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Abstract 

Equilibrium bond-pricing models rely on inflation being bad news for future growth to 
generate upward-sloping nominal yield curves. We develop a model that can generate 
upward-sloping nominal and real yield curves by instead using ambiguity about inflation 
and growth. Ambiguity can help resolve the puzzling fact that upward-sloping yield curves 
have persisted despite positive inflation shocks changing from negative to positive news 
about growth in the last twenty years. Investors make decisions using worst-case beliefs, 
under which the expectations hypothesis roughly holds. However, inflation and growth 
evolve over time under the true distribution, and this difference makes excess returns on 
long-term bonds predictable. The model is also consistent with the recent empirical 
findings on the term structure of equity returns. 
 
Bank topics: Asset pricing; Financial markets; Interest rates 
JEL codes: G00, G12, E43 
 

Résumé 

Les modèles d’équilibre servant à l’évaluation des obligations reposent sur l’hypothèse que 
l’inflation a pour effet de freiner la croissance future, ce qui se traduit par une courbe des 
rendements nominaux ascendante. Nous concevons un modèle pouvant générer des 
courbes ascendantes pour les rendements nominaux et réels, en tenant compte d’un certain 
degré d’ambiguïté à l’égard de l’inflation et de la croissance. Cette ambiguïté peut 
contribuer à expliquer l’étonnante persistance des courbes de rendement ascendantes en 
dépit des chocs d’inflation positifs, qui ont eu des répercussions positives plutôt que 
négatives sur la croissance au cours des vingt dernières années. Les investisseurs fondent 
leurs décisions sur l’hypothèse que le pire des scénarios se réalisera, et dans ce cadre, 
l’hypothèse relative aux attentes se vérifie globalement. Or, l’évolution de l’inflation et de 
la croissance au fil du temps ne reflète pas l’hypothèse du pire scénario, et cette différence 
fait en sorte qu’il est possible de prévoir les excédents de rendement des obligations à long 
terme. Les résultats obtenus à l’aide de notre modèle concordent également avec les 
analyses empiriques récentes de la structure par terme des rendements des actions. 
 
Sujets : Évaluation des actifs; Marchés financiers; Taux d’intérêt 
Codes JEL : G00, G12, E43 

        
 



Non-Technical Summary

This paper develops an equilibrium asset pricing model to solve three puzzles in fi-

nance. First, to generate an upward-sloping nominal yield curve, equilibrium bond-pricing

models rely on the assumption that inflation is bad news for future growth. However,

today inflation is considered good news for future growth. Second, despite strong evi-

dence of realized excess bond return predictability, the expectations hypothesis roughly

holds under the subjective expectations from the survey. Finally, the term structure of

Treasury inflation-protected securities is upward sloping in the U.S.

The three puzzles are tightly connected, and the challenge is to explain them simulta-

neously. Departing from the rational expectation hypothesis, we assume that the investor

is ambiguity averse and evaluates future prospects under a worst-case scenario. The term

structure of ambiguity for inflation is upward sloping before the late 1990s, and slopes

downward afterwards, while the ambiguity yield curve for real output growth is always

downward sloping. The ambiguity yields are linked with bond yields and equity yields

through the recursive multiple priors preference in equilibrium.

For both subperiods, the worst-case distribution for output growth is the lower bound

of the set of alternative mean growth rates, which is upward sloping because of the

downward-sloping output forecast dispersion. Thus the real bond yield is always upward

sloping. Before the late 1990s, when inflation expectation is negatively associated with

the worst-case growth expectation, ambiguity averse investors pick the upper bound from

the set of alternative mean inflation scenarios, which is upward sloping. This generates an

upward-sloping nominal yield curve. During the second subperiod, inflation expectation

is positively associated with the worst-case growth expectation, and the worst-case mean

inflation becomes the lower bound. However, at the same time, the inflation forecast

dispersion turns to be downward sloping, which again implies an upward-sloping mean

inflation in equilibrium. Therefore the model generates upward-sloping nominal yield

curves in both subperiods, but with a different mechanism.
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1. Introduction

To be consistent with the fact that the nominal yield curves are upward sloping,

equilibrium bond-pricing models rely on inflation as bad news for future growth and the

assumption that agents prefer early resolution of uncertainty; see, for example, Piazzesi

and Schneider (2007) (henceforth PS 2007) and Bansal and Shaliastovich (2013). The

intuition is that a positive surprise to inflation lowers future consumption growth, and at

the same time, decreases the real payoff of long-term nominal bonds. Therefore, long-term

nominal bonds are risky and command a term spread over short-term bonds. However, in

the current macroeconomic environment where inflation is good news for future growth,

these models also imply a downward-sloping nominal yield curve, which is in contrast

to the fact that in the data the nominal yield curve continues to slope up after the

late 1990s.2 This paper provides an alternative approach to understand upward-sloping

nominal yield curves in both environments.

An important related fact is excess bond return predictability. Against the expecta-

tions hypothesis, Fama and Bliss (1987), Campbell and Shiller (1991), Dai and Singleton

(2002), and Cochrane and Piazzesi (2005) provide evidence for bond return predictabil-

ity using yield spreads and forward rates as predictors. Others, however, show that the

failure of the expectations hypothesis is due to expectational errors (Froot (1989); Pi-

azzesi et al. (2015)). We will show that these results can be reconciled if investors have

equilibrium subjective beliefs that are different from the reference distribution.

From the perspective of equilibrium asset pricing models, another puzzling fact is that

the term structure of Treasury inflation-protected securities (TIPS) is upward sloping in

the U.S. In the twenty-year history of TIPS data, the observed slope has never been

significantly negative. Campbell (1986) shows that real bonds have a negative real term

premium if consumption growth follows a persistent process. While it has been difficult

2Recent developments in the bond market literature have shown that the correlation between con-
sumption growth and inflation has switched from negative to positive after the late 1990s, which can
explain the changes in correlation between U.S. Treasury bond returns and stock returns. See, for
example, Burkhardt and Hasseltoft (2012); David and Veronesi (2013); Campbell et al. (2016); Song
(2017).
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to account for the nominal bond yield curve and bond return predictability, it is much

harder for an equilibrium model of bond pricing to also capture real bond yields. In fact,

except for Wachter (2006), the previously mentioned models generate a downward-sloping

real yield curve. Finally, the recent empirical findings on the term structure of equity

returns pose some serious challenges to equilibrium models.3

This paper develops a consumption-based asset pricing model that helps to explain the

preceding features in the data by positing that investors have limited information about

the stochastic environment and hence face both risk and ambiguity. Risk refers to the

situation where there is a probability law to guide choice. However, there is incomplete

confidence that any single distribution accurately describes the environment, and ambi-

guity refers to the case where there is uncertainty about the distribution. Specifically, we

assume that there is ambiguity about both real growth and inflation distribution. Using

forecast dispersion as an empirical measure for the size of ambiguity (or confidence), we

find that, before the late 1990s, the size of ambiguity for long horizon inflation is bigger

than those for short horizons, and the term structure of ambiguity is reversed afterwards.

However, the term structure of ambiguity for real output growth is always downward

sloping. In equilibrium, ambiguity averse agents evaluate future prospects under the

worst-case measure. Given the term structure of ambiguity for inflation and real growth,

we show that, in equilibrium, the worst-case growth and inflation expectations are up-

ward sloping for both subperiods, which generates upward-sloping nominal and real yield

curves in both environments.

Departing from the rational expectation model, we assume that investors are ambi-

guity averse and have recursive multiple priors (or maxmin) preferences with a constant

relative risk aversion (CRRA) utility (Epstein and Schneider (2003)). Investors in this

economy have in mind a benchmark or reference measure of the economy’s dynamics

that represents the best point estimate of the stochastic process. As in PS 2007, under

the reference benchmark, real growth and inflation are described by a state space model.

3See, for example, Van Binsbergen and Koijen (2017) for a survey.
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However, investors are concerned that the reference measure is misspecified and believe

that the true measure is actually within a set of alternative measures that are statistically

close to the reference distribution.

The set of alternative measures for real growth/inflation is generated by a set of

different mean real growth/inflation rates around its reference mean value. We use the

Blue Chip Financial Forecast (BCFF) survey to characterize the properties of ambiguity

yields for U.S. real output growth and the consumer price index (CPI) from 1985 to 2017.

Motivated by the fact that inflation forecast dispersion has switched from upward sloping

to downward sloping after the late 1990s, we model inflation ambiguity as a random walk

with positive drift in the first subperiod and with negative drift in the second subperiod.

Given that real output growth forecast dispersion has been consistently downward sloping,

we assume that ambiguity about real growth is a random walk with negative drift in both

periods. We assume an unexpected discrete regime shift mainly due to changes in inflation

patterns and monetary policy with the first subperiod as the inflation fighting period of

Volcker and Greenspan and the second subperiod as the recent period of low inflation

and increased central bank transparency.4 One possible interpretation for the observed

change in term structure of forecast dispersion is that, as argued by Goodfriend and King

(2005), “inflation scares” were created during the monetary policy experimentation of the

late 1970s and early 1980s, and investors were not sure about future inflation scenarios

until inflation was fully under control after the late 1990s. Currently, investors have less

ambiguity regarding longer horizon inflation due to a clear understanding of inflation

targeting and the low inflation environment.

