the six predictors over the period 1948Q1–2014Q4. Panels (a)–(f)
show the dividend price ratio (d/p), the earnings-price ratio (e/p), the book-to-market ratio (b/m), the
default yield (dfy), the term spread (tms), and the short rate (tbl), respectively.
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Figure 4: Rolling-window predictability tests with monthly excess returns

(a) Sm
min and Sm

× (b) Wm
min and Wm

×

(c) Smin and S× (d) Wmin and W×

Figure 4 shows the p-values of the proposed sign and signed rank tests and the benchmark Wald test using a
240-month (20-year) rolling window. The solid black line indicates the tests based on the minimum p-value,
the solid grey line is for the tests based on the product of the p-values, the dashed grey line is for the Wald
test, and finally the horizontal dotted line shows the nominal 5% significance level.
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Figure 5: Rolling-window predictability tests with quarterly excess returns

(a) Sm
min and Sm

× (b) Wm
min and Wm

×

(c) Smin and S× (d) Wmin and W×

Figure 5 shows the p-values of the proposed sign and signed rank tests and the benchmark Wald test using an
80-quarter (20-year) rolling window. The solid black line indicates the tests based on the minimum p-value,
the solid grey line is for the tests based on the product of the p-values, the dashed grey line is for the Wald
test, and finally the horizontal dotted line shows the nominal 5% significance level.
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