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Abstract 

This paper proposes a new bootstrap procedure for mean squared errors of robust small-
area estimators. We formally prove the asymptotic validity of the proposed bootstrap 
method and examine its finite sample performance through Monte Carlo simulations. The 
results show that our procedure performs well and outperforms existing ones. We also 
apply our procedure to the estimation of the total volume and value of cash, debit card and 
credit card transactions in Canada as well as in its provinces and subgroups of households. 
In particular, we find that there is a significant average annual decline rate of 3.1 percent 
in the volume of cash transactions, and that this decline is relatively higher among high-
income households living in heavily populated provinces. Our bootstrap estimator also 
provides indicators of quality useful in selecting the best small-area predictors from among 
several alternatives in practice. 
 
Bank topics: Econometric and statistical methods; Bank notes 
JEL codes: C13, C15, C83, E, E41 
          

Résumé 

Nous proposons une nouvelle procédure bootstrap pour estimer l’erreur quadratique 
moyenne associée aux estimateurs sur petits domaines robustes. La validité asymptotique 
du bootstrap proposé est formellement établie et ses propriétés en échantillons finis sont 
examinées à l’aide de simulations de Monte Carlo. Les résultats montrent que notre 
procédure est plus performante que les méthodes existantes. Nous appliquons ensuite celle-
ci à l’estimation du volume total et de la valeur totale des transactions monétaires au 
comptant, par carte de débit et carte de crédit effectuées au Canada, ainsi qu’au niveau des 
provinces et des sous-groupes de ménages. Les résultats font ressortir une décroissance 
significative du volume annuel des transactions au comptant, de l’ordre de 3,1 % en 
moyenne, qui est d’ailleurs plus prononcée dans le cas des ménages à hauts revenus vivant 
dans les provinces les plus peuplées. Notre estimateur bootstrap permet aussi de construire 
des indicateurs de qualité permettant de sélectionner les meilleurs prédicteurs sur petits 
domaines, parmi plusieurs possibilités. 

Sujets : Méthodes économétriques et statistiques; Billets de banque 
Codes JEL : C13, C15, C83, E, E41 
 

 
 



Non-Technical Summary
Traditionally, Bank of Canada surveys have aimed to adequately cover the national population
and five regions: Atlantic, Quebec, Ontario, Prairies and British Columbia. However, due to
sample size limitations at fine geographic levels, reliable figures are often not available for all
provinces. Therefore, this paper overcomes the small sample size issue by using a method
called small-area estimation. Applying this method to the Bank of Canada’s 2009 and 2013
Methods-of-Payment (MOP) surveys, we compute estimates for all the provinces and for sub-
groups of the population within each province. Specifically, we estimate the total volume and
value of transactions for low-, medium- and high-income household classes within each of the
10 Canadian provinces.

Another perennial problem in samples of economics surveys is the presence of outliers. In
recent years, methods have been developed that can robustly estimate in the presence of outliers
in a small area. However, assessing the quality of robust small-area estimates remains a chal-
lenge.

This paper proposes a new procedure to evaluate their quality, based on a resampling method.
We formally prove the theoretical validity of the proposed method. We also assess how well
our quality estimator performs on finite samples, using simulations. The results show that our
procedure performs well and outperforms its competitors.

We illustrate how to apply the proposed method by analyzing the survey data from the 2009
and 2013 MOP surveys. We identify approximately 1.2 percent of the sample units as outliers.
They mostly occur in the province of Quebec and correspond to individuals who are either
cash-intensive users or non-cash users. The results suggest that this method is quite applicable
to survey data and is a useful tool to select the best small-area predictor.

The results of the best predictor show that, at the national level, the volume share and the
value share of cash transactions are similar to those found in Henry et al. (2015) and Fung et al.
(2015). We go further and provide estimates at both the national and the household-income-
group levels. We note a significant average annual decline rate of 3.1 percent in total volume
at the national level. At a finer level, the annual decline in cash transactions is relatively higher
among high-income households living in the most populated provinces, such as Ontario and
Quebec.

We conclude the paper with some caveats and provide future potential extensions that will
better account for the count data modelling and the large proportion of outliers in the resample
data.
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1 Introduction
Traditionally, sample surveys have been used to produce estimators of totals and means of items
of interest for large areas (or domains). Such estimators are “direct” in the sense of using only
the domain-specific sample data, and the sample sizes are large enough to provide reliable direct
estimators that are design-based and avoid specific modelling assumptions. Reliability of the
estimators is typically measured by mean squared error (MSE), and many methods of estimating
MSE are available. However, due to cost and operational considerations, it is seldom possible to
procure a large enough overall sample size to support direct estimators for all domains of inter-
est, in particular small areas like municipalities, counties, subgroups of populations, etc. Yet the
demand for reliable small-area statistics has greatly increased in recent years, and it becomes
necessary to use model-based “indirect” estimators that can increase the reliability of estima-
tors by borrowing auxiliary information across related areas through linking models. Rao and
Molina (2015) provide a recent review as well as a comprehensive account of theory and meth-
ods used for small-area estimation (SAE). Small area models may be broadly classified into
two types: (a) area-level models that relate direct area estimates to area-level covariates and (b)
unit-level models that relate the unit item values to associated unit-level covariates with known
area means. Unit-level models, when unit-level variables are available for the sample, provide
more efficient estimators than area-level models. However, unit-level models are sensitive to
extreme observations (or outliers) in the unit-level data, and robust methods of estimation that
are not sensitive to outliers are therefore needed (Fellner 1986; Stahel and Welsh 1997). This
is the case considered in the present paper and applied to Bank of Canada method-of-payment
unit-level sample data.

Methods used to study small-area point estimates based on unit-level models are numerous in
the literature. The empirical best linear unbiased predictor (EBLUP) is a classical example use-
ful for efficiently estimating the small-area means under normality assumptions. However, it
can also be highly influenced by the presence of outliers in the data. Chambers and Tzavidis
(2006) suggest regression M-quantiles aiming at overcoming the issue of outliers by avoiding
conventional Gaussian assumptions, as well as problems associated with the specification of
random effects. Tzavidis et al. (2010) study robust prediction of small-area means and quan-
tiles where the small-area estimator is a functional of a predictor of the small-area cumulative
distribution function. Sinha and Rao (2009), Chambers et al. (2014), and Jiongo et al. (2013)
study the robustified versions of the classical EBLUP to downweight influential observations
in the data. MSE procedures required to estimate the precision of these robust point estimators
have also received some attention. Sinha and Rao (2009) propose to estimate the MSE using a
parametric bootstrap procedure based on the robust EBLUP estimators of the underlying linear
mixed model. But, as pointed out by Jiongo et al. (2013), the use of robust variance estimates to
generate bootstrap replicas leads to bootstrap samples whose variability is significantly smaller
than the variability in the original data. Other analytical and bootstrap procedures for the MSE
of robust empirical best linear unbiased predictors (REBLUPs) have been proposed in Cham-
bers et al. (2014) and Jiongo et al. (2013), respectively. However, their theoretical validity has
not been formally established, and their empirical performance is not fully satisfactory (as evi-
denced by the simulations results in Section 4 below).

This paper proposes a new semi-parametric bootstrap procedure for estimating the MSE within
the unit-level model framework. Since robust estimates of the variance components are typi-
cally smaller than their non-robust counterparts and could yield bootstrap data on a smaller scale
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than the original data (Field et al. 2010), our bootstrap procedure uses (non-robust) maximum
likelihood estimators to generate bootstrap samples, and robust bootstrap predictors to estimate
the MSE. This produces bootstrap samples whose variability is similar to the original sample
data, and the resulting MSE estimator therefore has improved coverage rates.

The theoretical validity of our bootstrap procedure is proven using an approach similar to the
one employed by Bickel and Freedman (1981) and Freedman (1981), and we extend their
methodology to the MSE estimation of robust small-area estimators in the linear mixed-model
framework. To our knowledge, this is the first study that provides sufficient conditions and a
rigorous proof of the convergence of an MSE estimator of robust small-area estimators. Al-
though our proofs and procedure are based on the Sinha and Rao (2009) robust estimator, the
derivation can be easily adapted to other existing robust predictors based on the unit-level lin-
ear mixed model. A Monte Carlo simulation study computes the relative biases and relative
root mean squared error rates of the proposed bootstrap MSE estimator and compares them
favourably to several existing analytical and bootstrap alternatives. These include the bootstrap
MSE estimator of Sinha and Rao (2009), the analytical pseudolinearization MSE estimator and
linearization-based MSE estimators of Chambers et al. (2014), the bootstrap MSE of Jiongo
et al. (2013) and the MSE estimator of Prasad and Rao (1990). This comparison is provided for
different robust small-area point estimators and various modes of data contamination.

This paper also applies our bootstrap procedure to the estimation of the total volume and value
of cash, debit card and credit card transactions in Canada using data from the Bank of Canada’s
2009 and 2013 Method-of-Payments (MOP) surveys. The proposed bootstrap provides useful
quality indicators that help to determine the best predictor in practice. In particular, with these
data, our bootstrap selected the estimator of Jiongo et al. (2013) (henceforth denoted JHD) as
the best predictor from among all the above-mentioned alternatives. The empirical results ob-
tained for the JHD estimator are consistent with those presented by Henry et al. (2015) and Fung
et al. (2015) at the national level. However, our paper has the particular advantage of making
use of small-area estimation techniques to compute reliable estimates as well as their precisions
at the level of the provinces and nested subgroups of household income. In particular, from
our estimates and the proposed bootstrap MSE we found a significant annual average decline
rate of 3.1 percent in the volume of cash transactions at the national level. Estimates obtained at
more disaggregated levels show that the annual decline in cash transactions is actually relatively
higher among high-income households living in the most populated provinces such as Ontario
and Quebec.

The rest of the paper is organized as follows. Section 2 presents the model and notation and
reviews some existing results. In Section 3, we present our proposed bootstrap procedure.
Asymptotic properties and validity of the proposed method are also discussed. The validity
proof of our bootstrap MSE proceeds in two main steps. Lemma 1 provides the asymptotic
properties of the robust estimators of the main model, while Lemma 3 provides the requirements
for the asymptotic validity of our bootstrap procedure. Our main result is given in Theorem 2.
Section 4 presents Monte Carlo simulation results showing that our procedure has satisfactory
finite sample properties, and its performance is compared with the above-mentioned alternative
estimators. A real data application is provided in Section 5. Concluding remarks are given in
Section 6, followed by a technical appendix.
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2 Preliminairies
This section presents the basic linear mixed model that linearly relates the small-area quantities
of inferential interest to some unit-level auxiliary covariates and includes random effects asso-
ciated to the areas. We then briefly discuss the Sinha and Rao (2009) robust estimator that is
used to construct our bootstrap MSE estimation.

2.1 Underlying Model and EBLUP
Consider a population U of size N , partitioned into k domains (areas) U1, . . . ,Uk, of known
sizes N1, . . . , Nk, respectively; that is, U =

⋃k
i=1 Ui such that Ui ∩ Ul = ∅, i 6= l, and N =∑k

i=1Ni. Let y define the variable of interest, and denote by yij the response value for unit j
belonging to area i, i = 1, . . . , k, j = 1, . . . , Ni. The area mean associated with Ui is given by

Ȳi = N−1
i

Ni∑
j=1

yij, (i = 1, . . . , k).

Let s be the sample of size n, selected from the population U according to a given sampling
plan P(s). The overall sample s can be partitioned as s =

⋃k
i=1 si, where si = s ∩ Ui, of size

ni is the sample observed for sampled area i, n =
∑k

i=1 ni. Note that ni is random unless a
planned sample of fixed size is taken in that area.

Traditional area-specific direct estimation methods (design-based or model-based) are not suit-
able in the small-area context because of small (or even zero) area-specific sample sizes ni. As
a result, indirect estimation methods that borrow information across related areas through ex-
plicit models and auxiliary information (such as census, administrative data, other surveys) are
used for small-area estimation. Denote by xij = (x1ij, . . . , xpij)

> a p-dimensional deterministic
vector of covariate values available for unit (i, j) and by x̄i = n−1

i

∑ni

j=1 xij the column vector
of sample means of these covariates for area i. The corresponding vector of true area means is
given by X̄i = N−1

i

∑Ni

j=1 xij , i = 1, . . . , k, and is assumed to be available as well.

The nested error unit-level model considered can be expressed as

yij = x>ijβ + vi + eij, i = 1, . . . , k and j = 1, . . . , ni, (1)

where β is an unknown p-dimensional fixed-effects regression parameter vector, and the regres-
sor xij is a p-dimensional vector of observed responses. The basic unit-level model assumes
that the area-specific random effects vi follow an independent N(0, σ2

v) and are independent of
the unit errors eij , which are assumed to be independent N(0, σ2

e). Model (1) can be rewritten
as a special case of the general linear mixed model with block diagonal covariance structure as
follows:

yi = Xiβ + vi1ni
+ ei, i = 1, . . . , k, (2)

where yi is the ni-dimensional vector of observed responses, Xi is a known ni × p full-rank
design matrix, and 1ni

is a ni-vector of ones. Denote by θ = (β>, δ>)> the vector of model
parameters, where δ = (σ2

e , σ
2
v)
> is the vector of variance parameters. The variance-covariance

matrix of yi is given by Vi = σ2
eIni

+ σ2
v1ni

1>ni
, where Ini

is the identity matrix of order ni. The
random-effect component, vi, accounts for the between-area variations that are not explained by

6



the available auxiliary information Xi. Under these normality assumptions, the empirical best
linear unbiased predictor (EBLUP) of the area mean is given by

ȲiEBLUP = N−1
i

(∑
j∈si

yij +
∑

j∈Ui−si

ŷij

)
,

where si is the set of sampled units in area i, and ŷij = x>ijβ̂ + v̂i. Here, v̂i is the EBLUP of the
random effect, given by

v̂i = ρ̂i(ȳi − x̄>i β̂), (3)

where ρ̂i =
niσ̂

2
v

σ̂2
e + niσ̂2

v

, δ̂ = (σ̂2
e , σ̂

2
v), and θ̂ = (β̂>, δ̂>)> are the maximum likelihood estima-

tors of θ0.

Estimation of MSE of small-area estimators is a challenging problem even in the case of this
classical EBLUP estimator, and closed-form expressions do not exist in general. Prasad and
Rao (1990) proposed a linearization method; other methods obtained in the literature can be
found in Rao and Molina (2015).

2.2 Robust Estimation
EBLUP estimators of small-area totals or means are efficient when the model assumptions hold,
but they can be very sensitive to outliers or departures from the assumed normal distributions for
the random effects in the model. The above linear mixed model can be robustified by assuming
that the random effects and error terms follow a mixture distribution. More specifically, we
consider a small amount of contamination by assuming that the vi and the eij are generated by
independent sequences of mixture distributions given by

vi =

(
1− Ai√

k

)
αi +

Ai√
k
α∗i and eij =

(
1− Aij√

k

)
εij +

Aij√
k
ε∗ij, (4)

respectively. The αi are independently and identically distributed with a Gaussian distribution
Fv of mean 0 and variance σ2

v , while εij are assumed to be independent with an identical Gaus-
sian distribution Fe of mean 0 and variance σ2

e , and are independent to the αi. The α∗i and ε∗ij
are arbitrary independent random variables with finite first four moments. The Ai and Aij are
independent and identically distributed Bernoulli random variables.