In equilibrium, the values of bonds and dividend strips can be solved as functions

of the ambiguity processes. For the whole period, ambiguity averse agents make deci-

sions using the lower bound of the set of alternative mean output growth–the worst-case

measure–which is upward sloping because of the downward-sloping dispersion yields for

output forecasts. Thus the real bond yield curve is always upward sloping. During the

4See, for example, Campbell et al. (2014) and Zhao (2017) for a similar regime break. The results are
robust to different regime break points.
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first subperiod, when inflation expectation is negatively associated with the worst-case

expected real output growth, the worst-case mean inflation is the upper bound, which is

upward sloping because the dispersion is bigger for a longer horizon. This implies that

investors’ subjective nominal short rate expectation is upward sloping, which generates

an upward-sloping nominal yield curve. During the second subperiod, inflation expec-

tation becomes positively associated with the worst-case expected real output growth,

and the worst-case mean inflation becomes the lower bound. However, at the same time,

the inflation forecast dispersion turns to be downward sloping, which again implies an

upward-sloping mean inflation in equilibrium. Therefore the model generates upward-

sloping nominal yield curves in both subperiods, but with a different mechanism. The

model-implied bond yield volatility is also consistent with data across periods.

Many studies have documented that excess returns on long-term bonds are pre-

dictable. However, using survey expectations as subjective beliefs, a small literature

argues that the failure of the expectations hypothesis is due to expectational errors. For

example, Piazzesi et al. (2015) show that the expected excess returns on long-term bonds

consist of two parts: the expected subjective bond premium and the difference between

subjective and statistical future interest rate expectations, and they find the second part

is significant. In our model, yields for long-term bonds are roughly equal to the average

of expected future short rates under the equilibrium worst-case belief. Thus, consistent

with Froot (1989) and Piazzesi et al. (2015), the expectations hypothesis roughly holds

under the subjective equilibrium belief. However, one part of the ambiguity (about long-

run inflation or GDP growth expectations) does not materialize when the time arrives,

thus there is no trend in the realized ambiguity process. Both this difference and current

yield spreads/forward rates are driven by the trend components in the ambiguity pro-

cess. Hence, consistent with the empirical evidence, the realized excess bond returns are

predictable in the model.

Even though the model focuses primarily on bond yields, it has important implica-

tions for the term structure of dividend strips as well. The empirical findings on equity

yields are different across countries. Using dividend future contracts for the S&P500,

7



Van Binsbergen and Koijen (2017) show that dividend future returns are slightly upward

sloping and the volatility of equity yields is downward sloping, and the market returns are

not significantly different from individual dividend spot returns. This model is consistent

with these findings.

Related literature

This paper is closely related to some recent developments in equilibrium bond-pricing

models. Using Epstein and Zin (1989) preferences, PS 2007 show that inflation as bad

news for future consumption growth can generate an upward-sloping nominal yield curve.

In a similar vein, Wachter (2006) generates upward-sloping nominal and real yield curves

in an external habits model (Campbell and Cochrane (1999)), where innovations to con-

sumption and inflation growth are negatively correlated. Taking inflation as bad news

for future growth, Bansal and Shaliastovich (2013) show that a long-run risks model

with time-varying volatility of expected consumption growth and inflation can account

for bond return predictability. Ulrich (2013) argues that, even with log utility, ambigu-

ity about trend inflation can help generate an upward-sloping term premium for nominal

bonds if inflation shocks make the size of ambiguity bigger. While these studies argue that

a single mechanism can explain the yield curve for the whole sample period (no regime

switch), Song (2017) extends the long-run risks model of Bansal and Yaron (2004) by al-

lowing a regime switch in the correlation between consumption growth and the inflation

target. He finds that the U.S. economy entered a positive correlation regime following the

late 1990s and has largely remained in that regime thereafter. Song (2017) argues that

if agents evaluate long-term bonds using an unconditional probability of switching from

a positive correlation regime to a negative one, the long-run risks model generates an

upward-sloping nominal yield curve.5 However, based on Malmendier and Nagel (2016),

5In the positive correlation regime of the current period, the conditional probability of switching back
to a negative correlation regime is close to zero, while the unconditional probability is about 2/3 because
the economy has been in the negative correlation regime most periods before the late 1990s. Due to the
downward-sloping real yield curve in the model, the model-implied nominal yield curve slope is only 1/3
of the data, even using the unconditional probability in Song (2017).
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agents are more likely to use a conditional probability. This is because agents are more

likely to use experiences rather than unconditional means.

This paper differs from these previous studies along some important dimensions. First,

we provide an alternative understanding of the upward-sloping nominal yield curve for

two environments where inflation can be bad or good news for future growth. Second,

this paper provides a new mechanism to generate an upward-sloping real yield curve for

both the pre- and post-2000s. Wachter (2006) is the only other paper we know of that

can generate an upward-sloping real yield curve. We also show that, in this model, the

ambiguity term premium that Ulrich (2013) uses to generate upward-sloping nominal

bond yields is quantitatively very small. The upward-sloping feature for bond yields is

mainly driven by the term structure of ambiguity. From the perspective of equilibrium

models, this paper is the first effort, to our knowledge, to jointly understand upward-

sloping real and nominal bond yield curves across different subperiods.

This paper is also related to a large empirical literature on excess bond return pre-

dictability (Fama and Bliss (1987); Campbell and Shiller (1991); Dai and Singleton (2002);

Cochrane and Piazzesi (2005)), and a small empirical literature that argues the failure of

the expectations hypothesis is due to expectational errors (Froot (1989); Piazzesi et al.

(2015)). This is the first paper that provides a theoretical framework that is consistent

with both of these findings.

This paper is related to a number of papers that have studied the implications of

ambiguity and robustness for finance and macroeconomics (see the survey by Epstein

and Schneider (2010) and the references therein). Ilut and Schneider (2014) show how

time-varying ambiguity about productivity generates business cycle fluctuations. Using

forecast dispersion data, Zhao (2017) shows that ambiguity about consumption growth

is driven by past inflation and argues that bond risk changes are due to the time-varying

impact of inflation on ambiguity. This paper contributes to the ambiguity literature by

first showing a different term structure of ambiguity for inflation and output growth over

two subperiods, and then using the recursive multiple-priors preference to link ambiguity

yields with real and nominal bond yields and the equity yields.
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The paper continues as follows. Section 2 outlines the model and solves it analytically.

Section 3 discusses the results of the empirical analysis. Section 4 provides concluding

comments.

2. The model

In a pure exchange economy, identical ambiguity averse investors maximize their util-

ity over endowment/output processes. Output growth and inflation are given exogenously.

Equilibrium prices adjust such that the agent is happy to consume the endowment.6

2.1. Economy dynamics

Under reference measure P , output growth and inflation follow a state space model, while

dividend growth is leveraged output growth:

∆gt+1 = µc + xc,t + σcεc,t+1

πt+1 = µπ + xπ,t + σπεπ,t+1

xc,t+1 = ρcxc,t + σxc εc,t+1 + σxcπεπ,t+1 (1)

xπ,t+1 = ρπxπ,t + σxπεπ,t+1

∆dt+1 = ζd∆gt+1 + µd + σdεd,t+1

where ∆gt+1 and ∆dt+1 are the growth rate of output and dividends respectively, and πt
is inflation. The expected growth and inflation are denoted by xc,t and xπ,t. As argued

in PS 2007, the state space representation for zt+1 = (∆gt+1, πt+1)T does a good job

in capturing the dynamics of inflation, especially the high order autocorrelations. For

simplicity, we assume that the correlation between growth and inflation is captured by

σxcπ. All shocks are i.i.d normal and orthogonal to each other.

6We use output growth as the endowment process because the non-durable good and service survey is
not available in the BCFF. Using the Philadelphia Fed’s Survey of Professional Forecasters (SPF), Zhao
(2017) shows that the dispersion for consumption growth and output growth are highly correlated.
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To model dividends and output separately, we follow Ju and Miao (2012), where the

parameter ζd > 0 can be interpreted as the leverage ratio on expected output growth, as in

Abel (1999); together with the parameter σd, this allows us to calibrate the correlation of

dividend growth with consumption growth. The parameter µd helps match the expected

growth rate of dividends.

The above state space system for inflation and output growth represents the best point

estimate from the data. However, investors are concerned that this reference measure is

misspecified and that the true measure is actually within a set of alternative measures

that are statistically close to the reference measure.

2.2. Ambiguity about inflation and output growth

The early ambiguity literature focuses on either the real economy, for example, am-

biguity about consumption growth/TFP growth, or on the nominal side, for example,

ambiguity about inflation. However, due to the very different patterns of the observed

forecast dispersion for inflation and output growth, in this paper, we assume that in-

vestors are ambiguous about both inflation and output growth. The set of alternative

measures is generated by a set of different mean output growth (inflation) rates around

the reference mean value µc +xc,t (µπ +xπ,t).7 Specifically, under alternative measure pµ̃,

output growth and inflation are as follows:

∆gt+1 = µ̃c,t + xc,t + σcε̃c,t+1

πt+1 = µ̃π,t + xπ,t + σπε̃π,t+1 (2)

where µ̃c,t ∈ Ac,t = [µc − ac,t, µc + ac,t] and µ̃π,t ∈ Aπ,t = [µπ − aπ,t, µπ + aπ,t] with both

ac,t and aπ,t being positive. Each trajectory of µ̃t will yield an alternative measure pµ̃ for

the joint process. A larger ac,t(aπ,t) implies that investors are less confident about the

reference distribution. In the following section, we specify how ambiguity changes over

7One requirement for the alternative measures is that they must be equivalent to the reference measure
P (i.e., they put positive probabilities on the same events as P ).
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time and model the different term structure of ambiguity.

