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Abstract 

This paper builds a model with imperfect competition in the banking sector. In the model, banks 
issue deposits and make loans, and deposits can be used as payment instruments by households. 
We use the model to assess the general equilibrium effects of introducing a central bank digital 
currency (CBDC). We identify a new channel through which the CBDC can improve the efficiency 
of bank intermediation and increase lending and aggregate output even if its usage is low, i.e., the 
CBDC serves as an outside option for households, thus limiting banks’ market power in the deposit 
market. We then calibrate the model to the US economy and find that with a proper interest rate, 
CBDC can raise bank lending by around 7% and increase output by around 1%. The quantitative 
results are sensitive to parameters governing the acceptance of different means of payments and 
the degree of competition in the deposit market. 

 
Bank topics: Digital currencies and fintech; Monetary policy; Monetary policy 
framework; Market structure and pricing 
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1 Introduction

Many central banks are assessing the possibility of introducing a widely accessible

Central Bank Digital Currency (CBDC) into their economies.1 Issuing a CBDC

would have implications for monetary policy and banking. Of concern is that a

CBDC might crowd out bank deposits, increase banks’funding costs, and reduce

lending and investment, i.e., bank disintermediation. This concern is highlighted

in the report on CBDC from the Bank for International Settlements (BIS), which

argues that “... a flow of retail deposits into a CBDC could lead to a loss of low-cost

and stable funding for banks, with the size of such a loss in normal times depending

on the convenience and costs of the CBDC. Banks could try to prevent a loss of

deposits by raising interest rates or seek funding to replace such outflows, e.g.,

through wholesale funds and term deposits, which would likely be more costly.”2

The International Monetary Fund (IMF) staff discussion note by Mancini-Griffoli

et al. (2018) also argues that “as some depositors leave banks in favor of CBDC,

banks could increase deposit interest rates to make them more attractive. But the

higher deposit rates would reduce banks’interest margins. As a result, banks would

attempt to increase lending rates, though at the cost of loan demand.”Also, Meaning

et al. (2018) suggest an important topic for future research: “Even abstracting

from bank runs, at what point do the benefits of a new competitive force for the

banking sector get outweighed by the negative consequences of the central bank

disintermediating a large part of banks business models?”

The goal of our paper is to formally assess the effects of CBDC on banking.

We build on Keister and Sanches (2018) to develop a tractable model where cash

and bank deposits are both used as means of payments. Banks take deposits from

households and offer loans to firms to finance projects. Banks’liabilities (deposits)

1For reasons and arguments for issuing a CBDC, see Engert and Fung (2017) and references
therein.

2See the BIS report by the Committee on Payments and Market Infrastructures (2018).
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serve as means of payments. In other words, banks perform liquidity transformation

by converting illiquid loans into liquid deposits.3 We then introduce a widely ac-

cessible CBDC into this economy and study its implications on bank funding costs,

lending, investment, and output. We study the effects of various designs of CBDC

and consider the following: whether the CBDC is interest bearing or not; whether

it is a substitute for bank deposits (deposit-like) or substitute for cash (cash-like);

whether it can be held by banks; and, if so, whether it can be used to satisfy reserve

requirements. We show that the effects of a CBDC on the banking system depend

on the competition level in the deposit market and the interest rate on the CBDC.

In general, a deposit-like CBDC with a suffi ciently high interest rate has a neg-

ative effect on lending. Intuitively, if the CBDC rate is suffi ciently high, banks can

only compensate for the rising funding cost by raising the lending rate, which would

lead to a reduction in lending. This happens regardless of the competition level in

the deposit market. If the deposit market is not perfectly competitive, a moderate

interest rate on the CBDC increases bank deposits and lending. In this case, the

CBDC limits banks’market power and forces them to offer depositors better rates,

which attract more deposits and reduce bank profits per unit of deposits. Banks

are willing to accommodate the increased deposit demand because they still make

a profit per unit of deposits. This leads to more bank funding and in turn leads to

an increased supply of loans and lower lending rates.

Interestingly, the CBDC can improve lending even if it is not used in equilibrium.

CBDC serves as a viable outside option to bank deposits and hence disciplines the

behavior of banks. As a result, the demand for bank deposits becomes more elastic

with respect to the deposit rate. Our model has the extreme version: deposits

3Such a market structure can arise due to information and commitment frictions. Because of
these frictions, credit is imperfect. Households need to bring means of payment for consumption.
Similarly, firms cannot directly borrow from households because they cannot commit to repay.
Banks have enforcement technology and can commit to honor their obligations. Therefore, they
can channel funds from households to firms and provide payment services. We abstract from
consumption loans and focus on commerical loans.
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are perfectly elastic at the point of the CBDC rate. Therefore, the CBDC rate

becomes a floor on the deposit rate regardless of whether the CBDC is used or not.4

This insight is closely related to Lagos and Zhang (2018), who show that monetary

policy can be effective even if money is not used in the equilibrium because monetary

policy changes the value of the outside option and disciplines the equilibrium. The

implication of this is that the effectiveness of a CBDC should be assessed based on

its effect on deposits or deposit rate instead of its usage.

We then calibrate the model to the US economy and assess the importance of our

mechanism. Results from our benchmark calibration show that (1) with a proper

interest rate, CBDC can raise bank lending and investment substantially (7%);

(2) there is a wide interval of CBDC rates (between 0.05% and 2.55%) at which

introducing CBDC increases lending; and (3) introducing CBDC can result in a

maximum 1% output increase. We also study the welfare implications of CBDC. An

alternative calibration shows that (1) and (2) are qualitatively robust to calibration

methods.

There are a few papers that study the effects of CBDC on banking. Keister and

Sanches (2018) consider a perfectly competitive banking sector and show that CBDC

can only reduce bank lending. In contrast, our model extends theirs to allow for

an imperfectly competitive banking sector and shows that CBDC can increase bank

lending.5 Andolfatto (2018), in contrast, considers an economy with a monopolistic

4This also suggests that the CBDC rate may be a better monetary policy tool because it
transmits directly to the deposit rate. The current monetary policy instruments do not seem to
affect deposit rates much. For example, the policy rate in the US has increased by 2% from 2016
to 2018, but the commercial banks have barely moved the deposit rates, measured as the national
rate on non-jumbo deposits (less than $100,000) for money market, savings, or interest checking
accounts. Relatedly, Berentsen and Schar (2018) argue that CBDC makes the monetary policy
more transparent. In particular, if a CBDC is publicly accessible, its interest rate would be the
lowest rate in the economy.

5Perfect competition is a limiting case where the number of banks goes to infinity. The key
insight is that the market structure is important when assessing the effect of CBDC on bank
intermediation. If the banking sector is imperfectly competitive, then a CBDC increases bank
intermediation if its rate is in an intermediate range but causes disintermediation if its rate is
above that intermediate range. This range shrinks as the number of banks increases, and we
obtain the same result as the number of banks approaches infinity.
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commercial bank and shows that CBDC may have a positive effect on bank deposits

but no impact on bank lending if the central bank lends to the commercial bank.

Our paper shows that CBDC can have a positive impact on both deposits and

lending even if the central bank does not lend to the commercial banks and there

are multiple banks. In terms of methodology, Andolfatto (2018) uses an overlapping

generation model, while our paper follows Lagos and Wright (2005).

Brunnermeier and Niepelt (2018) derive conditions under which the issuance of

inside money and outside money are equivalent, even if inside money and outside

money have liquidity or return differences. Their results imply that introducing

CBDC does not necessarily change macroeconomic outcomes. Barrdear and Kumhof

(2016) use a rich DSGE model and estimate that issuing a CBDC could increase

GDP by up to 3% through reducing real interest rates.

In general, our paper contributes to the literature on New Monetarist models.

Berentsen, Camera, and Waller (2008) first incorporate banking into the Lagos and

Wright (2005) model. Our model differs from Berentsen, Camera, and Waller (2008)

in two dimensions. First, banks in our model engage in imperfect competition.

Second, our banks create inside money by taking deposits. We provide conditions

under which a monetary equilibrium exists and is unique. We also show that the

model can have multiple equilibria under certain parameters, implying that the

banking sector can introduce instability into the economy. This point is also made

in Gu et al. (2018).

The key mechanism of our paper depends crucially on the market power of

banks in the deposit market. Dreschler, Savov, and Schnabl (2017) provide empir-

ical evidence that banks have market power in the deposit market and explore the

implication of this on monetary policy transmission. Dreschler, Savov, and Schnabl

(2018) study the effect of this market power on maturity transformation and interest

rate risk. Kurlat (2018) shows that this market power raises the cost of inflation.
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Other papers on e-money and digital currency include Davoodalhosseini (2018)

and Zhu and Hendry (2019). Davoodalhosseini (2018) studies a model where a

CBDC allows balance-contingent transfers as opposed to cash, but the CBDC is

more costly for agents to use than cash (because cash offers anonymity). He shows

that the co-existence of cash and the CBDC may not be optimal, because cash

can serve as an outside option for agents, restricting the central bank’s power in

implementing monetary policy. Our paper has many similarities with Zhu and

Hendry (2019), who study the behavior of a monopolistic e-money issuer. Our

paper studies behaviors of banks that have monopoly power and issue deposits that

can be used for payment.6

This rest of the paper is organized as follows. Section 2 introduces the baseline

model, where there is no CBDC. Section 3 derives the equilibrium of the baseline

model. Section 4 considers a CBDC with three different designs and studies its

implications on the equilibrium under each design. Section 5 calibrates the model

and assesses the quantitative implications, and Section 6 concludes. Extensions and

some omitted proofs are collected in the appendix.

2 Environment

The model follows a version of Lagos and Wright (2005) that is studied in Zhu and

Hendry (2019). The role of banks in our model is similar to that in Keister and

Sanches (2018). Time is discrete and continues forever. There is a continuum of

households with measure 2, a continuum of entrepreneurs with measure NE, and N

bankers. Here, N is an integer. As in the standard New Monetarist model, at each

date t, agents interact sequentially in two settings: a frictional decentralized market

6For further reference on e-money and digital currency, see Agur, Ari, and Dell’Ariccia (2019);
Chapman and Wilkins (2019); Chiu and Wong (2015); Davoodalhosseini and Rivadenyra (2018);
Engert and Fung (2017); Fung and Halaburda (2016); Kahn, Rivadeneyra, and Wong (2018);
Mancini-Griffoli et al. (2018); Schilling and Uhlig (2018); Zhu and Hendry (2019); and references
therein.
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(DM) and a frictionless centralized market (CM). There are two types of good: a

numeraire good x produced in the CM and a good y produced in the DM. Both

goods are perishable. There is a durable and intrinsically worthless object issued by

the government, i.e., fiat money. Its supply at time t is Mt. The bankers also issue

deposits to the households.