Contamination type (4) is considered by Jaeckel (1971) to study robust estimates of location
with a model for asymmetric contamination. He provided a useful interpretation that we adapt
to model (4) as follows: the amount of contamination is large enough to affect the performance
of the estimator (EBLUP) but is too small to be measured accurately at the given number of ar-
eas k. Heritier and Ronchetti (1994) and Salibian-Barrera et al. (2016) also studied contamina-
tion in expression (4) to examine the robustness of hypothesis-testing procedures for regression
coefficients. Here, the choice of the contaminations that converge to 0 at the rate

√
k is made

to obtain asymptotic results, which leads to useful approximation for a finite sample size and
a small number of areas as shown in the Monte Carlo simulations. Our contamination scheme
is more general than those of Field et al. (2010) and Sinha and Rao (2009), who only consider
the case where α∗i and ε∗ij belong to a Gaussian distribution with mean 0. We consider the more
general case of asymmetric contamination including the random intercept and the random slope
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as well as the contamination with a non-Gaussian distribution.

With this formulation, the variance-covariance matrix of yi in Equation 2 is given by Vi =

σ2
eIni

+σ2
v1ni

1>ni
+O

(
1/
√
k
)

. However, for our proofs, we can neglect the term in O
(

1/
√
k
)

and still write the variance-covariance matrix as Vi = σ2
eIni

+σ2
v1ni

1>ni
, without detracting from

generality.
For our bootstrap MSE procedure, we consider the class of robust estimators θ̂R that are

solutions to the following estimating equation:

S(y,X, θ) ≡
k∑
i=1

Ψ(yi, Xi, θ) = 0, (5)

where Ψ(yi, Xi, θ) =
(
Ψ1(yi, Xi, θ)

>,Ψ2(yi, Xi, θ)
>)>; Ψ1 is a p-dimensional vector of esti-

mating functions associated to the regression parameter β; and Ψ2 =
(
Ψ>21,Ψ

>
22

)> is a two-
dimensional vector of estimating functions associated to the variance parameters δ = (σ2

e , σ
2
v).

Note that, though the distribution is not necessarily normal, the local asymptotic normality is as-
sumed, and that leads to the log likelihood that is approximately similar to that of the normality
distribution. Therefore, we can derive the robust version of the EBLUP using the robustifying
maximum likelihood estimating equations of the normal distribution given by expression (5).

This class of estimators includes robust maximum likelihood estimators developed by Sinha
and Rao (2009), for which the functions Ψ1 and Ψ2 are specifically defined by

Ψ1(yi, Xi, θ) = X>i V
−1
i U

1/2
i Ψb(ri) (6)

Ψ2l(yi, Xi, θ) = Ψ>b (ri)U
1/2
i V −1

i

∂Vi
∂δl

V −1
i U

1/2
i Ψb(ri)− tr

(
KiV

−1
i

∂Vi

∂δl

)
, (7)

where l = 1, 2, ri = U
−1/2
i (yi − Xiβ), Ψb(ri) = (ψb(ri1), . . . , ψb(rini

))> is an ni-vector
of bounded functions, Ui = diag(Vi) is a diagonal matrix whose elements are the diagonal
elements of the matrix Vi, andKi = E {ψ2

b (r)} Ini
where r has the standard normal distribution

r ∼ N (0, 1). An example of function ψb is the Huber-type function defined by

ψb(u) = min{|b|,max(−|b|, u)}, (8)

where b is a user-chosen positive constant. In a classical robust estimation framework under
normality, a popular choice of the tuning constant b dictated by efficiency considerations is
b = 1.345. Smoother versions of these functions can also be used as desired. Note that the
case where b → ∞, or, equivalently, ψb(u) = u, corresponds to the classical (non-robust)
maximum likelihood estimation. Other robust small-area estimators are based on M-quantile
models, which prevent the problems associated with specification of random effects, and al-
low for inter-area differences to be characterized by area-specific M-quantile coefficients (see
Chambers and Tzavidis 2006 and Tzavidis et al. 2010).

Newton-Raphson algorithms that numerically solve for these robust estimators can be found in
Sinha and Rao (2009).1 From the robustly estimated parameters, θ̂R = (β̂>R , δ̂

>
R)>, obtained

1Note, however, that the Newton-Raphson method can be unstable, especially for the variance parameters
estimation. Other methods could be used, for example, the fixed-point iterative method of Anderson (1973). In fact,
Tzavidis et al. (2016) suggest combining the two approaches, where the regression parameters are estimated by
using a Newton-Raphson algorithm while the variance parameters are estimated by using a fixed-point algorithm.
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from (5), the Sinha-Rao REBLUP for the area mean Ȳi, denoted ˆ̄YiSR, is of a plug-in type given
by

ˆ̄YiSR = N−1
i

∑
j∈si

yij +
(
1− niN−1

i

)
x̄>icβ̂R +

(
1− niN−1

i

)
v̂iR, (9)

where x̄ic =
1

Ni − ni
∑

j∈Ui−si xij, and the robust predictors of the random effects, v̂iR ≡

v̂iR(δ̂R), are obtained by solving the following Fellner (1986) system of estimating equations,
conditionally on θ̂R = (β̂>R , δ̂

>
R)>:

σ−1
e

k∑
i=1

X>i Ψ{σ−1
e (yi −Xiβ − vi1ni

)} = 0, (10)

σ−1
e 1>ni

Ψ{σ−1
e (yi −Xiβ − vi1ni

)} − σ−1
v ψb(σ

−1
v vi) = 0, (i = 1, . . . , k). (11)

An alternative expression for the Sinha-Rao estimator is given by

ˆ̄YiSR = N−1
i

∑
j∈si

yij +
(
1− niN−1

i

)
x̄>icβ̂R +

(
1− niN−1

i

)
ρ̂iR
∑
j∈si

f̂ijR

(
yij − x>ijβ̂R

)
,

where

ρ̂iR =
σ2
vR

∑ni

j=1 âijR

σ2
vR

∑ni

j=1 âijR + σ2
eRb̂iR

and f̂ijR =
âijR∑ni

j=1 âijR
,

with

âijR =
ψb

{
σ̂−1
eR

(
yij − x>ijβ̂R − v̂iR

)}
σ̂−1
eR

(
yij − x>ijβ̂R − v̂iR

) and b̂iR =
ψb
(
σ̂−1
vR v̂iR

)
σ̂−1
vR v̂iR

.

Denote by θR = (β>R , δ
>
R)> the probability limit of θ̂R = (β̂>R , δ̂

>
R)> (also usually referred to as

the robust target parameter). An expression for the prediction error, i.e., the difference between
the predictor and the true area mean, can be obtained as follows:(

1− niN−1
i

)−1
(

ˆ̄YiSR − Ȳi
)

= (x̄ic − ρ̂iRx̄iR)>
(
β̂R − βR

)
− (1− ρ̂iR)vi + ρ̂iRēiR − ēic

+ (x̄ic − ρ̂iRx̄iR)> (βR − β) , (12)

where

x̄iR =

ni∑
j=1

f̂ijRxij, ēiR =

ni∑
j=1

f̂ijReij and ēic =
1

Ni − ni

∑
j∈Ui−si

eij.

As will become clearer later, the expression for the prediction error provides a useful means to
establish the convergence requirements for the validity of the bootstrapped MSE developed in
this paper. Specifically, we show that sufficient condition to establish the convergence of our
bootstrap using the Bickel and Freedman (1981) approach is to establish the convergence of the
random effects vi, the average error of the units of the area of interest, ēiR, the average error of
nonsampled units of the area of interest, ēic, and the robust maximum likelihood (ML) estimator
of the fixed effects β̂R. For the latter, asymptotic properties of the whole parameter vector θ̂R
are needed. We state these properties in what follows.
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2.3 Asymptotic Properties of the Robust Parameter Estimator
Denote by Em[·] the expectation using Model (2). The asymptotic properties of the robust esti-
mator θ̂R are based on the following assumptions, which can be found in other related studies.
These assumptions allow to rule out cases for which the limiting distributions of the estimated
parameters either degenerate or explode.

Assumption A0. The function ψb(·) is continuously differentiable and bounded, and its deriva-
tive is bounded.

Assumption A1. limk→∞
k

n
= c ∈ [0, 1]

Assumption A2. The covariates Xi are distributed over a bounded support.

Assumption A3. The p× p matrix J1 defined by

J1(θ) = lim
k→∞

k∑
i=1

I
−1/2
1k X>i V

−1
i U

1/2
i Em

{
Ψb(ri)Ψb(ri)

>}U1/2
i V −1

i XiI
−1/2
1k

exists, is positive definite and continuous in θ, where I1k is the p×p diagonal matrix defined by

I1k = diag (k, n, . . . , n) =


k 0 . . . 0

0 n
. . . ...

... . . . . . . 0
0 . . . 0 n

 .

Assumption A4. The 2× 2 matrix J2 defined by

J2(θ) = lim
k→∞

k∑
i=1

I
−1/2
2k Em

{
Ψ2(yi, Xi, θ)Ψ

>
2 (yi, Xi, θ)

}
I
−1/2
2k

exists, is positive definite and continuous in θ, where

I2k = diag (k, n) =

(
k 0
0 n

)
.

Assumption A5. The (p+ 2)× (p+ 2) matrix G defined by

G(θ) = Plim Gk(θ)

exists, is finite, positive definite and continuous in θ, where

Gk(θ) = −


∑k

i=1 I
−1/2
1k

∂Ψ1(yi, Xi, θ)

∂β
I
−1/2
1k 0

0
∑k

i=1 I
−1/2
2k

∂Ψ2(yi, Xi, θ)

∂δ
I
−1/2
2k

 ;

and the above convergence in probability is uniform on compact sets of θ.
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Assumption A6.

I−1
k S(y,X, θR)

p−→ 0, where Ik =

(
I1k 0
0 I2k

)
. I1k and I2k are defined in A3 and A4.

Assumption A7.

I
−1/2
k S(y,X, θR)

d−→ Np+2 (0,ΣR) , where ΣR = Σ(θR) =

(
J1(θR) 0

0 J2(θR)

)
.

Assumption A1 states that the ratio of the number of areas over the total number of observations
is asymptotically a constant fraction. This condition is weaker than the one required by Field
et al. (2008) to establish the validity of the random-effect bootstrap (for linear mixed models).
Field et al. (2008) require that each of the area’s sample size converges to infinity as the number
of areas increases. In contrast, in our framework, all the areas could remain small as the number
of areas increases. This condition is therefore similar to Assumption 3.2 of Miller (1977) which
is a direct application of those that Weiss (1971), Weiss (1973), Weiss (1975) use to establish
the asymptotic properties of maximum likelihood estimators in some nonstandard cases. As
pointed out by Miller (1977), such an assumption is reasonable and easily holds in most practi-
cal situations.

Assumptions A3 and A4 are similar to Assumptions 3.4 and 3.5 of Miller (1977). The matrices
J1 and J2 defined within these assumptions determine the asymptotic covariance matrices of
the fixed and random effect estimate respectively. Assumptions A3 and A4 ensure the existence
and positive definiteness of these matrices. It should be noted that if either J1 or J2 does not
exist or is not positive definite, then the associated estimates do not converge to a nondegenerate
distribution. As explained by Miller (1977), any design or set of designs that might be used in
practice would naturally satisfy these two assumptions.

Assumptions A5–A7 are equivalent to conditions A.1–A.4 of Huggins (1993). Assumption A5
is usually checked in an ad-hoc manner. For example, the existence of bounded derivatives or
the Hölder or Lipschitz continuity of Gk(·) on compacts of θ would suffice for these conditions
to hold. Assumptions A6 and A7 readily follow from the law of large numbers, the central limit
theorem and the appropriate standard regularity conditions.

The above assumptions guarantee that conditions A.1–A.4 of Huggins (1993) are satisfied. The
following result is therefore a corollary of Theorem A of Huggins (1993) and is thus given
without proof.

Lemma 1. Under Assumptions A0–A7,

I
1/2
k (θ̂R − θR)

d→ N (0, G−1
R ΣRG

−1
R ), (13)

where θ̂R = (β̂>R , δ̂
>
R)> is the unique solution to (5), and θR is its probability limit.

Likewise, if we take ψb(t) = t in all of the functions given above, we obtain:

I
1/2
k (θ̂ − θ0)

d→ N (0, G−1
0 Σ0G

−1
0 ), (14)

where θ̂ = (β̂>, δ̂>)> is the solution to (5), and θ̂ is the maximum likelihood estimator of the
true parameter vector θ0.
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Proof. See Theorem A of Huggins (1993).

This result gives the asymptotic normality of both the robust estimator and the maximum likeli-
hood estimator under correct specification. Note that the probability limit of the robust estima-
tor, θR, is possibly different from the true parameter vector θ0. However, since the classic ML
estimator θ̂ is based on the original data that include outliers, the estimator θ̂R would usually be
preferred in practice because of its lesser sensitivity to influential observations.

3 The MSE Bootstrap Estimator
This section proposes a bootstrap procedure designed for estimating the MSE of the robust em-
pirical best linear unbiased predictors described in the previous section. We show that if the
bootstrap samples are generated similarly to the process that generated the original data, then
the bootstrap procedure for the MSE will be valid. As explained earlier, generating bootstrap
samples using the robust estimators of the model parameters as in Sinha and Rao (2009) leads
to bootstrap replicas whose variability is lower than that of the original data, yielding poor cov-
erage rates (see Jiongo et al. 2013). To overcome this issue, we propose a bootstrap procedure
that uses the non-robust maximum likelihood estimators that are asymptotically unbiased. This
allows us to obtain a bootstrap sample whose variability is similar to that of the original data.
Moreover, we generalize the above procedures by relaxing the usual normality distributional
assumption. Our bootstrap is semi-parametric and therefore avoids the possible bias due to the
misspecification of the distribution of the random effects or that of the errors (Opsomer et al.
2008).

3.1 Description of the Bootstrap Method
In the following, we present the method of generating the bootstrap samples and estimating the
MSE of the robust estimators. The method is described for the Sinha-Rao robust predictor, and
it can be easily adapted for other predictors. The bootstrap procedure works as follows.

Step 1: Generate k random variables u∗i , i = 1, . . . , k, by drawing independently with re-
placement from among ûi − 1

k

∑k
i=1 ûi, i = 1, . . . , k; and generate N random variables e∗ij ,

i = 1, . . . , k, j = 1, . . . , Ni, by drawing independently with replacement from among êlg −
1
n

∑k
l=1

∑nl

g=1 êlg, l = 1, . . . , k, g = 1, . . . , nl, respectively; where ûi and êlg are defined as
follows:2

ûi =
1√
ρ̂i
v̂i, i = 1, . . . , k, and êlg = ylg − x>lgβ̂ −

τ̂l
ρ̂l
v̂l, l = 1, . . . , k, g = 1, . . . , nl,

where

τ̂i = 1−
√

1− ρ̂i, ρ̂i =
niσ̂

2
v

σ̂2
e + niσ̂2

v

,

and v̂i is the EBLUP of the random effect given in (27).

2Different subscript notations are used here to emphasize the fact that the randomly selected component of e∗

for which the coordinate (i, j) is assigned, e∗ij , is independent of the corresponding area and units from the original
residual êij .
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Note that the estimates θ̂ = (β̂>, δ̂>)>, where δ̂ = (σ̂2
e , σ̂

2
v), used at this step are the (non-robust)

maximum likelihood estimators of θ0.

