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Abstract

The impact of oil price shocks on the U.S. economy is a topic of considerable debate. In
this paper, we examine the response of U.S. consumers to the 2014-2015 negative oil
price shock using representative survey data from the Consumer Expenditure Survey. We
propose a difference-in-difference identification strategy based on two factors, vehicle
ownership and gasoline reliance, which generate variation in exposure to oil price shocks
across consumers. Our findings suggest that exposed consumers significantly increased
their spending relative to non-exposed consumers when oil prices fell, and that the
average marginal propensity to consume out of gasoline savings was above 1. Across
products, we find that consumers increased spending especially on transportation goods
and non-essential items.

Bank topics: Business fluctuations and cycles; Domestic demand and components;
Recent economic and financial developments
JEL codes: D12, E21, Q43

Résumé

L’incidence des chocs des prix du pétrole sur I’économie americaine continue de
provoquer de vifs débats parmi les specialistes. Dans cette étude, nous examinons la
réaction des consommateurs américains au choc négatif des prix du pétrole de 2014-
2015, au moyen de données représentatives issues du Consumer Expenditure Survey.
Nous proposons une stratégie d’identification par la méthode des doubles différences qui
repose sur deux facteurs — la possession d’un véhicule automobile et la dépendance a
I’égard de I’essence —, lesquels induisent une variation de I’exposition aux chocs des prix
du pétrole parmi les consommateurs. Les résultats obtenus portent a croire que lorsque les
prix du pétrole ont chuté, les consommateurs exposés & ce choc ont augmente
sensiblement leurs dépenses par rapport a ceux qui n’y étaient pas exposeés, de sorte que
la propension marginale a consommer moyenne liée aux économies réalisées sur le prix
de I’essence était supérieure a 1. En ce qui a trait aux produits achetés, nous constatons
que les hausses de dépenses étaient surtout concentrées dans les biens liés au transport et
les biens non essentiels.

Sujets : Cycles et fluctuations économiques ; Demande intérieure et composantes ;
Evolution économique et financiére récente
Codes JEL : D12, E21, Q43



Non-Technical Summary

The oil price decline of 2014-2015 was both unanticipated and large in magnitude, leading to
expectations of significant impact for the U.S. economy. Since then, there continues to be debate
as to whether the shock had significant effects for the U.S. economy, and as to how large these
effects were.

In this paper, we examine whether U.S. households who were particularly exposed to the oil price
shock changed their consumption behavior after the shock, using representative micro data from
the Consumer Expenditure Survey from 2013-2015. We propose a difference-in-difference
identification strategy by comparing consumption responses of a treatment group of households
that owned a vehicle with responses of a control group that did not own a vehicle. For robustness,
we also compare a treatment group of households that are above the 20™" percentile in gasoline
reliance with a control group of households below the 20™" percentile in gasoline reliance. Our
study is the first to examine this topic using representative data for U.S. households that cover
spending on all types of products.

Our findings suggest that households that were exposed to oil prices significantly increased their
spending after the oil price shock. In terms of magnitude, we find that the marginal propensity to
consume (MPC) out of gasoline price savings was greater than 1 during this period, which is larger
than estimates found in several other studies that examine this episode.

Across products, we find that exposed households increased their consumption of non-essential
items, including alcohol, apparel, entertainment, and food away from home. In addition, we find
that these households especially increased their expenditure on transportation products (e.g., motor
vehicles), which are complementary to oil. That transportation products tend to be items where
expenditures are large and discrete helps to explain why we find that the MPC out of gasoline price
savings is above 1. Once we net out spending on transportation products, the remaining MPC is
roughly 1, which is close to estimates from other studies that do not consider spending on motor
vehicles.

Overall, our findings suggest that the oil price decline of 2014-2015 had very significant positive
effects on U.S. consumer spending.