Households are divided into two permanent types, i.e., buyers and sellers, each

with measure 1. In the CM, both types work, consume x, and determine their

positions in fiat money and bank deposits. Their labor h is translated into x one-

for-one. In the DM, the buyers want to consume y, which can be produced on the

spot by the sellers. Then, buyers and sellers meet and trade bilaterally. Because

of anonymity and lack of commitment, credit is not viable. To facilitate the trade,

buyers can use fiat money. In addition, banks can commit to repay, and as a result,

their deposits can also be used as a means of payment.

There are three types of DM meetings. With α1 probability, a buyer gets into a

type 1 meeting, where only fiat money can be used. With α2 probability, a buyer gets

into a type 2 meeting, where only bank deposits can be used. With α3 probability,

a buyer gets into a type 3 meeting, where both can be used. These meetings can

be thought of in the following way. Type 1 meetings are transactions in local stores

that do not have access to debit cards. Type 2 meetings are online transactions

where the buyers and sellers are spatially separated and can only use debit cards

or bank transfers for payment. Type 3 meetings are at local stores with point-of-

sale (POS) machines, and hence both payment methods are accepted. The types of

meeting are not revealed until the start of the DM each period. Therefore, buyers

hold portfolios of fiat money and bank deposits.

Each period, a measure of NE entrepreneurs are born and they will die in the

next CM. They consume x in the next CM and have a linear utility. They are born

with investment opportunities and can transform x current CM goods to f (x) CM
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goods in the next CM. Here f ′ (0) =∞, f ′ (∞) = 0, f ′ > 0, and f ′′ < 0. However,

they do not have resources and cannot commit to repay households. Therefore,

they need to borrow but cannot directly borrow from the households. Similarly,

N bankers are born, who will die in the next CM. Bankers want to consume x in

the next CM with a linear utility. They do not have resources but can commit

to repayment and can also enforce payment. As a result, they can issue deposits

and use deposits to finance the investment opportunities. One unit of deposit is a

promise to pay back purchase power next period that is worth one unit of CM good.

Bankers also have the technology to provide payment services, i.e., bank deposits

can be used in type 2 and type 3 meetings.

In every CM, the newly born bankers issue some deposits to the households in

exchange for fiat money and also issue some deposits to entrepreneurs as loans.

Then the entrepreneurs use the deposits to buy x from buyers for investment. In

the next CM, entrepreneurs sell some of the investment output to obtain cash or

deposits, which are used to pay back the loans, and retain some output for their

own consumption. Bankers then use the loan payments to redeem the deposits held

by the households and retain some payments from the entrepreneurs for their own

consumption.

The government injects or contracts the money supply in the CM. We focus on

the case where money supply growth has a constant gross rate µ = Mt+1/Mt. Using

the Fisher’s equation, we can write the nominal interest rate as ι = (1 + µ) /β − 1.

2.1 Households

A buyer has period utility

U (x, y, h) = U (x)− h+ u (y) .

7



In the CM, the buyer solves

WB (Z,D) = max
x,h,Ẑ,D̂

{
U (x)− h+ βV B

(
Ẑ, D̂

)}
st. x = h+ Z +D + T − φ

φ̂
Ẑ − ψD̂,

where φ and φ̂ are the prices of money in terms of the CM good, D̂ is the real value

of deposits tomorrow, and ψD̂ is the real value of deposits today. Therefore, the

real interest rate on deposits is 1/ψ− 1. As standard, we can substitute out h using

the budget equation and obtain

WB (Z,D) = Z +D + T + max
x

[U (x)− x] + max
D̂,Ẑ

{
−φ
φ̂
Ẑ − ψD̂ + βV B

(
Ẑ, D̂

)}
.

This shows that WB (Z,D) is linear in Z and D. The first-order conditions (FOCs)

are

x : U ′ (x) = 1

Ẑ :
φ

φ̂
≥ βV B

1

(
Ẑ, D̂

)
, equality if Ẑ > 0

D̂ : ψ ≥ βV B
2

(
Ẑ, D̂

)
, equality if D̂ > 0,

where the subscripts mean the derivative with respect to corresponding arguments.

Notice that the first-order conditions imply that Ẑ and D̂ are the same for all buyers.

The DM problem can be written as

V B (Z,D) = α1 [u ◦ Y (Z)− P (Z)] + α2 [u ◦ Y (D)− P (D)] (1)

+α3 [u ◦ Y (Z +D)− P (Z +D)] +WB (Z,D) ,

where Y (·) and P (·) are terms of trade, which is discussed later.

A seller has period utility,

U (x, y, h) = U (x)− h− v (y) .
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Because the seller does not need to consume in the DM, we can assume that Z =

D = 0 without loss of generality. Therefore, the seller’s CM problem is

W S (Z,D) = max
x,h

{
U (x)− h+ βV S (0, 0)

}
st. x = h+ Z +D + T.

Again W S is linear in Z and D. The seller’s DM problem is

V S (0, 0) = α1

[
P
(
Z̃
)
− v ◦ Y

(
Z̃
)]

+ α2

[
P
(
D̃
)
− v ◦ Y

(
D̃
)]

+α3

[
P
(
Z̃ + D̃

)
− v ◦ Y

(
Z̃ + D̃

)]
+W S (0, 0) ,

where D̃ and Z̃ are the holdings of the buyer in the meetings.

Upon a meeting, the buyer makes a take-it-or-leave-it offer, which determines

the terms of trade Y (·) and P (·). Let z be the total real value of all available

payment instruments in a meeting; then the buyer offers

max
y,p≤z

[u (y)− p] s.t p = v (y) .

For simplicity, assume v (y) = y. Then one can show that

Y (z) =

{
z if z < y∗

y∗ if z > y∗
, P (z) =

{
z if z < y∗

y∗ if z > y∗
, (2)

where u′ (y∗) = 1.

Combing the FOCs of buyers and (1) and (2), we obtain the Euler’s equations,

φ

βφ̂
≥ α1λ

(
Ẑ
)

+ α3λ
(
Ẑ + D̂

)
+ 1, equality iff Ẑ > 0, (3)

ψ

β
≥ α2λ

(
D̂
)

+ α3λ
(
Ẑ + D̂

)
+ 1, equality iff D̂ > 0, (4)

where λ (D) = max [u′ (D)− 1, 0] is the liquidity premium. At the steady state, (3)

and (4) reduce to

ι ≥ α1λ (Z) + α3λ (Z +D) , equality iff Z > 0, (5)

ψ

β
− 1 ≥ α2λ (D) + α3λ (Z +D) , equality iffD > 0. (6)
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Here, (5) defines the aggregate demand for Z as a function of D. Given this, (6)

defines the aggregate inverse demand function for D given ι, i.e., ψ = Ψ (D). We

suppress the dependence of Ψ on ι to ease notations.

Lemma 1 Ψ (D) is decreasing in D and increasing in ι.

Proof. After some straightforward algebra, one can show that

Ψ′ (D) = α2βλ
′ (D) +

α1α3βλ
′ (Z +D)λ′ (Z)

α1λ
′ (Z) + α3λ

′ (Z +D)
≤ 0,

∂Ψ (D)

∂ι
=

α3βλ
′ (Z +D)

α1λ
′ (Z) + α3λ

′ (Z +D)
≥ 0.

Notice that the first inequality holds strictly if D < y∗ and the second inequality

holds strictly if α3 > 0 and Z +D < y∗.

2.2 Entrepreneurs

The entrepreneurs decide their demand for loans given the loan rate ρ. Their prob-

lem is

max
l
{f(l)− (1 + ρ)l}.

This implies that the inverse loan demand for a firm is f ′ (l) = 1 + ρ. This defines

an aggregate inverse loan demand function,

Ld (ρ) = NEf ′−1 (1 + ρ) .

Obviously Ld (·) is decreasing.

2.3 Bankers

For now, we assume that the lending market is perfectly competitive, and banks

engage in a Cournot competition in the deposit market. We later on consider the

case where the loan market and the deposit market are not perfectly competitive

with a competitive interbank market. Bankers face a reserve requirement. At the
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end of each CM, the real value of a banker’s cash holding must exceed χ fractions

of the total deposits, where χ is set exogenously by the government. In addition,

the bankers incur a deposit handling cost c per real value of deposit.

Then, banker j chooses dj, `j, and zj to maximize its utility, taking ρ and

d−j =
∑

i 6=j di as given:

max
zj ,`j ,dj

{
(1 + ρ) `j +

zj
µ
− [dj + Ψ (d−j + dj) djc]

}
(7)

st `j + zj = Ψ (d−j + dj) dj,

zj ≥ χΨ (d−j + dj) dj.

The banker gets back the loan plus interest (1 + ρ) `j, gets the post-inflation value

of money holdings, redeems the deposits dj, and pays the deposit handling cost.

The first equation in the constraint is the balance sheet identity of the bank at the

end of the first CM. The right-hand side is the liability, which is the real value of

deposits, and the left-hand side is the asset, which includes money and loans. The

second constraint reflects the reserve requirement. Using the balance sheet identity

and the reserve requirement to substitute out zj, one can rewrite the problem as

max
zj ,`j ,dj

{(
1 + ρ− 1

µ

)
`j −

[
dj + Ψ (d−j + dj) djc−

Ψ (d−j + dj) dj
µ

]}
(8)

st `j ≤ (1− χ) Ψ (d−j + dj) dj. (9)

Given each ρ, this defines a best response function that maps d−j to dj. We look

for a symmetric equilibrium where d−j = (Nb − 1) dj for every j. Once we solve for

dj, we can compute the loan supply at ρ. Throughout the paper, we assume that

the following holds.

Assumption 1 a) Given any d−j ∈ [0, y∗) and κ > β, either there exists a unique

dj > 0 such that Ψ′ (d−j + d) d + Ψ (d−j + d) ≷ κ if d ≶ dj, or Ψ′ (d−j + d) d +

Ψ (d−j + d) < κ for all d ≥ 0.

b) In addition, Ψ′ (Nd) d+ Ψ (Nd) decreases with d on [0, y∗/N).

11



Part (a) of this assumption is similar to the single crossing condition and states

that Ψ′ (d−j + d) d+ Ψ (d−j + d) as a function of d should cross the horizontal axis

from the above and at most once. We need part (a) to ensure that the best response

of banker j to any amount of deposits (less than y∗) created by other banks is unique.

We need part (b) to ensure that there is at most one symmetric Nash equilibrium

of the Cournot game. One can show that this assumption holds if v is linear, u is

CRRA utility with a coeffi cient less than 1, and α3 = 0. By continuity, this would

hold if α3 is suffi ciently small and if the utility function is given by

u (y) =
(y + ε)1−σ − ε1−σ

1− σ ,

where σ < 1 and ε is suffi ciently small. Define

µ̄ = 1/
[
Ψ (0)−1 + c

]
,

ρ̃ =

[
1

Ψ (0)
+ c− 1

µ

]
(1− χ)−1 +

1

µ
− 1,

ρ̄ =
c+ 1/β − 1 + χ (1− 1/µ)

1− χ .