Although there are similarities between our procedure and those of Chambers and Chandra
(2013) and Mokhtarian and Chambers (2013), their method makes correlation assumptions
about the random effects vi whereas ours does not. Thus, their method works better when
this type of correlation exists in the data, and ours works better otherwise. The block bootstrap
samples carry over correlations to the bootstrap random effects v∗i , but it is unclear whether
their procedure is consistent, especially as theoretical validity has not been established for their
approach. On the other hand, our bootstrap is similar to those of Carpenter et al. (2003), Field
et al. (2008) and Field et al. (2010), who examine the so-called random effects bootstrap in
classical statistics. We go further by demonstrating the validity of the bootstrap for both the ML
estimates of the mixed linear model (see theorem 2) and a more general and complex parameter,
which is the robust estimator of the small-area mean or total.

Step 2: Compute the mean of the bootstrap population:

Ȳ ∗i = N−1
i

Ni∑
j=1

x>ijβ̂ + u∗i +N−1
i

Ni∑
j=1

e∗ij. (15)

Step 3: Generate a bootstrap sample (Xi, y
∗
i ), i = 1, . . . , k, from the model

y∗ij = x>ijβ̂ + u∗i + e∗ij, i = 1, . . . , k, j = 1, . . . , ni, (16)

where {e∗ij; i = 1, . . . , k, j = 1, . . . , ni} is a sample of size n drawn from the population
of bootstrapped errors using the same sampling plan P(s) that was used to draw the original
sample. Equation (16) can be rewritten in the form

y∗i = Xiβ̂ + u∗i 1ni
+ e∗i , i = 1, . . . , k. (17)

Step 4: Robust bootstrap estimators β̂∗R, δ̂∗R, and v̂∗iR are computed from the bootstrap samples.
The Sinha-Rao robust bootstrap estimator for small-area means, ˆ̄Y ∗iSR, is obtained as

ˆ̄Y ∗iSR = N−1
i

∑
j∈si

y∗ij +
(
1− niN−1

i

)
x̄>icβ̂

∗
R +

(
1− niN−1

i

)
v̂∗iR. (18)

Step 5: Repeat the above process a large number of times, say B times, to obtain B bootstrap
samples and compute the estimator of the mean squared error of ˆ̄YiSR by

M̂SE
(

ˆ̄YiSR

)
= B−1

B∑
b=1

(
ˆ̄Y
∗(b)
iSR − Ȳ

∗(b)
i

)2

,

where ˆ̄Y
∗(b)
iSR and Ȳ ∗(b)i correspond to Expressions (18) and (15), respectively, for the bth boot-

strap sample.

Although the procedure does not specify the number of bootstrap samples to be generated, we
recommend choosing a number sufficiently large such that further increases do not substan-
tially affect the estimated values.3 The proposed bootstrap method is expected to work reason-
ably well regardless of the nature of the outliers, i.e., whether they are in the fixed effects, in
the random effects or in the error term, and should be robust to non-normality of the random
components of the model.

3The number of bootstrap samples that insure convergence may depend on the specific application. In ours,
500 bootstraps were satisfactory. So the reader may start with a similar number if their application is similar.
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3.2 Validity of the Boostrap Estimator
Denote by dt, t = 1, 2, . . ., the Mallows (1972) metric for probabilities in <p+2, relative to
the Euclidean norm ||.||. If µ and ν are two probabilities in <p+2, then dt(µ, ν) is the infi-
mum of [E (||U − V ||t)]1/t over all pairs of random vectors U and V whose distributions are µ
and ν, respectively. Also, for two random variables U and V , write dt(U, V ) for the dt-distance
between the distributions of U and V . Only the cases t = 1, 2, 3 or 4 are of interest in this paper.

Let F̂uk be the empirical distribution of ûi, i = 1, . . . , k, centred at their mean, and let Fuk be
the empirical distribution of ui,i = 1, . . . , k. Likewise, let F̂ek be the empirical distribution of
êij , i = 1, . . . , k, j = 1, . . . , ni, centred at their mean, and let Fek be the empirical distribution
of the eij , i = 1, . . . , k, j = 1, . . . , ni. Define by Φk(Fv,e) the distribution of I1/2

k (θ̂R − θR),

and by Φk(F̂u,e) the distribution of I1/2
k (θ̂∗R− θ̂R), where θ̂∗R is the robust estimate of θ̂ obtained

from the bootstrap sample (Xi, y
∗
i ), i = 1, . . . , k.

Denote by E∗[·] the bootstrap expectation. To derive the asymptotic properties of the bootstrap
estimators we use the following bootstrap analogues of Assumptions A3 to A7 stated in Section
2.3, which are given conditionally on the original sample (Xi, yi), i = 1, . . . , k.

Assumption B3. The p× p matrix J∗1 defined by

J∗1 (θ) = lim
k→∞

k∑
i=1

I
−1/2
1k X>i V

−1
i U

1/2
i E∗

{
Ψb(r

∗
i )Ψb(r

∗
i )
>}U1/2

i V −1
i XiI

−1/2
1k

exists, is positive definite and is a continuous function of θ.

Assumption B4. The 2× 2 matrix J∗2 defined by

J∗2 (θ) = lim
k→∞

k∑
i=1

I
−1/2
2k E∗

{
Ψ2(y∗i , Xi, θ)Ψ

>
2 (y∗i , Xi, θ)

}
I
−1/2
2k

exists, is positive definite and is a continuous function of θ.

Assumption B5. The (p+ 2)× (p+ 2) matrix G∗ defined by

G∗(θ) = Plim G∗k(θ)

exists, is positive definite and continuous in θ, where

G∗k(θ) = −


∑k

i=1 I
−1/2
1k

∂Ψ1(y∗i , Xi, θ)

∂β̂
I
−1/2
1k 0

0
∑k

i=1 I
−1/2
2k

∂Ψ2(y∗i , Xi, θ)

∂δ̂
I
−1/2
2k

 .
The above convergence of G∗k(θ) in probability is uniform over compacts of θ.

Assumption B6.
I−1
k S(y∗, X, θ̂R)

p−→ 0.
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Assumption B7.

I
−1/2
k S(y∗, X, θ̂R)

d−→ Np+2 (0,Σ∗R) , where Σ∗R = Σ∗(θR) =

(
J∗1 (θR) 0

0 J∗2 (θR)

)
.

With these conditions, a bootstrap version of Lemma 1 is given by the following result.

Lemma 2. Under Assumptions A0–A2, B3–B7, and conditional on the sample,

I
1/2
k (θ̂∗R − θ̂R)

d−→ N (0, G∗−1
R Σ∗RG

∗−1
R ); (19)

likewise, when we take ψb(t) = t, we get:

I
1/2
k (θ̂∗ − θ̂) d−→ N (0, G∗−1

0 Σ∗0G
∗−1

0 ). (20)

To show the validity of our bootstrap, we first show that the bootstrap samples, as well as
the bootstrap matrices given in the above conditions, converge in distribution to the original
sample and in probability to the original matrices, respectively. These results are gathered in
the following lemma.

Lemma 3. Let Assumptions A0–A2 and B3–B7 hold. Then, for k −→ ∞, and uniformly over
θ,

d4

(
Fv, F̂ku

)
p−→ 0 and d4

(
Fe, F̂ke

)
p−→ 0 (21)

J∗1 (θ)
p−→ J1(θ) (22)

J∗2 (θ)
p−→ J2(θ) (23)

G∗(θ)
p→ G(θ). (24)

Proof. Use the Mallows (1972) metric for t = 4, and the results from Bickel and Freedman
(1981). See the Appendix.

We next show that the asymptotic distribution of the robust bootstrap estimator is asymptoti-
cally equivalent to the asymptotic distribution of the robust initial estimator, conditional on the
sample.

Theorem 1. Under Assumptions A0–A7 and B3–B7, and conditional on the sample,

dp+2
2

{
Φk(Fv,e),Φk(F̂u,e)

}
p−→ 0 as k →∞.

Proof. The proof follows immediately from the above results and Lemma 8.3 of Bickel and
Freedman (1981). Denote ξR = I

1/2
k (θ̂R − θR) and ξ∗R = I

1/2
k (θ̂∗R − θ̂R). Recall that their

finite sample distributions are defined by Φk(Fv,e) and Φk(F̂u,e), respectively. By Lemmas 1
and 2, their asymptotic distributions are given by N (0, G−1

R ΣRG
−1
R ) and N (0, G∗−1

R Σ∗RG
∗−1
R ),

respectively. It then follows by Lemma 3 and Levy’s Continuity Theorem that, conditional on
the sample,

ξ∗R
d−→ ξR.
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It also easily follows that conditional on the sample

E∗
[
‖ξ∗R‖2

]
−→ tr

(
G∗−1

R Σ∗RG
∗−1
R

)
, and Em

[
‖ξR‖2

]
−→ tr

(
G−1
R ΣRG

−1
R

)
,

which, by Lemma 3 and the continuous mapping theorem, implies that

E∗
[
‖ξ∗R‖2

] p−→ Em
[
‖ξR‖2

]
.

It then follows by Lemma 8.3 a) of Bickel and Freedman (1981) that

dp+2
2

{
Φk(Fv,e),Φk(F̂u,e)

}
p−→ 0 as k −→∞.

The following theorem is the main result of this paper. It states that under the conditions given
above, the proposed bootstrap MSE estimator of the Sinha and Rao (2009) REBLUP is a con-
sistent estimator of the MSE.

Theorem 2. Under Assumptions A0 to A7 and B3 to B7, and conditional on the sample,∣∣∣∣E∗ ( ˆ̄Y ∗iSR − Ȳ ∗i
)2

− Em
(

ˆ̄YiSR − Ȳi
)2
∣∣∣∣ p−→ 0 as k →∞.

Proof. By Lemma 8.3 a) of Bickel and Freedman (1981), it is sufficient to show that
d2

(
ˆ̄Y ∗iSR − Ȳ ∗i , ˆ̄YiSR − Ȳi

)
p−→ 0. Denote γ̂R = I

1/2
1k

(
β̂R − βR

)
and γ̂∗R = I

1/2
1k

(
β̂∗R − β̂R

)
.

Then, from Equation (12) above, we can write
(
1− niN−1

i

)−1
(

ˆ̄YiSR − Ȳi
)

as an affine func-

tion of γ̂R, vi, ēiR, ēic. That is,
(
1− niN−1

i

)−1
(

ˆ̄YiSR − Ȳi
)

= Λi (γ̂R, vi, ēiR, ēic). It then
follows from Assumptions A0 and A2 that there exists a positive constant, M > 0, such that

‖Λi (γ̂R, vi, ēiR, ēic) ‖2 ≤M
[
1 + ‖ (γ̂R, vi, ēiR, ēic)

> ‖2
]
.

Given that, by Theorem 1 and Condition (21) of Lemma 3 above, we must have

d2

(
(γ̂∗R, v

∗
i , ē
∗
iR, ē

∗
ic)
> , (γ̂R, vi, ēiR, ēic)

>
)

p−→ 0.

It then follows by Lemma 8.5 of Bickel and Freedman (1981) that

d2

(
ˆ̄Y ∗iSR − Ȳ ∗i , ˆ̄YiSR − Ȳi

)
p−→ 0.

4 Monte Carlo Simulations
In this section we carry out Monte Carlo simulations to explore the finite sample performance
of the proposed bootstrap procedure for estimating the MSE. For this purpose we consider the
EBLUP and three small-area robust estimators: the robust estimator of Sinha and Rao (2009),
SR; the robust estimator of Chambers et al. (2014), CCST3; and the robust estimator of Jiongo
et al. (2013) based on the conditional bias concept of Beaumont et al. (2013), JHD.
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For each of these small-area estimators, the performance of the proposed bootstrap MSE proce-
dure, denoted as JNBOOT, is assessed and compared with several alternative MSE estimators.
For the small-area estimator JHD, we compare our results with the bootstrap MSE estimators
of Sinha and Rao (2009), denoted as SRBOOT, and Jiongo et al. (2013), denoted as JHDBOOT.
For the robust estimators SR and CCST3, we also compare our results with the analytical lin-
earization MSE and linearization-based MSE estimators developed by Chambers et al. (2014),
denoted as CCT and CCST, respectively. Finally, for the EBLUP, we compare our results with
the above including the estimator of Prasad and Rao (1990), denoted as PR.4

4.1 Simulation Design
We consider three values for the number of areas: k = 40, k = 20 and k = 10. For each value of
k, we take N1 = . . . = Nk = 50. The values of the auxiliary variable are generated from a log-
normal distribution with mean E{log(x)} = 1.0 and standard deviation var1/2{log(x)} = 0.5
in the log-scale. In each area of the population, random samples of size n1 = . . . = nk = 5
have been selected by simple random sampling without replacement. The values of the variable
of interest are generated as yij = 100 + 5xij + vi + eij where the random-area and errors are
independently generated according to three outlier contamination scenarios:

• Scenario 1: no outlier, vi ∼ N (0, 4) and eij ∼ N (0, 6).

• Scenario 2: asymmetric contamination of the error terms, eij ∼ (1 − Aij√
k
)N (0, 6) +

Aij√
k
L (150 + xij, 7). For the random effects, we specify the distribution of the first 9k

10

areas as vi ∼ N (0, 4) and that of the last k
10

areas as vi ∼ L (9, 5) /
√
k. Throughout,

L (µ, s) denotes the logistic distribution of mean µ and scale s, and the Aij are indepen-
dent Bernoulli random variables with parameter p = 0.1.

• Scenario 3: asymmetric contamination of the errors terms, eij ∼ (1 − Aij√
k
)N (0, 6) +

Aij√
k
L (150 + xij, 7). For the random effects, we also have an asymmetric contamination

vi ∼ (1 − Ai√
k
)N (0, 4) + Ai√

k
L (57, 5), where the Ai are independent Bernoulli random

variables with parameter p = 0.1.

Figure 1 provides a picture of the simulated data for the three scenarios, where the number of
areas is equals to k = 40.

For each scenario, we generate T = 1000 populations andB = 1000 bootstrap replications. The
tuning constant for the small-area estimator JHD is set as defined in Beaumont et al. (2013). The
tuning constant of the robust predictor CCST3 is set at b = 3 as in the simulation experiments
of Chambers et al. (2014). Although the robust estimation of the small-area means is not the
subject of this paper, we present the results of the relative absolute bias and root relative mean
squared errors (RRMSE) of each of the small-area estimators considered, for completeness.
Let ˆ̄Yi denote an arbitrary estimator of the small-area mean Ȳi. Then the relative bias for the
area mean Ȳi associated to ˆ̄Yi is given by

RB( ˆ̄Yi) = 100× T−1

T∑
t=1

ˆ̄Y
(t)
i − Ȳ

(t)
i

Ȳ
(t)
i

, (i = 1, . . . , k), (25)

4Note that for the EBLUP, is it not useful to report the bootstrap procedure SRBOOT since it uses robust
parameter estimates. Hence, only JHDBOOT and JNBOOT are reported for this case.
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(c) Scenario 3

Figure 1: Scatter plots of the populations generated from the three scenarios, where the number
of areas is equals to k = 40.

and the root relative mean squared error is given by

RRMSE( ˆ̄Yi) = 100×

√√√√T−1

T∑
t=1

(
ˆ̄Y

(t)
i − Ȳ

(t)
i

Ȳ
(t)
i

)2

, (i = 1, . . . , k).

