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Abstract 

In this paper, we estimate the effect on housing prices of the expansion of the Vancouver 

SkyTrain rapid transit network during the period 2001–11. We extend the canonical 

residential sorting equilibrium framework to include commuting time in the household 

utility function. We estimate household preferences in the sorting model using 

confidential micro data and geographic information systems (GIS) data on the SkyTrain 

network. Using these preference estimates and observed data for 2001, we simulate the 

equilibrium effects of expanding the SkyTrain. In our counterfactual analysis, the 

SkyTrain expansion increases housing prices not only in neighborhoods where the 

expansion occurred, but also in those with access to pre-existing segments of the 

network. We show how these network housing price effects depend on household 

commuting patterns, and discuss the implications of our results for targeted taxation 

policies designed to capture the housing price appreciation stemming from a public 

transit investment. 

Bank topics: Asset pricing; Economic models; Housing 

JEL codes: H41, R21, R41 

Résumé 

Dans cette étude, nous analysons l’incidence qu’a eue sur les prix des logements 

l’extension de SkyTrain (le réseau de transport en commun rapide de Vancouver), qui a 

eu lieu entre 2001 et 2011. À cet effet, nous enrichissons le modèle standard d’analyse de 

la répartition résidentielle de façon à intégrer le temps de trajet dans la fonction d’utilité 

des ménages. Nous estimons ensuite les préférences des ménages dans le modèle de 

répartition à l’aide de microdonnées confidentielles et de données de systèmes 

d’information géographique sur le réseau SkyTrain. À partir de ces estimations et de 

données observées remontant à 2001, nous simulons enfin les effets d’équilibre produits 

par l’extension du réseau SkyTrain. Notre analyse contrefactuelle indique que l’extension 

de SkyTrain a engendré un renchérissement des logements non seulement dans les 

quartiers touchés par ce prolongement, mais également dans ceux desservis par des lignes 

préexistantes du réseau. Nous montrons que les effets de réseau générés sur les prix des 

logements dépendent des habitudes de déplacement des ménages et nous abordons les 

implications de nos résultats pour des politiques fiscales ciblées qui viseraient à tirer 

profit de l’appréciation du prix des logements découlant d’investissements dans les 

transports en commun. 

 

Sujets : Évaluation des actifs; Modèles économiques; Logement 

Codes JEL : H41, R21, R41 

 



Non-Technical Summary 

This paper estimates the equilibrium effects of a large, publicly funded investment in rapid 
transit on housing price differentials between neighborhoods within and outside the transit 
corridor, based on our study of the expansion of the Vancouver SkyTrain rapid transit network 
over the period 2001–11.  This includes the `Millennium Line' and `Canada Line' expansions, 
public investments totaling $3.2 billion.  We use micro data from Canadian censuses (2001 and 
2006) and the National Household Survey (2011), which include information on households' 
place of work and residence and other socio-economic variables.  We combine these data with 
geographic information systems (GIS) data on the SkyTrain expansion sourced from the South 
Coast British Columbia Transportation Authority.   

Using these data, we estimate an equilibrium sorting model in which households choose the 
neighborhood that maximizes their utility conditional on the exogenous and endogenous 
characteristics of each neighborhood.  We extend the canonical residential sorting equilibrium 
framework to include commuting time in the household utility function.  This extension adds 
realism to our analysis and allows us to estimate the equilibrium effects of the SkyTrain 
expansion using counterfactual simulation.     

Our counterfactual analysis uses observed data from 2001 and our estimates of household utility 
preferences to quantify the effect of expanding the SkyTrain over the period 2001–11.  Our 
results indicate that the expansion increased the monthly housing cost differential between 
neighborhoods with and without access to the network by $3.95.  Much of this appreciation is 
driven by price increases in neighborhoods where the expansion occurred, where there is an 
increase of $5.07 in the monthly housing cost differential relative to the rest of the region.  
However, neighborhoods with access to the pre-existing SkyTrain network are also affected, as 
the monthly housing cost differential between these neighborhoods and the rest of the Vancouver 
region increased by $1.42.   

Our results have important implications for land value capture (LVC) taxation policy. LVC is a 
tax on the portion of land appreciation directly attributable to a public investment. Our results 
show that rapid transit expansion projects affect housing prices across the transit network.  
Importantly, these network effects include appreciation in parts of the network that are not in the 
area where the expansion occurs.  Therefore, LVC tax policies should be structured to reflect the 
housing price appreciation across the entire transit network, and not focus solely on local 
taxation in the area where the expansion occurs. Second, our results suggest that tax policies 
whose structure is based on the direct effects of improved transit access may be successful in 
capturing the majority of housing price appreciation from public transit investment. In particular, 
we find that the pattern of housing price appreciation is largely unaffected by changes in the 
endogenous neighborhood characteristics. This is important because predicting how households 
will relocate in response to a transit investment is a difficult challenge facing policy makers.  



1 Introduction

Rapid transportation lines are often multi-billion dollar public investments that create unearned

land appreciation for certain landowners. A number of cities, including New York and Vancouver,

are considering targeted tax policies designed to capture the private gains of land appreciation that

occur from public transportation investment (Dwyer, 2017; Cheung, 2017). Land value capture

(LVC) is a tax on the portion of land appreciation directly attributable to a public investment.

Designing LVC tax policies requires knowledge of how neighborhood-specific public investments

affect local housing prices, and of how the value of the investment propagates and affects housing

prices in other neighborhoods throughout the region. This is especially true of public transit

investments, since the transit network itself provides a direct mechanism for the value of public

investment to propagate across a region. This paper estimates the equilibrium effects of a large

rapid transit investment on housing price differentials between neighborhoods within and outside

of the transit corridor.