Here, µ̄ is the lowest inflation level at which bankers are unwilling to operate without

lending opportunities. If µ < µ̄, the bankers are willing to supply deposits even if

they cannot lend and can only hold money. If µ ≥ µ̄, they stop operating without

lending opportunities because holding cash is too costly. Similarly, ρ̃ is the highest

lending rate that bankers are unwilling to operate if they are forced to lend up to

the reserve requirement. If ρ > ρ̃, bankers supply positive deposits. Notice that if

µ < µ̄, then ρ̃ < 1/µ − 1. Lastly, ρ̄ is the highest interest at which bankers earn a

finite profit. If ρ > ρ̄, bankers can have an unbounded profit by having an infinite

amount of deposits and loans.

Proposition 1 Under Assumption 1, the following claims hold:

1. There is a unique symmetric pure strategy equilibrium in the Cournot game if

ρ < ρ̄.
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2. Suppose Ψ (0) <∞ and Ψ′ (0) <∞. The total deposit D (ρ) satisfies

D (ρ) =


0 if µ > µ̄ and ρ < ρ̃

Nd∗ (ρ)
if ρ < ρ̄ and β < µ < µ̄
or ρ > ρ̃ and µ > µ̄[

N
N−1

y∗,∞
]
∪ {Nd∗ (ρ)} if ρ = ρ̄

∞ if ρ > ρ̄

,

where
Ψ′ (Nd∗ (ρ)) d∗ (ρ) + Ψ (Nd∗ (ρ)) = 1/ξ,

ξ = max
{(

1 + ρ− 1
µ

)
(1− χ) , 0

}
+ 1/µ− c.

3. D (ρ) is weakly increasing in ρ.

Proof. First notice that in the equilibrium there is no deposit iff the best

response to d−j = 0 is dj = 0. This is true iff[
(1− χ) max

{
1 + ρ,

1

µ

}
+
χ

µ
− c
]

Ψ (0)− 1 < 0.

One can check that this is true iff µ > µ̄ and ρ < ρ̃. This proves the second claim.

Now suppose that either µ > µ̄ or ρ < ρ̃ does not hold. For any ρ < ρ̄, banker j’s

problem can be rewritten as

max
dj

ξΨ (d−j + dj) dj − dj,

where ξ = 1/µ−c if ρ < 1/µ−1 and ξ =
(

1 + ρ− 1
µ

)
(1− χ)+1/µ−c if ρ > 1/µ−1.

By Assumption 1, there is a unique solution to this problem. This solution satisfies

Ψ′ (d−j + dj) dj + Ψ (d−j + dj) = 1/ξ or dj = 0. Then the symmetric pure strategy

Nash equilibrium d must satisfy Ψ′ (Nd) d+ Ψ (Nd) = 1/ξ. Notice that Ψ (0) > 1/ξ

and Ψ (y∗) = β < 1/ξ. Therefore, Ψ′ (Nd) d+Ψ (Nd) < 1/ξ for all d that are smaller

than but suffi ciently close to y∗/N . Because Ψ′ (Nd) d + Ψ (Nd) is continuously

decreasing on [0, y∗/N), there exists a unique solution. Therefore, there is a unique

symmetric pure strategy equilibrium d∗ (ρ). The total supply is D (ρ) = Nd∗ (ρ).

If ρ = ρ̄, there is a unique solution to Ψ′ (Nd) d + Ψ (Nd) = 1/ξ = β on [0, y∗/N).

In addition, this equation holds if d > y∗/ (N − 1). But not all d > y∗/ (N − 1) can
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be an equilibrium. This is because if d−j = d (N − 1) < y∗, banker j’s best response

is d < y∗−d (N − 1), which yields a strictly positive profit, while d > y∗−d (N − 1)

leads to 0 profit. However, d > y∗/ (N − 1) can be a symmetric pure strategy

equilibrium because no banker has a profitable deviation. Therefore, D (ρ) = d∗ (ρ)

or D (ρ) > N
N−1

y∗. If ρ > ρ̄, the best response of banker j is dj = ∞. Therefore,

D (ρ) = ∞. To see the last claim, just notice that by Assumption 1, d∗ (ρ) is

increasing.

Corollary 1 The loan supply function is

Ls (ρ) =



0 if ρ < 1
µ
− 1

[0, (1− χ)D (ρ) Ψ (D (ρ))] if ρ = 1
µ
− 1

(1− χ)D (ρ) Ψ (D (ρ)) if ρ ∈
(

1
µ
− 1, ρ̄

)
{(1− χ)Nd∗ (ρ) Ψ (Nd∗ (ρ))} ∪

[
(1−χ)Nβy∗

N−1
,∞
]
if ρ = ρ̄

∞ if ρ > ρ̄

.

Proof. Obviously, if 1+ρ < 1/µ, then `j = 0 because it is more profitable for the

bankers to hold the fiat money than to make loans. As a result, Ls (ρ) = N`j = 0.

If 1 + ρ = 1/µ, the banks are indifferent on `j ∈ [0, (1− χ) Ψ (d−j + dj) dj], where

dj solves

max
dj

{(
1

µ
− c
)

Ψ (d−j + dj) dj − dj
}
, (10)

because the inequality constraint is not binding. Then D (ρ) = Ndj and Ls (ρ) =

N`j ∈ [0, (1− χ)D (ρ) Ψ (D (ρ))]. If 1/µ < 1 + ρ, bankers lend out all they can.

Then the loan supply can be computed from D (ρ).

This result shows that Ls is single valued and continuous if 1/µ−1 < ρ < 1/β−1

or ρ < 1/µ − 1. If ρ = 1/µ − 1, then Ls may be set valued but convex. But if

ρ > 1/µ− 1, then Ls may be set valued and not convex. Also notice that, because

D (ρ) can be 0 even if ρ > 1/µ− 1 as shown in Proposition 1, Ls (ρ) may be 0 even

if ρ > 1/µ − 1. However, this only happens if the money growth rate is too high,

i.e., µ > µ̄. If µ < µ̄, then Ls (ρ) > 0 if ρ > 1/µ− 1.
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3 Equilibrium

We focus on the steady state equilibrium. Then the inflation rate equals the money

growth rate µ. Any ρ that solves Ld (ρ) = Ls (ρ) constitutes an equilibrium. We

can plot the loan supply and loan demand curves in ρ-L space, as in Figure 1, to

analyze the equilibrium. For illustration, we focus on the case where both Ψ (D)D

and D (ρ) are increasing.

The loan demand curve is strictly decreasing as shown by the solid red line.

The loan supply curve is illustrated by the solid blue line. As in the proof, it

has two cases. The first case is shown in Figure 1(a), where ρ̃ < 1/µ − 1. If

ρ < 1/µ − 1, then the loan supply curve coincides with the the horizontal axis. If

ρ = 1/µ − 1, then banks have positive deposits, i.e., D > 0. They are indifferent

between lending and holding cash. Therefore, the loan supply curve is vertical

between 0 and (1− χ)D (ρ) Ψ (D (ρ)). The loan supply curve is strictly increasing

on
(

1
µ
− 1, ρ̄

)
. And if ρ = ρ̄, it is vertical again. Obviously, the demand and

the supply have one and only one intersection, which implies the existence and

uniqueness of the steady state equilibrium. Notice that if ρ = 1/µ − 1 at the

intersection, banks hold voluntary reserves. This is because firms are not very

productive and banks choose to not lend up to the limit.

Figure 1(b) plots the second case, where ρ̃ > 1/µ − 1. The only difference is

that the supply curve coincides with the horizontal line if ρ < ρ̃. In this case, the

demand for liquidity is low. As a result, if the lending rate is too low, the banks are

not willing to take deposits and hence the loan supply is 0. Again, a steady state

equilibrium exists and is unique.

In general, an equilibrium may not exist because Ls (ρ) may be non-convex

valued. And there can be multiple equilibria because Ls (ρ) may decrease in some

regions. However, one can show that at least one equilibrium exists as long as the

productivity is not too high.
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(a) Case 1 (b) Case 2

Figure 1: Equilibrium with Imperfect Competition

Assumption 2 The production function f satisfies f ′
(

(1−χ)Nd∗(ρ̄)Ψ(Nd∗(ρ̄))
NE

)
< 1+ρ̄.

Assumption 2 requires that the productivity not be too high so that Ld passes

through Ls at its continuous part, which guarantees the existence of an equilibrium.

We also believe this is the relevant case because if the productivity is too high so

that Assumption 2 fails, the liquidity premium on deposits vanishes and bankers

pay high interest on deposits.

Proposition 2 Under Assumptions 1 and 2, there exists at least one monetary

equilibrium if ι is not too big. If, in addition, DΨ (D) is increasing in D, the

equilibrium is unique. The equilibrium loan rate is then less than ρ̄.

Proof. Notice that Ls (ρ) is continuous if D (ρ) is continuous. In addition,

Ls (ρ) = 0 for suffi ciently small ρ and minLs (ρ̄) = (1− χ)Nd∗ (ρ̄) Ψ (Nd∗ (ρ̄)). On

the other hand, Ld (ρ) is decreasing and positive for any ρ > 0 because f ′ (0) =

∞. As a result, Ld (ρ) − Ls (ρ) > 0 for suffi ciently small ρ and Ld (ρ̄) − Ls (ρ̄) <

0 by assumption. In addition, both Ld and Ls are continuous on [0, ρ̄). To see

the uniqueness, just notice that on [0, ρ̄), Ls (ρ) is increasing and Ls (ρ) is strictly
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decreasing. By the intermediate value theorem, there exists at least one equilibrium

with the loan rate less than ρ̄.

For the existence of the equilibrium, we require that entrepreneurs not be too

productive such that the loan demand and loan supply curves intersect to the left of

ρ̄. If this is the case, the buyers are liquidity constrained at least in type 2 meetings.

We can also use the diagrams to analyze comparative statics. For example, if

N increases, the solid blue line rotates counter-clockwise to the dashed blue line in

Figure 1. Then the equilibrium changes from point a to point b. In both cases,

the demand intersects the supply in its increasing region. Therefore, loan supply

increases and equilibrium ρ decreases. If, however, the intersection is in the vertical

part of the supply, equilibrium ρ and L do not change.

Now we analyze the effect of higher inflation µ or equivalently higher ι focusing

on the case where µ < µ̄. First consider the case where α3 = 0 and χ > 0. If

µ increases, the loan demand curve stays unchanged while the loan supply curve

changes to the dashed line. In this case, an increase in µ decreases the demand for

fiat money but does not increase the demand for deposits because fiat money and

deposits are not substitutes. However, an increase in µ increases the cost of holding

fiat money for the banks. As a result, bankers are willing to lend at a lower loan

rate because holding fiat money becomes a less attractive alternative.

But for lending rates at which bankers are willing to lend before the increase

in the inflation rate µ, the loan supply decreases. This is because it is more costly

to satisfy the reserve requirement, and the bankers reduce the supply of deposit

and lending. In Figure 2(a), the equilibrium changes from a to b, and there is less

lending and a higher lending rate. However, if, before the change, the bankers hold

voluntary reserves as shown in Figure 2(b), an increase in µ increases lending and

reduces loan rates because now bankers are more willing to lend.