2.3. Term structure of ambiguity

To measure ambiguity empirically, we follow the literature and use the forecast dis-

persion from the BCFF survey.8 As argued in Ilut and Schneider (2014), the reason

is that investors sample experts’ opinions and aggregate them when making decisions.

Thus large disagreement among experts makes investors less confident in their probabil-

ity assessments, which corresponds to a bigger size of ambiguity. We use BCFF forecast

dispersion for GDP growth and CPI inflation from 1985 to 2017.9 The BCFF survey

contains forecasts for short-term and long-term horizons from the same participants, and

the dispersion is calculated as the difference between the top 10 average and bottom 10

average of the individual forecasts in levels.

Figure 1 shows the one-quarter-ahead and six-years-ahead forecast dispersion for CPI

inflation from 1985 to 2017. It is clear that six-years-ahead dispersion is bigger than

one-quarter-ahead dispersion before the late 1990s, and the relationship is reversed af-

terwards. One possible interpretation is that, as argued by Goodfriend and King (2005),

“inflation scares” were created during the monetary policy experimentation of the late

1970s and early 1980s, and investors were initially unsure about future inflation scenarios.

Currently, investors have less ambiguity regarding longer horizon inflation due to a clear

understanding of inflation targeting and the low inflation environment. Figure 2 plots

the long and short horizon forecast dispersion for real GDP growth, and it suggests that

long horizon dispersion is smaller than short horizon dispersion for most periods (except

for a few periods around 1992). One reason for this may be due to the fact that investors

understand that GDP growth is always the key mandate for the Federal Reserve Bank.

Table 1 shows quantitatively that the term structure of inflation forecast dispersion

8See, for example, Anderson, Ghysels, and Juergens (2009), Ilut and Schneider (2014), Drechsler
(2013), and Zhao (2017).

9There are two reasons why we use the BCFF instead of other surveys such as the Philadelphia Fed’s
SPF. The first one is that the number of forecasters are more stable for the BCFF, which means the
forecast dispersion is more accurate. The second is that the BCFF provides monthly survey results,
which gives us more data points.
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Figure 1: Term structure of ambiguity/dispersion for inflation
The dispersion is for one-quarter-ahead and six-years-ahead inflation forecasts from the BCFF from 1985 to 2017. One-
quarter-ahead forecasts are monthly and six-years-ahead forecasts are semiannually.

has switched from upward sloping to downward sloping after the late 1990s. However, we

still observe a significant amount of dispersion for even six-years-ahead inflation forecasts

in the second subperiod. For real GDP growth, the term structure of forecast dispersion

is consistently downward sloping across the two subperiods, and similar to inflation, we

observe a significant amount of dispersion for six-years-ahead forecasts in both subperiods.

Motivated by the observed term structure of ambiguity, we model ac,t and aπ,t as a

random walk with drift that are specified in the following way:

ac,t+1 = µac + ac,t + σacεac,t+1 + σaca εa,t+1

aπ,t+1 = µaπ + aπ,t + σaπa εa,t+1 (3)

where µac and µaπ are the drift parameters, which can be positive or negative. Given the

high correlation between inflation and GDP growth dispersion in the data, both ac,t and

aπ,t are driven by a common exogenous shock εa,t+1, where the coefficients σaca and σaπa
capture the correlation between them. εac,t+1 is an ac,t specific shock that captures the

13



Figure 2: Term structure of ambiguity/dispersion for GDP
The dispersion is for one-quarter-ahead and six-years-ahead GDP forecasts from the BCFF from 1985 to 2017. One-quarter-
ahead forecasts are monthly and six-years-ahead forecasts are semiannually.

1985–1999 2000–2017

Inflation_Disp_Q1 1.49 2.05
Inflation_Disp_Q2 1.56 1.71
Inflation_Disp_Q3 1.72 1.54
Inflation_Disp_Q4 1.90 1.45
Inflation_Disp_Q5 2.03 1.40
Inflation_Disp_6Y 2.04 0.83

GDP_Disp_Q1 2.27 1.73
GDP_Disp_Q2 2.55 1.78
GDP_Disp_Q3 2.52 1.69
GDP_Disp_Q4 2.38 1.55
GDP_Disp_Q5 2.31 1.42
GDP_Disp_6Y 1.44 0.90

Table 1: Term structure of dispersion
Table 1 reports the term structure of forecast dispersion for inflation and output in two subperiods. Inflation_Disp_Q1
refers to one-quarter-ahead inflation forecast dispersion, Inflation_Disp_6Y refers to six-years-ahead inflation forecast
dispersion, similarly for other variables. One-quarter to five-quarters-ahead forecasts are monthly and six-years-ahead
forecasts are semiannually. Survey data are from the BCFF, and dispersions are in annual percentages.
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difference of these two.10

Given the fact that, starting from around 1999, inflation ambiguity has switched from

upward sloping to downward sloping and inflation shocks have switched from bad news

to good news for future growth, we assume that the model has an unexpected discrete

regime shift at the end of 1999 (for a detailed discussion, see Section 4). This is also

consistent with the literature for regime breaks; for example, Campbell et al. (2014)

argue that the first subperiod is the inflation fighting period of Volcker and Greenspan

and the second subperiod is the recent period of low inflation and increased central bank

transparency. Therefore µaπ is positive for the first subperiod (dispersion is bigger for a

longer horizon) and negative for the second subperiod (dispersion is smaller for a longer

horizon). µac is negative for both subperiods.

One concern is that the specification in equation (3) implies an upward- or downward-

sloping trend in ambiguity. However, there seems to be no obvious trends in the realized

ambiguity for inflation and GDP growth - the one-quarter-ahead forecast dispersion in

Figure 1 and Figure 2. To understand this difference, equation (3) can be decomposed

into two parts. The first part is a random walk with no drift (or constant given that the

calibrated shocks are very small), which represents agents’ ambiguity about the observa-

tion equation in the state space model of equation (1). Denoting the first part by a1c,t or

a1π,t, the alternative one-step-ahead distribution for ∆gt+1 and πt+1 in equation (2) is now

generated by µ̃c,t ∈ [µc−a1c,t, µc+a1c,t] and µ̃π,t ∈ [µπ−a1π,t, µπ+a1π,t]. Denoted by a2c,t or

a2π,t, the second part containing the trend component captures agents’ ambiguity about

the state variables xc,t+1 and xπ,t+1. And the alternative one-step-ahead distributions for

xc,t+1 and xπ,t+1 are generated by two sets of conditional means: [ρcxc,t−a2c,t, ρcxc,t+a2c,t]

and [ρπxπ,t − a2π,t, ρπxπ,t + a2π,t]. At each time period t, xc,t and xπ,t are realized under

the reference measure. Thus the one-step-ahead ambiguity for inflation and GDP growth

(or the realized ambiguity), which is measured by one-quarter-ahead forecast dispersion

10We can modify the process by allowing for output growth shocks and inflation shocks. However, due
to the CRRA utility, we show in an earlier version that these shocks have very small effects on term
premium and yields.
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in the data, contains only the first part (a1c,t or a1π,t) and no trends. Only when agents

evaluate future prospects that are more than one step ahead, does the second part mat-

ter. For example, ambiguity about ∆gt+2 contains both ambiguity about xc,t+1(a2c,t) and

ambiguity about the observation equation (a1c,t+1).11

As shown in Section 3, for bonds with maturities longer than one quarter, the second

part ambiguity is the most important driver of yields. Even though bond and stock

prices are solved under the worst-case distribution where the expectations hypothesis

roughly holds, the model is simulated using the reference distribution. This difference

makes excess returns on long-term bonds predictable. Note that we focus on the average

pattern of bond and equity yields in this paper. To infer the historical performance of

the model, we can use historical one-quarter-ahead dispersion as a measure for the size of

ambiguity (only the first part) in the model. This specification of ambiguity is consistent

with a recent finding that the estimated ambiguity is very persistent; for example, Dew-

Becker and Bidder (2016) estimate the ambiguity shocks have a half-life of 70 years.12

2.4. Preference: Recursive multiple priors

PS 2007 show the importance of the Epstein and Zin (1989) preference to generate

an upward-sloping nominal yield curve. To illustrate the key role of ambiguity yields, we

assume investors have recursive multiple priors preference axiomatized by Epstein and

Schneider (2003), but with CRRA utility function (investors are indifferent between early

or late resolution of uncertainty):

Vt(Ct) = min
pt∈Pt

Ept (U (Ct) + βVt+1(Ct+1)) (4)

11Alternatively, we can think of the first part as ambiguity about the reference distribution in equation
(1), and assume that agents don’t have exact knowledge about the ambiguity process in the first part.
Then the second part containing the trend component captures agents’ uncertainty about the ambiguity
process in the first part. At each point of time, equation (3) represents agents’ beliefs of how the size
of ambiguity evolves over time when they evaluate future prospects (the model is solved under this
measure). However, the realized ambiguity is generated by the reference (or true) ambiguity process
containing only the first part, and the trend part is not materialized.

12Results in the model rely mainly on the second part ambiguity. We can change the first part
ambiguity to a stationary process and the main results still hold.
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where U (Ct) = C1−γ
t −1
1−γ , γ is the coefficient of risk aversion, and β reflects the investor’s

time preference.