We study the expansion of the Vancouver SkyTrain rapid transit network over the period 2001–

11. This period includes the ‘Millennium Line’ and ‘Canada Line’ expansions, investments in public

transit infrastructure totaling $3.2 billion.1 We use micro data from Canada censuses (2001 and

2006) and the National Household Survey (2011), which include information on households’ place

of work and residence, and socio-economic variables. We combine these data with GIS data on the

SkyTrain expansion sourced from the South Coast British Columbia Transportation Authority.

Using these data, we estimate an equilibrium sorting model closely following the theoretical

and empirical methodology of Bayer and McMillan (2012).2 In the model, households choose the

neighborhood that maximizes their utility conditional on the exogenous and endogenous character-

istics of each neighborhood. We extend Bayer and McMillan’s (2012) framework by incorporating

commuting time in the households’ utility function.3 This specification adds realism to our equi-

librium analysis and allows us to estimate the equilibrium effects of the expansion of the SkyTrain

network using counterfactual simulation. Bayer and McMillan (2012) model household utility as a

1The capital cost of the Millennium Line was $1.2 billion (Wales, 2008) and the capital cost of the Canada Line
was $2 billion (Partnerships British Columbia, 2010). The Canada Line is a public-private partnership.

2Our estimation strategy uses Berry et al.’s (1995) two-stage estimator, following the methodology developed by
Bayer et al. (2004). Bayer et al.’s (2004) methodology for estimating sorting models has been applied in many papers
in the urban economics literature.

3In related work, Craig (2018) simulates non-price impacts of proposed public transit infrastructure by modelling
commute mode and residential location as a simultaneous choice.
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function of commute distance rather than time. It is not possible to explicitly model the effects of

changes to the public transit network using Bayer and McMillan’s (2012) model because distance

is fixed and does not depend on the transit infrastructure.

Our counterfactual analysis uses observed data from 2001 and our estimates of household utility

preferences to quantify the effects of expanding the SkyTrain in the manner that occurred over the

period 2001–11. Our results indicate that the SkyTrain expansion increased the monthly housing

cost differential between neighborhoods with and without access to the network by an average

of $3.95.4 Much of this appreciation was driven by price increases in neighborhoods where the

expansion occurred; in these there was an increase of $5.07 in the monthly housing cost differential

relative to the rest of the region. However, neighborhoods with access to the pre-existing SkyTrain

network were also affected, as the monthly housing cost differential between these neighborhoods

and the rest of the Vancouver region increased by an average of $1.42.

To evaluate the importance of household sorting in response to the SkyTrain expansion we

consider two counterfactual equilibria: i) a short run equilibrium where the endogenous neighbor-

hood characteristics are fixed; ii) a sorting equilibrium where both housing prices and endogenous

neighborhood characteristics adjust. The majority of the price adjustment comes from the change

in public transportation access, whereas the second order effects of changes in endogenous neigh-

borhood characteristics induce only minor changes to the equilibrium vector of housing prices.

Our results have important implications for LVC taxation policy. Our results show that rapid

transit expansion projects affect housing prices across the transit network. Importantly, these

network effects include appreciation in parts of the network that are not in the area where the

expansion occurs. Therefore, LVC tax policies should be structured to reflect the housing price

appreciation across the entire transit network, and not focus solely on local taxation in the area

where the expansion occurs. Second, our results suggest that tax policies whose structure is based

on the direct effects of improved transit access may be successful in capturing the majority of

housing price appreciation from public transit investment. In particular, we find that the pattern

of housing price appreciation is largely unaffected by changes in the endogenous neighborhood

characteristics. This is important because predicting how households will relocate in response to a

transit investment is a difficult challenge facing policy makers.

4While this value is small relative to the average monthly cost of housing in Vancouver, it is important that we
estimate the differential change in neighborhood housing prices because the level change in housing prices from the
transit investment is not identified in our econometric analysis. Instead, our estimates show the housing price increase
in neighborhoods with access to the network relative the the rest of the region.
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Our focus on housing prices is related to the extensive literature analyzing the effects of public

transit lines on real estate prices, such as McMillen and McDonald (2004) and Gibbons and Machin

(2005).5 In modeling commute times, our work is also related to Baum-Snow and Kahn (2000),

who develop a measure of public transportation access and estimate the effect of improved access

on dwelling prices. Another paper that is closely related to our research is Cohen and Brown

(2017), who also study the Canada Line expansion of the SkyTrain and its effect on the value of

different types of commercial property in Vancouver. These papers largely rely on reduced form

regression analysis to identify the effect of transit investment on housing prices. We complement

this literature by using a residential sorting equilibrium model to estimate the effects of a rapid

transit line expansion on housing prices. To our knowledge, our counterfactuals provide the first

equilibrium analysis of how the value of a large transit investment propagates and affects real estate

prices across neighborhoods within a region. These network effects are important, as we show that

housing prices in neighborhoods with pre-existing access to the SkyTrain network experience an

appreciation relative to the rest of the Vancouver region.

The economic literature on LVC policy is quite limited. Salon and Shewmake (2011) review

the literature on the impact of public transportation investment on property values and discuss

the theoretical foundation for subsidizing public transportation through LVC. Despite the limited

economic research on this topic, LVC policies are increasingly used to capture the real estate

appreciation that results from rapid transit investments. For example, the Mass Transit Railway

Corporation in Hong Kong owns properties adjacent to train stations, directly capturing value

from the public transit infrastructure (Padukone, 2013). As noted above, other cities such as New

York and Vancouver are currently contemplating LVC tax policies. The results of our analysis

have important implications for LVC policies and therefore help to fill the void in the economics

literature on this topic.