Now consider the case with χ = 0 and α3 > 0. An increase in µ induces
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(a) Case 1 (b) Case 2

Figure 2: Unconstrained in Type 3 Meetings and χ > 0

households to substitute out to hold more deposits. This drives up the demand

for deposits. Because the bankers do not need to hold reserves, they are willing

to increase the supply of deposits and hence increase the supply of loans. This

unambiguously increases the equilibrium loan quantity and reduces the loan rate,

as shown in Figure 3(a) and Figure 3(b).

In general, if both α3 and χ are positive, higher inflation can have positive or

negative effects on loans depending on which of the above effects dominates. But

one can show the following is true.

Proposition 3 If bankers hold voluntary reserves, an increase in µ increases lend-

ing and decreases the loan rate.

Proof. In this case, if µ increases, the loan demand and loan supply curves can

only intersect at a point to the left of the current equilibrium on the ρ-L space.

Because loan demand is decreasing, this implies that the loan rate is lower and loan

quantity is higher.
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(a) Case 1 (b) Case 2

Figure 3: α3 > 0 and χ = 0

4 Effects of CBDC

This section analyzes the effects of an interest-bearing CBDC on bank lending and

the real economy. Obviously, the effects of a CBDC depend on its design. There are

several design dimensions that we can consider using our model: whether CBDC is

interest bearing, in what type of meetings CBDC can be used, and whether banks

can hold CBDC and for what purpose (i.e., whether or not banks can hold it against

their reserve requirements). We focus on the case where a CBDC is interest bearing

and designed to be a perfect substitute for bank deposits, i.e., it can be used in type

2 and type 3 meetings. This is likely the case where CBDC would have the most

significant impacts on banking. At the end of this section, we briefly discuss the

implications of some other types of CBDC.

We consider three cases in this section. First, the bankers are not allowed to

hold a CBDC. Second, the banks are allowed to hold a CBDC but the CBDC does

not count as reserves. Third, the CBDC can be used as reserves. Throughout this

section, we only consider the parameters under which the equilibrium lending rate

of the CBDC is above 1/µ − 1 , i.e., we focus on the cases in Figure 1 where Ld
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intersects Ls in its strictly increasing region. We then evaluate whether introducing

the CBDC increases or decreases lending. If, instead, the equilibrium lending rate

is 1/µ − 1 before introducing the CBDC, then the CBDC only weakly decreases

lending. It is worth pointing out that the results in the sections show that one

should not judge the usefulness of the CBDC based on how much it is used in the

daily transactions of consumers. Its effect on both deposit and lending rates is a

better measure of its usefulness. In the rest of the section, we use ρ∗ to denote the

equilibrium lending rate before the CBDC is introduced, and we focus on the case

where µ < µ̄, i.e., bankers are willing to operate without lending opportunities if

there is no CBDC. All the results carry over to the case with µ > µ̄.

4.1 CBDC Not Accessible by Bankers

Suppose that a CBDC grows at a gross rate µm and pays a nominal interest im.

Both µm and im are policy instruments of the central bank. Let ZE be the real

balances in the CBDC. Then the CM problem of the buyers changes to

WB (Z,ZE, D) = Z +D + ZE + T + max
x

[U (x)− x]

+ max
D̂,ẐE ,Ẑ

{
−φ
φ̂
Ẑ − φE

φ̂E

1

1 + im
ẐE − ψD̂ + βV

(
Ẑ, ẐE, D̂

)}
,

where φE is the price of the CBDC in terms of the numeraire good. It can be

different from φ in the equilibrium because the CBDC may pay interest or have a

different growth rate.

Following the same calculation, one can obtain the steady-state demand for all

three payment instruments given the deposit rate and policy rates:

ι ≥ α1λ (Z) + α3λ (Z + ZE +D) , equality iff Z > 0 (11)

ψ

β
− 1 ≥ α2λ (D + ZE) + α3λ (Z + ZE +D) , equality iffD > 0 (12)

µm
β(1 + im)

− 1 ≥ α2λ (D + ZE) + α3λ (Z + ZE +D) , equality iff ZE > 0.(13)
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Figure 4: Inverse Demand of Bank Deposits

From the last two equations, we can see that if ψ > µm
1+im

, the demand for bank

deposits is 0. If ψ < µm
1+im

, the demand for CBDC is 0.

As before, (11)—(13) define the demand function of D and ZE as the following:

D =


Ψ−1(ψ) ψ < µm

1+im

[0,Ψ−1(ψ)] ψ = µm
1+im

0 ψ > µ
1+im

and ZE =


0 ψ < µm

1+im

Ψ−1( µ
1+im

)−D ψ = µm
1+im

Ψ−1( µ
1+im

) ψ > µ
1+im

,

where Ψ is the same as the one defined in Section 2 for some d ∈ [0,Ψ−1( µm
1+im

)].

This defines a new inverse demand function for deposits:

Ψ̂(D) =


[ µm
1+im

,∞) D = 0
µm

1+im
D ∈

[
0,Ψ−1( µm

1+im
)
]

Ψ(D) D ≥ Ψ−1( µm
1+im

)

.

Figure 4 illustrates Ψ̂ and Ψ. Introducing CBDC truncates the original inverse

demand function for deposits. With a CBDC, bankers can no longer drive the

deposit rate below µm
β(1+im)

− 1 by restricting the supply of deposits because buyers

then will choose to hold the CBDC.

Following (10) and assuming that 1/µ− 1 ≤ ρ < ρ̄, we can now write the bank’s

problem as follows:

max
`j ,dj

{[
(1 + ρ) (1− χ)− c+

χ

µ

]
Ψ̂ (d−j + dj) dj − dj

}
.
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Denote by D̃ (ρ) the total deposit supply by the banks under ρ and Ψ̂. Let ψ̄ (ρ) ≡

Ψ (D (ρ)) be the price of deposits given by Cournot competition if there is no CBDC

and the lending rate is ρ. In addition, define ψ̂ (ρ) =
[
(1 + ρ) (1− χ)− c+ χ

µ

]−1

,

which is the outcome of marginal cost pricing. Notice that ψ̂ (ρ) and ψ̄ (ρ) are both

decreasing in ρ if D (ρ) is strictly increasing. In addition, ψ̂ (ρ) < ψ̄ (ρ) because

bankers just break even at ψ̂ (ρ) but earn a positive profit at ψ̄ (ρ). Then the

following lemma holds.

Lemma 2 Suppose Assumption 1 holds. If max (1/µ, 1 + ρ̃) < 1 + ρ < 1 + ρ̄, then

we have the following:

1. if µm
1+im

∈ (ψ̄ (ρ) ,∞), then D̃ (ρ) = D (ρ);

2. if µm
1+im

∈ (ψ̂ (ρ) , ψ̄ (ρ)), then in the symmetric pure strategy equilibrium D̃ (ρ) =

Ψ−1( µm
1+im

);

3. if µm
1+im

∈ (0, ψ̂ (ρ)), then D̃ (ρ) = 0.

Proof. We only prove 2. The other two are obvious. If dj < Ψ−1( µm
1+im

) − d−j,

increasing dj does not change the price of the deposit, which is fixed at µm/ (1 + im).

Then the FOC of bank j is

ξ
µm

1 + im
− 1 > ξψ̂ (ρ)− 1 = 0,

where ξ = (1 + ρ) (1− χ)−c+χ/µ. Therefore, bank j can always increase its profit

by increasing dj.

Now suppose D̃ (ρ) > Ψ−1( µm
1+im

). Because µm
1+im

< ψ̄ (ρ), D̃ (ρ) is larger than the

Cournot outcome without CBDC. Therefore, by Assumption 1, a banker’s marginal

profit is

ξ

[
Ψ
(
D̃ (ρ)

)
+
D̃ (ρ)

N
Ψ′
(
D̃ (ρ)

)]
− 1 < 0.
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This shows that it is profitable for a banker to reduce its supply of deposit. Hence,

D̃ (ρ) > Ψ−1( µm
1+im

) cannot happen.

Lemma 2 describes how the amount issued by the banks changes if we introduce

an interest-bearing CBDC. Interestingly, if the interest rate of the CBDC is interme-

diate, then, for a given ρ, the deposits created by banks increase and the CBDC is

not used in transactions. Intuitively, banks restrict their supply to get a higher price

if there is no CBDC. If the CBDC is introduced and has an intermediate interest,

the interest rate on deposits has to equal the interest on the CBDC. Then banks

lose the ability to lower the rates on deposit by restricting supply. So they would

increase the supply of deposits. As long as the interest rate is not further lowered,

banks’profit is increasing in their deposits. Therefore, they supply enough deposits

to satisfy all the transaction needs and drive out the CBDC from transactions.

This result on the quantity of deposits translates to the following result on loan

supply, which is helpful for determining the equilibrium. Define

ρ̂ = max

{
1

µ
− 1,

(
1 + im
µm

+ c− χ

µ

)
1

1− χ − 1

}
,

ρ̌ = ψ̄
−1

(
µm

1 + im

)
if Ψ (Nd∗ (ρ̄)) ≤ µm

1 + im
< lim

ρ↓1/µ−1
ψ̄ (ρ) .

Here, ρ̂ is the maximum of two terms. The first term is the return from holding

money. If the lending rate is less than the return from money, bankers hold money

rather than lending. Therefore, the loan supply is 0. The second term is the marginal

cost of lending given that a banker prefers lending rather than holding money and

that the deposit rate equals the CBDC rate. It equals the real rate paid to the

depositors plus the deposit handling cost minus the return to the money holding

necessary for the reserve requirement, all scaled by 1/ (1− χ) . The scale is needed

because loans are at most 1−χ fraction of total deposits. In other words, the second

term is the lowest lending rate at which bankers are willing to operate if they are

forced to lend up to the reserve requirement. As a result, if ρ < ρ̂, there is no
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lending because bankers just hold money or do not operate. If ρ = ρ̂, bankers break

even if the deposit rate matches the CBDC rate. While ρ̌ is the real lending rate at

which the equilibrium deposit rate from the Cournot competition without CBDC

equals the current CBDC rate, ρ̌ is only well defined for a range of CBDC rates. For

example, if the CBDC rate is too high, the deposit rate without CBDC is always

below the CBDC rate for any ρ. Similarly, if the real CBDC rate is too low, the

deposit rate without CBDC is always above the CBDC rate for any ρ. By definition,

ρ̌ is larger than 1/µ− 1, and at ρ̌ bankers have a positive profit if the deposit rate

matches the real rate of CBDC. But ρ̂ is equal to 1/µ − 1, or at ρ̂ bankers break

even if the deposit rate matches the real rate of CBDC. Therefore, ρ̌ is bigger than

ρ̂ if the former is well defined. Also notice that both ρ̌ and ρ̂ are increasing in im.

Lemma 3 Suppose Assumption 1 holds. Suppose that the CBDC pays an interest

im such that Ψ (0) > µm
1+im

and µm
1+im

≥ β. Then, the loan supply with CBDC L̃s

satisfies the following:

1. If µm
1+im

≥ limρ↓1/µ−1 ψ̄ (ρ), L̃s = Ls.