The worst-case belief

The agent evaluates his expected lifetime utility under the subjective belief pt ∈

Pt, and the set of one-step-ahead beliefs Pt consists of the measures pµ̃t generated in

Section 2.2. Because investors are ambiguity averse, they act pessimistically and evaluate

future prospects under the worst-case measure. We use output growth as the endowment,

and the worst-case measure for output growth associated with the minimum utility is

generated by the distribution with −ac,t (the worst mean at each period).13 For the

worst-case inflation measure, it depends on the correlation between inflation expectations

and worst-case expected real output growth. Using the bottom 10 average of individual

GDP growth forecasts from the BCFF survey as the worst-case expected real growth,

we find it is negatively associated with inflation expectations in the first subperiod and

positively associated with inflation expectations in the second subperiod. The pattern

is the same for all different measures of inflation expectation from the BCFF survey:

top 10 average, median, and bottom 10 average of the individual inflation forecasts (the

correlations are −0.61, −0.52, and −0.39, respectively, for the first subperiod, and 0.18,

0.38, and 0.46, respectively, for the second subperiod). Thus the worst-case inflation

measure is generated by distribution with the highest mean inflation +aπ,t in the first

subperiod and the lowest mean inflation −aπ,t in the second subperiod. In equilibrium,

the “min” operator in the preference can be replaced by the worst-case measure.

13See Epstein and Wang (1994) for a proof.

17



2.5. Asset markets

To solve the model, we first rewrite the economy dynamics in vector forms:

zt+1 = φaat + µz + xz,t + σzεt+1

xz,t+1 = ρxxz,t + σxεt+1 (5)

at+1 = µa + at + σaεat+1

where zt = (∆gt, πt)T , xt = (xc,t, xπ,t)T , and at = (ac,t, aπ,t)T . All other parameters

are in vector forms that are consistent with the earlier specification in Section 2. Note

that equation (5) describes the worst-case measure in equilibrium. φa represents the

equilibrium choice of the upper or lower bound, equal to −1 or +1. In the following two

subsections, we will solve bond yields and equity yields using vector forms.

2.5.1. Bond price

Since the representative agent forms expectations under the worst-case measure when

making portfolio choices, the Euler equation holds under the worst-case measure. Given

the CRRA utility function, the log nominal pricing kernel or the nominal stochastic

discount factor can be written as

m$
t,t+1 = logβ − γ∆gt+1 − πc,t+1 = logβ − v′zt+1 (6)

where v′ = (γ, 1). The time-t price of a zero-coupon bond that pays one unit of con-

sumption n periods from now is denoted P (n)
t , and it satisfies the recursion

P
(n)
t = Epot [M

$
t,t+1P

(n−1)
t+1 ] (7)

with the initial condition that P (0)
t = 1 and Epot is the expectation operator for the worst-

case measure. Given the linear Gaussian framework, we assume that p(n)
t = log(P (n)

t ) is

a linear function of at and xt:
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p
(n)
t = −A(n) −B(n)xt − C(n)at. (8)

When we substitute p(n)
t and p(n−1)

t+1 in the Euler equation (7), the solution coefficients in

the pricing equation can be solved with B(n) = B(n−1)ρx + v′ = v′
(∑n−1

i=o (ρx)i
)
, C(n) =

C(n−1) + v′φa = v′φan, and A(n) is given in the appendix. The log holding period return

from buying an n period bond at time t and selling it as an n − 1 period bond at time

t + 1 is defined as rn,t+1 = p
(n−1)
t+1 − p

(n)
t , and the subjective excess return is ern,t+1 =

−Covt
(
rn,t+1,m

$
t,t+1

)
= −B(n−1)σxσz

′
v.

As we can see from the solution, the yield parameter for ambiguity is constant over

horizons n, and the average xz,t is zero, implying that, on average, expected growth

and inflation do not affect long-term bond yields. The channel through which ambiguity

affects bond yields is the expected future interest rate embedded in A(n) (due to the trend

component µa, A(n)/n is bigger for a longer horizon). To solve the price and yields for

real bonds, we can just replace v′ with v′ = (γ, 0).

2.5.2. Stock price

Equity price and returns can be solved using the real stochastic discount factor

mt,t+1 = logβ − γ∆gt+1. For any asset j with a real payoff, the first-order condition

yields the following asset pricing Euler condition:

Epot [exp(mt,t+1 + rj,t+1)] = 1 (9)

where Epot is the expectation operator for the worst-case measure, and rj,t+1 is the log of

the gross return on asset j.

To solve the market return, it is assumed that the log price-dividend ratio for dividend

claims, zt, is linear in ac,t and xc,t:

zt = A0 + A1xc,t + A2ac,t. (10)
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The log market return is given by the Campbell and Shiller (1988) approximation

rm,t+1 = k0 + k1zt+1 + ∆dt+1 − zt (11)

where k0 and k1 are log linearization constants, which will be discussed with more detail

in the appendix. By substituting (10) and (11) into the Euler equation (9), we can solve

A0, A1, and A2 with A1 = ζd−γ
1−k1ρc

and A2 = − ζd−γ
1−k1

.

For the price of individual dividends (or dividend strips), we can solve it in a similar

way. Let Pt,n denote the price of a dividend at time t that is paid n periods in the

future. Let Dt+1 denote the realized dividend in period t + 1. The price of the first

dividend strip is given by Pt,1 = Epot [Mt,t+1Dt+1] = DtEpot [Mt,t+1
Dt+1
Dt

], and the recursion

Pt,n = Epot [Mt,t+1Pt+1,n−1] allows us to compute the remaining dividend strip prices. Given

the linear Gaussian framework, we assume that the log dividend strip prices, scaled by

the current dividend, are also affine in the state variables:

pd
(n)
t = A

(n)
0 + An1xc,t + A

(n)
2 ac,t (12)

Similar to the bond prices, we can first compute pd(1)
t using pd(1)

t = log
(
Epot [Mt,t+1

Dt+1
Dt

]
)
,

and then use the recursion pd(n)
t = log

(
Epot [exp

(
mt,t+1 + ∆dt+1 + pd

(n−1)
t+1

)
]
)
to compute

the remaining dividend strip prices. The solution coefficients in the pricing equation (12)

are An1 = An−1
1 ρc + ζd− γ = (ζ − γ)

(∑n−1
i=o (ρc)i

)
, A(n)

2 = A
(n−1)
2 − (ζd − γ) = −n (ζd − γ),

and A
(n)
0 is given in the appendix. Dividend yield or equity yield is defined as eynt =

− 1
n
pd

(n)
t , which is downward sloping as − 1

n
A

(n)
0 is downward sloping (due to the trend

component µac). The logic is the same for bond yields where average xz,t is zero and

− 1
n
A

(n)
2 is constant.

It is worth mentioning that although the ambiguity averse agent acts pessimistically

and prices assets under the worst-case measure, we are interested in expected returns

under the reference model because it is the best estimate of the data generating process

based on historical data, which are the counterpart of the observed expected returns. The

wedge between reference and worst-case mean growth makes the model-implied expected
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return bigger (ambiguity premium). Solutions are provided in the appendix.

3. Empirical findings

Given the analytical solutions, in this section we can calculate the nominal/real bond

yields, dividend yields, and volatility explicitly. To be consistent with our empirical find-

ing that the slope of the yield curve for inflation ambiguity has switched from positive to

negative, the whole sample, 1985.Q1 to 2017.Q4, is broken into two subperiods consistent

with major shifts in monetary policy. Because the earliest available data for the BCFF

forecast dispersion is 1985.Q1, our first subperiod covers 1985.Q1 to 1999.Q4, part of the

Fed chairmanships of Paul Volcker and Alan Greenspan. The second subperiod, 2000.Q1

to 2017.Q4, covers the later part of Greenspan’s chairmanship and the earlier part of

Bernanke’s chairmanship. We assume that transitions from one regime to another are

structural breaks, completely unanticipated by investors. In Section 4, we discuss the

model implications of allowing a more gradual transition between these two regimes.

3.1. Data

We use quarterly US data on output growth, inflation, interest rates, and forecast

dispersion from 1985.Q1 to 2017.Q4. Real output growth and CPI inflation are from the

Bureau of Economic Analysis. The forecast dispersion for real output growth and CPI

inflation are from the Blue Chip Financial Forecast survey. The end-of-quarter yields for

one- to ten-year bonds are from the daily dataset constructed by Gürkaynak et al. (2007)

(GSW 2007). The TIPS yields and end-of-quarter yields for three-month Treasury bills

are from the U.S. Department of the Treasury via the Fed database at the St. Louis

Federal Reserve, which are available from 2003 to 2017. For the one-quarter real risk-free

rate, we follow Beeler and Campbell (2012) and create a proxy for the ex-ante risk-free

rate by forecasting the ex-post quarterly real return on three-month Treasury bills with

past one-year inflation and the most recent available three-month nominal bill yield.

21



3.2. Estimation and calibration

The state space system for output growth and inflation is estimated using maximum

likelihood separately for each subperiod. The resulting parameter values are reported in

Table 2. The correlation between output growth and inflation is captured by σxcπ, which

is negative for the first subperiod and positive for the second subperiod. Consistent

with PS 2007, inflation shocks were bad news for future growth in the first subperiod,

however, they turned to be good news in the second subperiod. At the same time, worst-

case expected real growth is negatively associated with inflation expectation in the first

subperiod and positively associated with inflation expectation in the second subperiod.