The remainder of the paper is organized as follows: section 2 describes the empirical setting

and data used in this paper; section 3 describes the theoretical model, as well as estimation and

identification; section 4 presents the results of the empirical application; and section 5 concludes.

5See Higgins and Kanaroglou (2016) for a review.
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2 Empirical Setting and Data

Vancouver’s first SkyTrain rapid transit line opened in 1986, and extensions to this line opened

between 1989 and 1994. This first SkyTrain line is now called the Expo Line and is shown in Figure

1 in black. The Millennium Line opened in segments between 2002 and 2006, and is shown in Figure

1 in blue. The Canada Line, shown in red, opened in 2009 and connects downtown Vancouver to

the suburb of Richmond and the airport.

Our analysis includes 415 census tracts (CTs), corresponding to neighborhoods in our model,

in the Vancouver and Abbotsford-Mission census metropolitan areas (CMAs). CTs are small ge-

ographic areas with relatively stable boundaries and usually have a population of 2,500 to 8,000

persons (Statistics Canada, 2012). As population density increases, CTs are subdivided. Sixteen

percent of the 2001 CTs in these CMAs were split into multiple tracts by 2011. We create a con-

stant geography for our analysis by using the 2001 CT boundaries to reconstitute CTs that were

subdivided in the 2006 and 2011 censuses.

Our household data come from confidential micro data from Statistics Canada’s 2001 and 2006

long-form censuses and the 2011 National Household Survey (NHS). Most importantly, these data

include each household’s residential and workplace location at the CT level.6 These data also

include household income.7 The NHS includes households’ commute durations, but neither the

2001 nor the 2006 census includes these data; in section 3.2 we describe how we address this

empirical challenge.

We calculate neighborhood characteristics from the Statistics Canada’s micro data and Fraser

Institute school ratings.8 For each CT-year, we use the micro data to calculate characteristics

of the representative dwelling, including the percentage of dwellings in disrepair, the mean age of

dwellings, and the mean number of bedrooms. To calculate the mean monthly dwelling price, we use

rent and annual property taxes from these micro data. Using municipal tax rates and the reported

property taxes, we infer assessed property values. To have comparable dwelling prices across owner-

occupiers and renters, we estimate the monthly user cost of housing for owner-occupiers following

Bayer and McMillan (2012).9 Using the Fraser Institute’s school performance ratings, we calculate

6We refer to economic families and persons not in an economic family as households. We designate the household’s
work location as the primary maintainer’s workplace location.

7All values are in constant 2001 dollars.

8The school ratings data were downloaded from the Fraser Institute’s website:
https://www.fraserinstitute.org/school-performance

9Specifically, we regress the natural logarithm of monthly rent or assessed dwelling price on an owner-occupier
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primary school quality and secondary school quality based on the closest three respective schools

to each CT centroid.

3 Theoretical Model and Estimation Methodology

3.1 Theoretical Model

The theoretical framework for our analysis closely follows the sorting model of Bayer and McMillan

(2012). We consider an economy ofN households that choose a neighborhood from a set of {1, ...,H}

alternatives, to solve the following utility maximization problem:

max
h∈H

V i
h = αi

XXh + αi
IInch + αi

PPriceh + αi
ccommutei,h + ξh + εih, (1)

where V i
h is household i′s indirect utility function; Xh is a matrix of neighborhood characteristics

that are exogenous to households’ neighborhood choice; Inch and Priceh are the average levels of

household income and housing prices in neighborhood h, which are endogenous to the equilibrium of

the model; commutei,h is the commute time required for household i to travel from neighborhood h

to their workplace; ξh is the unobserved quality of neighborhood h; εih is an unobservable taste shock

that is specific to individual i and neighborhood h; and, αi
j is a heterogeneous preference parameter

of individual i for attribute j, j ∈ {X, I, P, c}. The preferences are defined as αi
j = α0,j + α1,jinci,

such that each household’s preferences vary with their heterogeneous income level.

The probability that household i chooses neighborhood h depends on the household’s hetero-

geneous characteristics and the full vectors of neighborhood characteristics across all H neigh-

borhoods, P i
h = fh(inci,X, Inc,Price, commute, ξ). The functional form of this probability

function depends on the distributional assumption over the taste shock, εih. We follow Bayer and

McMillan (2012) in defining a sorting equilibrium as an H × 1 vector, Price, and an N × H

matrix of choice probabilities, P , such that: i) households choose the neighborhood that maxi-

mizes utility; ii) housing demand equals supply in each neighborhood,
∑N

i=1 P
i
h = stockh, for all

h ∈ {1, ...,H}; and, iii) the set of choice probabilities, P i
h, ∀i ∈ {1, ..., N} and ∀h ∈ {1, ...,H},

aggregates households’ income up to the equilibrium vector, Inc.

Our framework differs from that of Bayer and McMillan (2012) in that we model household

indicator and controls. We estimate this regression for each census subdivision; this allows appreciation expectations
to differ across census subdivisions.
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utility as a function of commute times, whereas they model household utility over commuting

distances. In reality, households’ disutility from commuting originates from the opportunity cost

of their time. Therefore, specifying household utility as a function of commute time rather than

distance brings the model closer to the actual economic factors that households evaluate when

choosing their residential location.

A second advantage of modeling commute times is that it provides the basis for counterfactual

exercises that more directly capture the effects of a public transit investment.10 In section 3.2 we

propose modeling commute time as a function of commuting distance, population density, and rapid

transportation access. This model allows us to simulate the equilibrium effects of the expansion of

Vancouver’s rapid transit network over the period 2001–11.