1 Introduction

The impact of the oil price decline of 2014-2015 on the U.S. economy has been a topic
of considerable debate among economists. Between June 2014 and December 2015, global oil
prices fell by almost 50%. As a net oil importer, the U.S. should benefit economically from a
negative oil price shock based on standard macroeconomic theory. However, several specialists
have argued that the effects of oil price shocks on the U.S. economy are asymmetric, with the
negative effect of oil price increases being more important than the positive effect of oil price
declines (Hamilton, 2011; Mehra and Petersen, 2005). In addition to this, popular commentary
in the U.S. related to the 2014-2015 shock has lamented that this oil shock did not deliver the
economic benefits that previous negative shocks provided.!

Quantitative exercises that have focused on this episode have also been somewhat con-
flicting. U.S. economic growth was weaker than expected throughout the 2014-2015 period,
suggesting perhaps that the positive impact of the oil shock on consumer spending was un-
expectedly weak (Furman, 2015; Leduc, Moran and Vigfusson, 2016). Meanwhile, non-
representative studies using micro data (Farrell and Greig, 2015; Gelman et al., 2016) and
studies using macro data (Baumeister and Kilian, 2016) suggest that consumers spent a con-
siderable share of their gasoline expenditure savings. To date, we are aware of no study that
examines the response of U.S. consumers to the 20142015 oil price shock using representative
micro data for the entire U.S. population that cover all types of consumer purchases.

In this paper, we assess the impact of the 2014-2015 decline in oil prices on U.S. consumer
behavior using survey micro data from the Consumer Expenditure Survey (CE).> The CE is
particularly useful for studying this topic for two reasons. First, the survey is representative
of the entire U.S. population and covers nearly all types of consumer purchases.> Second,
the survey provides detailed information on various household characteristics, including motor
vehicle ownership, that are useful for analyzing the topic.

We use a difference-in-difference type estimation strategy where we classify the treatment
group as households that report that they own a vehicle, and the control group as those who do
not report this. We also consider a secondary specification where the treatment group is house-
holds that rank above the 20th percentile in the distribution of gasoline spending propensity out
of total expenditures, and the control group is households that rank below the 20th percentile in

this distribution. We then assess the impact of the treatment, exposure to the gasoline savings

'In 2015, the Council of Economic Advisers highlighted the surprisingly low response of U.S. consumption
to low oil prices (Council of Economic Advisers, 2015). Also, a 2015 Gallup survey mentioned that most U.S.
consumers did not spend their savings at the pump (Swift, 2016), and the New York Times quoted John C. Williams,
president of the Federal Reserve Bank of San Francisco, who said that the impact of declining oil prices on
consumption was misunderstood (Appelbaum, 2016).

The CE is published by the Bureau of Labor Statistics (BLS).

3 According to the BLS, the data that we use cover roughly 95% of the typical consumer’s expenditures.



provided by lower oil prices, on consumer spending behavior.

Our results suggest that the oil price shock had significant effects on consumer spending
behavior. Gasoline savings were passed on to non-gasoline expenditures for consumers that
gained the most in purchasing power due to the price shock. Based on our calculations, the
average marginal propensity to consume (MPC) out of gasoline savings for U.S. consumers
exposed to the shock was above 1.

Our findings contribute to several topics in the energy economics literature. First, they re-
late to recent studies that attempt to identify the mechanisms through which oil price changes
affect the U.S. economy. Edelstein and Kilian (2009) describe the discretionary income effect,
which captures increased consumption due to the gasoline price savings brought about by lower
oil prices, as being possibly important. Recently, several studies have emphasized the signif-
icance of this channel for the U.S. in 2014-2015 (Baumeister and Kilian, 2016; Baumeister,
Kilian and Zhou, 2017) while others have argued that it was not important (Ramey, 2016). No-
tably, these studies rely on proxy measures for the average discretionary income effect applied
to aggregate data, and thus fail to provide a contemporaneous control group. Our methodology
is useful in identifying this channel because we consider plausibly exogenous variables that
govern differential exposure to oil prices, and use this as a basis for a difference-in-difference
estimation. Our results strongly support the importance of the discretionary income channel
for transmitting the 2014-2015 oil price shock to U.S. private consumption.*

We also find that spending growth by exposed households was significantly higher than the
standard discretionary income channel should have accounted for, suggesting that other mech-
anisms described by Edelstein and Kilian (2009) were important in 2014-2015. Specifically,
our findings suggest that the operating cost effect, which captures substitution in consump-
tion towards products that are complements to oil, was important, as households spent most of
their gasoline savings on transportation goods. Since transportation goods are durable goods
(e.g., motor vehicles) that require lumpy purchases, the expenditure response to the 2014-2015
shock was significantly above the magnitude of the real income savings brought about by lower
oil prices, which explains why we find that the MPC out of gasoline savings for U.S. consumers
exposed to the shock was above 1.