Thus, for ambiguity averse investors, the worst-case inflation measure is the upper bound

in the first subperiod and is the lower bound in the second subperiod.

The volatility parameters in the ambiguity process are calibrated to match their coun-

terparts in dispersion data. For example, within each subperiod, σaπa is chosen to match

one-quarter-ahead inflation forecast dispersion volatility, σac is chosen to match one-

quarter-ahead output growth forecast dispersion volatility, and σaca is chosen to match

the correlation between one-quarter-ahead worst-case inflation and one-quarter-ahead

worst-case output growth. Table 2 shows that these values are quantitatively small, and

we actually show in the following section that the impact of volatility in the ambiguity

process on bond yields is negligible in this model. Given the small volatility, our results

are quantitatively close to the extreme case where there is no uncertainty in the ambiguity

process.

The trend component µa and the initial value a0 are also calibrated to match the

data in dispersion. For each subperiod, ac,0 and aπ,0 are chosen to match average one-

quarter-ahead dispersion values in the data, µac and µaπ are chosen to match the average

difference between six-years-ahead and one-quarter-ahead forecast dispersion (six-years-

ahead minus one-quarter-ahead dispersion and then divide by 24).

For other parameters, we follow the literature and set risk aversion as 3, and set

leverage parameter ζd = 3. µd is chosen such that the average rate of dividend growth is

equal to the mean growth rate of dividends in the data. Given the leverage ratio, σd can
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State Space Model µc µπ ρc ρπ σc σπ σxc σxπ σxcπ
85.Q1–99.Q4 0.86 0.74 0.92 0.76 0.46 0.27 -0.03 0.10 -0.07
00.Q1–17.Q4 0.45 0.57 0.49 -0.19 0.55 0.42 0.21 0.17 0.03

Ambiguity µac µaπ σac σaca σaπa a0,c a0,π β

85.Q1–99.Q4 -0.0044 0.0029 0.012 -0.009 0.010 0.28 0.19 1.0115
00.Q1–17.Q4 -0.0043 -0.0063 0.009 0.0047 0.015 0.22 0.26 1.0054

Other γ ζd µd (P1) µd (P2) σd (P1) σd (P2)

3 3 -2.40 -1.17 2.70 2.55

Table 2: Configuration of model parameters
Table 2 reports output growth, dividend growth, inflation, and ambiguity processes parameters. All parameters are given
in quarterly terms. Mean and standard deviation are in percentages.

be calibrated to match the standard deviation of dividend growth in the data. Finally,

time preference β is calibrated to match one-year nominal yields in the data for each

subperiod, which are close to the value in PS 2007.14

3.3. Bond yields and volatility

3.3.1. Real bond yields

Using TIPS data from the U.S. Department of the Treasury from 2003 to 2017, Table

3 reports the level and volatility of real yields. Although there are less than twenty years

of TIPS data, the observed slope has never been quantitatively significantly negative.

The volatility of real yields is smaller for a longer horizon. Campbell (1986) argues

that, if consumption growth is modeled as a persistent process where positive shocks

cause upward revisions in expected future growth, a positive consumption shock causes

real interest rates to increase and bond prices to fall. In this case, real bonds hedge

consumption risk and have a negative real term premium. Thus, asset pricing models

with persistent consumption growth processes are likely to be inconsistent with the data.

In this model, for both subperiods, investors are less ambiguous about longer horizon

output growth. In equilibrium, ambiguity averse agents choose the lower bound from

14Higher time preference helps to lower bond yield levels. We can also set β to be smaller than 1, but
then we need to either decrease the risk aversion parameter or change the level of ambiguity to match
the bond yield level.
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Real Bond 00.Q1–16.Q4 1Q 5Y 7Y 10Y

Data
Yield 0.57 0.86 1.10
Std 1.02 0.95 0.90

Model
Yield 0.55 0.94 1.14 1.44
Std 1.93 0.51 0.50 0.49

Model (No ambiguity)
Yield 3.19 3.09 3.08 3.08
Std 1.87 0.18 0.13 0.09

Table 3: Real bond yields and volatility
This table presents data and model-implied real bond yields and volatility for the second subperiod. TIPS yields are
available for five years, seven years, and ten years to maturity from 2003 and 2017.

the set of alternative mean output growth rates, which are upward sloping. As a result,

the future interest rates are higher for longer horizons. The model-implied real yields

are reported in Table 3, which are upward sloping and consistent with the data. The

volatility in yields consists of two parts: (1) shocks from expected growth where the

weight is smaller for a longer horizon (due to the persistence in expected output growth

ρc), and (2) shocks from ambiguity where the weight is constant. Therefore our model-

implied volatility is consistent with the data and is downward sloping. However, due to

our small risk aversion parameter, the size of volatility is somewhat smaller in magnitude.

To check the effectiveness of the mechanism described above, we shut down the am-

biguity for output growth and report the results for real yield in Table 3 as well. As

expected, the real yield curve is almost flat now (the higher yield for one-quarter real

bonds is due to the fact that the real interest rate provides hedges to growth risks. But

with CRRA utility, this effect only appears in short horizons), and the volatility also

rapidly declines to almost zero (due to a small ρc and no ambiguity shocks in the long

end of the yield curve).

3.3.2. Nominal bond yields

There is a large body of finance literature modeling bond yields without distinguish-

ing differences between subperiods. Most of these studies use inflation non-neutrality

established in PS 2007 to generate upward-sloping yield curves. This mechanism requires

that agents prefer early resolution of uncertainty, and at the same time, inflation is bad
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news for future growth. A positive surprise to inflation implies lower future growth and

lower real payoff of long-term bonds. Therefore, agents require excess returns to hold

long-term bonds over short-term bonds. To understand the changes in correlation be-

tween U.S. Treasury bond returns and stock returns, recent studies have shown that

the correlation between consumption growth and inflation has switched from negative

to positive after the late 1990s. For example, Song (2017) estimates a regime switch

version of PS 2007 and finds that the U.S. economy entered a positive correlation regime

(between inflation and growth) after the late 1990s and largely remained in that regime

throughout the sample. Our estimation for the reference state space model in Table 2 is

also consistent with these findings. Given these changes, the standard approach implies

a downward-sloping nominal yield curve for the current period. However, we still observe

an upward-sloping nominal yield curve in the data (as reported in Table 4), which implies

that we need to understand nominal yields using a different approach, at least for the

current period.

During the first subperiod in this model, investors have more ambiguity about infla-

tion in longer horizons. Together with the fact that the worst-case expected growth is

negatively associated with inflation expectation, ambiguity averse investors choose the

upper inflation bound to evaluate the future perspective. This implies that expected

inflation in equilibrium is upward sloping, which generates an upward-sloping nominal

yield curve. During the second subperiod, the worst-case expected growth is positively

associated with inflation expectation, and the worst-case mean inflation becomes the

lower bound. At the same time, investors have less ambiguity about inflation in longer

horizons, which again implies an upward-sloping mean inflation in equilibrium. Therefore

the model generates upward-sloping nominal yield curves in both subperiods, but with a

different mechanism. Table 4 reports nominal bond yields from the data and implied by

the model for both subperiods, and it is clear that the model matches the data very well.

Another important difference in nominal yields is that the average yield level has

dropped dramatically from 6.14 for a one-year nominal bond in the first subperiod to

1.86 in the second subperiod. Part of the reason for this change is the decrease in mean
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output growth (from 0.86% quarterly to 0.45% quarterly) and decrease in mean inflation

(from 0.74% quarterly to 0.57% quarterly). They alone (including differences in time

preference for the two subperiods), however, are far from providing a complete answer to

the almost 70% drop in nominal yields. In this model, the worst-case mean inflation in

equilibrium is the upper bound in the first subperiod and switches to the lower bound

in the second subperiod. Thus, the difference between the upper bound and the lower

bound of the inflation dispersion provides another significant contribution to the drop in

nominal yields (accounting for 42% of the changes).

In a similar way to the real bonds, nominal bond yield volatility consists of both

volatility from the expected growth xz,t+1, which is decreasing over horizons, and volatility

from the ambiguity process at+1, which is constant over horizons. Thus the model-implied

volatility shares the same pattern of decreasing over horizons as in the data. However,

the size of volatility is somewhat smaller in magnitude. Besides the small risk aversion

parameter as one reason, we can also increase the ambiguity volatility in order to increase

the bond yield volatility.15

Without ambiguity

Since the nominal interest rate is the sum of the real interest rate and expected

inflation, and given the upward-sloping real yield curve (due to ambiguity about output

growth), it is natural to ask whether inflation ambiguity matters for generating upward-

sloping nominal yield curves. For this purpose, we shut down the ambiguity for inflation

only and provide the yields and volatility in Table 4. There are two main differences:

(1) the slopes (ten-year yield - one-year yield) for both subperiods are smaller without

inflation ambiguity (0.93 vs. 1.13 for Period 1 and 0.87 vs. 1.32 for Period 2), which is

due to the trend in inflation ambiguity; and (2) the yield level is smaller/bigger for the

first/second subperiod because of investors’ different worst-case inflation choices.