2. If Ψ (Nd∗ (ρ̄)) ≤ µm
1+im

< limρ↓1/µ−1 ψ̄ (ρ) ,

L̃s (ρ) =


0 if ρ < ρ̂[
0, (1− χ) µm

1+im
Ψ−1

(
µm

1+im

)]
if ρ = ρ̂

(1− χ) µm
1+im

Ψ−1
(

µm
1+im

)
if ρ ∈ (ρ̂, ρ̌)

Ls (ρ) if ρ > ρ̌

.

3. If Ψ (Nd∗ (ρ̄)) > µm
1+im

,

L̃s (ρ) =



0 if ρ < ρ̂[
0, (1− χ) µm

1+im
Ψ−1

(
µm

1+im

)]
if ρ = ρ̂

(1− χ) µm
1+im

Ψ−1
(

µm
1+im

)
if ρ ∈ (ρ̂, ρ̄){

(1− χ) µm
1+im

Ψ−1
(

µm
1+im

)}
∪
[

(1−χ)Nβy∗

N−1
,∞
]
if ρ = ρ̄

.
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We omit the proof because it only involves checking the conditions in Lemma 2.

This lemma suggests that if the real CBDC rate is too low, it does not affect the

loan supply curve. In this case, a CBDC is not an attractive alternative to bank

deposits and hence no one is willing to hold it in the economy. If im becomes higher,

it starts to reshape the loan supply curve. If ρ is not too high, bankers are then

forced to offer deposits at a rate that matches the CBDC rate. But if ρ is suffi ciently

high, the deposit rate without the CBDC is higher than the real rate of the CBDC;

then the loan supply curve is not affected. This happens if ρ > ρ̌ if im is not too

high. However, if im is suffi ciently high, L̃s (ρ) 6= Ls (ρ) for all ρ > ρ̂.

To investigate the effects of CBDC, we can plot the loan demand and loan supply

curves before and after introducing a CBDC. As in previous sections, we focus on

the case where DΨ (D) is increasing. The results are shown in Figure 5. In any of

these graphs, the solid red curve is the loan demand curve and the solid blue curve

is the loan supply curve without the CBDC. They intersect at point a, which is the

equilibrium without the CBDC. After the CBDC is introduced, the loan demand

curve is not affected, whereas the loan supply curve is changed to the dashed black

line. As shown by Lemma 3, the loan supply curve has the following properties. If

ρ < ρ̂, the loan supply is 0. This is because the loan rate is too low and the rate on

deposits cannot fall below im. Then it is not profitable for banks to issue deposits. If

ρ = ρ̂, the loan rate is suffi ciently high to cover the cost of issuing deposits. Hence,

banks are indifferent between a range of deposits to offer. But total deposits issued

do not go above Ψ−1
(

µm
1+im

)
. Otherwise, the deposit rate increases, which reduces

the profits of banks. As a result, the total loan that can be provided can be any

value between 0 and (1− χ) µm
1+im

Ψ−1
(

µm
1+im

)
. If ρ ∈ (ρ̂, ρ̌), then the loan rate is

high enough that issuing more deposits always increases the profit of the banks as

long as the deposit rate is not affected. This is because with more deposits, banks

can make more loans. Then the loan supply is at (1− χ) µm
1+im

Ψ−1
(

µm
1+im

)
. If the
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(a) Low im (b) Medium im (c) High im

Figure 5: Effects of CBDC

dashed black curve joins the solid blue curve at ρ̌ and if ρ > ρ̌, these two curves

coincide. This is because ρ is suffi ciently high and the deposit rate without CBDC

is above im. Hence, introducing a CBDC does not affect the loan supply, and the

supply curve coincides with the one without CBDC.

Now if im is low, as shown in Figure 5(a), the dashed curve joins the solid blue

curve before point a. Then with CBDC, the equilibrium stays at a. As im increases,

both ρ̂ and ρ̌ shift to the right, and also the horizontal part of the dashed curve

increases because (1− χ) µm
1+im

Ψ−1
(

µm
1+im

)
increases with im. If im is suffi ciently

high, as in Figure 5(b), the dashed black curve joins the solid blue curve at a

point to the right of point a. Now the equilibrium with CBDC is at point b. In

this equilibrium, the amount of loans is higher and the loan rate is lower. This

is because now banks have less incentive to restrict the deposit supply because

they have less ability to affect the equilibrium deposit rate. They then take more

deposits, which translates into more loan supply. In this case, further increasing

im increases the loans and decreases the loan rate. Hence, a higher interest rate on

the CBDC increases the intermediation in the economy. If im further increases, ρ̂

increases further to lie to the right of point a, as shown in Figure 5(c). Now with

the CBDC, the equilibrium has a higher lending rate and a lower amount of loans.

This is the case where introducing a CBDC crowds out bank lending and private

investment (Keister and Sanches, 2018). The following proposition summarizes these
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discussions. The effects of the CBDC interest rate are depicted schematically in

Figure 6 for the case where c = χ = 0.

Proposition 4 Suppose bankers cannot hold CBDC. If Assumptions 1 and 2 hold

and ι < ῑ, there exists at least one monetary equilibrium. Moreover, if DΨ (D) is

increasing, there exists a unique monetary equilibrium and

1. if im is set such that ρ∗ ∈ (ρ̂, ρ̌) , then CBDC increases lending and a higher

im induces more lending;

2. if im is set such that ρ∗ = ρ̂, then CBDC decreases lending and a higher im

induces less lending.

Proof. In the text above.

This proposition delivers an important message, i.e., introducing a CBDC need

not cause disintermediation by reducing loans and deposits. On the contrary, it

may increase lending and deposits by introducing more competition to the banking

sector if its rate is appropriately designed. Unlike Andolfatto (2018), our result does

not require that the central bank lend to private banks. This is because bankers

make their deposits more attractive in order to compete with the CBDC. Because

their deposits are more attractive, they are able to make more loans in the form of

deposits. In addition, they have incentives to do so because their impact on deposit

rates is contained by the CBDC, i.e., they cannot reduce the deposit rate too much

by restricting the supply of deposits. Also notice that because ρ̂ and ρ̌ are both

increasing in im, there exists im < im such that ρ∗ ∈ (ρ̂, ρ̌) iff im ∈
(
i, i
)
. Therefore,

there is a range of im under which introducing a CBDC increases lending.

It is also worth noticing that in Figure 5(a), no CBDC is used for transactions.

Buyers continue to hold only deposits. However, this has a real effect. Intuitively,

the existence of the CBDC disciplines the off-equilibrium outcome. If the bankers
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Figure 6: Effects of Change in CBDC Interest Rate with No Reserve Requirements
and No Handling Cost of Deposits
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reduce their deposit rates, they know buyers would switch to hold a CBDC. In this

case, the CBDC acts like a potential entrant.

Note the difference between introducing the CBDC and introducing another

bank. Although in both scenarios the lending and deposit rates both get closer to

their perfect competition level, introducing the CBDC sets the floor for the deposit

rate at any target level that the central bank wants. In contrast, increasing the

number of banks affects the deposit rates only indirectly and may not increase the

rate to the target level. Moreover, although the central bank/government can affect

banks’entry through regulation and taxation in the long run, these tools are unlikely

to be useful for influencing the rates in the short run, which is the focus of monetary

policy.

If im increases a little bit more, the Ld intersects L̃s on its vertical region. In

this case, the CBDC and bank deposits are both used as means of payment. An

important implication of this finding is that the usefulness of the CBDC should not

be judged on how frequently people use it, but rather on how much it affects the

deposit rates. Indeed, the CBDC increases lending most if im is set such that at the

equilibrium ρ = ρ̂. In this case, the CBDC is never used as a means of payment.

4.2 CBDC Accessible by Bankers

Now suppose bankers have access to a CBDC but the CBDC does not serve as

reserves. They now can choose whether to lend to banks, hold cash reserves or

hold the CBDC. If the CBDC gives higher rates than lending, they choose to hold

the CBDC. Under this scenario, the CBDC has the most negative impact on bank

lending given the CBDC is designed as a perfect substitute for bank deposits. First,

bankers cannot hold the CBDC as reserves, and hence interest on the CBDC does

not reduce the cost of holding reserves. Second, because the CBDC pays interest,

the bankers may want to choose holding the CBDC instead of making loans. We

show that even within this scenario, introducing the CBDC can help lending if the
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interest rate on the CBDC is set properly.

Their problem changes to

max
zEj ,zj ,`j ,dj

{
(1 + ρ) `j +

zj
µ

+
(1 + im) zEj

µm
−
[
dj + Ψ̂ (d−j + dj) djc

]}
(14)

st `j + zj + zEj = Ψ̂ (d−j + dj) dj

zj ≥ χΨ̂ (d−j + dj) dj.

If 1/µ > (1 + im) /µm, then the bankers continue to hold only money if the lending

opportunity is not good because fiat money has a higher return compared with the

CBDC. If 1/µ ≤ (1 + im) /µm, then the bankers would instead hold the CBDC

because it has a higher return. In both cases, the bankers operate if ρ is suffi ciently

high for them to at least break even. Recall that without the CBDC, the break-

even ρ = ρ̂. Now with the CBDC, if 1/µ > (1 + im) /µm, the break-even point

remains ρ̂ because bankers never hold the CBDC. If 1/µ ≤ (1 + im) /µm, then ρ̂ >

(1 + im) /µm − 1. Intuitively, bankers can never break even if ρ̂ ≤ (1 + im) /µm − 1

because bankers need to pay (1 + im) /µm − 1 to depositors and incur the cost of

holding reserves and handling deposits given χ > 0 or c > 0. If χ = 0 and c = 0,

then ρ̂ = (1 + im) /µm−1. The above analysis means that without loss of generality,

we can assume that they do not hold the CBDC as a saving instrument.

Proposition 5 Suppose bankers can hold a CBDC as a saving instrument but not

as reserves. If Assumptions 1 and 2 hold and ι < ῑ, there exists at least one mone-

tary equilibrium. Moreover, if DΨ (D) is increasing, there exists a unique monetary

equilibrium. The CBDC increases lending if im is set such that ρ∗ ∈ (ρ̂, ρ̌). Fur-

thermore, a higher im induces more lending if the equilibrium lending rate ρ∗E ∈

(ρ̂, ρ̌).

Interestingly, not only does Proposition 5 hold, but the equilibria coincide with

the case where bankers cannot hold the CBDC. This is because if bankers operate,
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ρ̂ must be above the CBDC rate, and as a result, bankers do not hold the CBDC in

equilibrium.