For the estimation of the MSE, we also compute the empirical values of the relative bias (RB)
and the root relative mean squared error. Denote by M̂SE( ˆ̄Yi) the estimator of the mean squared
error of ˆ̄Yi. The relative bias associated to M̂SE( ˆ̄Yi) is given by

RB
(

M̂SE( ˆ̄Yi)
)

= 100× T−1

T∑
t=1

M̂SE( ˆ̄Yi)
(t) −MSE( ˆ̄Yi)

MSE ˆ̄Yi)
, (i = 1, . . . , k),

and the root relative mean squared error of M̂SE( ˆ̄Yi) is calculated as

RRMSE
(

M̂SE( ˆ̄Yi)
)

= 100×

√√√√T−1

T∑
t=1

(
M̂SE( ˆ̄Yi)(t) −MSE( ˆ̄Yi)

MSE( ˆ̄Yi)

)2

, (i = 1, . . . , k).

Section 4.2 presents simulation results based on all the domains. We use graphs and measures
of central tendency such as the median of all the areas. Simulation results are obtained under
the three scenarios.

4.2 Simulation Results
The results reported in Table 1 present the percent Monte Carlo relative biases (RB %) and the
percent relative root mean squared error (RRMSE %) for the EBLUP and the robust predictors
of the small-area means, where the computation is given for the median of all the areas. The
results for the three values of the number of areas (k = 40, k = 20 and k = 10) show that
the estimator JHD proposed by Jiongo et al. (2013) performs well with the given value of the
tuning constant regardless of the mode of contamination, that is, whether the contamination
occurs at the errors level, the random effects level or the fixed effects level. On the other hand,
as expected, the Sinha and Rao (2009) estimator is biased, and the bias is moderated for the
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Chambers et al. (2014) predictors for Scenario 2 and Scenario 3. The former predictor yields a
smaller mean squared error than the latter.

For the MSE estimators, results are similar for k = 40, k = 20 and k = 10, except when
the EBLUP estimator is considered. Table 2 displays the results for k = 40 of the percent
Monte Carlo relative biases (RB %) and the percent root relative mean squared error (RRMSE
%) of the mean squared error estimator of the predictors of small-area means, obtained at the
median of the areas. In the absence of outliers (Scenario 1 in Table 2), only the analytical pseu-
dolinearization MSE estimators (CCT) and linearization-based MSE estimators (CCST) of the
MSE are biased when the Chambers et al. (2014) robust small-area predictor CCST3 is used.
All the other MSE estimators display negligible biases, regardless of the small-area estimator
considered. Likewise, for the MSE estimators it can be noted that only the analytical pseudolin-
earization MSE estimator (CCT) and linearization-based MSE estimator (CCST) are unstable
throughout. In contrast, all the bootstrap estimators are stable regardless of the small-area esti-
mator considered.

Scenario 2 is similar to Chambers et al. (2014) except that we use asymmetric contamination
of the errors with a random-intercepts-and-slopes model rather than a random-intercepts-only
model. For the areas 1 to 36, the simulation results in Table 2 show that our proposed bootstrap
JNBOOT works well in terms of bias. Moreover, it outperforms its competitors when the robust
predictors SR, CCST3 and JHD are considered. In terms of efficiency, the analytical CCT and
CCST MSE estimators have large RRMSE. In contrast, our proposed bootstrap performs well
regardless of the robust predictor used. Considering the areas 37 to 40, all the MSE estima-
tors are biased when applied to the robust predictor of Sinha and Rao (2009). For the robust
predictor of Chambers et al. (2014), the bias is smaller for the analytical pseudolinearization
MSE estimator (CCT) and linearization-based MSE estimator (CCST). Our proposed bootstrap
performs well in terms of bias for the robust predictor of Jiongo et al. (2013). In terms of effi-
ciency, our proposed bootstrap also performs well regardless of the robust small-area estimator
considered.

The set-up of Scenario 3 is similar to the one in Jiongo et al. (2013) except that, in addition to
the contamination with the random intercepts and random slopes model, we also use a contami-
nation of the random effects. Results in Table 2 show that the estimators CCT, CCST, SRBOOT
and JHDBOOT are biased, regardless of the robust small-area predictor considered. In contrast,
the proposed bootstrap, JNBOOT, is unbiased. In addition the JNBOOT also outperforms its
competitors in terms of efficiency. Figure 2 further confirms, for each area, the superiority of the
proposed bootstrap method, JNBOOT, over all the existing alternatives considered. Indeed, the
curve that depicts the relative biases for the JNBOOT estimator over all areas is more aligned
and closer to the horizontal axis than its competitors. Likewise, the root relative mean squared
errors curve for the JNBOOT estimator is always below its competitors, regardless of the robust
estimator considered.

For the particular case of the EBLUP, Table 2 shows that the Prasad and Rao (1990) MSE esti-
mator (PR) performs well relative to its competitors in all the scenarios. This good performance
of the well-known Prasad-Rao second order correct MSE estimator may be due to the con-
tamination models containing

√
k in the denominator, which make the effect of contamination

models small as k increases. Indeed, Table 3 shows that when the number of areas is small
(k = 10), the bootstrap MSE estimators JHDBOOT and JNBOOT outperform the Prasad-Rao
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estimator in terms of both bias and efficiency. Moreover, it should be noted that even when
k = 40, the EBLUP estimator remains affected by the presence of outliers, and the more effi-
cient small-area point-estimator is the robust estimator JHD as shown in Table 1. Therefore, it
would be more appropriate in practice to use the proposed bootstrap associated with the robust
estimator JHD in the presence of outliers in the sample.

5 Application: Methods of Payment in Canada
We apply our bootstrap procedure to the robust estimation of total volumes and values of Cana-
dian payment choices (cash, debit cards and credit cards) using data from the Bank of Canada’s
2009 and 2013 Methods-of-Payment (MOP) surveys. As will become clearer below, these data
are particularly interesting not only because of their practical importance for evidence-based
monetary policy, but also because they contain a substantial number of outliers and departures
from normality, thus making an excellent example to illustrate the usefulness of our proposed
method. While these data have been previously used to obtain estimates at the national level,
our main focus in this application is to show how reliable estimates and precisions for the same
and other quantities of interest can be obtained for smaller geographical areas or subgroups
of population. This is particularly useful for the design of well-targeted and heterogeneous
economic or monetary policies.

5.1 The Data
The Bank of Canada MOP survey is a detailed and representative investigation of consumer
payment behaviour in Canada. It collects data from Canadian residents aged 18 and older about
the payment methods they use for day-to-day purchases of goods and services (including at the
point of sale, person to person and online), but it excludes mortgage and bill payments, and
investment and business transactions. Financial, economic, social and demographic informa-
tion on individuals and households is collected through a survey questionnaire. In addition, a
three-day shopping diary collects detailed and reliable statistics on the use of cash in particular,
as well as other main payment methods such as debit and credit cards. The survey design was
similar for both the 2009 and the 2013 surveys, which allows for straightforward comparison
and trend analysis of the results between these two periods.

The survey results reported by Arango and Welte (2012) for the 2009 survey and by Henry
et al. (2015) for the 2013 survey provide regional estimates for each transaction type, where
the regions considered are the Atlantic (including Newfoundland and Labrador, Prince Ed-
ward Island, Nova Scotia, New Brunswick), Quebec, Ontario, the Prairies (including Mani-
toba, Saskatchewan, Alberta), and British Columbia. In this paper, we take advantage of the
small-area estimation techniques to compute reliable estimates for individual provinces, which
generally have smaller numbers of units in the sample (compared to the regions), and whose es-
timates would otherwise be unreliable if traditional approaches were used. Furthermore, we are
able to provide more disaggregated statistics such as estimates of totals and shares of volumes
and values of transactions for subgroups of household income at the provincial level. Our boot-
strap procedure is then used to compute mean square errors of these estimates that are robust
to outliers. Within each province, we consider three household income groups: (i) low-income
households, defined as households with annual income less than $40,000; (ii) medium-income
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households, defined as households with income between $40,001 and $80,000; and (iii) high-
income households, defined as households with income above $80,000.5 Our focus in this paper
is therefore on the computation of indicators of quality for the predictors of total volumes and
values of transactions with cash, debit cards and credit cards at the above income subgroups in
each province (which we refer to as Canadian household domains).

The MOP survey diary collects for each person in the sample day-to-day purchases with cash,
debit cards, credit cards and other methods of payment such as mobile payment applications or
personal cheques. From this diary, we are able to derive the total volume and value of transac-
tions, as well as the total consumption spending of each individual over the three-day collection
period. Total consumption spending is used as an auxiliary variable. Since one of the assump-
tions of the small-area estimation method used in this paper is that the mean or total population
of the auxiliary variable should exist for each area, we use data from the Survey of Household
Spending (SHS), which are annualized and released at the household level (see Statistics Canada
2017 CANSIM Table 203-0021), while the MOP is an individual-level survey. Therefore we
convert the three-day individual-level data to the annualized household level by multiplying it
with a factor of 365/3 and the number of eligible persons in the household.

In addition to the difference in collection units, there are two other differences between the MOP
and the SHS surveys: first, in terms of coverage, the SHS collects information on mortgage and
bill payments while the MOP does not; second, the boundaries used to define household income
groups in the MOP are slightly different from the Statistics Canada income quintile boundaries
in some provinces as explained above. We assume that these discrepancies do not have a major
impact on the point estimates. Even if they do, this should not overshadow the scope of this ap-
plication given that its main objective is to illustrate how the proposed bootstrap can be applied
in the context of complex survey data to produce quality indicators of small-area predictors.

5.2 Modeling the Volume and Value of Transactions
We estimate total volumes and total values of transactions from cash, debit cards and credit
cards for k = 30 Canadian household domains (i.e., we have three domains per each of the ten
provinces) for both the 2009 and 2013 MOP surveys. We consider units (i.e., households) with
at least one transaction in cash, debit card or credit card, leading to a sample size of 1,542 and
2,428 for the 2009 and 2013 MOP surveys, respectively. The data used include (a) the sample
size of each area, ni; (b) the volume or the value of transactions of each unit, yij; (c) the total
household consumption spending, x1ij; (d) the age of the respondent, x2ij; and (e) the house-
hold size, x3ij .

The model is defined by:

yij = β0 + x1ijβ1 + x2ijβ2 + x3ijβ3 + vi + eij, i = 1, . . . , k and j = 1, . . . , ni. (26)

where we assume that the random effects vi are independently and identically distributed as
N (0, σ2

v), the error terms eij are independently and identically distributed as N (0, σ2
e), and vi

5Note that these are the cut-offs that we define in this paper for the purpose of matching our variables of interest
with the auxiliary information from the Survey of Household Spending (taken from Statistics Canada), as explained
in Section 2 above. However, in the 2009 and 2013 MOP surveys, these income groups are defined as less than
$45,000, between $45,001 and $85,000, and above $85,000, for the low-, medium- and high-income households,
respectively.
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and eij are independent for all i = 1, . . . , k and j = 1, . . . , ni.

Results from the non-robust maximum likelihood (ML) and the robust maximum likelihood
(RML) estimations of the model parameters are reported in Tables 4 and 5. The standard er-
rors reported are obtained from the estimated covariance matrices associated with their asymp-
totic counterparts given in expressions (13) and (14). For all payment methods, the estimated
coefficients on household size (β3) and the error variance (σ2

e) by the ML are implausibly
high and substantially different from the RML estimates, suggesting that these parameters are
overestimated, presumably due to the presence of a substantial number of outliers or to non-
normality. To assess these conjectures, we examine the standardized predictors of the random
effects ûi/sûi , and residuals êij/sêij , where ûij and êij are defined in Section 3.1 (Step 1),
and sûi and sêij are standard deviations of ûi and êij, respectively. Specifically, we follow an
approach similar to the one proposed by Lange and Ryan (1989), who use the normal prob-
ability plot to assess normality in random effect models. Figures 3 and 4 present the normal
quantile-quantile (Q-Q) plots for the random effects and for the residuals, respectively, with the
MOP 2013 transactions data (results for the 2009 MOP survey are similar and available upon
request). The normality assumption for the random effects seems reasonable since the majority
of the data points are aligned on the 45 degree line. However, for the residuals, there are a
significant number of outliers in the tail, characterized by their departure from the 45 degree
line.

Specifically, for each payment method, we identify approximately 1.2 percent as potential out-
liers with residuals larger than 3.5 standard deviations in absolute value. Outliers mostly occur
in the province of Quebec (for each payment method, approximately 44 percent of the total
number of outliers). Moreover, we notice that these outliers correspond to individuals who are
either cash-intensive users or non-cash users. We define cash-intensive users as those for which
the share value of cash transactions over the three-day diary period is at least 80 percent; con-
versely, the non-cash users are defined as those for which the share value of cash transactions is
less than 5 percent. Figures 4(a), 4(c), 4(e) show that the normal Q-Q plots for the residuals with
the volumes of cash, debit card and credit card transactions follow non-linear (and seemingly
convex) patterns, suggesting that the errors are not normally distributed.6 In contrast, Figures
4(b), 4(d), 4(f) show that the plots are aligned to the 45 degree line for the points that are at the
centre of the distribution, suggesting that for the value of transactions the normality assumption
is reasonable, although the presence of outliers is also clearly noticeable (from the nonalign-
ment at the northwest and south east corners of these graphs).

In what follows, we estimate our variables of interest and use the proposed bootstrap as well as
other existing procedures to compute their MSE and make comparisons.

5.3 Results of the application
The small-area population total is given by Yi =

∑Ni

j=1 yij . The bootstrap MSE estimates for the
small-area predictors are based onB = 500 bootstrap replications. Taking more bootstrap repli-

6Dealing with the non-linearity requires the availability of a known total/average for each auxiliary variable.
This is not often the case when the model is non-linear. We try to add the dummies for the age classes where
the total Canadians are available from Statistics Canada. However, there is no noticeable change in the results.
The Kolmogorov-Smirnov two-samples test of distribution does not rejects the equality of the distribution of the
residuals for the models with and without the dummies with p-value p = 0.8409; p = 0.7532; and p = 0.7762 for
the cash, debit cards and credit cards, respectively.
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cations did not significantly change the results. Traditionally, the MSE are computed for quality
indicators such as the confidence intervals or the coefficient of variations. We compare the root
of the estimated MSE competitors relative to the proposed method. More precisely, we compute

and compare the ratio
√
M̂SE

mse (
Ŷi

)/√
M̂SE

JNBOOT (
Ŷi

)
, where M̂SE

mse (
Ŷi

)
refers

to the CCT, CCST, SRBOOT, JHDBOOT or JNBOOT estimator of the MSE of Ŷi. In turn,
Ŷi refers to the CCST3, SR or JHD robust predictors. This ratio gives the relative comparison
generated by the MSE estimators using a single number that takes the proposed bootstrap as a
reference. Figure 5 depicts the results for the cash payment method with the 2013 MOP survey.
The results for the other payment methods and for the 2009 MOP survey are similar and are
therefore unreported. The proposed bootstrap is more conservative compared to the Sinha and
Rao (2009) bootstrap for all the robust predictors considered. For the robust predictor CCST3,
the proposed bootstrap is more conservative when the area-specific sample size is large, while
the Jiongo et al. (2013) bootstrap is more conservative when the area-specific sample size is
small. For the robust predictor SR, the proposed bootstrap is more conservative when the area-
specific sample size is large. However, the difference between the two MSE estimates is smaller
when the sample size decreases. For the robust predictor JHD, the Jiongo et al. (2013) bootstrap
is generally more conservative than the proposed bootstrap. For the robust predictors CCST3
and SR, the analytical methods are more conservative than the proposed bootstrap when the
sample size is small. In addition, the analytical MSE estimators CCT and CCST clearly display
large variability in small samples. Clearly, the MSE estimation methods discussed in this ap-
plication show considerable differences in the estimation results, which could lead to different
inferences about the predicted small-area quantities of interest. It is therefore important to com-
pare the accuracy of these methods in a rigorous way. In this regard, our results suggest that
the proposed bootstrap should be preferred since its validity is formally established by the main
theoretical results of this paper and the simulations outcomes obtained in Section 4 confirm its
empirical accuracy.