To check the overall effectiveness of ambiguity for both inflation and output growth, we

15Currently we match the ambiguity volatility in the model to volatility in the dispersion data. We
can also calibrate ambiguity volatility using yield volatility.
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Nominal Bond 1Y 2Y 3Y 4Y 5Y 10Y

Period 1 1985–1999

Data
Yield 6.14 6.47 6.69 6.87 7.01 7.47

Std 1.56 1.51 1.48 1.46 1.45 1.39

Model
Yield 6.17 6.30 6.43 6.56 6.68 7.30

Std 1.15 1.09 1.03 0.99 0.95 0.87

Model (No inflation ambiguity)
Yield 5.39 5.50 5.61 5.71 5.82 6.32

Std 1.08 1.00 0.94 0.90 0.86 0.77

Model (No ambiguity)
Yield 8.67 8.68 8.68 8.68 8.68 8.67

Std 0.81 0.71 0.62 0.54 0.48 0.29

Period 2 2000–2017

Data Yield 1.83 2.06 2.31 2.57 2.81 3.68

Std 1.86 1.76 1.64 1.55 1.47 1.28

Model
Yield 1.84 1.97 2.11 2.26 2.41 3.16

Std 1.16 0.81 0.72 0.68 0.66 0.64

Model (No inflation ambiguity)
Yield 2.84 2.92 3.01 3.11 3.21 3.71

Std 1.09 0.71 0.59 0.55 0.53 0.49

Model (No ambiguity)
Yield 5.41 5.38 5.37 5.36 5.36 5.35

Std 0.98 0.52 0.34 0.26 0.21 0.10

Table 4: Nominal bond yields and volatility
This table presents data and model-implied nominal bond yields and volatility for both subperiods. The end-of-quarter
yields for one- to ten-year bonds are from the daily dataset constructed by GSW 2007.
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shut down the ambiguity for both inflation and output growth. The results are provided

in Table 4. As expected, the same as for real bonds, the nominal yield curve is almost

flat for both subperiods, and volatility also rapidly declines to almost zero. The yield

levels are also higher for both subperiods under the reference measure with higher mean

output growth (output growth ambiguity dominates inflation ambiguity in determining

yield level because of the risk aversion parameter γ > 1).

3.4. Expectations hypothesis and predictability of bond returns

The expectations hypothesis states that the yield for an n periods bond is the average

of expected future one-period bond yields. Let y(n)
t = − 1

n
p

(n)
t denote the yield for an n

periods bond at time t. The intuition of the expectations hypothesis can be illustrated

by the following two-periods example where 2y2
t = y1

t + Et
(
y1
t+1

)
. If the yield curve is

upward sloping as in the data, y1
t < y2

t , it must be that y1
t < y2

t < Et
(
y1
t+1

)
, that is, the

short rate will rise. However, the realized future short rate does not increase enough in

the data, and the expectations hypothesis does not seem to work well. The expectations

hypothesis is often formally tested through the following equation:

yn−1
t+1 − ynt = α + βn

(
ynt − y1

t

n− 1

)
+ εt+1. (13)

The expectations hypothesis implies that βn = 1. However, in the data, many studies

(for example, Campbell and Shiller (1991)) show that βn < 1, is often negative, and is

decreasing with the horizon n.

Using survey expectations instead of realized future yields as subjective beliefs, other

literature (Froot (1989); Piazzesi et al. (2015)) shows that the failure of the expectations

hypothesis is due to expectational errors. For the two-periods example, the survey ex-

pectations of the short rate tomorrow Es
t

(
y1
t+1

)
is close to Et

(
y1
t+1

)
and higher than

the subsequently realized short rate; thus the expectations hypothesis is violated using

the realized yields.16 In this model, agents evaluate future prospects under the worst-

16Cieslak (2018) shows the federal fund rate expectations measured by the BCFF survey mean are on
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case belief, which implies that future expected inflation and real growth are higher and

higher, hence future expected short nominal and real rates are higher and higher. Given

CRRA utility, the subjective bond premium ern,t+1 is close to zero, and the expectations

hypothesis roughly holds.17 Nevertheless, at each time period t, xc,t and xπ,t are realized

under the reference measure, and the realized ambiguity contains only the random walk

part (a1c,t or a1π,t) with no trend (the trend part is not materialized). Hence, consistent

with the empirical evidence, the realized short rates are lower than expected as in the

worst-case belief, which also makes excess returns on long-term bonds predictable.

To formally assess the expectations hypothesis, we show in the appendix that the dif-

ference between the left-hand side and right-hand side of equation (13) is
(
yn−1
t+1 − ynt

)
−

ynt −y1
t

n−1 = v′φa ((at+1 − at)− µa) + V arCovn−1
n−1 .18 Given that V arCovn−1

n−1 is quantitatively

very small, the difference is mainly driven by v′φa ((at+1 − at)− µa). From equation

(5) we know the worst-case belief at+1 = µa + at + σaεat+1, which makes the difference

v′φa ((at+1 − at)− µa) = v′φaσ
aεat+1. The shock v′φaσaεat+1 can then be moved into the

error term εt+1, thus βn ≈ 1 for all maturities under the worst-case belief, and the expec-

tations hypothesis roughly holds.

However, as discussed in Section 2.3, because ambiguity about xc,t and xπ,t do not

materialize at time t, the realized ambiguity contains only the random walk part with no

trend, at+1 = at+σaεat+1. In this case, v′φa ((at+1 − at)− µa) = −v′φaµa < 0 ignoring the

Gaussian shock. Taking advantage of the closed form solution, we show in the appendix

that the coefficient βn in equation (13) would be −1 for all n if we ignore xz,t and a

variance/covariance term. Because of the low autocorrelation (ρx), short-term yields are

more sensitive to xz,t and the variance/covariance term, yet βn for long maturities are

mainly driven by the difference above and are close to −1. This intuition can be confirmed

by the regression results reported in Table 5. As in the data, the slope coefficients of the

average higher than the subsequently realized federal fund rate.
17The subjective bond premium ern,t+1 is less than 0.1% in absolute values for all maturities and both

subperiods.
18Note that all Gaussian shocks can be thought of as the error term in equation (13) and hence are

not included in this difference.
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Data Two years Three years Four years Five years
EH slope -0.41 -0.78 -1.14 −1.15
CP slope 0.44 0.85 1.28 1.43
CP R2 0.15 0.17 0.20 0.17

Model Two years Three years Four years Five years
EH slope -0.43 -0.61 -0.79 -0.98
CP slope 0.79 0.93 1.07 1.21
CP R2 0.24 0.17 0.14 0.11

Table 5: Predictability of bond returns
This table presents the slopes in the expectations hypothesis (EH) regressions, and the slopes and R2s in CP 2005 single-
factor bond premium regressions for the whole sample. The model-implied statistics displayed are the median values from
ten thousand finite sample simulations of equivalent length to the dataset (from 1985.Q1 to 2017.Q4). The end-of-quarter
one- to five-year bond yields are from the Center for Research in Security Prices’ monthly Treasury Fama-Bliss discount
bond yields.

model simulation in the expectations hypothesis projections are negative and decreasing

with maturity.19 The coefficients for long maturity bonds become closer to −1 as the

effects of xz,t and the variance/covariance term vanish.

To further evaluate the predictability of bond returns, we follow the approach in

Cochrane and Piazzesi (2005) by first regressing the average of one-year nominal excess

bond returns of two to five years to maturity on one- to five-year forward rates, extracting

a single bond factor r̂xt from this regression, and then forecasting excess bond returns at

each maturity n from two to five years, rxn,$t→t+1 = const+ bnr̂xt + error. They show that

the estimate bn is positive and increasing with horizons. Table 5 shows the slopes and R2s

of the regression using quarterly observations of US bond yields from 1969 to 2010 from

Bansal and Shaliastovich (2013). This model shares a similar pattern and magnitude for

the slopes as in the data. R2s are close to the data in magnitude, but decrease with

horizons in the model. In sum, the model matches well the bond return predictability

evidence from both the expectations hypothesis regression and the single-factor regression

of Cochrane and Piazzesi (2005).

19The expectations hypothesis (EH) slopes, Cochrane and Piazzesi (CP, 2005) slopes, and CP R2 in
the data are from Bansal and Shaliastovich (2013). They use quarterly observations of US bond yields
from 1969 to 2010. Their sample period is almost identical to ours.
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Overall, the expectations hypothesis roughly holds when expected future short rates

are formed under the worst-case belief (equilibrium measure). Yet, the realized short

rates are lower than expected as in the subjective equilibrium measure. In this model,

the so-called term premium is mainly due to the above difference in future short rates,

which is consistent with Piazzesi et al. (2015). Excess returns are predictable by current

yields and forward rates because both of them are driven by the trend component in

ambiguity.

3.5. Historical yield, slope, and recession

In this paper, we focus on the average nominal and real yield curves over the two

subperiods, not their historical movements. Nevertheless, the historical slope of the

Treasury yield curve has often been cited as a leading economic indicator with inversion of

the curve being thought of as a signal of a recession (for example, Estrella and Hardouvelis

(1991); Estrella and Mishkin (1996, 1998)). To shed light on the historical performance

of the model, we can ask what the model would imply if we replaced the state variables

in the pricing equations with real time data.

Both bond price and stock price can be expressed as a linear function of at and xt,

with closed form solutions given in Section 2.5. In the data, the realized ambiguity is

measured by one-quarter-ahead forecast dispersion for GDP growth and inflation. The

expected GDP growth and inflation xt can be measured by median survey from the

BCFF. To avoid potential noise, we use a 12-month rolling average of the survey median

and dispersion. The data are then standardized such that the first two moments are

consistent with the model.