3.2 Estimation

The methodology used to estimate the model presented in section 3.1 closely follows the two-step

procedure in Bayer and McMillan (2012). The first step uses maximum likelihood estimation, with

the likelihood function defined by the assumption that the unobservable taste shock, εi,th , follows a

Type I extreme value distribution. The superscript t is introduced to denote the year of observation

corresponding to the three census years 2001, 2006, and 2011.11 In the first step we estimate the

heterogeneous components of households’ preference parameters, α1,j , j ∈ {X, I, P, c} and α0,c.
12

We also estimate the mean indirect utility associated with each neighborhood, δh,t.
13 In particular,

10Bayer and McMillan’s (2012) counterfactual commuting simulations consider the equilibrium effects of reducing
household preferences for commuting distance. The authors note that these preference parameter estimates incorpo-
rate both the financial and psychic costs associated with commuting. As such, it is not possible to explicitly partial
out the effects of a public transit investment using their methodology, which motivates our approach of modeling
commute time as a function of public transit infrastructure.

11Klaiber and Phaneuf (2010) estimate Bayer et al.’s (2004) sorting model with data from multiple time periods.

12The first step of the estimation procedure exploits the variation across households within the data. The parameter
α0,c is estimated in this step because the variable commutei,h,t varies across households, based on households’
idiosyncratic workplace locations. This contrasts with the other neighborhood-level variables (e.g. school quality),
which are constant across households.

13We construct household-level characteristics to have mean zero so that the δh,t vector can be interpreted as
the vector of mean indirect utilities associated with each neighborhood in each year. To estimate each δh,t, we
use the contraction mapping algorithm described in Bayer et al. (2007). This contraction mapping algorithm is
defined by the equilibrium market clearing condition that housing demand equals the housing supply in each year,∑Nt

i=1 P
i,t
h = stockh,t. Accordingly, the contraction mapping is implemented separately for each of the three years,

2001, 2006, and 2011. This contrasts with maximum likelihood estimation of the preference parameters, in which we
pool the three years of data. For the maximum likelihood estimation routine, we also make use of the independence
of irrelevant alternatives assumption that is implicit in Bayer and McMillan (2012) and our model, which allows us
to estimate the model with a randomly selected set of 10 percent of the alternatives not chosen by each household,
rather than the full choice set.
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δh,t is defined by the following equation:

δh,t = α0,XXh,t + α0,IInch,t + α0,PPriceh,t + ξh,t. (2)

In the second step, we estimate the preference parameters α0,j , j ∈ {X, I, P} regressing the first-

stage estimates of δh,t on the observable neighborhood-level characteristics on the right-hand side of

equation (2). However, ordinary least squares (OLS) estimation of equation (2) will produce biased

estimates due to the correlation between unobserved neighborhood quality, ξh,t, and the endogenous

neighborhood-level characteristics, Inch,t and Priceh,t. This is the familiar endogeneity problem

that arises when estimating differentiated product demand systems.

To address this endogeneity problem we use an instrumental variables (IV) identification strat-

egy. We construct instruments using data in the censuses and NHS that indicate the census subdi-

visions (CSDs) where the households resided five years earlier. The instruments are constructed in

three steps. First, we define the sub-population of movers in each CT as households that reported

living in a different CSD five years earlier. Second, we calculate the median income and value of

housing for each CSD in Canada for each year of our data, 2001, 2006, and 2011. Third, for each

CT we calculate the average income and housing prices in movers’ former CSDs, where the averages

are calculated using the median values calculated in step two.

The IV exclusion restriction requires that the unobserved neighborhood-level attributes in ξh,t

are not correlated with our instruments. This assumption is reasonable, given that the instruments

are constructed solely from the attributes of CSDs that are different from where households reside.

Our identification strategy relies on the assumption that the median characteristics of movers’

previous CSDs will be strongly correlated with the characteristics of the neighborhoods they relocate

to. This assumption is plausible, provided that households are motivated to choose neighborhoods

with similar characteristics when moving.

While these arguments provide support for our identification strategy, the empirical results in

section 4.2 raise concern regarding the possibility of weak identification. To address this issue, we

construct additional instruments using an approach that is motivated by Bayer and Timmins (2007).

The approach to constructing these additional instruments leverages the equilibrium structure of

the sorting model, and involves five steps. First, we estimate equation (2) by IV using the original

instruments (i.e. the instruments constructed from the data on movers’ former CSDs). Second,

using the first stage and second stage IV preference parameter estimates, we solve for the equilibrium

8



vector of prices that clears the housing market.14 Third, we calculate the average income for each

CT in each year. Fourth, we re-estimate equation (2) by IV, adding the model-derived prices and

average income levels for each CT as additional instruments. Fifth, we iterate on steps two to four

until our IV estimates converge.

As previously noted, our model is distinct from that of Bayer and McMillan (2012) in that we

incorporate commute times (rather than distances) in the household utility function. We observe

commute times in 2011 from the NHS; however, commute times are not available in the census

data for 2006 and 2001.15 We therefore estimate the sorting model using predicted commute times,

which are generated from the output of the following regression model:

ln(commuteh,g,t) = β0 + β1ln(distanceh,g) + β2ln(distanceh,g)× 1(SkyTrainh,g,t)

+β3ln(population densityj,t) + β4ln(population densityk,t) + νh + νg + uh,g,t, (3)

where t denotes the year of the observation; (h, g) are origin-destination CT pairs; (j, k) are origin-

destination CSD pairs;16 commuteh,g,t is the median commute time between CTh and CTg in year

t; distanceh,g is the Euclidean distance between centroids of CTh and CTg;17 1(SkyTrainh,g,t) is

a dummy variable that is equal to one if the distances to the nearest SkyTrain station from the

centroid of CTs h and g are each less than 2 kilometers in year t; and νh and νg are origin and

destination fixed effects, respectively.