Our MSE bootstrap procedure can also be used to assess the quality of small-area predictors.
This is performed by estimating the coefficient of variation, defined as the ratio of the estimated

root MSE over the small-area predictor,
√
M̂SE

(
Ŷi

)/
Ŷi. The smaller this ratio, the better

the corresponding small-area predictor in terms of quality. The coefficients of variation are
computed for Canada as well as for all k = 30 Canadian household domains. Figure 6 presents
the estimated coefficients of variation of the volume and value of transactions for the above
alternative predictors for all areas (including Canada, indexed as area 1 in the figure). Both
the EBLUP and the JHD exhibit the best performances compared to the other predictors (the
former both have the smallest coefficients of variations across all the area spectrum). In turn,
while the EBLUP and the JHD have similar coefficients of variation in general, the JHD clearly
outperforms the EBLUP for the total value of cash transactions (see Figures 6(a) and 6(b)). The
JHD can therefore be chosen as the best predictor from among all the alternatives considered
in this application, and this superiority is consistent with the simulation results obtained earlier
(see Table 1). Hence, for the remaining results, we focus on the JHD predictor only.

Tables 6 and 7 report the estimates of the total volumes of cash, debit card and credit card trans-
actions and their estimated standard errors for the 2009 and 2013 MOP surveys, respectively.
Likewise, Tables 8 and 9 report the estimates of the total value of cash, debit card and credit card
transactions and their estimated root mean square errors for the 2009 and 2013 MOP surveys,
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respectively. These results are used to compute the method of payment usage shares in terms
of volume and value of transactions. At the national level, the volume of cash share decreased
by 7.8 percentage points, while its value share remained nearly stable (0.3 percentage point in-
crease) between 2009 and 2013. Between the two survey periods, the debit card share decreased
in terms of both volume (-1.2 percentage points) and value (-5.6 percentage points). In contrast,
the credit card share significantly increased in terms of both volume (+8.7 percentage points)
and value (+5.3 percentage points). These national-level statistics are similar to those found
in Henry et al. (2015) and Fung et al. (2015), who use the design-based approach to compute
estimates for large domains. This paper goes further and provides estimates of the total volume
and value of transactions at both the national and the household income group levels. At the
national level, we note an average annual decline of 3.1 percent in total volume, and the asso-
ciated RMSE estimate shows that this result is significant. At the more disaggregated level, the
annual decline in cash transactions is actually relatively higher among high-income households
living in the most populated provinces such as Ontario and Quebec as shown in Figures 7 and
8.

6 Concluding Remarks
We considered the problem of bootstrapping the mean squared error of robust small-area es-
timators. The underlying model is the unit-level model where error variance, random effects
and fixed effects can be estimated using existing approaches. Given that robust estimates of
the variance components are typically smaller than their non-robust counterparts, it is difficult
to construct bootstrap data on the same scale as the original data (Field et al. 2010). We over-
come this difficulty by using the non-robust maximum likelihood estimators for generating the
bootstrap samples and apply the robust estimation technique on this sample to obtain outlier-
robust bootstrap predictors. It is from this starting point that our proposed MSE estimator is
built. We formally prove the theoretical validity of our proposed bootstrap. Moreover, the semi-
parametric nature of the proposed method makes it particularly attractive, as it does not rely
on the normality assumption. Our theoretical results are derived using an approach similar to
Bickel and Freedman (1981) and Freedman (1981), as well as convergence results established
by Huggins (1993). The proofs of the proposed bootstrap MSE estimator are provided for the
robust estimator of Sinha and Rao (2009), and Monte Carlo simulation results show that the
method also works well for the bias-corrected robust predictors of Jiongo et al. (2013) and
Chambers et al. (2014).

We examine the behaviour of the proposed method through Monte Carlo simulations and com-
pare its performance with five other methods: the bootstrap MSE estimator of Sinha and Rao
(2009), the analytical pseudolinearization MSE estimator and the linearization-based MSE es-
timator of Chambers et al. (2014), the bootstrap MSE of Jiongo et al. (2013) and the MSE
estimator of Prasad and Rao (1990). The results show that for all the different robust small-area
estimators and all the various modes of contamination considered, the proposed bootstrap MSE
performs well, in terms of both bias and efficiency. We apply our method to the estimation of
the total volumes and values of cash, debit card and credit card transactions in Canada, using
data from the Bank of Canada MOP surveys from 2009 and 2013. We found a significant annual
decline of 3.1 percent in the average volume of cash transactions at the national level, which
is consistent with those that Henry et al. (2015) and Fung et al. (2015) obtained using tradi-
tional estimation methods. However, unlike these authors’ methods, our method is also able to
reliably compute these statistics and their precision at a more desegregated level, such as the
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provinces and the household income groups within the provinces, using the robust small-area
estimation techniques. In addition, the proposed bootstrap can be employed to compute indica-
tors of quality useful for selecting the best predictor, which in our data appears to be the Jiongo
et al. (2013) predictor, from among the alternatives listed above.

Finally, we note that the linear mixed model does not fit the total volume of transactions data
well. This is not very surprising since the volume of transactions is count data whereas linear
mixed models are primarily designed for continuous outcomes. Count data models such as
Poisson or negative binomial types should therefore be better alternative approaches to develop
robust small-area predictors and bootstrap MSE estimators for count outcomes. It would also
be interesting to apply the method to the case of influential covariate values, as indicated in
Sinha and Rao (2009), who point out difficulties with non-parametric bootstrap methods where
the bootstrap samples may not contain outliers in the same proportion as the original data.
Alternatively, it might be worthwhile developing a jackknife or a fast and robust bootstrap
following Salibian-Barrera et al. (2008). These are avenues for further research.
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Table 1: Monte Carlo relative biases (%) and relative root mean squared error (%) for the
predictors of the small-area means (median of the areas)

Scenario
Relative bias Root relative mean squared error

EBLUP JHD SR CCST3 EBLUP JHD SR CCST3

Number of areas, k = 40
Scenario 1 0.01 0.01 0.01 0.01 0.83 0.85 0.84 0.91
Scenario 2, areas 1 to 36 0.12 -0.02 -1.37 -0.81 1.65 1.51 1.85 2.38
Scenario 2, areas 37 to 40 -0.77 -0.64 -1.85 -0.99 1.59 1.49 2.18 2.26
Scenario 3 0.04 -0.17 -1.32 -0.74 2.05 1.78 1.88 2.45

Number of areas, k = 20
Scenario 1 0.00 0.01 0.01 0.00 0.84 0.86 0.86 0.92
Scenario 2, areas 1 to 18 0.16 -0.05 -2.14 -1.49 2.01 1.88 2.54 3.02
Scenario 2, areas 19 to 20 -1.19 -1.04 -2.78 -1.73 2.31 2.08 3.05 2.94
Scenario 3 0.06 -0.19 -2.01 -1.36 2.77 2.36 2.62 3.14

Number of areas, k = 10
Scenario 1 0.01 0.01 0.01 0.01 0.88 0.89 0.90 0.93
Scenario 2, areas 1 to 9 0.23 -0.16 -3.12 -2.41 2.79 2.61 3.57 4.09
Scenario 2, areas 10 to 10 -1.59 -1.54 -3.88 -2.78 3.20 2.88 4.17 3.58
Scenario 3 -0.01 -0.42 -2.95 -2.25 3.71 3.17 3.64 4.14

Note: The best linear unbiased predictor is denoted by EBLUP; the Jiongo et al. (2013) predictor based on the
conditional-bias concept is denoted by JHD; the Sinha and Rao (2009) predictor is denoted by SR; and the
Chambers et al. (2014) predictor is denoted by CCST3. The three scenarios are described below:

• Scenario 1: no outlier, vi ∼ N (0, 4) and eij ∼ N (0, 6).

• Scenario 2: asymmetric contamination of the error terms, eij ∼ (1− Aij√
k

)N (0, 6) +
Aij√

k
L (150 + xij , 7).

For the random effects, we specify the distribution of the first 9k
10 areas as vi ∼ N (0, 4) and that of the last

k
10 areas as vi ∼ L (9, 5) /

√
k. Throughout, L (µ, s) denotes the logistic distribution of mean µ and scale

s, and the Aij are independent Bernoulli random variables with parameter p = 0.1.

• Scenario 3: asymmetric contamination of the errors terms, eij ∼ (1− Aij√
k

)N (0, 6) +
Aij√

k
L (150 + xij , 7).

For the random effects, we also have an asymmetric contamination vi ∼ (1− Ai√
k

)N (0, 4) + Ai√
k
L (57, 5),

where the Ai are independent Bernoulli random variables with parameter p = 0.1.
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Table 2: Monte Carlo relative biases (RB %) and root relative mean squared error (RRMSE %)
for the MSE estimator of the predictors of small-area means (at the median over the k = 40
areas)

SAE MSE

Scenario 1 Scenario 2 Scenario 3

Areas 0–40 Areas 0–36 Areas 37–40 Areas 0–40
RB RRMSE RB RRMSE RB RRMSE RB RRMSE

EBLUP

PR -0.3 11.0 8.6 37.7 12.1 39.8 -1.9 24.3
CCT -0.7 47.2 168.0 363.5 162.7 407.4 46.9 164.6
CCST 0.8 47.4 170.8 370.0 165.3 417.7 48.4 167.3
JHDBOOT -1.8 11.9 -10.6 44.3 -7.7 45.1 -8.4 28.4
JNBOOT -1.9 12.0 -10.8 44.2 -8.3 44.8 -9.1 28.5

SR

CCT -3.8 55.5 -53.8 72.3 -67.6 76.0 -50.7 72.6
CCST -2.5 56.8 -50.9 75.1 -65.9 77.6 -48.4 75.6
SRBOOT -0.5 15.3 -72.5 72.8 -80.5 80.6 -61.0 62.3
JHDBOOT -1.8 11.9 -29.8 45.4 -50.1 55.7 11.2 35.6
JNBOOT -1.6 12.2 -5.4 28.3 -32.8 38.3 4.7 26.4

CCST3

CCT 47.0 95.4 -17.3 136.0 -10.7 145.1 -13.1 135.9
CCST 48.1 98.8 -15.5 143.0 -9.1 153.2 -11.7 142.2
SRBOOT 3.5 15.6 -75.7 75.9 -73.2 73.4 -70.9 71.5
JHDBOOT 0.6 12.0 34.8 42.1 49.4 56.1 26.9 35.6
JNBOOT 0.8 12.1 5.3 26.2 16.4 32.9 10.6 28.5

JHD
SRBOOT 0.0 15.5 -56.8 57.5 -57.2 57.9 -54.8 56.6
JHDBOOT -1.2 11.8 15.6 56.1 14.3 55.2 31.5 49.5
JNBOOT -1.0 12.1 -7.1 41.4 -8.2 41.2 5.9 32.1

Note: The Jiongo et al. (2013) predictor based on the conditional-bias concept is denoted by JHD; the Sinha and
Rao (2009) predictor is denoted by SR; and the Chambers et al. (2014) predictor is denoted by CCST3.
The proposed bootstrap MSE procedure is denoted JNBOOT; the bootstrap MSE estimator of Sinha and Rao
(2009) is denoted by SRBOOT; the bootstrap MSE estimator of Jiongo et al. (2013) is denoted by JHDBOOT; the
analytical linearization MSE and linearization-based MSE estimators developed by Chambers et al. (2014) are
denoted by CCT and CCST, respectively. Ultimately, the Prasad and Rao (1990) MSE estimator is denoted by PR.
The three scenarios are described below:

• Scenario 1: no outlier, vi ∼ N (0, 4) and eij ∼ N (0, 6).

• Scenario 2: asymmetric contamination of the error terms, eij ∼ (1− Aij√
k

)N (0, 6) +
Aij√

k
L (150 + xij , 7).

For the random effects, we specify the distribution of the first 36 areas as vi ∼ N (0, 4) and that of the last
four areas as vi ∼ L (9, 5) /

√
k. Throughout, L (µ, s) denotes the logistic distribution of mean µ and scale

s, and the Aij are independent Bernoulli random variables with parameter p = 0.1.

• Scenario 3: asymmetric contamination of the errors terms, eij ∼ (1− Aij√
k

)N (0, 6) +
Aij√

k
L (150 + xij , 7).

For the random effects, we also have an asymmetric contamination vi ∼ (1− Ai√
k

)N (0, 4) + Ai√
k
L (57, 5),

where the Ai are independent Bernoulli random variables with parameter p = 0.1.
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Table 3: Monte Carlo relative biases (RB %) and root relative mean squared error (RRMSE %)
for the MSE estimator of the predictors of small-area means (at the median over the k = 10
areas)

SAE MSE

Scenario 1 Scenario 2 Scenario 3

Areas 0–10 Areas 0–9 Areas 10–10 Areas 0–10
RB RRMSE RB RRMSE RB RRMSE RB RRMSE

EBLUP

PR -3.1 20.7 131.6 156.8 62.7 86.7 31.5 58.8
CCT 8.7 59.6 278.5 441.5 180.4 333.5 87.0 195.3
CCST 9.7 60.0 282.0 449.5 182.5 342.3 88.7 197.9
JHDBOOT -11.7 26.2 6.3 60.0 -25.5 48.6 -15.6 50.2
JNBOOT -11.5 26.2 3.8 59.1 -27.4 49.3 -18.0 50.2

SR

CCT 12.4 193.7 -59.5 447.1 -67.7 330.7 -63.4 100.0
CCST 13.4 194.1 -56.5 447.3 -66.1 330.4 -61.3 100.6
SRBOOT -12.2 31.7 -91.8 91.9 -94.3 94.3 -81.0 84.7
JHDBOOT -12.8 27.0 -34.2 48.9 -54.5 59.6 -6.7 52.5
JNBOOT -12.0 27.2 3.7 66.3 -28.4 53.8 4.3 59.5

CCST3

CCT 40.3 94.1 -52.5 126.6 -49.1 111.5 -42.0 130.9
CCST 41.1 97.1 -50.6 132.2 -46.9 119.1 -40.3 136.5
SRBOOT -2.0 27.8 -91.0 91.3 -88.8 89.3 -82.4 85.8
JHDBOOT -3.1 21.7 55.0 80.5 91.7 116.9 49.2 75.9
JNBOOT -2.6 21.8 10.6 68.4 37.2 92.0 22.4 71.9

JHD
SRBOOT -11.5 30.4 -84.1 84.6 -87.8 88.1 -75.7 82.1
JHDBOOT -12.3 25.8 33.4 78.2 1.8 53.4 25.8 73.2
JNBOOT -11.6 25.9 8.9 63.8 -16.8 50.8 3.6 61.1

Note: The Jiongo et al. (2013) predictor based on the conditional-bias concept is denoted by JHD; the Sinha and
Rao (2009) predictor is denoted by SR; and the Chambers et al. (2014) predictor is denoted by CCST3.
The proposed bootstrap MSE procedure is denoted JNBOOT; the bootstrap MSE estimator of Sinha and Rao
(2009) is denoted by SRBOOT; the bootstrap MSE estimator of Jiongo et al. (2013) is denoted by JHDBOOT; the
analytical linearization MSE and linearization-based MSE estimators developed by Chambers et al. (2014) are
denoted by CCT and CCST, respectively. Ultimately, the Prasad and Rao (1990) MSE estimator is denoted by PR.
The three scenarios are described below:

• Scenario 1: no outlier, vi ∼ N (0, 4) and eij ∼ N (0, 6).