Using the bond yield parameter values from the model, the upper panel in Figure 3

shows the comovements of the model-implied one-year nominal yields and the historical

realized one-year Treasury yields, and the lower panel in Figure 3 shows the comovements

of the model-implied ten-year minus one-year nominal spread and the historical realized

slopes. The model-implied yields and slopes are significantly correlated with yields and

slopes in the data where the correlations are 0.59 and 0.45 respectively. It is worth
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mentioning that the model-implied one-year nominal yields track the data very well except

during these post financial crisis periods, where one-year Treasury yields are constrained

by the zero lower bound.

3.6. Equity yields

Recent empirical findings regarding the price and return for individual dividends (or

dividend strips) pose some challenges to current equilibrium asset pricing models (see

Van Binsbergen and Koijen (2017) for a summary).20 For example, using dividend future

contracts for the S&P500 from 2002 to 2014, Van Binsbergen and Koijen (2017) show

that the dividend future returns are slightly upward sloping and the volatility of forward

equity yields is downward sloping. And the market returns are not significantly different

from individual dividend spot returns. They argue that leading asset pricing models are

not able to match those features in the data. Note that their empirical findings on equity

yields are different for different countries. Since our model is estimated and calibrated

using US data, we will focus on the findings from the S&P500.

Table 5 reports the model’s market return, dividend spot return, dividend future

return, and equity yield volatility. The closed form solution for the market return is

given in Section 2, and the dividend spot return is defined as log (Pt+1,n−1)− log (Pt,n) =

pd
(n−1)
t+1 − pd(n)

t + ∆dt+1. The dividend future return is the dividend spot return less the

same horizon bond holding period return. Since the agent faces the same size of one-step-

ahead ambiguity, the market return and dividend spot return are very close in this model,

however, dividend yields are downward sloping because long horizon dividends feature

less ambiguity. Because the holding period return for real bonds is downward sloping in

our model, the dividend future returns is slightly upward sloping, which is consistent with

Van Binsbergen and Koijen (2017). For the same reason as for the bond yields volatility,

the forward equity yield volatility is downward sloping, which is consistent with the data.

20Also, Van Binsbergen et al. (2012) provide the first direct measurement of dividend strip prices using
options data. Van Binsbergen et al. (2013) extend this evidence using dividend futures contracts.
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Figure 3: Yield, slope, and recession
The slope is the ten-year nominal yield minus the one-year treasury rate. The dispersion is calculated as a combination of
slopes of term structure of inflation and real GDP forecast dispersion. All data are monthly from 1985 to 2017.

Model (Period 2) 1Q 1Y 5Y 7Y 10Y

Market Return 7.73
Dividend Spot Return 7.73 7.73 7.73 7.73 7.73
Dividend Future Return 3.07 3.13 3.14 3.15 3.16

Equity Yield 7.03 7.02 6.95 6.91 6.86
Equity Yield Volatility 4.04 1.94 0.69 0.63 0.60

Table 6: Dividend strip return and volatility
This table presents the model-implied market return, dividend spot returns, dividend future returns, and forward equity
yield volatility for the second subperiod. To calculate returns and volatility for dividend strips, as well as for market return,
we set time preference β = 0.995 in order to have a stable approximation for the Campbell and Shiller approximation.
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4. Robustness

This section provides further checks for the sensitivity of the results in several dimen-

sions.

4.1. Regime shift and learning

In this paper, we assume that there is an unexpected discrete regime shift at the end

of 1999 for the following reasons: (1) the term structure of inflation forecast dispersion

has switched from upward sloping to downward sloping after the late 1990s (see Figure

1); (2) Figure 4 shows that the correlation between worst-case GDP growth and inflation

forecasts has switched from negative to positive after the late 1990s and has largely

remained in that regime thereafter (this is also true for the top 10 average and bottom

10 average of individual inflation forecasts); and (3) this is consistent with the literature

for regime breaks; for example, Campbell et al. (2014) argue that the first subperiod is

the inflation fighting period of Volcker and Greenspan and the second subperiod is the

recent period of low inflation and increased central bank transparency.

While it is useful to clarify the mechanics by assuming an unanticipated regime switch

in the late 1990s, there seems no obvious event in this period that this could be tied to.

We may ask what the model would imply if we allowed a more gradual transition between

these two regimes. Suppose investors know the probabilities of each regime at time t;

then stock and bond prices can be computed as the weighted average of the two solutions

in Section 2. Given the fact that the probability of regime one (negative correlation

between growth and inflation expectation) is very high before the late 1990s and close to

zero thereafter (see, for example, the estimation in Song (2017)), the mechanism of this

paper still works and the model results are quantitatively similar. Because the theoretical

framework of learning under ambiguity with a regime switch is not clear yet, we will leave

this case for future research.

4.2. Magnitude of ambiguity

Given the specification for the ambiguity process, one natural question is whether

the size of the ambiguity is reasonable. We use the error detection probability approach
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Figure 4: Correlation between worst-case GDP growth and inflation forecasts
Seven-year rolling window correlation between the bottom 10 average of individual GDP growth forecasts and median CPI
inflation forecasts. Survey data are one-quarter-ahead forecasts from the BCFF and are monthly from 1985 to 2017.

suggested by Anderson, Hansen, and Sargent (2003) to provide a sense of the magnitude

of the size of the ambiguity.

This approach quantifies the statistical closeness of two measures by calculating the

average error probability in a Bayesian likelihood ratio test of two competing mod-

els. Intuitively, measures that are statistically close will be associated with large er-

ror probabilities, but measures that are easy to distinguish imply low error probabili-

ties. Formally, let l be the log likelihood function of the worst-case measure relative to

the reference measure and P a be the alternative worst-case measure. Then, the aver-

age probability of a model detection error in the corresponding likelihood ratio test is

ε = 0.5 ·P (l > 0)+0.5 ·P a(l < 0), where ε is just a simple equally weighted average of the

probability of rejecting the reference model when it is true (P (l > 0)) and the probability

of accepting the reference model when the worst-case model is true (P a(l < 0)).

In general, a closed form expression for the detection error probability is not available.

The error probability is calculated using simulated data. In this paper, parameters are

estimated from data and the error detection probabilities for both output and inflation

are at least 5%.
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5. Conclusion

During the past decade, the joint dynamics of output growth expectations and infla-

tion expectations have changed, and it is difficult to reconcile the behavior of the term

structure of the nominal bond yield curve with leading equilibrium asset pricing models.

Moreover, the long enough history of TIPS yield curves in the US suggests that the real

yield curve is an important dimension to consider for equilibrium models. Recent studies

that revisit the expectations hypothesis using survey expectations call for a new theory

to understand the source of bond return predictability. It is also important for an equi-

librium model of bond pricing to capture recent empirical findings on dividend or equity

yields.

This is the first paper that provides an equilibrium model that is consistent with

all the above evidence. Departing from the rational expectation hypothesis, we assume

that the investor is ambiguity averse and evaluates future prospects under the worst-case

measure (his subjective equilibrium belief). In the data, the term structure of ambiguity

for inflation is upward sloping before the late 1990s, and slopes downward afterwards; the

ambiguity yield curve for real output growth is always downward sloping. The ambiguity

yields are linked with bond yields and equity yields through the recursive multiple priors

preference in equilibrium.

For both subperiods, the worst-case distribution for output growth is the lower bound

of the set of alternative mean growth rates, which are upward sloping because of the

downward-sloping output forecast dispersion. Thus the real bond yield is always upward

sloping. Before the late 1990s, when inflation expectation is negatively associated with

the worst-case growth expectation, ambiguity averse investors pick the upper bound from

the set of alternative mean inflation scenarios, which is upward sloping. This generates an

upward-sloping nominal yield curve. During the second subperiod, inflation expectation

is positively associated with the worst-case growth expectation, and the worst-case mean

inflation is the lower bound now. However, at the same time, the inflation forecast

dispersion turns to be downward sloping, which again implies an upward-sloping mean

inflation in equilibrium. Therefore the model generates upward-sloping nominal yield
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curves in both subperiods, but with a different mechanism.

Realized ambiguity contains no trends because the true expectation of GDP growth

and inflation evolves under the reference distribution, hence the realized short rates are

lower than investors expected under their worst-case belief. Both this difference and

current yield spreads/forward rates are driven by the trend components in the ambiguity

process, which implies that the realized excess bond returns are predictable.

This model is also consistent with empirical findings on equity yields that the dividend

future returns are slightly upward sloping and the volatility of equity yields is downward

sloping. And the market returns are not significantly different from individual dividend

spot returns.
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Appendix.1. Forcing process

Under the worst-case measure, the economic dynamics follow

zt+1 = φaat + µz + xz,t + σzεt+1

xz,t+1 = ρxxz,t + σxεt+1

∆dt+1 = ζd∆gt+1 + µd + σdεd,t+1

at+1 = µa + at + σaεat+1

where zt+1 = (∆gt+1, πt+1)T , xz,t+1 = (xc,t+1, xπ,t+1)T , at+1 = (ac,t+1, aπ,t+1)T , µz =

(µc, µπ)T , µa = (µac , µaπ)T , ρx =

 ρc 0

0 ρπ

, φa =

 φac 0

0 φaπ

, σz =

 σc 0

0 σπ

, σx =
 σxc σxcπ

0 σxπ

, σa =

 σac σaca

0 σaπa

, εt+1 = (εc,t+1, επ,t+1)T , and εat+1 = (εac,t+1, εa,t+1)T .