4.3 CBDC as Reserves

Lastly, we consider the case where bankers can hold a CBDC as reserves. Then the

banker’s problem becomes

max
zEj ,zj ,`j ,dj

{
(1 + ρ) `j +

zj
µ

+
(1 + im) zEj

µm
−
[
dj + Ψ̂ (d−j + dj) djc

]}
(15)

st `j + zj + zEj = Ψ̂ (d−j + dj) dj

zEj + zj ≥ χΨ̂ (d−j + dj) dj. (16)

If max {1/µ, (1 + im) /µm} − 1 < ρ < ρ̄, then the banker’s problem changes to

max
`j ,dj

{[
(1 + ρ) (1− χ)− c+ χmax

(
1

µ
,
1 + im

µm

)]
Ψ̂ (d−j + dj) dj − dj

}
.

To solve for the equilibrium, we first solve for the equilibrium where households

cannot hold a CBDC. In this case, all the analysis in Section 3 goes through if we

replace 1/µ by max {1/µ, (1 + im) /µm} everywhere. More specifically, let

ρ̃R =

[
1

Ψ (0)
+ c−max

(
1

µ
,
1 + im
µm

)]
(1− χ)−1 + max

(
1

µ
,
1 + im

µm

)
− 1,

ρ̄R =
c+ 1/β + χ

[
1−max

(
1
µ
, 1+im
µm

)]
1− χ ,

ξR = max

{[
1 + ρ−max

(
1

µ
,
1 + im
µm

)]
(1− χ) , 0

}
+ max

(
1

µ
,
1 + im

µm

)
− c,

ξ−1
R = Ψ′ (Nd∗R (ρ)) d∗R (ρ) + Ψ (Nd∗R (ρ)) .

Now, ρ̃R, ρ̄R, and ξR are the counterparts of ρ̃, ρ̄, and ξ . The difference is that now

these rates take into account that the CBDC serves as reserves and pays interest.
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Then we can define

DR (ρ) =


0 if µ > µ̄ and ρ < ρ̃R

Nd∗R (ρ)
if ρ < ρ̄R and β < µ < µ̄
or ρ > ρ̃R and µ > µ̄[

N
N−1

y∗,∞
]
∪ {Nd∗R (ρ)} if ρ = ρ̄R

∞ if ρ > ρ̄R

to be the new deposit function. Notice that now DR (ρ) is increasing in im under

Assumption 1 because higher im increases ξR. Then we can obtain the loan supply

curve,

L̃sR (ρ) =


0 if ρ < ρ̂R[
0, (1− χ) µm

1+im
Ψ−1

(
µm

1+im

)]
if ρ = ρ̂R

(1− χ) µm
1+im

Ψ−1
(

µm
1+im

)
if ρ ∈ (ρ̂R, ρ̌R)

LsR (ρ) if ρ > ρ̌R

,

where LsR (ρ) is the loan supply if the households cannot hold the CBDC,

LsR (ρ) =



0 if ρ < max
(

1
µ
, 1+im

µm

)
− 1

[0, (1− χ)DR (ρ) Ψ (DR (ρ))] if ρ = max
(

1
µ
, 1+im

µm

)
− 1

(1− χ)DR (ρ) Ψ (DR (ρ)) if ρ ∈
(

max
(

1
µ
, 1+im

µm

)
− 1, ρ̄R

)
{(1− χ)Nd∗R (ρ) Ψ (Nd∗R (ρ))} ∪

[
(1−χ)Nβy∗

N−1
,∞
]
if ρ = ρ̄R

∞ if ρ > ρ̄R

,

ρ̌R solves Ψ (DR (ρ)) = µm/ (1 + im) , and

ρ̂R = max

 1

µ
,

1+im
µm
− χmax

(
1
µ
, 1+im
µm

)
+ c

1− χ

− 1.

Notice that under Assumption 1, L̃sR (ρ) ≥ LsR (ρ) for all ρ > ρ̂R. This is because

bankers can earn interest on their reserves by holding the CBDC. Also notice that

1/µ ≥ (1 + im) /µm, and ρ̂R = ρ̂. Otherwise, ρ̂R < ρ̂, which suggests that bankers

are willing to lend at a lower ρ.

Proposition 6 Suppose bankers can hold a CBDC as reserves. If Assumptions 1

and 2 hold and ι < ῑ, there exists at least one monetary equilibrium. Moreover,

if DΨ (D) is increasing, there exists a unique monetary equilibrium. The CBDC
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(a) Low im (b) Medium im (c) High im

Figure 7: CBDC as Reserves

increases lending if im is set such that ρ∗ > ρ̂R and im > µm/µ − 1. Furthermore,

higher im induces more lending if the equilibrium lending rate ρ∗R > ρ̂R.

Figure 7 illustrates the result. The solid blue lines are the loan supply before

introducing the CBDC and the dashed black lines are that after introducing the

CBDC. As in the previous two subsections, the loan supply curve is fat if ρ ∈

(ρ̂R, ρ̌R). Unlike in the previous two subsections, the CBDC increases loan supply

for all ρ > ρ̂R. In particular, the L̃
s
R (ρ) does not overlap with Ls (ρ) for ρ that

is suffi ciently high. This is because interest on reserves lowers the cost of lending,

which would increase lending even if there is no competition effect.

Figure 7(a) shows the case where the CBDC rate is higher than µm/µ − 1 but

still lower than the deposit rate in the equilibrium without the CBDC. The loan

demand curve intersects the loan supply curve with CBDC in its increasing region.

In this case, buyers strictly prefer bank deposits over the CBDC. As a result, the

CBDC does not introduce additional competition. However, the equilibrium with

CBDC (point b) still features higher bank lending compared with the equilibrium

without (point a). This additional lending is induced by the fact that CBDC has a

higher return than money and hence reduces the cost of holding reserves for lending.

33



Figure 7(b) shows the case where the CBDC rate is higher than the deposit

rate when there is no CBDC but still not so high that ρ∗ > ρ̂R. Now the red

curve intersects the dashed black curve in its flat region. CBDC induces more

lending through two effects. First, it reduces the cost of holding reserves. Second, it

introduces more competition to the deposit market. In Figure 7(a) and Figure 7(b),

we have ρ∗R > ρ̂R, and a higher CBDC rate promotes lending. Moreover, CBDC is

not used in the equilibrium.

If the CBDC rate is suffi ciently high, then ρ∗ < ρ̂R. The equilibrium is shown

in Figure 7(c). The red curve intersects the black dashed line in its vertical region.

Now the CBDC is used by households for payment. And the equilibrium lending rate

equals ρ̂R . In this case, the CBDC is too attractive, and bankers hold the CBDC

instead of lending to entrepreneurs. As a result, lending shrinks. In addition, higher

im increases ρ̂R and decreases bank lending.

Notice that all the analysis above assumes that except for the CBDC, bankers can

hold only money as reserves. If bankers can hold other types of central bank reserves

that pay interest, all the above analysis stays valid if we replace 1/µ everywhere with

(1 + ir) /µ, where ir is the interest rate on central bank reserves. In other words,

the above analysis can be viewed as a special case where ir = 0.

4.4 Implications of Other Designs of CBDC

Suppose a CBDC is still interest bearing, but is a perfect substitute for cash, i.e., it

can be used in type 1 and type 3 meetings. Again, we focus on the cases in Figure

1 where Ld intersects Ls in its strictly increasing region. If the nominal interest

rate that the CBDC pays is above 0, then it dominates cash for households, so

households do not hold cash.

If the CBDC serves as reserves, a higher CBDC rate can potentially have two

effects: a cost reduction effect and a substitution effect. The cost reduction effect is

present because a higher CBDC rate reduces the bankers’cost of holding reserves.
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This effect increases lending. The substitution effect can be present because a higher

CBDC rate can reduce the demand for deposits by making the CBDC more attrac-

tive. This reduces bank deposits and lending. The cost reduction effect is always

present, while the substitution effect is active if and only if the CBDC and deposits

are substitutes, which happens if and only if households are constrained in type 3

meetings. The net effect of a higher CBDC rate on lending depends on which of the

two effects dominates and hence is in general ambiguous. But if households are not

constrained in type 3 meetings, a higher CBDC rate increases lending.

If the CBDC does not serve as reserves, only the substitution effect can be

present. Then a higher CBDC rate weakly reduces lending.

5 Quantitative Analysis

In the previous section, we establish theoretically that an interest-bearing CBDC

can increase bank lending if the interest rate is in a certain range. However, it

remains an empirical question how large the range is. This is crucial for policy

decisions. To answer this question, we calibrate our model to the US data and then

conduct a counterfactual analysis to evaluate (1) how large the relevant range of

interest is; (2) how much additional lending can be created by the CBDC; and (3)

what the effect on output and welfare is.

We consider an annual model. First, we parametrize the model such that U (x) =

B log x, u (y) = y1−σ/ (1− σ) , and f (k) = Akη. We first set β = 0.96 and

µ = 1.02. We do not have a good measure of the deposit handling cost c. As a

benchmark, we choose c = 0, under which CBDC has the maximum benefit. The

reserve requirement ratio χ is set to be 0.1 to match the regulation in the US. We

also set η = 0.66 to match the elasticity of commercial loans with respect to the

prime rate. Then the remaining unknowns are (A,B,N, α1, α2, α3, σ). To proceed,

we first set the sum of all αs to be 0.5 because it is diffi cult to separately identify the
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total DM trading probability and σ (Lagos and Wright 2005). Second, according

to the Survey of Consumer Payment Choice, the fraction of online transactions is

around 25.37% of total transactions.7 Therefore, we set α2 = 0.1268. Lastly, we

choose (A,B,N, α1, σ) to jointly match the money demand curve and the ratio of

cash holding to checking account balances. The latter is calculated from the Survey

of Consumer Payment Choice in 2016. Table 1 summarizes all the results. In

particular, we obtain that around 4.4% of transactions accept only cash. Figure

8 shows the money demand curve from the model and the data. In the data, the

money demand becomes close to constant if the interest rate is suffi ciently high.

Our model is able to capture this feature because we have three types of meetings.

Intuitively, when inflation is suffi ciently high, households become constrained in type

3 meetings. As a result, the money demand becomes less elastic. For more details

on data and calibration, see Appendix C.

5.1 Effects of CBDC Lending

Now we consider introducing a CBDC that is a perfect substitute. We consider both

the case where the CBDC does not serve as reserves and the case where the CBDC

serves as reserves. The growth rate of the CBDC is set to be the same as the fiat

money. We then focus on how changes in the CBDC rate affect the real economy

as well as the deposit and lending rates. In particular, we are interested in whether

the CBDC increases lending and output.