We estimate regression equation (3) using the observed median commute times from the 2011

NHS. While observed commute times are only available for 2011, all of the explanatory variables in

equation (3) are available for 2001, 2006, and 2011. This allows us to use the estimated coefficients

and observed data to calculate predicted commute times for each CT origin-destination pair for each

of the three census years. These predicted commute times are used in the first stage of estimating

the sorting model. In our counterfactual analysis, we also use the parameter estimates from (3)

14We follow Bayer and Timmins (2007) in setting the preference parameters associated with average neighborhood
income to zero, and by setting the vector of unobserved neighborhood characteristics ξh,t to zero. In this respect, the
equilibrium vector of prices reflects the exogenous characteristics of the CTs in households’ choice set.

15In the 2011 NHS, we do not observe commute times for every CT pair. When estimating the sorting model, we
therefore use predicted commute times for all CT pairs in 2011, as well as for the two earlier census years (2001 and
2006).

16CSDs are the next highest level of spatial aggregation above CTs. In our area of interest, there are 19 CSDs and
415 CTs.

17We set distance equal to one kilometer for commutes within a CT, distanceh,h = 1. This is necessary because
the Euclidean distance between centroid CTh and itself is zero, which implies ln(distanceh,h) = −∞.
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to simulate the effects of the 2001–11 expansions of the SkyTrain on commute times, by setting

1(SkyTrainh,g,2001) = 1(SkyTrainh,g,2011) and holding all other variables in equation (3) at their

observed values for 2001.

Our approach to modeling commute times relies on the assumption that there are no structural

changes in model (3) over the observation period, 2001–11. We acknowledge that this assumption is

unlikely to hold in reality and therefore we also estimate the sorting model using commute distance

in place of commute time, as in Bayer and McMillan (2012). There are no qualitative differences in

the preference estimates between the two specifications, and the quantitative differences between

them vary only slightly. Given the similarities in the empirical results between our benchmark

specification and the model using commute distances, we believe that the core value-added of our

approach is in the realism it adds to the counterfactual analysis. In particular, our framework and

data enable us to use the model to simulate the equilibrium effects of the SkyTrain expansion over

the period 2001–11, by adjusting households’ access to the rapid transportation network using the

commute time model given by equation (3).

4 Estimation Results and Counterfactual Analysis

4.1 Commute Time Regression Results

Table 1 presents the OLS results for the commute time regression model given by equation (3).

The dependent variable is the natural logarithm of the median reported household commute times

between CT pairs in the 2011 NHS. Our results indicate that commute times increase with commute

distance; however, this effect is mitigated by access to the SkyTrain. A 1 percent increase in distance

is associated with a 0.456 percent increase in commute time for CT pairs without SkyTrain access,

compared with a 0.452 percent increase for CT pairs with access to the SkyTrain.18 The population

density variables are included in the model to capture congestion effects at the more aggregated CSD

level. The coefficients for the population density of the home CSD, j, and the population density of

the destination CSD, k, are positive, as expected. However, the coefficient for population density in

the destination CSD is much smaller and not statistically significant, indicating that congestion in

the home CSD is the more important determinant of commute times. The commute time regression

results are used to generate the predicted commute times that are used in estimating the sorting

model and in the counterfactual analysis, as per the methodology described in section 3.2

18These differences are statistically significant at the 1 percent level.
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4.2 Preference Estimates

Table 2 presents the sorting model preference estimates. The preference estimates indicate that

households with the average level of income experience disutility from longer commutes; however,

this effect is attenuated by having a higher income.19 The positive coefficient on the interaction

between commute time and income is a counterintuitive result, assuming that higher income house-

holds have a higher opportunity cost of time. This result may be explained by related research by

Craig (2018) who models commute mode and residential location choice using a similar theoretical

framework to this paper and data from the 2011 NHS.20 In contrast with these results, she finds

that households’ disutility from commute time increases with income. The fact that modeling com-

mute mode choice changes the sign of the interaction between commute time and income may be

explained by the fact that higher income households have more flexibility in their mode of trans-

portation. That is, higher income households may be more willing to tolerate a longer commute

provided they can use private rather than public transportation.21

The two endogenous variables in the sorting model are average monthly dwelling price and

average neighborhood income. The average household experiences disutility from neighborhoods

with higher dwelling prices, although this effect is less severe for higher income households. This

may arise if households with higher income have greater disposable income to spend on housing.

For the average household, the preference estimate associated with average neighborhood income

is positive, but not statistically significant. The positive coefficient on the interaction between

neighborhood and household income is consistent with positive assortative matching based on

income.

The next three variables capture the average characteristics of neighborhood dwellings: disre-

pair, age of housing, and the number of bedrooms. Not surprisingly, households dislike neighbor-

hoods with dwellings in disrepair, and prefer neighborhoods where dwellings have more bedrooms.

The magnitude of both effects is intensified with income. The interaction effects may be explained

by the fact that higher income households are more likely to be homeowners, and thus are more

19For the remainder of this section, we refer to a “households with the average level of income” as the “average
household.”

20Data on commute duration are included in the 2011 NHS, but not the 2001 and 2006 censuses, which prevents
us from studying commute mode choice in this analysis.

21A related explanation is that higher income households prefer suburban neighborhoods located in the outskirts
of the city. Yet another explanation is that higher income households may have greater flexibility with regard to
when they commute. For example, higher income families may be able leave early and/or come home late by availing
themselves of child care services.
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directly affected by the costs and benefits associated with dwelling characteristics. The positive

coefficient on the age of housing may be explained by the average household having an affinity for

“character” homes. The negative coefficient on the interaction with income may again be explained

by the higher rate of home ownership amongst high income households, and the higher repair costs

associated with older homes.