The shocks εc,t+1, επ,t+1, εd,t+1, εac,t+1, and εa,t+1∼i.i.d. N(0, 1). φac and φac represent the

equilibrium choice of the upper or lower bound, equal to −1 or +1.

Appendix.2. Stochastic discount factor

Given the CRRA utility, the nominal stochastic discount factor can be written as

m$
t,t+1 = logβ − γ∆gt+1 − πc,t+1 = logβ − v′zt+1

where v′ = (γ, 1). For the real stochastic discount factor, we can replace v′ with v′ =

(γ, 0).

Appendix.3. Bond yields

The time-t price of a zero-coupon bond that pays one unit of consumption n periods

from now is denoted P (n)
t , and it satisfies the recursion
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P
(n)
t = Epot [M

$
t,t+1P

(n−1)
t+1 ]

with the initial condition that P (0)
t = 1 and Epot is the expectation operator for the worst-

case measure. Given the linear Gaussian framework, we assume that p(n)
t = log(P (n)

t ) is

a linear function of at and xt:

p
(n)
t = −A(n) −B(n)xt − C(n)at.

When we substitute p(n)
t and p

(n−1)
t+1 in the Euler equation, the solution coefficients in

the pricing equation can be solved with B(n) = B(n−1)ρx + v′ = v′
(∑n−1

i=o (ρx)i
)
, C(n) =

C(n−1) + v′φa = v′φan, and

A(n) =
A(n−1) − logβ + v′µz + C(n−1)µa −B(n−1)σxσz

′
v

−0.5 ∗
(
v′σzσz

′
v +B(n−1)σxσx

′
B(n−1)′ + C(n−1)σaσa

′
C(n−1)′

)
Nominal bond yields can be calculated as y(n)

t = − 1
n
p

(n)
t = A(n)

n
+ B(n)

n
xt + C(n)

n
at. The

log holding period return from buying an n periods bond at time t and selling it as an

n − 1 periods bond at time t − 1 is defined as rn,t+1 = p
(n−1)
t+1 − p(n)

t , and the subjective

excess return is ern,t+1 = −Covt
(
rn,t+1,m

$
t,t+1

)
= −B(n−1)σxσz

′
v. The yield volatility is

calculated as

V art
(
y

(n)
t

)
=

(
B(n)

n
σx
)(

B(n)

n
σx
)′

+
(
B(n)

n
ρxσ

x

)(
B(n)

n
ρxσ

x

)′
+ ...

+
(
B(n)

n
ρt−1
x σx

)(
B(n)

n
ρt−1
x σx

)′

+ t

(
C(n)

n
σa
)(

C(n)

n
σa
)′
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To solve the price and yields for real bonds, we can just replace v′ with v′ = (γ, 0).

Appendix.4. Expectations hypothesis

To derive implications for the test in equation (13), let A ≡ ynt − y1
t and B ≡

(n− 1)
(
yn−1
t+1 − ynt

)
. Since all shocks are Gaussian and orthogonal, they can be thought

of as the error term in equation (13). The derivation in this session will ignore all shocks.

Given the solution for bond yields, we can solve A and B as

A = A(n)

n
− A(1) +

(
B(n)

n
−B(1)

)
xt

B = A+ V arCov(n− 1) + C(n−1) (at+1 − at − µa)

V arCov(n− 1) = 0.5 ∗
(
B(n−1)σxσx

′
B(n−1)′ + C(n−1)σaσa

′
C(n−1)′

)
+B(n−1)σxσz

′
v.

So the difference betweenA andB is V arCov(n−1)+C(n−1) (at+1 − at − µa). V arCov(n−

1) is quantitatively very small; the difference is mainly driven by C(n−1) (at+1 − at − µa).

When evaluating future prospects, investors’ worst-case beliefs are described by at+1 =

µa + at + σaεat+1. The difference between A and B now only contains the variance and

covariance term V arCov(n − 1), which is very small. Thus the expectations hypothesis

roughly holds.

However, the realized ambiguity process is described by at+1 = at + σaεat+1, and now

the difference is V arCov(n−1)−µaC(n−1). To see intuitively what this difference implies

for the expectations hypothesis test coefficient βn, we first ignore the xt in A and B, and

then calculate A and B for different horizons. For n = 2:

A = 1
2µaC

(1) − 1
2V arCov(1)

B = −A

β2 ≈ −1.
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For n = 3:

A = µaC
(1) − 1

3 (V arCov(2) + V arCov(1))

B = −A+ 1
3V arCov(2)− 2

3V arCov(1)

β2 ≈ −1.

For n = 4:

A = 3
2µaC

(1) − 1
4 (V arCov(3) + V arCov(2) + V arCov(1))

B = −A+ 1
2 (V arCov(3)− V arCov(2)− V arCov(1))

β2 ≈ −1.

Similarly, we can calculate βn for n = 5, 6, 7... If we ignore the variance/covariance term

and xt, the coefficient βn = −1 for all n. To see the exact value for βn, we should use

simulated values for xt, and take into account V arCov(n− 1).

Appendix.5. Equity yields and returns

Equity price and returns can be solved using the real stochastic discount factor

mt,t+1 = logβ − γ∆gt+1. For any asset j with a real payoff, the first-order condition

yields the following asset pricing Euler condition:

Epot [exp(mt,t+1 + rj,t+1)] = 1

where Epot is the expectation operator for the worst-case measure, and rj,t+1 is the log of

the gross return on asset j.

To solve the market return, it is assumed that the log price-dividend ratio for dividend

claims, zt, is linear in ac,t and xc,t:

zt = A0 + A1xc,t + A2ac,t.

44



The log market return is given by the Campbell and Shiller approximation

rm,t+1 = k0 + k1zt+1 + ∆dt+1 − zt

where k0 and k1 are log linearization constants. As noticed by previous studies,21 the

parameters A0 and A1 determine the mean of the price-consumption ratio, z̄, and the

parameters k0 and k1 are nonlinear functions of z̄ with z̄ = A0(z̄) +A1(z̄)a. k0 and k1 are

given by k0 = log(1+exp(z̄))−z̄k1, k1 = exp(z̄)
1+exp(z̄) . To get a highly accurate approximation,

we need to iterate numerically until a fixed point for z̄ is found.

By substituting rm,t+1 and zt into the Euler equation, we can solve A0, A1, and A2

with A1 = ζd−γ
1−k1ρc

, A2 = − ζd−γ
1−k1

, and

A0 =

logβ + k0 + (ζd − γ)µc + µd + k1A2µ
a
c

0.5 ((ζd − γ)σc + k1A1σ
x
c σc)

2 + 0.5 (k1A1σ
x
cπσπ)2

+0.5 (k1A2σac)2 + 0.5 (k1A2σ
ac
a )2 + 0.5σ2

d

1−k1

Given A0, A1, and A2, the coefficients for expected returns under the reference measure

Et(rm,t+1) = A0,E + A1,Exc,t + A2,Eac,t can be calculated as AE1 = γ, AE2 = ζd − γ, and

AE0 = k0 + (k1 − 1)A0 + µd + ζdµc + k1A2µ
a
c .

For the price of individual dividends (or dividend strips), we can solve it in a similar

way. Let Pt,n denote the price of a dividend at time t that is paid n periods in the

future. Let Dt+1 denote the realized dividend in period t + 1. The price of the first

dividend strip is given by Pt,1 = Epot [Mt,t+1Dt+1] = DtEpot [Mt,t+1
Dt+1
Dt

], and the recursion

Pt,n = Epot [Mt,t+1Pt+1,n−1] allows us to compute the remaining dividend strip prices. Given

the linear Gaussian framework, we assume that the log dividend strip prices, scaled by

the current dividend, are also affine in the state variables:

pd
(n)
t = A

(n)
0 + An1xc,t + A

(n)
2 ac,t.

21Campbell (1993); Campbell and Koo (1997); Bansal, Kiku, and Yaron (2007); Beeler and Campbell
(2012)
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Similar to the bond prices, we can first compute pd(1)
t using pd(1)

t = log
(
Epot [Mt,t+1

Dt+1
Dt

]
)
,

and then use the recursion pd(n)
t = log

(
Epot [exp

(
mt,t+1 + ∆dt+1 + pd

(n−1)
t+1

)
]
)
to compute

the remaining dividend strip prices. The solution coefficients in the pricing equation are

An1 = An−1
1 ρc + ζd − γ = (ζd − γ)

(∑n−1
i=o (ρc)i

)
, A(n)

2 = A
(n−1)
2 − (ζd − γ) = −n (ζd − γ),

and

A
(n)
0 =

A
(1)
0 + A

(n−1)
0 + A

(n−1)
2 µac + 0.5

(
A

(n−1)
1

)2
((σxc )2 + (σxcπ)2)

+0.5
(
A

(n−1)
2

)2
((σac)2 + (σaca )2) + (ζd − γ)A(n−1)

1 σxc σc

Dividend spot yield or equity spot yield is defined as eynt = − 1
n
pd

(n)
t , and dividend

future yield is defined as dividend spot yield less the real bond yield of the same maturity.

Dividend spot return is defined as log (Pt+1,n−1)− log (Pt,n) = pd
(n−1)
t+1 −pd

(n)
t +∆dt+1, and

dividend future return is the dividend spot return less the same horizon bond holding

period return. The volatility for dividend return and yield can be calculated given the

closed form solutions in prices. Note that the expected returns are calculated under the

reference measure.
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