Figure 9 shows the result. The first column displays real variables divided by

corresponding equilibrium values without CBDC, as the CBDC rate changes. The

second column shows the changes in deposit and loan rates and their difference,

i.e., the spread. The blue curve is constructed assuming that the CBDC does not

7This is calculated using data from 2016. See Greene and Stavins (2018). We sum up the total
number of online transactions, online bill payments, and automatic bill payments. Then we divide
this number by the total number of transactions. We have also experimented with data from 2015
and 2017. Results are very similar.
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Parameters Notation Value Notes
Calibrated externally
Discount factor β 0.96 Standard in literature
Curvature of production η 0.66 Elasticity of commercial loans
Money growth rate µ 1.02 2% inflation
Prob. of type 2 meeting α2 0.1268 Frac. of online purchase (SCPC)
Cost of handling deposits c 0.00 Bank expenses/deposits 0%
Reserve requirement χ 0.1 US regulation

Calibrated internally
Prob. of type 1 meeting α1 0.0222 Cash/Checking ratio
Prob. of type 3 meeting α3 0.3509
Coeff. on CM consumption B 1.2043 Money demand curve
Curv. of DM consumption σ 0.1595 Money demand curve
TFP A 1.1290 Deposit rate 0.05%
Number of banks N 4 NIM 2.98% (Dempsey 2018)

Table 1: Calibration Results

Figure 8: M1 to GDP Ratio versus Interest Rate
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serve as reserves and the red curve is under the scenario where the CBDC serves as

reserves. Notice all the rates are nominal rates and are in percentages.

Let us first focus on the total amount of loans, which is shown in the second

graph in the first column. If im is lower than 0, the real rate of the CBDC is below

that of fiat money. Therefore, it is not used and the economy behaves as if there

were no CBDC. In this region, the blue curve and the red curve overlap. Although

it is not clear in the graph, the red curve starts to increase as im increases to 0,

while the blue curve stays put before im goes above some positive value. In this

region, the deposit rate without CBDC is still above the CBDC rate. Therefore,

the CBDC is not a direct competitor to the deposit. If it does not serve as reserves,

it does not change the equilibrium. But if the CBDC serves as reserves, interest on

the CBDC reduces the lending cost and increases lending. This is because by the

reserve requirement regulation, bankers have to hold reserves for deposits. Without

the CBDC, holding the only reserve, which is fiat money, is costly because there is

inflation. The CBDC reduces this cost because it pays positive interest. But this

effect is very small and therefore not obvious in the graph.

If im further increases, the CBDC becomes an attractive competitor to the bank

deposits, which forces the bankers to increase their deposit rates, which increases

the demand for deposits and bank lending. Notice that in this region, the blue curve

again overlaps with the red curve. This is consistent with our theoretic results in the

previous sections. In this region, the equilibrium ρ is in (ρ̂, ρ̌) when the CBDC does

not serve as reserves. As a result, the CBDC serving as reserves does not change

the equilibrium.

However, if im is suffi ciently high, then both curves start to decrease. In this

case, bankers act as if they were in a perfectly competitive deposit market, and their

profit is driven to 0. To compensate for the higher deposit rate, they have to charge

a higher lending rate, which reduces lending. In this region, lending increases if the
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CBDC serves as reserves. Therefore, the red curve is always above the blue curve.

This happens because the CBDC pays positive interest and reduces the lending cost

for bankers.

If we set im to maximize lending, we can increase lending by 6.82% if the CBDC

does not serve as reserves and by 6.99% if the CBDC serves as reserves. Lending

increases in im if im is below around 0.5%. And introducing a CBDC increases

lending if its rate is between 0.05% and 2.55% when it does not serve as reserves.

When it serves as reserves, introducing a CBDC increases lending if its rate is

between 0% and 2.84%.

To summarize, the region of im in which CBDC increases bank lending is more

than 2.5%. As a result, this lessens the concern that introducing CBDC would

reduce lending. In addition, an appropriate im can increase bank lending by around

7.0%, which is substantial.

5.2 Effects on Total Output

Now we move to total output, which is shown in the third graph in the first column.

The pattern is similar to the loan: as im increases, total output first increases

and then decreases. Quantitatively, there are two differences. First, the increase in

output is much smaller. The highest increase is 1.10% if the CBDC does not serve as

reserves and 1.13% if the CBDC serves as reserves; both are achieved at im = 0.5%.

Second, introducing a CBDC increases total output iff im ∈ (0.05%, 1.91%) when it

does not serve as reserves and iff im ∈ (0, 2.09%) when it serves as reserves. These

ranges are much smaller compared with the regions where lending increases but

these ranges are still more than 1.5%.

The effects on total output are smaller than the effect on lending because there

is an off-setting effect of CBDC. If the CBDC becomes more valuable, households

substitute out of money and hold more CBDC. As a result, they choose lower money

holdings and hence can consume less in type 1 meetings, which reduces total output.
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Figure 9: Effects of CBDC Rate
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Under the calibrated parameters, this off-setting effect turns out to be large, and as

a result total output falls.

5.3 Effects on Interest Rates

The second column of Figure 9 shows how deposits, lending rates, and spread change

with the CBDC rate. All these rates are nominal.

The deposit rate is shown in the first panel in the second column. It is constant

if im is low and then it coincides with the 45o-line. This reflects that the CBDC

rate serves as a floor of the deposit rate. It is also worth noting that if im is positive

but small, the deposit rate increases if the CBDC can be used as reserves. But the

effect is too small to discern in the graph.

The loan rate has the inverse pattern of loans, as shown in the second panel.

If im is set appropriately, the loan rate reduces to less than .56% from around 3%

when there is no CBDC. But if im is too high, the loan rate can be higher compared

with the no CBDC equilibrium.

The spreads, which are the difference between the nominal lending rate and the

nominal deposit rate, are shown in the third panel in the second column. The spread

is increasing in bankers’market power. CBDC reduces spreads by introducing more

competition into the deposit market. If im is suffi ciently high, bankers act as if the

market is perfectly competitive. Then the lending rate equals the marginal cost of

lending, which is the cost of maintaining deposits and holding reserves. Interestingly,

even if im is suffi ciently high, the spread increases if the CBDC does not serve as

reserves. However, this does not mean that bankers have higher market power as

im increases. Intuitively, under perfect competition, bankers need the spread to be

high enough to compensate for the difference between the deposits rate, which is

equal to im, and the rate on reserve. If the CBDC does not serve as reserves, this

difference increases as the rate on reserve keeps constant at 0. Bankers need to have

a higher spread. However, if the CBDC serves as reserves, this difference is constant
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and, therefore, the spread keeps constant, as shown by the red curve.

5.4 Effects on Welfare

We end this section with a discussion on welfare. Figure 10 shows changes in welfare

for buyers, entrepreneurs, and bankers. We do not show the effect on sellers because

their welfare is not affected by CBDC.8Welfare is measured as the percentage change

in the equilibrium consumption without CBDC that makes an agent indifferent

between no CBDC and the CBDC with interest rate im. If it is positive, CBDC

increases the welfare of the agent. Otherwise, CBDC reduces the welfare. All the

y-axes are in percentages.

CBDC can have a positive effect on buyers that increases in im on the range

in concern. Without hurting lending, buyers’surplus can be raised by around 1%.

Entrepreneurs highly benefit from CBDC. Their maximum welfare gain is about

4.5%. CBDC improves their welfare as long as im does not exceed 2.55% if the

CBDC does not serve as reserves and does not exceed 2.84% if it serves as reserves.

Intuitively, entrepreneurs benefit directly from a lower lending rate. The buyers

benefit from a higher deposit rate but suffer from less valuable money. Therefore,

the welfare gain for the buyers is much smaller.

Bankers lose because CBDC introduces more competition into the deposit mar-

ket. If im is suffi ciently high, bankers behave as if the market is perfectly competi-

tive. Their profit and hence consumption is reduced to 0, which is a 100% reduction

compared with the equilibrium without CBDC.

5.5 Robustness

The quantitative results depend crucially on the value of α1, α2, and α3. In this

subsection, we consider an alternative method to calibrate these three parameters

8This is because we assume that buyers make take-it-or-leave-it offers in the DM. Therefore,
sellers do not get a surplus from the DM transactions.
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(a) Buyers (b) Entrepreneurs (c) Bankers

Figure 10: Welfare Change for Each Type

Parameters Notation Value Notes
Calibrated externally
Discount factor β 0.96 Standard in literature
Curvature of production η 0.66 Elasticity of commercial loans
Money growth rate µ 1.02 2% inflation
Prob. of type 1 meeting α1 0.075 Diary data
Prob. of type 2 meeting α2 0.01 Diary data
Prob. of type 3 meeting α3 0.415 Diary data
Cost of handling deposits c 0.03 Bank expenses/deposits 3%
Reserve requirement χ 0.1 US regulation

Calibrated internally
Coeff. on CM consumption B 1.73 Money demand curve
Curv. of DM consumption σ 0.2147 Money demand curve
TFP A 0.4855 Deposit rate 0.05%
Number of banks N 1 NIM 2.98% (Dempsey 2018)

Table 2: Alternative Calibration Results
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and assess the robustness of our results. For this calibration, we rely on the Diary of

Consumer Payment Choice data from the Federal Reserve Bank of Atlanta website.

In the diary, respondents are asked whether cash and credit/debit card would have

been accepted in each transaction. From 2016 data, people report that around 15%

of transactions do not accept credit/debit card and around 2% of transactions do

not accept cash. Assuming that every transaction accepts at least cash or cards,

the above number implies that α1 = 0.075, α2 = 0.01, and α3 = 0.415. Notice

that we maintain the assumption that the sum of αs equals 0.5.9 The parameters

are shown in Table 2. Notice that this result is very different from the benchmark

calibration. In particular, 15% of transactions accept only cash compared with 4.4%

in the benchmark case. And 2% of transactions accept only deposits compared with

25.37% in the benchmark case. Therefore, the market power of banks is much lower

in this case because deposits are not as useful. Given that the choices of αs are

very different from the benchmark, it is not surprising that other parameters are

very different. This shows that the parameters can be sensitive to the value of αs.

However, it is worth noting that the benchmark calibration fits the money demand

curve better.

Given that the parameters are very different from the benchmark case, the effects

on most equilibrium objects, which is shown in Figure 11, are different from the

benchmark case. However, it is interesting to point out that it remains valid that a

wide range of im increases lending. More specifically, if the CBDC does not serve as

reserves, any im ∈ (0.05%, 1.5%) increases lending. If the CBDC serves as reserves,

im ∈ (0.05%, 1.73%) increases lending. And the maximum increase can be around

5%. This suggests that the conclusion that there is a wide range of im at which

CBDC can increase lending is relatively robust to the calibration method.

9See Consumer Payment Research Centre (2018). These numbers are slightly different for 2017.
See Foster (2018).
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Figure 11: Effects of CBDC Rate: Alterative Calibration
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6 Conclusion

Our paper develops a model with imperfect competition in the deposit market. We

use the model to analyze whether introducing a CBDC causes disintermediation of

banks. Contrary to common wisdom, we show that an interest-bearing CBDC can

improve bank intermediation. Intuitively, if banks have market power, they would

restrict the deposit supply to lower the deposit rate. An interest-bearing CBDC

reduces their market powers by setting a floor for the deposit rate, which leads

to the creation of more deposits. Banks then lend more because they have more

funding. This can raise total lending and output. However, more intermediation

happens only if the interest rate on the CBDC is set properly. In particular, if the

CBDC rate is too low, the CBDC does not affect the equilibrium. If the rate is too

high, the CBDC causes disintermediation. The CBDC only helps if its interest rate

is in some intermediate range.