The last three rows of Table 2 report the preference estimates associated with population density

and school quality. The average household prefers neighborhoods with higher population density,

presumably capturing the benefits associated with the amenities of metropolitan areas. However the

utility from population density decreases with income, perhaps reflecting higher income households’

desire to live in residential neighborhoods with larger lot sizes. Households prefer neighborhoods

with higher primary and secondary school quality, and their preferences for these characteristics

increase with income. The large magnitude of the utility gains from secondary school quality is

consistent with research by Ries and Somerville (2010), who show that increases in secondary school

performance are associated with higher residential housing prices in Vancouver.

Table 3 reports the first and second stage IV estimates, which are generated in the second

step of estimating the sorting model. For purposes of comparison, the first column presents the

OLS estimates of equation (2). The next three columns present the IV estimates using the two

instruments derived from the characteristics of movers’ previous CSDs, as described in section

3.2. The F-Statistics for the excluded instruments are reported at the bottom of the first stage

results. For this IV specification the F-Statistics are small enough to raise concern regarding weak

identification.

Using the strategy described in section 3.2, we supplement the IV regression model with the two

additional instruments derived from the sorting model. The results of this second IV specification

are presented in the final three columns of Table 3. The IV diagnostic tests are much improved by

adding the additional model-derived instruments. The F-Statistics are sufficiently large to soundly

reject the null hypothesis of weak identification at any reasonable level of significance. An additional

benefit of the second IV specification is that the additional instruments allow us to report the results

of the test of overidentifying restrictions relating to IV exclusion restriction. The p-value for the

Hansen J-Statistic is reported at the bottom of Table 3, and indicates that the null hypothesis that

the instruments are valid cannot be rejected at the 10 percent level. The final column of Table 3

presents the second stage IV estimates, which are the benchmark preference estimates that are also

reported Table 2.
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4.3 Model Validation

Prior to performing counterfactual analysis, it is important to evaluate the ability of the estimated

model to fit the observed data. Using the estimated preference estimates, we solve the sorting

model for an equilibrium set of housing prices and average neighborhood income.22 In our model

validation exercises we regress the observed vector of housing prices on the model-derived vector

of housing prices, which we pool over the census years 2001, 2006, and 2011. Table 4 includes two

columns that correspond to OLS specifications in levels and in first-differences of this regression.

The results indicate that observed housing prices are highly correlated with the modeled prices,

as the R-squared statistic in the OLS regression is 0.98. The first difference of the model-derived

prices are also highly correlated with the observed first differenced prices, as the R-squared is

0.87. In sum, the results in Table 4 indicate that the modeled housing prices largely capture the

cross-sectional and dynamic variation in the observed prices.

4.4 Counterfactual Analysis

In this section, we use our sorting model and preference estimates to study the effects of the

expansion of the SkyTrain over the period 2001–11. Each of the counterfactual exercises in this

section proceeds in four steps. First, we solve the model using the preference estimates and data

on the exogenous household and neighborhood variables for the year 2001. Second, we re-solve the

model using counterfactual predicted commute times that incorporate the 2002–06 Millennium and

2009 Canada Line expansions of the SkyTrain. In this second step, all exogenous variables other

than SkyTrain access are held constant at their 2001 levels. Third, we normalize both modeled

and counterfactual housing price vectors to have the same mean as the observed vector of prices in

2001.23 Fourth, we examine the housing price changes of different sub-groups in order to identify

the differential impact of the transit expansion on neighborhoods on and off the SkyTrain network.

We repeat this four-step procedure in two separate counterfactual exercises. The first exercise is

a short run equilibrium analysis in which we solve for the equilibrium vector of housing prices that

clears the housing market, holding the average neighborhood income levels fixed. This short run

equilibrium exercise thus examines the direct effect of the SkyTrain expansion on housing prices,

22As in Bayer and McMillan (2012), nothing guarantees an equilibrium is unique.

23An equilibrium is invariant to adding an arbitrary constant to the vector of housing prices, so it is not possible to
quantify the mean change in housing prices from the expansion of the SkyTrain. Therefore, we focus on the differential
appreciation across different sub-groups of neighborhoods, while normalizing the average change in neighborhood
housing prices to zero.
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independent of equilibrium effects arising from household sorting. In the second counterfactual

exercise, we solve for the sorting equilibrium vectors of housing prices and average income by

allowing households to optimally choose the neighborhood that maximizes their utility given the

endogenous vector of prices that clears the housing market.

Figure 2 presents a ‘heat-map’ of the short run equilibrium change in modeled housing prices

arising from the expansion of the SkyTrain. Recall that the mean prices before and after the

expansion have been normalized to the mean of the observed prices in 2001. Therefore, modeled

price changes that are greater than zero (orange-red) depict CTs that experience an appreciation

relative to the mean price change from the expansion. Conversely, modeled price changes less than

zero (blue-green) depict CTs that experience a relative depreciation relative to the mean price

change from the expansion.

CTs with access to the Millennium and Canada Line expansions are clearly visible in Figure 2

in red, reflecting the fact that these CTs experience the largest appreciation. This is not surprising,

since households commuting from these CTs enjoy a shorter commute as a result of the expansion.

It is interesting that most CTs on the portion of the SkyTrain that existed prior to the expansion

(i.e. the Expo Line) also experience an appreciation in housing prices. Housing prices in these CTs

are driven up by the reduced commute times of households that commute to work in CTs with

access to expansion lines of the SkyTrain.