• Scenario 2: asymmetric contamination of the error terms, eij ∼ (1− Aij√
k

)N (0, 6) +
Aij√

k
L (150 + xij , 7).

For the random effects, we specify the distribution of the first 9 areas as vi ∼ N (0, 4) and that of the last
area as vi ∼ L (9, 5) /

√
k. Throughout, L (µ, s) denotes the logistic distribution of mean µ and scale s,

and the Aij are independent Bernoulli random variables with parameter p = 0.1.

• Scenario 3: asymmetric contamination of the errors terms, eij ∼ (1− Aij√
k

)N (0, 6) +
Aij√

k
L (150 + xij , 7).

For the random effects, we also have an asymmetric contamination vi ∼ (1− Ai√
k

)N (0, 4) + Ai√
k
L (57, 5),

where the Ai are independent Bernoulli random variables with parameter p = 0.1.
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Table 4: Model parameter estimates, year 2009

Cash Debit Credit
Coefficients Estimates Std Estimates Std Estimates Std

Variables of interest are the volume of cash, debit card and credit card transactions
Robust estimation

Intercept (β0) 280.3 43.0 202.2 39.6 57.4 29.0
Spending (β1) 0.00049 0.00020 0.00062 0.00014 0.00136 0.00010
Age (β2) 3.14 0.80 -1.57 0.62 2.02 0.54
Household size (β3) 15.4 9.6 29.8 9.8 -0.7 7.3
σ2
e 203887 4518 98689 2097 72691 2305
σ2
v 4098 2642 978 911 2416 799

R square (R2) 0.029 0.018 0.093
Non-robust estimation

Intercept (β0) 219 51 204 52 63 40
Spending (β1) 0.00065 0.00025 0.00075 0.00018 0.00137 0.00016
Age (β2) 4.37 0.93 -1.24 0.74 2.91 0.73
Household size (β3) 41.3 11.6 47.8 13.6 9.8 9.2
σ2
e 313056 161416 194902 242796 177502 669514
σ2
v 3439 3999 2287 2978 5868 22403

R square (R2) 0.045 0.054 0.135
Variables of interest are the value of cash, debit card and credit card transactions

Robust estimation
Intercept (β0) 3570.1 867.6 3610.0 1563.0 -3418.7 2393.1
Spending (β1) 0.01562 0.00323 0.06360 0.00438 0.80425 0.00667
Age (β2) 29.6 14.1 -5.1 20.3 -52.5 33.6
Household size (β3) 177.9 165.5 837.1 397.6 -1884.2 537.4
σ2
e 48.5e6 896046 133.2e6 2.5e6 277.0e6 5.8e6
σ2
v 589370 327578 78675 1.0e6 930269 3.2e6

R square (R2) -0.008 0.062 0.801
Non-robust estimation

Intercept (β0) 2314.4 1727.7 -3275.0 3280.1 792.2 3553.6
Spending (β1) 0.03797 0.00772 0.14068 0.01313 0.82109 0.01376
Age (β2) 35.2 26.3 103.1 40.8 -137.0 46.8
Household size (β3) 1372.6 401.1 2452.4 859.4 -3791.3 885.3
σ2
e 276e6 145.0e6 1048.0e6 447.6e6 1324.0e6 2905.6e6
σ2
v 2.9e6 8.8e6 97895 7.7e6 89834 3716.6e6

R square (R2) 0.064 0.141 0.804

Note: Std denotes the standard errors; (β0, β1, β2, β3)
> and

(
σ2
e , σ

2
v

)>
denote the regression coefficient and the

variance of the errors and random effects in model (26), respectively:
yij = β0 + x1ijβ1 + x2ijβ2 + x3ijβ3 + vi + eij , i = 1, . . . , k and j = 1, . . . , ni.
Non-robust estimation is the ML method, while robust estimation is the robust ML method developed by Sinha
and Rao (2009).

The R squares (R2) are computed using the formula: 1−
∑k

i=1

∑
j∈si

(yij−ŷij)2∑k
i=1

∑
j∈si

(yij−ȳij)2
, where

ŷij = β̂0 + x1ij β̂1 + x2ij β̂2 + x3ij β̂3 + v̂i and ȳij = 1
n

∑k
i=1

∑
j∈si yij . For the ML, the results of the R2 are

similar to those computed using the generalized R2 formula.
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Table 5: Model parameter estimates, year 2013

Cash Debit Credit
Coefficients Estimates Std Estimates Std Estimates Std

Variables of interest are the volume of cash, debit card and credit card transactions
Robust estimation

Intercept (β0) 105.3 31.3 143.0 15.3 126.6 32.1
Spending (β1) 0.00098 0.00014 0.00051 0.00011 0.00248 0.00009
Age (β2) 2.03 0.45 -1.19 0.23 0.83 0.36
Household size (β3) 55.6 10.2 28.1 4.4 5.8 6.1
σ2
e 125863 2607 54876 1698 90216 4414
σ2
v 1256 456 353 210 4372 1296

R square (R2) 0.067 0.03 0.156
Non-robust estimation

Intercept (β0) 111.0 36.0 172.0 20.6 150.7 36.8
Spending (β1) 0.00134 0.00018 0.00113 0.00019 0.00228 0.00012
Age (β2) 1.70 0.48 -1.87 0.36 0.98 0.44
Household size (β3) 80.5 13.4 51.6 8.2 26.3 7.1
σ2
e 200803 170041 151327 1.0e6 179450 375348
σ2
v 2631 2079 503 2750 6665 597

R square (R2) 0.096 0.084 0.177
Variables of interest are the value of cash, debit card and credit card transactions

Robust estimation
Intercept (β0) 260.4 537.6 3041.2 360.4 -1739.0 860.6
Spending (β1) 0.02584 0.00252 0.03541 0.00409 0.80488 0.00945
Age (β2) 43.43 8.62 -12.97 7.76 -28.20 12.05
Household size (β3) 617.0 125.7 607.4 139.9 -1961.7 301.5
σ2
e 31.3e6 488130 59.1e6 1.2e6 187.9e6 6463179
σ2
v 518877 231480 498174 262849 4.1e6 1504233

R square (R2) 0.032 0.026 0.680
Non-robust estimation

Intercept (β0) -227.6 928.7 252.6 1096.5 242.1 1354.8
Spending (β1) 0.12153 0.01270 0.16652 0.01577 0.71147 0.02042
Age (β2) 2.90 17.25 4.72 17.79 -7.56 14.48
Household size (β3) 1548.8 317.3 1413.3 390.5 -2992.6 586.1
σ2
e 369.1e6 197.8e6 604.2e6 393.0e6 917.3e6 646.7e6
σ2
v 6.9e6 12.2e6 2.7e6 5.0e6 13.4e6 18.6e6

R square (R2) 0.169 0.176 0.700

Note: Std denotes the standard errors; (β0, β1, β2, β3)
> and

(
σ2
e , σ

2
v

)>
denote the regression coefficient and the

variance of the errors and random effects in model (26), respectively:
yij = β0 + x1ijβ1 + x2ijβ2 + x3ijβ3 + vi + eij , i = 1, . . . , k and j = 1, . . . , ni.
Non-robust estimation is the ML method, while robust estimation is the robust ML method developed by Sinha
and Rao (2009).

The R squares (R2) are computed using the formula: 1−
∑k

i=1

∑
j∈si

(yij−ŷij)2∑k
i=1

∑
j∈si

(yij−ȳij)2
, where

ŷij = β̂0 + x1ij β̂1 + x2ij β̂2 + x3ij β̂3 + v̂i and ȳij = 1
n

∑k
i=1

∑
j∈si yij . For the ML, the results of the R2 are

similar to those computed using the generalized R2 formula.
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Table 6: 2009 estimates of the total volume of transactions (predictor) and its standard errors
(RMSE) for cash, debit cards and credit cards. Estimates are in millions.

Income Population Sample Cash Debit Credit
Provinces groups size (in 1,000) size Predictor RMSE Predictor RMSE Predictor RMSE
Canada All 13,382 1,542 7,601.7 259.0 3,765.5 210.0 3,752.2 197.0
NL Low 83 18 43.9 5.1 20.3 4.5 16.4 4.9
NL Medium 83 35 43.3 4.3 30.9 3.8 23.6 4.3
NL High 41 36 26.7 2.3 14.3 1.8 17.4 2.2
PEI Low 23 10 12.1 1.4 5.7 1.3 4.9 1.5
PEI Medium 23 16 13.8 1.3 8.8 1.1 6.8 1.5
PEI High 11 17 6.8 0.7 3.9 0.5 3.3 0.7
NS Low 157 41 95.0 9.2 30.1 7.5 32.7 8.2
NS Medium 157 91 93.7 6.8 48.3 5.8 39.0 5.9
NS High 78 92 53.5 3.6 24.9 2.7 37.3 3.0
NB Low 125 52 67.8 6.6 26.4 5.7 30.9 6.1
NB Medium 125 62 69.2 5.6 44.8 5.1 37.7 5.5
NB High 62 49 47.1 3.2 22.5 2.7 24.3 3.0
QC Low 1,359 59 654.5 75.1 236.8 59.1 216.4 59.9
QC Medium 1,359 81 686.8 63.6 362.4 53.0 370.9 52.4
QC High 680 77 441.0 32.6 220.1 25.5 279.0 27.1
ON Low 1,980 61 1,166.3 104.5 454.6 84.2 342.3 93.0
ON Medium 1,980 100 1,159.3 87.9 619.7 67.3 612.7 70.6
ON High 990 92 713.2 44.8 368.4 38.0 408.7 38.1
MB Low 188 27 88.7 10.4 41.3 9.3 41.3 10.4
MB Medium 188 44 116.5 10.1 51.9 8.0 57.8 8.8
MB High 94 37 55.1 4.8 30.8 4.2 38.5 5.0
SK Low 161 31 77.8 9.3 38.0 8.2 32.1 8.9
SK Medium 161 46 87.4 7.8 58.7 7.0 41.0 8.0
SK High 80 61 46.2 4.0 30.1 3.3 38.4 3.5
AB Low 276 36 133.2 16.2 70.0 12.5 54.2 14.4
AB Medium 553 53 281.6 26.7 148.3 22.6 144.9 25.5
AB High 553 54 317.7 28.8 192.7 23.6 229.7 24.9
BC Low 725 47 377.4 39.7 164.9 34.2 178.1 35.5
BC Medium 725 67 387.9 34.5 265.0 27.0 240.3 31.4
BC High 362 50 238.3 19.0 130.8 15.5 151.9 17.0

Note: The numbers for Canada include the 10 provinces but not the 3 territories. The income boundaries are
$40,000 for the low- to medium-income households and $80,000 for the medium- to high-income households.
Newfoundland and Labrador is denoted by NL; Prince Edward Island is denoted by PEI; Nova Scotia is denoted
by NS; New Brunswick is denoted by NB; Quebec is denoted by QC; Ontario is denoted ON; Manitoba is denoted
by MB; Saskatchewan is denoted by SK; Alberta is denoted by AB; and British Columbia is denoted by BC.
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Table 7: 2013 estimates of the total volume of transactions (predictor) and its standard errors
(RMSE) for cash, debit cards and credit cards. Estimates are in millions.

Income Population Sample Cash Debit Credit
Provinces groups size (in 1,000) size Predictor RMSE Predictor RMSE Predictor RMSE
Canada All 13,792 2,428 6,694.1 142.0 3,759.2 119.0 5,300.6 134.0
NL Low 86 6 34.1 4.4 16.3 1.9 22.9 6.9
NL Medium 86 8 41.5 4.4 24.6 1.8 31.7 6.2
NL High 43 10 24.1 2.2 15.3 0.9 25.0 3.1
PEI Low 23 29 9.3 1.1 4.8 0.5 5.8 1.3
PEI Medium 23 23 11.4 1.1 6.7 0.5 8.6 1.4
PEI High 12 13 6.5 0.5 3.8 0.3 5.2 0.8
NS Low 158 19 56.8 7.7 31.1 3.3 42.1 10.8
NS Medium 158 6 70.6 8.3 40.9 3.4 71.4 11.5
NS High 79 3 43.8 4.2 26.8 1.8 43.1 6.1
NB Low 125 18 45.6 6.1 23.0 2.8 36.9 8.3
NB Medium 125 21 65.1 5.9 34.5 2.8 42.8 7.9
NB High 63 9 37.7 3.2 21.1 1.5 32.7 4.4
QC Low 1,386 295 564.8 32.3 249.8 21.6 265.4 32.3
QC Medium 1,397 231 653.1 37.8 410.4 24.7 563.3 35.9
QC High 696 96 342.7 26.6 231.3 14.5 368.7 25.4
ON Low 2,052 335 998.4 48.1 472.6 32.3 480.2 43.3
ON Medium 2,058 348 1,108.5 46.9 656.5 33.9 799.2 44.6
ON High 1,028 236 594.0 28.9 340.6 20.2 719.5 28.5
MB Low 187 47 65.6 8.0 39.1 3.7 47.0 9.1
MB Medium 187 55 105.0 8.0 53.2 3.9 73.2 8.7
MB High 94 29 52.2 4.6 33.3 2.3 54.1 5.2
SK Low 167 20 63.8 8.0 32.6 3.6 43.0 10.7
SK Medium 167 26 84.6 7.9 48.1 3.5 59.8 9.7
SK High 84 15 47.8 4.2 29.2 1.8 37.3 5.6
AB Low 296 49 97.7 12.7 57.6 5.8 115.0 14.7
AB Medium 597 77 295.7 23.1 164.7 12.1 230.0 24.8
AB High 596 71 309.8 23.7 220.6 13.2 336.2 25.9
BC Low 727 132 308.9 23.7 148.3 13.5 178.1 22.8
BC Medium 728 116 329.7 25.2 196.4 14.4 333.6 24.9
BC High 364 85 225.5 14.6 125.9 8.1 228.7 14.3

Note: The numbers for Canada include the 10 provinces but not the 3 territories. The income boundaries are
$45,000 for the low- to medium-income households and $85,000 for the medium- to high-income households.
Newfoundland and Labrador is denoted by NL; Prince Edward Island is denoted by PEI; Nova Scotia is denoted
by NS; New Brunswick is denoted by NB; Quebec is denoted by QC; Ontario is denoted ON; Manitoba is denoted
by MB; Saskatchewan is denoted by SK; Alberta is denoted by AB; and British Columbia is denoted by BC.
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Table 8: 2009 estimates of the total value of transactions (predictor) and its standard errors
(RMSE) for cash, debit cards and credit cards. Estimates are in millions.