We abstract from many important issues, such as endogenous decisions of banks

on the composition of both the asset side and the liability side of their balance

sheets in terms of risk and maturity, and how these endogenous decisions may have

macroeconomic and financial stability implications. More specifically, introducing

an interest-bearing CBDC would increase banks’funding costs. On the asset side

of their balance sheets, it may induce banks to take more risk to make up for their

lower profit margin. This can increase the total risk to the financial system, leading

to a less stable system. On the liability side, it can induce banks to switch to other

sources, such as wholesale funding. These funding sources are generally considered

less stable than deposits. Therefore, more reliance of banks on wholesale funding

may increase the likelihood of runs in the wholesale market. These issues are all left

for future research.
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Appendices
A Multiplicity under Perfect Competition

Now we show that this model can have multiple equilibria even under perfect com-

petition in both the deposit and loan markets. Set α3 = 0, which implies money and

deposit dichotomize. In addition, normalize the measure of firms to be 1. Assuming

that ι is suffi ciently small, in the equilibrium, real balances are determined by

ι = α1λ (Z) . (17)

Given ψ, the demand for deposit is determined by

ψ = α2βλ (D) + β. (18)

Notice that ψ can never go below β; if ψ = β, then the demand for D can be any

value lying between D∗ and ∞; if ψ < β, then D =∞.

Suppose there is a continuum of banks with measure 1 and they are price takers.

Given ψ and ρ, they solve

max
`j ,dj

{(
1 + ρ− 1

µ

)
`j −

(
1 + ψc− ψ

µ

)
dj

}
(19)

st `j ≤ (1− χ)ψdj. (20)

As long as ψ < (1/µ− c)−1, the constraint is binding and the problem reduces to

max
dj

{[
(1 + ρ) (1− χ) +

χ

µ
− c
]
ψdj − dj

}
. (21)

Because ρ = % (L) ≡ f ′ (L) − 1, the optimization problem along with the the con-

straint imply

{1 + % [(1− χ)ψD]} (1− χ) +
χ

µ
− c = 1/ψ. (22)

Given ψ, this equation defines D as a function of ψ: D = ∆ (ψ), which can be

non-monotone depending on the curvature of the production function. If ψ ≥
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(1/µ− c)−1, then the constraint is not binding, which means ρ = 1/µ − 1 and

L = %−1 (1/µ− 1). If ψ > (1/µ− c)−1, thenD =∞. If ψ = (1/µ− c)−1, then banks

are indifferent between any amount of capital. To be consistent with market clear-

ing, D ≥ %−1 (1/µ− 1) (1− χ) . One can show that %−1 (1/µ− 1) (1− χ) = ∆ (ψ)

if ψ = (1/µ− c)−1. To summarize, the supply for deposit is the following:

D =


∆ (ψ) ψ < (1/µ− c)−1

∞ ψ > (1/µ− c)−1

[∆ (ψ) ,∞) ψ = (1/µ− c)−1
. (23)

Any intersection between (18) and (23) determines an equilibrium.

Proposition 7 Monetary equilibrium exists iff ι < α1λ (0) and β (1/µ− c) ≤ 1.

Proof. From (17), one can see that Z > 0 iff ι < α1λ (0). If ψ is suffi ciently

small, (18) defines D =∞ and if ψ is suffi ciently large, D that is suffi ciently small.

On the other hand, (23) implies that D is finite if ψ is low and D = ∞ for ψ

that is suffi ciently large. Then by continuity, these two curves have at least one

intersection. Hence, at least one equilibrium exists.

In general, the equilibrium is not unique. We next use numerical examples to il-

lustrate this. To this end, parametrize f ′ (l) = A (l + ε)−ξ 1
{
l > l̄

}
+Bl−ω1

{
l ≤ l̄

}
.

Here, A, ε, l̄ > 0 and ξ > 1, 0 < ω < 1 are the parameters to choose. Then B is cho-

sen such that f ′ is continuous. One can integrate this function and impose f (0) = 0

to obtain f . Since f ′ is positive and strictly decreasing, f is strictly increasing and

concave.

Results are shown in ψ-D space in Figure 12. In all graphs, the blue curve is the

deposit demand curve and the red curve is the deposit supply curve. The demand

curve is monotonically decreasing while the supply curve can be monotonically in-

creasing or non-monotone, depending on the curvature of f . If f (l) = Alω with

ω < 1, the supply curve is increasing as in Figures 12(a) and 12(b). In this case, we

have a unique equilibrium. If, however, f (l) = A
[
(l + ε)1−ξ − ε1−ξ

]
/(1 − ξ) with
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ξ > 1 and ε that is suffi ciently small, the supply curve is decreasing for the most

part if ψ < (1/µ− c)−1. This is shown in 12(c). In this case, we have three equilib-

ria. One has ψ = β, i.e., the deposit does not carry a liquidity premium. One has

ρ = 1/µ − 1 and ψ = (1/µ− c)−1. In this case, the price for deposit is suffi ciently

high that the banks are willing to take any amount of deposits and then hold them

in cash reserves. Notice at this intersection, D > ∆ (ψ). Consequently, the reserve

requirement constraint is not binding, i.e., banks hold voluntary reserves. There is

another equilibrium where the reserve requirement constraint is binding.

If f is a combination of the previous two cases, the supply curve can be non-

monotone even if ψ < (1/µ− c)−1, as shown in Figure 12(d). In this case, there are

two equilibria where the reserve requirement constraint is binding.

B Imperfect Competition in Lending Market

Now consider the extension that there is a competitive interbank market and the

lending market features imperfect competition. We consider two cases: a Cournot

lending market, and a search and matching market. In both cases, the deposit

market has Cournot competition as in the previous section.

B.1 Cournot Lending Market

Now let ρB be the real rate in the interbank market. Then the loan supply function

Ls is the same as before except that now it depends on the interbank rate ρB. The

loan makers solve

max
`j

f ′
(
`−j + `j
NE

)
`j −

(
1 + ρB

)
`j.

To guarantee the existence of a pure strategy equilibrium given ρB on the loan side,

we require the following condition:

Condition 2 f ′′ (L) + f ′′′ (L)L ≤ 0.
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(a) Case 1 (b) Case 2

(c) Case 3 (d) Case 4

Figure 12: Equilibrium
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Then the equilibrium satisfies

f ′′
(
L

NE

)
L

NEN
+ f ′

(
L

NE

)
= 1 + ρB.

This defines Ld
(
ρB
)
, which is decreasing and continuous in ρB. Now the equilibrium

interbank market rate is determined by Ls
(
ρB
)

= Ld
(
ρB
)
. Then the loan rate is

given by ρ = f ′
(
Ls
(
ρB
))
− 1.

Proposition 8 If ι < ῑ and Assumptions 1 and 2 hold, there exist one or three

monetary equilibria. If, in addition, Ψ (D)D is increasing, the monetary equilibrium

is unique.

Then comparative statics can be analyzed as before.

B.2 Search for Loans

Now suppose that each bank has a continuum of loan offi cers with measure Nl. They

have access to a competitive interbank market and randomly search and match with

firms. The matching probability is α (λ), where λ = Nf/NlNb. Upon a meeting, the

loan offi cer bargains with the firm on the terms of loans given the interbank market

rate ρ. The surplus is split with Kalai’s bargaining solution, where the firm has a

bargaining power η:

max`,p f (`)− p
st f (`)− p = η

[
f (`)−

(
1 + ρB

)
`
]
.

In this case, f ′ (`) = `+ ρB and p = (1− η) f (`) +
(
1 + ρB

)
`. This implies the loan

rate,

ρE = ηρB + (1− η)

[
f (`)

`
− 1

]
,

which is a weighted sum of the interbank market rate ρB and the average investment

return f (`) /`− 1. Then the loan demand curve is

Ld
(
ρB
)

= α (λ)NlNbf
′−1
(
1 + ρB

)
.
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Then the equilibrium ρB is determined in the same fashion as in the competitive

loan market case. Consequently, we have the following proposition:

Proposition 9 If ι < ῑ and Assumption 1 holds, there exist one or three monetary

equilibria. If, in addition, Ψ (D)D is increasing, the monetary equilibrium is unique.

Notice that in this case, the total supply of loans is effi cient given the interbank

market rate ρB. However, the bankers get a positive surplus from lending. We can

then calculate the spread between the interbank rate and lending rate as ρE − ρB =

(1− η)
[
f(`)
`
− 1− ρB

]
.

C Calibration Method and Data

The data we use are from FRED on the website of the Federal Reserve Bank of St.

Louis. For money demand, we use the data series of M1 to GDP ratio. For interest

rate, we use the annualized three-month T-bill rate. For both, we use annual data

from 1959 to 2006. We exclude three years after 9/11 and all the data after the

financial crisis because the nominal rates are almost 0 in these years. FRED lists

nominal interest on non-jumbo deposits after the year 2009. The average annual

rate on checking accounts is less than 0.05% and that on saving accounts is around

0.09%. This is consistent with the Survey of Consumer Payment Choice data, where

more than 80% of respondents report checking account rates below or at 0.05%.

(See Consumer Payment Research Center (2018) in the reference list.) We then

use 0.05% in our benchmark calibration. Data on cash holding, checking account

balances and the fraction of online payments are all based on the 2016 Survey of

Consumer Payment Choices from the Federal Reserve Bank of Atlanta.

One straightforward way to calibrate the model is to solve the whole equilibrium

given the parameter and then fit the money demand curve and the deposit rates.

This, however, can be computationally cumbersome because one needs to solve the
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model for each data point used for the money demand and then optimize over a five-

dimensional parameter. One key insight is that the money demand can be solved

independent of the banking sector given the deposit rate. This leads to the following

algorithm that greatly simplifies the calibration.

1. Fit the money demand and cash to the checking account balance ratio by

choosing B, α1, and σ given A. More specifically, take the following steps:

(a) Given α1, for each interest rate, calculate the steady state equilibrium

using the nominal interest rate and the deposit rate. Then solve a non-

linear least squares problem over (B, σ). The M1 to GDP ratio in the

model can be calculated by (Z +D) /Y, where

Y =
3∑
j=1

αjyj + 2B + A [(1− χ)DΨ (D)]η −D + (1− χ)DΨ (D)

is the output. Here Y is the sum of the consumption of households in

DM and CM, the consumption of bankers and entrepreneurs, and the

investment.

(b) Set α1 to match the cash-checking ratio 5.53%.

(c) Update α1 and iterate (a) and (b) until convergence.

2. Given B, α1, and σ, find A and N such that the solution of the Cournot

competition leads to a 0.05% rate on deposit and the net interest margin is

2.98%.

3. Update A and repeat 1 and 2 until convergence.

This greatly simplifies the calibration because we reduce a problem of five para-

meters into two problems of lower dimensions that are linked by A. It is also worth

noting that if we assume that bankers and entrepreneurs transfer all the profit back

to the households, Y can be computed independently of A. In that case, we only

need to do 1 and 2 once to recover all the unknown parameters.
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