Table 5 quantifies the short run equilibrium differential price changes from the SkyTrain expan-

sion across different sub-groups of neighborhoods. The first panel of the table indicates that the

SkyTrain expansion results in an increase of $3.76 to the monthly housing cost differential between

neighborhoods with and without access to the rapid transit network. The second panel reports a

$4.61 increase in the monthly housing cost differential between CTs serviced by the expansion lines

of the SkyTrain and that of other CTs in the Vancouver region. The final panel reports a $1.55

increase in the monthly housing cost differential between CTs serviced by the Expo Line and that

of other CTs in the region.

Figure 3 presents a heat-map of the sorting equilibrium changes in the modeled housing prices

arising from the expansion of the SkyTrain. The heat-map is very similar to Figure 2, indicating

that the price changes are mainly driven by changes in rapid transit access. Comparing Tables 5

and 6 confirms that there is little quantitative difference between the short run equilibrium and

sorting equilibrium price changes. The similarity between the two equilibria suggest that changes

in neighborhoods’ average income have a small effect on the price changes.
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To summarize, our counterfactual sorting equilibrium analysis indicates that the SkyTrain

expansion increased the monthly housing cost differential between neighborhoods with and without

access to the network by $3.95. Much of this appreciation is driven by price increases in CTs with

access to the expansion, where there is an increase of $5.07 in the monthly housing cost differential

relative to other CTs in the region. However, prices in CTs with access to the pre-existing Expo Line

also appreciated, increasing the monthly housing cost differential between these CTs and the rest

of the Vancouver region by $1.42. Our results suggest that the mechanism driving appreciation is

decreased commute times for households commuting to and from CTs along the SkyTrain expansion.

5 Conclusion

This paper studies the expansion of the Vancouver SkyTrain rapid transit network over the period

2001–11. Our results suggest that this public transit investment increased housing prices in neigh-

borhoods in close proximity to where the expansion occurred, but also in neighborhoods with access

to pre-existing segments of the network. We find that the relative appreciation of housing prices

in neighborhoods with access to pre-existing lines of the SkyTrain was 28 percent as large as the

relative appreciation of neighborhoods with access to the expansion lines. A policy implication of

this result is that LVC tax policies should consider the potential housing price appreciation across

the entire transit network, and not focus only on local taxation in the region where the expansion

occurs.

A second policy implication of our analysis relates to the similarities in the counterfactual

results between the short run and sorting equilibrium. We find that the pattern of housing price

appreciation is largely determined by the change in rapid transit access. Conversely, the change

in neighborhoods’ average income level in response to the SkyTrain expansion has relatively little

effect on housing price appreciation. This is important because it is difficult for policy makers

to predict the relocation decisions of households in response to a transit expansion. Our results

suggest that LVC tax policies whose design is based on the direct effects of improved transit access

may be successful in capturing the majority of housing price appreciation from a public transit

investment.
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Appendix A - Figures

Figure 1: Vancouver Census Tracts and the SkyTrain Rapid Transit Network, 2011

Vancouver and Abbotsford-Mission census tracts are displayed in gray, and have been re-defined to have a constant
geography over the 2001, 2006, and 2011 censuses. Geo-spatial files for the census tracts are sourced from Statistics
Canada. The three lines of the Vancouver SkyTrain rapid transit system in 2011 are displayed. The white dots
define the location of SkyTrain stations. Geo-spatial files for the SkyTrain are sourced from the South Coast British
Columbia Transportation Authority. The base map is sourced from ESRI, and uses spatial data from DeLorne,
GEBCO, NOAA NGDC, and other contributors.
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Figure 2: Short Run Equilibrium Modeled Price Changes

Modeled price changes are calculated by authors using output from the short run equilibrium simulations of the
estimated model (see details in the text). The base map is sourced from ESRI, and uses spatial data from DeLorne,
GEBCO, NOAA NGDC, and other contributors.
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Figure 3: Sorting Equilibrium Modeled Price Changes

Modeled price changes are calculated by authors using output from general equilibrium simulations of the estimated
model (see details in text). The base map is sourced from ESRI, and uses spatial data from DeLorne, GEBCO,
NOAA NGDC, and other contributors.
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Appendix B - Tables

Table 1: Commute Time Regression Results

ln(commuteh,g)

ln(commuteh,g)
ln(distanceh,g) 0.456***

(0.0029)
ln(distanceh,g)× 1(SkyTrainh,g) -0.00366***

(0.0012)
ln(population densityj) 0.147**

(0.061)
ln(population densityk) 0.0558

(0.092)
Constant -2.774***

(0.71)

CT fixed effects (g and h) Yes
Observations 32,045
R-Squared 0.54

Standard errors are in parentheses. *** p<0.01, ** p<0.05, * p<0.1
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Table 2: Neighborhood Sorting Model Estimation Results

α0 α1

commute -1.24*** commute x inc 0.192***
(0.001) (0.003)

Price -6.919*** Price x inc 0.050***
(0.45) (0.012)

Inc 1.364 Inc x inc 5.113***
(2.02) (0.043)

Disrepair -4.130** Disrepair x inc -1.075***
(1.83) (0.125)

Age of Housing 3.515*** Age of Housing x inc -0.600***
(0.86) (0.042)

Number of Bedrooms 1.969*** Number of Bedrooms x inc 0.057***
(0.33) (0.009)

Population Density 0.499** Population Density x inc -0.230***
(0.20) (0.011)

Primary Schools Quality 5.426*** Primary Schools Quality x inc 0.887***
(0.97) (0.045)

Secondary Schools Quality 11.52*** Secondary Schools Quality x inc 0.442***
(1.45) (0.056)

Household Observations 249,985
Census Tracts 415

Second stage regression includes constant and year 2006 and 2011 indicator variables. The number of observations
has been rounded to base 5, as per Statistics Canada’s vetting regulations. Standard errors are in parentheses. ***
p<0.01, ** p<0.05, * p<0.1.
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Table 3: Neighborhood Sorting Model - Second Stage Estimation and IV Diagnostic Results