Income Population Sample Cash Debit Credit
Provinces groups size (in 1,000) size Predictor RMSE Predictor RMSE Predictor RMSE
Canada All 13,382 1,542 126,112.0 7,470.0 201,388.5 13,438.0 350,363.8 13,930.0
NL Low 83 18 628.0 149.7 870.8 128.5 396.5 133.7
NL Medium 83 35 671.9 114.4 1,222.3 100.0 1,807.2 101.1
NL High 41 36 431.2 56.7 822.4 52.1 1,790.9 48.5
PEI Low 23 10 169.3 36.7 237.8 33.4 178.8 33.7
PEI Medium 23 16 211.7 33.6 342.4 25.9 484.1 23.8
PEI High 11 17 129.9 17.6 210.8 12.7 420.9 13.5
NS Low 157 41 1,558.8 228.7 1,632.0 253.5 1,187.3 248.0
NS Medium 157 91 1,535.4 181.8 2,284.7 189.7 3,587.7 220.0
NS High 78 92 799.6 85.2 1,574.3 90.4 3,692.1 105.0
NB Low 125 52 964.1 179.3 1,332.6 191.7 993.7 195.4
NB Medium 125 62 1,065.1 157.9 1,814.6 138.0 2,964.0 161.7
NB High 62 49 892.1 86.3 1,265.0 72.0 2,930.4 78.3
QC Low 1,359 59 11,598.8 1,890.2 13,578.6 2,149.6 10,286.2 2,269.5
QC Medium 1,359 81 13,494.8 1,672.1 19,003.9 1,581.6 30,036.7 1,628.1
QC High 680 77 7,892.7 825.5 13,728.0 876.3 30,383.2 879.9
ON Low 1,980 61 16,978.0 2,529.1 23,120.9 2,780.8 20,974.3 2,986.0
ON Medium 1,980 100 18,498.7 2,162.8 32,385.5 2,408.1 58,693.5 2,446.7
ON High 990 92 12,874.3 1,188.1 22,866.9 1,357.1 58,597.3 1,407.1
MB Low 188 27 1,245.8 284.0 1,966.4 287.4 1,566.8 281.6
MB Medium 188 44 1,827.2 267.2 2,891.0 212.3 4,962.7 210.6
MB High 94 37 1,096.3 123.4 1,919.5 116.2 4,405.4 121.4
SK Low 161 31 1,056.9 245.0 1,754.9 241.8 1,680.7 248.4
SK Medium 161 46 1,373.4 213.3 2,459.8 191.1 4,394.9 187.1
SK High 80 61 840.5 102.8 1,698.3 96.0 4,078.4 107.1
AB Low 276 36 1,904.4 406.4 2,801.2 428.6 2,331.2 420.7
AB Medium 553 53 4,699.6 777.8 7,917.1 631.3 13,553.3 667.3
AB High 553 54 5,563.5 731.0 11,528.8 626.1 29,894.1 660.4
BC Low 725 47 5,284.4 1,015.6 8,057.3 1,100.2 8,633.7 1,106.8
BC Medium 725 67 6,150.9 903.0 11,473.0 834.1 22,590.2 857.4
BC High 362 50 4,674.5 474.4 8,627.7 461.4 22,867.5 496.5

Note: The numbers for Canada include the 10 provinces but not the 3 territories. The income boundaries are
$40,000 for the low- to medium-income households and $80,000 for the medium- to high-income households.
Newfoundland and Labrador is denoted by NL; Prince Edward Island is denoted by PEI; Nova Scotia is denoted
by NS; New Brunswick is denoted by NB; Quebec is denoted by QC; Ontario is denoted ON; Manitoba is denoted
by MB; Saskatchewan is denoted by SK; Alberta is denoted by AB; and British Columbia is denoted by BC.
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Table 9: 2013 estimates of the total value of transactions (predictor) and its standard errors
(RMSE) for cash, debit cards and credit cards. Estimates are in millions.

Income Population Sample Cash Debit Credit
Provinces groups size (in 1,000) size Predictor RMSE Predictor RMSE Predictor RMSE
Canada All 13,792 2,428 149,010.8 6,260.0 190,014.0 7,852.0 462,244.2 9,366.0
NL Low 86 6 689.2 276.8 676.9 197.6 1,307.9 290.4
NL Medium 86 8 862.8 227.2 1,208.1 130.1 2,901.0 278.3
NL High 43 10 708.0 105.8 877.1 71.1 2,627.9 147.7
PEI Low 23 29 149.5 44.4 222.4 34.2 329.7 62.7
PEI Medium 23 23 230.2 49.7 303.7 35.3 607.4 69.4
PEI High 12 13 161.0 27.5 191.2 18.5 492.8 36.3
NS Low 158 19 1,078.8 317.4 1,315.5 231.8 2,715.3 467.6
NS Medium 158 6 1,565.9 500.7 1,972.1 380.3 4,990.7 540.2
NS High 79 3 1,166.1 309.1 1,480.4 136.7 4,232.1 295.8
NB Low 125 18 738.1 276.1 978.9 200.4 2,023.4 367.3
NB Medium 125 21 1,497.6 266.7 1,612.8 194.6 3,285.9 380.4
NB High 63 9 887.7 146.7 1,126.6 96.5 3,269.8 212.6
QC Low 1,386 295 13,826.4 1,231.9 11,764.1 1,391.4 16,667.7 2,017.0
QC Medium 1,397 231 15,551.8 1,490.0 18,539.5 1,549.7 42,173.1 2,402.8
QC High 696 96 8,191.9 951.8 12,898.1 976.7 36,923.6 1,412.1
ON Low 2,052 335 18,835.5 1,785.4 22,002.2 1,906.7 32,808.3 2,911.5
ON Medium 2,058 348 23,730.7 1,759.4 33,602.4 2,084.8 72,705.8 2,924.1
ON High 1,028 236 14,718.8 1,107.1 19,912.9 1,258.5 69,634.4 1,748.5
MB Low 187 47 1,056.1 312.9 1,657.9 259.1 3,489.8 462.7
MB Medium 187 55 1,993.9 301.7 2,428.1 260.2 5,899.0 470.5
MB High 94 29 1,388.6 175.7 1,815.9 138.4 5,185.8 255.6
SK Low 167 20 1,035.5 352.0 1,364.3 247.0 2,981.7 472.6
SK Medium 167 26 2,316.7 328.7 2,560.5 256.9 6,161.8 493.6
SK High 84 15 1,341.9 191.9 1,659.6 140.7 4,841.4 262.6
AB Low 296 49 1,469.2 500.5 2,618.6 409.3 8,148.0 735.7
AB Medium 597 77 5,897.3 912.5 8,271.3 771.4 20,407.1 1,349.6
AB High 596 71 7,663.6 942.4 13,163.1 861.3 37,914.4 1,383.0
BC Low 727 132 7,204.4 907.1 6,658.8 866.4 15,552.9 1,398.9
BC Medium 728 116 7,407.1 965.0 10,171.1 950.3 29,096.1 1,401.3
BC High 364 85 5,646.7 510.4 6,959.6 524.4 22,869.7 842.3

Note: The numbers for Canada include the 10 provinces but not the 3 territories. The income boundaries are
$45,000 for the low- to medium-income households and $85,000 for the medium- to high-income households.
Newfoundland and Labrador is denoted by NL; Prince Edward Island is denoted by PEI; Nova Scotia is denoted
by NS; New Brunswick is denoted by NB; Quebec is denoted by QC; Ontario is denoted ON; Manitoba is denoted
by MB; Saskatchewan is denoted by SK; Alberta is denoted by AB; and British Columbia is denoted by BC.
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Figure 2: Scenario 3, plots of the relative biases of the MSE estimators
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Note: The proposed bootstrap MSE procedure is in blue and denoted by JNBOOT. The bootstrap MSE estimator
of Sinha and Rao (2009) is in pink and denoted by SRBOOT. The bootstrap MSE estimator of Jiongo et al. (2013)
is in green and denoted by JHDBOOT. The analytical linearization MSE and linearization-based MSE estimators
developed by Chambers et al. (2014) are in yellow and red and denoted by CCT and CCST, respectively.
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Figure 3: Normal plots for the random effects with the 2013 volumes and values of cash, debit
card and credit card transaction models
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(b) cash value
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(c) debit volume
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(d) debit value

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

−2 −1 0 1 2

−2
−1

0
1

2

Normal Q−Q Plot

Theoretical Quantiles

Sa
m

pl
e 

Q
ua

nt
ile

s

(e) credit volume
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(f) credit value

Note: The plots are computed for the model (26) given by
yij = β0 + x1ijβ1 + x2ijβ2 + x3ijβ3 + vi + eij , i = 1, . . . , k and j = 1, . . . , ni,

where the errors and random effects are assumed to be an independent normal distribution with variance
parameters σ2

e and σ2
v , respectively.
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Figure 4: Normal plots for the residuals with the 2013 volumes and values of cash, debit card
and credit card transaction models
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Note: The plots are computed for the model (26) given by
yij = β0 + x1ijβ1 + x2ijβ2 + x3ijβ3 + vi + eij , i = 1, . . . , k and j = 1, . . . , ni,

where the errors and random effects are assumed to be an independent normal distribution with variance
parameters σ2

e and σ2
v , respectively.
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Figure 5: Result for the cash payment method in the 2013 MOP: ratio of the RMSE relative to
the JNBOOT RMSE
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Note: The areas are sorted by decreasing sample size. The ratio is computed as

√
M̂SE(Ŷi)√

M̂SE
JNBOOT

(Ŷi)
, where

M̂SE
(
Ŷi

)
is a generic notation for CCT, CCST, JHDBOOT, SRBOOT and JNBOOT of point estimates Ŷi; and

M̂SE
JNBOOT

denotes the proposed estimated MSE.
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Figure 6: Coefficients of variation of the predictors of the small-area total value of transactions
of cash, debit cards and credit cards.
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(f) credit 2013

Note: The coefficient of variation is computed by CVi =
M̂SE(Ŷi)

Ŷi
, where M̂SE

(
Ŷi

)
and Ŷi denote the

estimated MSE and total value of transactions with a given payment method (cash, debit or credit) for the
household income group i within each province, respectively.
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Figure 7: Volume and value of transactions at the national level with the associated confidence
intervals
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Note: The confidence intervals are computed as Ŷi ± 1.96

√
M̂SE

(
Ŷi

)
, where M̂SE

(
Ŷi

)
and Ŷi denote the

estimated MSE and total value of transactions with a given payment method (cash, debit or credit), respectively.
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Figure 8: Volume of transactions at the nested province household income group level with the
associated confidence intervals
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Note: The confidence intervals are computed as Ŷi ± 1.96

√
M̂SE

(
Ŷi

)
, where M̂SE

(
Ŷi

)
and Ŷi denote the

estimated MSE and total value of transactions with a given payment method (cash, debit or credit), respectively.
Newfoundland and Labrador is denoted by NL; Prince Edward Island is denoted by PEI; Nova Scotia is denoted
by NS; New Brunswick is denoted by NB; Quebec is denoted by QC; Ontario is denoted ON; Manitoba is denoted
by MB; Saskatchewan is denoted by SK; Alberta is denoted by AB; and British Columbia is denoted by BC.
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Appendix: Proofs
This section provides the proofs of Conditions (21) to (24) stated in Lemma 3.

Proof of Lemma 3

Proof of (21): d4

(
Fv, F̂uk

)
p−→0 as k−→∞ and d4

(
Fe, F̂ek

)
p−→0 as k−→∞.

Using the triangular inequality and a binomial expansion, it can be shown that

1

8
d4

(
Fv, F̂uk

)4

≤ d4 (Fv, Fu)
4 + d4

(
Fu, F̂uk

)4

and
1

8
d4

(
Fu, F̂uk

)4

≤ d4 (Fu, Fuk)
4 + d4

(
Fuk, F̂uk

)4

,

and this implies that

d4

(
Fv, F̂uk

)4

≤ 8d4 (Fv, Fu)
4 + 64d4 (Fu, Fuk)

4 + 64d4

(
Fuk, F̂uk

)4

.

Notice that vi and eij are in the local neighborhood of normal distribution given by (4); we have:
ûi = ui + Op(k

−1/2), where ui =
√
ρi (αi + ε̄i). By the stability of the normal distribution of

αi and εij , it follows that ui is distributed as Fv.
We then have d4 (Fv, Fu)

4 = 0, and by Lemma 8.4 of Bickel and Freedman (1981) we also have
d4 (Fu, Fuk)

4 p−→0 as k−→∞.

On the other hand, since Fuk and F̂uk are two empirical distributions, this implies that

d4

(
Fuk, F̂uk

)4

≤ 1

k

k∑
i=1

(ûi − ui)4 = Op(k
−2),

so that, finally, d4

(
Fv, F̂uk

)
p−→0 as k−→∞.

Likewise, we have

d4

(
Fe, F̂ek

)4

≤ 8d4 (Fe, Fω)4 + 64d4 (Fω, Fωk)
4 + 64d4

(
Fωk, F̂ek

)4

,

where ωij = (1− τi)αi + εij − τiε̄i, i = 1, . . . , k j = 1, . . . , ni.

Note that the sampling residuals are ẽij = êij − 1
n

∑k
g=1

∑
l∈sg êgl and that since the vi and eij

are in the local neighborhood of normal distribution given by (4), the ωij are independent and
identically distributed with the same distribution Fe. Then d4 (Fe, Fω) = 0, and by Lemma 8.4
of Bickel and Freedman (1981), d4 (Fω, Fωk)

4 p−→0.

On the other hand, we can write êij = ωij +Op(k
−1/2),

which implies that ẽij − ωij = Op(k
−1/2). It follows that

d4

(
Fωk, F̂ek

)4

≤ 1

n

k∑
i=1

ni∑
j=1

(ẽij − ωij)4

= Op(k
−2)

p−→0 as k−→∞.
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Hence, d4

(
Fe, F̂ek

)4 p−→0 as k−→∞. �

Proof of (22): J∗1
p→ J1, where

J∗1 = lim
k→∞

k∑
i=1

I
−1/2
1k X>i V

−1
i U

1/2
i E∗

{
Ψb(r

∗
i )Ψb(r

∗
i )
>}U1/2

i V −1
i XiI

−1/2
1k .

Denote: Xi =
(

1ni
, X̃i

)
, where Xi is a ni × (p− 1) matrix of auxiliary variables.

J1k =
k∑
i=1

I
−1/2
1k X>i V

−1
i U

1/2
i Em

{
Ψb(ri)Ψb(ri)

>}U1/2
i V −1

i XiI
−1/2
1k ,

a2 = Em
{
ψ2
b (rij)

}
, a11 = Em {ψb(rij1)ψb(rij2)} , for j1 6= j2.