Estimator/Stage in 2SLS: OLS 2SLS/1st 2SLS/1st 2SLS/2nd 2SLS/1st 2SLS/1st 2SLS/2nd

Dependent Variable: δ Price Inc δ Price Inc δ

Price -1.352*** -4.092*** -6.919***
(0.079) (0.86) (0.45)

Inc 1.639*** 4.530 1.364
(0.27) (3.58) (2.02)

Disrepair -1.913*** -0.295 -0.269*** -2.177 0.184 0.136 -4.130**
(0.71) (0.29) (0.082) (1.43) (0.30) (0.088) (1.83)

Age of Housing -3.164*** 1.223*** 0.120*** -0.246 0.197 0.307*** 3.515***
(0.27) (0.11) (0.030) (1.22) (0.14) (0.042) (0.86)

Number of Bedrooms 0.0930 0.338*** 0.140*** 0.587 0.0255 0.100*** 1.969***
(0.057) (0.018) (0.0052) (0.62) (0.029) (0.0087) (0.33)

Population Density -0.227*** 0.143*** -0.0107 0.159 0.0406 0.0634*** 0.499**
(0.079) (0.032) (0.0091) (0.16) (0.039) (0.012) (0.20)

Primary Schools Quality -0.934*** 1.117*** 0.308*** 1.290 -0.0422 0.0335 5.426***
(0.27) (0.10) (0.029) (1.58) (0.15) (0.043) (0.97)

Secondary Schools Quality 1.915*** 1.682*** 0.477*** 5.178** 0.0361 0.231*** 11.52***
(0.37) (0.14) (0.040) (2.44) (0.19) (0.055) (1.45)

1(Y ear = 2006) -0.0236 -0.237*** -0.0294*** -0.503** -0.0669** -0.0196** -1.111***
(0.063) (0.030) (0.0085) (0.21) (0.030) (0.0089) (0.18)

1(Y ear = 2011) 0.126* 0.0908*** 0.0473*** 0.292 -0.0594* 0.0251** 0.872***
(0.065) (0.034) (0.0098) (0.29) (0.034) (0.010) (0.21)

Constant 0.877*** -1.797*** -0.267*** -3.718* 0.0755 0.0760 -9.917***
(0.29) (0.11) (0.032) (1.99) (0.19) (0.056) (1.14)

Movers Inc -0.478*** 0.0338 -0.163 0.0653*
(0.12) (0.034) (0.11) (0.033)

Movers Price 0.379*** 0.0840** 0.202 0.0397
(0.13) (0.038) (0.13) (0.037)

Model Inc 0.809 1.713***
(0.55) (0.16)

Model Price 0.975*** -0.0251
(0.071) (0.021)

Observations 1,245 1,245 1,245 1,245 1,245 1,245 1,245
R-squared 0.42 0.55 0.68 -0.17 0.61 0.71 -2.60
Number of Instruments: 0 2 2 2 4 4 4
F-Statistic (Price) 8.336 8.336 8.336 54.88 54.88 54.88
F-Statistic (Inc) 5.910 5.910 5.910 31.18 31.18 31.18
p-value (J-Statistic) 0.143 0.143 0.143

Standard errors are in parentheses and are clustered at the census tract level; *** p<0.01, ** p<0.05, * p<0.1. The
reported F-Statistics are for first stage F-tests of the excluded instruments, reported individually for each of the
endogenous variables.
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Table 4: Model Validation Regressions

Price Observedh ∆ Price Observedh

Price Modeledh 0.927***
(0.0037)

∆Price Modeledh 0.921***
(0.012)

Constant 93.21*** 5.020*
(4.97) (2.57)

Observations 1,245 830
R-squared 0.98 0.87

Standard errors are in parentheses; *** p<0.01, ** p<0.05, * p<0.1

Table 5: Differential Price Changes Across Neighborhoods - Short Run Equilibrium

1(SkyTrain) = 0 1(SkyTrain) = 1 |Diff |

Mean -1.24 2.52 3.76***
(0.0231) (0.1935) (0.1949)

Neighborhoods 274 135

1(SkyTrain) = 0 OR 1(SkyTrain) = 1 AND |Diff |
1(Expansion Line) = 0 1(Expansion Line) = 1

Mean -0.72 3.89 4.61***
(0.0612) (0.3157) (0.3216)

Neighborhoods 345 64

1(SkyTrain) = 0 OR 1(SkyTrain) = 1 AND |Diff |
1(Expansion Line) = 1 1(Expansion Line) = 0

Mean -0.27 1.28 1.55***
(0.126) (0.0965) (0.1587)

Neighborhoods 338 71

Standard errors are in parentheses; *** p<0.01, ** p<0.05, * p<0.1
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Table 6: Differential Price Changes Across Neighborhoods - Sorting Equilibrium

1(SkyTrain) = 0 1(SkyTrain) = 1 |Diff |

Mean -1.30 2.64 3.95***
(0.035) (0.236) (0.2386)

Neighborhoods 274 135

1(SkyTrain) = 0 OR 1(SkyTrain) = 1 AND |Diff |
1(Expansion Line) = 0 1(Expansion Line) = 1

Mean -0.79 4.28 5.07***
(0.0637) (0.3985) (0.4036)

Neighborhoods 345 64

1(SkyTrain) = 0 OR 1(SkyTrain) = 1 AND |Diff |
1(Expansion Line) = 1 1(Expansion Line) = 0

Mean -0.25 1.17 1.42***
(0.1435) (0.0936) (0.1714)

Neighborhoods 338 71

Standard errors are in parentheses; *** p<0.01, ** p<0.05, * p<0.1
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