Then, a straightforward calculation shows that

J1k =

(
J111k J112k

J>112k J122k

)
,

where

J111k =
1

k

k∑
i=1

{
σ4
e

σ4
v

ρ2
i a11 +

σ2
e

σ2
v

(ρi − ρ2
i )(a2 − a11)

}
,

J112k =

√
k

n

[
1

k

k∑
i=1

{
σ4
e

σ4
v

ρ2
i a11 +

σ2
e

σ2
v

(ρi − ρ2
i )(a2 − a11)

}
¯̃Xi

]
,

J122k =
k

n

[
1

k

k∑
i=1

{
σ4
e

σ4
v

ρ2
i a11 +

σ2
e

σ2
v

(ρi − ρ2
i )(a2 − a11)

}
¯̃X>i

¯̃Xi

]
+

k∑
i=1

ni
n

{
1

ni
X̃>i X̃i − ¯̃X>i

¯̃Xi

}
,

and ρi =
niσ

2
v

σ2
e + niσ2

v

.

Taking the expression to the limit as k−→∞ yields

J1 =

(
J111 J112

J>112 J122

)
,

where

J111 =
σ4
e

σ4
v

ν1a11 +
σ2
e

σ2
v

(ν1 − ν2)(a2 − a11),

J112 =
√
c lim
k→∞

[
1

k

k∑
i=1

{
σ4
e

σ4
v

ρ2
i a11 +

σ2
e

σ2
v

(ρi − ρ2
i )(a2 − a11)

}
¯̃Xi

]
,

J122 = lim
k→∞

[
c

1

k

k∑
i=1

{
σ4
e

σ4
v

ρ2
i a11 +

σ2
e

σ2
v

(ρi − ρ2
i )(a2 − a11)

}
¯̃X>i

¯̃Xi +
k∑
i=1

ni
n

{
1

ni
X̃>i X̃i − ¯̃X>i

¯̃Xi

}]
,

with

ν1 = lim
k→∞

1

k

k∑
i=1

ρi, and ν2 = lim
k→∞

1

k

k∑
i=1

ρ2
i .
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Using the same reasoning, we can obtain the bootstrap version J∗1 of J1 defined by

J∗1 =

(
J∗111 J∗112

J∗>112 J∗122

)
,

where

J∗111 =
σ̂4
e

σ̂4
v

ν̂1a
∗
11 +

σ̂2
e

σ̂2
v

(ν̂1 − ν̂2)(a∗2 − a∗11),

J∗112 =
√
c lim
k→∞

[
1

k

k∑
i=1

{
σ̂4
e

σ̂4
v

ρ̂2
i a
∗
11 +

σ̂2
e

σ̂2
v

(ρ̂i − ρ̂2
i )(a

∗
2 − a∗11)

}
¯̃Xi

]
,

J∗122 = lim
k→∞

[
c

1

k

k∑
i=1

{
σ̂4
e

σ̂4
v

ρ̂2
i a
∗
11 +

σ̂2
e

σ̂2
v

(ρ̂i − ρ̂2
i )(a

∗
2 − a∗11)

}
¯̃X>i

¯̃Xi +
k∑
i=1

ni
n

{
1

ni
X̃>i X̃i − ¯̃X>i

¯̃Xi

}]
,

and

ν̂1 =
1

k

k∑
i=1

ρ̂i, ν̂2 =
1

k

k∑
i=1

ρ̂2
i , a∗2 = E∗

{
ψ2
b (r
∗
ij)
}
, a∗11 = E∗

{
ψb(r

∗
ij1

)ψb(r
∗
ij2

)
}
, j1 6= j2.

By Lemmas 2.1 and 8.5 of Bickel and Freedman (1981), a∗11 and a∗2 converge in probability
to a11 and a2, respectively. Lemma 1 obtained above implies that (σ̂2

v , σ̂
2
e , ν̂1, ν̂2) converge in

probability to (σ2
v , σ

2
e , ν1, ν2). Hence, by continuity, J∗1

p→ J1. �

Proof of (23): J∗2
p→ J2, where

J∗2 = lim
k→∞

k∑
i=1

I
−1/2
2k E∗

{
Ψ2(y∗i , Xi, θ)Ψ

>
2 (y∗i , Xi, θ)

}
I
−1/2
2k .

The proof of (23) proceeds exactly as for (22). The derivation is, however, more cumbersome
because it requires calculation of the fourth-order moments. Thus, after a lengthy algebraic
expansion, one could write

J2k =

(
J211k J212k

J212k J222k

)
,

with

J211k =
1

σ4
e

(
1− η
η

)2(
a11 − ηa2

1− η

)2(
ρ̄− 1

η
ρ̄2

)2

k + A11k,

where η =
σ2
v

σ2
e + σ2

v

, and A11k is a bounded sequence of real numbers given by

A11k =
1

σ4
eη

2
(a4 − 4a31 − 4a22 − 12a211 − 6a1111)

(
ρ̄− 3ρ̄2 + 3ρ̄3 − ρ̄4

)
+

1

σ4
eη

2

{
4a31 + 4a22 − 18a211 + 11a1111 − (a2 − a11)2

} (
ρ̄2 − 2ρ̄3 + ρ̄4

)
+

1− η
σ4
eη

3
{6a211 − 6a1111 − 2a11(a2 − a11)}

(
ρ̄3 − ρ̄4

)
+

(1− η)2

σ4
eη

4

(
a1111 − a2

11

)
ρ̄4

= A11

(
σ2
e , η, a4, a31, a22, a211, a1111, ρ̄, ρ̄2, ρ̄3, ρ̄4

)
.
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The numbers a4, a31, a22, a211, a1111 are fourth-order moments defined by

a4 = Em
{
ψ4
b (rij)

}
, a31 = Em

{
ψ3
b (rij1)ψb(rij2)

}
, a22 = Em

{
ψ2
b (rij1)ψ

2
b (rij2)

}
,

a211 = Em
{
ψ2
b (rij1)ψb(rij2)ψb(rij3)

}
, a1111 = Em {ψb(rij1)ψb(rij2)ψb(rij3)ψb(rij4)} ,

where j1 6= j2, j1 6= j3, j1 6= j4, , j2 6= j3, j2 6= j4, and j3 6= j4,

and the numbers ρ̄l, l = 1, 2, 3, 4 are defined by ρ̄l =
1

k

∑k
i=1 ρ

l
i, l = 1, 2, 3, 4.

Note that A11(·), as defined above, is a continuous function of its arguments.

Likewise,

J212k =
1

σ4
e

(
1− η
η

)(
a11 − ηa2

1− η

)2(
ρ̄− 1

η
ρ̄2

)(
1− ρ̄

√
k

n

)
√
nk

+
1

σ4
eη

2
{a211 − a1111 + a11(a2 − a11)}

√
n

k
+ A12k

√
k

n
,

where, as for the above derivation, A12k is a bounded sequence of real numbers that depends
on the fourth moments of ψb(rij) and the sample moments of ρli, l = 1, 2, 3, 4. That is,
A12k = A12

(
σ2
e , η, a4, a31, a22, a211, a1111, ρ̄, ρ̄2, ρ̄3, ρ̄4

)
, and A12(·) is a continuous function

of its arguments.

The last component J222k of matrix J2k is given by

J222k =
1

σ4
e

(
a11 − ηa2

1− η

)2{
1−

(
ρ̄+

1

η
ρ̄− 1

η
ρ̄2

)
k

n

}2

n

+
1

σ4
e(1− η)2

{
a22 − 2a211 + a1111 − (a2 − a11)2

}( 1

n

k∑
i=1

n2
i

)

+
1

σ4
e(1− η)2

{
a4 − 3a22 − 4a31 + 12a211 − a1111 + 2(a2 − a11)2

}
+ A22k ×

k

n
,

where, as above, A22k is a bounded sequence of real numbers and can be written as A22k =
A22

(
σ2
e , η, a4, a31, a22, a211, a1111, ρ̄, ρ̄2, ρ̄3, ρ̄4

)
, where A12(·) is also a continuous function of

its arguments.

Since Assumption A1 implies that
k

n
converges to a possibly zero constant c, and the limit of

J2k is assumed to always exist and be finite by Assumption A4, then we must have

a11 − ηa2 = 0,

a211 − a1111 + a11(a2 − a11) = 0,

a22 − 2a211 + a1111 − (a2 − a11)2 = 0.

It follows that

J2 = lim
k→∞

J2k =

(
J211 J212

J212 J222

)
,
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where

J211 =
1

σ4
eη

2
(a4 − 4a31 − 4a22 − 12a211 − 6a1111) (ν1 − 3ν2 + 3ν3 − ν4)

+
1

σ4
eη

2

{
4a31 + 4a22 − 18a211 + 11a1111 − (a2 − a11)2

}
(ν2 − 2ν3 + ν4)

+
1− η
σ4
eη

3
{6a211 − 6a1111 − 2a11(a2 − a11)} (ν3 − ν4)

+
(1− η)2

σ4
eη

4

(
a1111 − a2

11

)
ν4,

= A11

(
σ2
e , η, a4, a31, a22, a211, a1111, ν1, ν2, ν3, ν4

)
,

J212 =
√
cA12

(
σ2
e , η, a4, a31, a22, a211, a1111, ν1, ν2, ν3, ν4

)
,

and

J222 =
1

σ4
e(1− η)2

{
a4 − 3a22 − 4a31 + 12a211 − a1111 + 2(a2 − a11)2

}
+ cA22

(
σ2
e , η, a4, a31, a22, a211, a1111, ν1, ν2, ν3, ν4

)
.

Likewise, the bootstrap version J∗2 of J2 is given by

J∗2 = lim
k→∞

J∗2k =

(
J∗211 J∗212

J∗212 J∗222

)
,

where

J∗211 = A11

(
σ̂2
e , η̂, a

∗
4, a
∗
31, a

∗
22, a

∗
211, a

∗
1111, ν̂1, ν̂2, ν̂3, ν̂4

)
,

J∗212 =
√
cA12

(
σ̂2
e , η̂, a

∗
4, a
∗
31, a

∗
22, a

∗
211, a

∗
1111, ν̂1, ν̂2, ν̂3, ν̂4

)
,

J∗222 =
1

σ̂4
e(1− η̂)2

{
a∗4 − 3a∗22 − 4a∗31 + 12a∗211 − a∗1111 + 2(a∗2 − a∗11)2

}
+ cA22

(
σ̂2
e , η̂, a

∗
4, a
∗
31, a

∗
22, a

∗
211, a

∗
1111, ν̂1, ν̂2, ν̂3, ν̂4

)
.

By Lemmas 2.1 and 8.5 of Bickel and Freedman (1981), a∗11, a
∗
2, a∗4, a

∗
31, a

∗
22, a

∗
211 and a∗1111

converge in probability to a11, a2, a4, a31, a22, a211 and a1111, respectively. Since, by Lemma
1 above, (σ̂2

v , σ̂
2
e , ν̂1, ν̂2, ν̂3, ν̂4) converges in probability to (σ2

v , σ
2
e , ν1, ν2, ν3, ν4) , it then follows

by the continuous mapping theorem that J∗2
p−→J2. �

Proof of (24): G∗(θ) p→ G(θ) where

G∗(θ̂) = lim
k→∞

k∑
i=1

 −I−1/2
1k E∗

{
∂Ψ1(y∗i ,Xi,θ̂)

∂β̂

}
I
−1/2
1k 0

0 −I−1/2
2k E∗

{
∂Ψ2(y∗i ,Xi,θ̂)

∂δ̂

}
I
−1/2
2k

 ,
and

G(θ) = lim
k→∞

k∑
i=1

 −I−1/2
1k Em

{
∂Ψ1(yi,Xi,θ)

∂β

}
I
−1/2
1k 0

0 −I−1/2
2k Em

{
∂Ψ2(yi,Xi,θ)

∂δ

}
I
−1/2
2k

 .
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We use the same reasoning as for the proofs of (22) and (23). A straightforward expansion
of the components of Gk(θ) allows us to express it as a sum of two components, one of
which is a bounded sequence and another of which depends on a2, a11, d2, d11, where d2 =
Em
{
rijψ

′

b(rij)ψb(rij)
}

and d11 = Em
{
rij1ψ

′

b(rij1)ψb(rij2)
}
, j1 6= j2.

By Assumptions A1 and A5, which respectively assume that
k

n
converges to a possibly zero

constant c ∈ [0, 1] and that the limit G(θ) of Gk(θ) always exists and is finite, we must have

a2 − a11 − d2 + d11 = 0.

It then follows that

G(θ) =


G111 G112 0 0
G>112 G122 0 0

0 0 G211 G212

0 0 G212 G222

 ,
where

G111 =
d1

σ2
e

1− η
η

ν1,

G112 =
d1

σ2
e

1− η
η

√
c lim
k→∞

[
1

k

k∑
i=1

ρi
¯̃Xi

]
,

G122 =
d1

σ2
e

lim
k→∞

[
1− η
η

c
1

k

k∑
i=1

ρi
¯̃X>i

¯̃Xi +
k∑
i=1

ni
n

{
1

ni
X̃>i X̃i − ¯̃X>i

¯̃Xi

}]
,

G211 =
1

σ4
e

(
1− η
η

)2

{(1− η)a2 + d11} ν2,

G212 =
1

σ4
e

(
1− η
η

)√
c {(1− η)a2 + d11} (ν1 − ν2),

G222 =
a2

σ2
e

+
c

σ2
e

[
a2 {2ν2 − 3ν1 + (ν1 − ν2)η}+

1− η
η

(ν1 − ν2)d11

]
,

where d1 = Em
{
ψ
′

b(rij)
}
.

Likewise, we have

G∗(θ̂) =


G∗111 G∗112 0 0
G∗>112 G∗122 0 0

0 0 G∗211 G∗212

0 0 G∗212 G∗222

 ,
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where

G∗111 =
d∗1
σ̂2
e

1− η̂
η̂

ν̂1,

G∗112 =
d∗1
σ̂2
e

1− η̂
η̂

√
c lim
k→∞

[
1

k

k∑
i=1

ρ̂i
¯̃Xi

]
,

G∗122 =
d∗1
σ̂2
e

lim
k→∞

[
1− η̂
η̂

c
1

k

k∑
i=1

ρ̂i
¯̃X>i

¯̃Xi +
k∑
i=1

ni
n

{
1

ni
X̃>i X̃i − ¯̃X>i

¯̃Xi

}]
,

G∗211 =
1

σ̂4
e

(
1− η̂
η̂

)2

{(1− η̂)a∗2 + d∗11} ν̂2,

G∗212 =
1

σ̂4
e

(
1− η̂
η̂

)√
c {(1− η̂)a∗2 + d∗11} (ν̂1 − ν̂2),

G∗222 =
a∗2
σ̂2
e

+
c

σ̂2
e

[
a∗2 {2ν̂2 − 3ν̂1 + (ν̂1 − ν̂2)η̂}+

1− η̂
η̂

(ν̂1 − ν̂2)d∗11

]
,

with

d∗1 = E∗

{
ψ
′

b(r
∗
ij).
}
, d∗2 = E∗

{
r∗ijψ

′

b(r
∗
ij)ψb(r

∗
ij)
}
, d∗11 = E∗

{
r∗ij1ψ

′

b(r
∗
ij1

)ψb(r
∗
ij2

)
}
, j1 6= j2.

It follows by the continuous mapping theorem that G∗(θ̂) converges in probability to G(θ) as
k−→∞. �
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