Our results are consistent with non-representative studies from Farrell and Greig (2015)
and Gelman et al. (2016), which also find that consumers increased spending significantly due
to savings from lower gasoline prices throughout the 2014-2015 period. Notably, neither of

these other studies uses measures of consumer spending that capture spending on transportation

4Ramey (2016) argues that the share of U.S. consumer spending on gasoline is, in principle, a misleading
factor in explaining the impact of oil price shocks on the U.S. economy, and argues instead that the share of oil
imports explains the response of private consumption to oil price shocks in recent decades. While our analysis
does not refute or support the role of oil import share in determining the response of private consumption to oil
price shocks, our findings do strongly suggest that household spending share on gasoline was a significant factor
in explaining differential consumption responses across households after the June 2014 oil price shock.



goods. Our results suggest an even larger response from U.S. consumers than these studies do,
seemingly due to the importance of increased spending on transportation goods.’

We also examine the types of goods and services that were purchased with the windfall
savings from lower gasoline prices. As mentioned, most of the savings were spent on trans-
portation goods, which is consistent with findings based on aggregate data from Edelstein and
Kilian (2007, 2009). Besides transportation goods, we find that consumers generally spent
their savings on non-essential items, including food away from home, apparel, entertainment,
and alcohol, which is largely consistent with results found in Edelstein and Kilian (2007) and
Farrell and Greig (2015).

Finally, we consider whether household spending out of gasoline price savings varied
across households living in urban versus rural settings, and across household mortgage sta-
tuses. We find that rural dwellers spent significantly more out of gasoline savings than urban
dwellers, perhaps due to the fact that our rural treatment groups are especially gasoline de-
pendent.” We also find that non-mortgage holders spent significantly more out of savings
than mortgage holders. This is weakly consistent with evidence from Gelman et al. (2016),
who find that mortgage holders did not spend more out of gasoline savings than non-mortgage
holders after the June 2014 shock, and consistent with the argument that consumers treated the
2014-2015 shock as permanent rather than transitory. Our finding that non-mortgage holders
increased spending more than mortgage holders could suggest that mortgage holders payed
back mortgage debt rather than increased spending of gasoline savings, which is consistent
with findings from Di Maggio et al. (2017) for household responses to mortgage rate adjust-
ments. We note that further analysis is required before reaching any firm conclusions based on
our findings in relation to household setting and mortgage status.

The rest of the paper is organized as follows. In section 2, we describe the data. In section

3, we describe our empirical approach. Section 4 describes the results. Section 5 concludes.

SFarrell and Greig (2015) and Gelman et al. (2016) find that consumers spent roughly 80% and 100% of their
gasoline savings in 2014-2015, respectively, whereas we find that consumers spent over 100% of their gasoline
savings. Farrell and Greig (2015) rely on credit card data that cover a sample of 25 million regular debit and credit
card holders. As these authors note, their measure of spending does not cover purchases made with cash, checks
or electronic transfers, which are common modes of payment for motor vehicle payments. Gelman et al. (2016)
rely on smartphone application data that do not include purchases of consumer durables or housing, and therefore
do not cover vehicle purchases.

®Patterns in the data also suggest that consumers increased real expenditures on gasoline itself, which is con-
sistent with findings from Gelman et al. (2016). However, we cannot effectively estimate the increase in spending
on gasoline products based on our difference-in-difference specification.

7On average, rural residents spend a larger share of their total expenditures on gasoline than urban residents.



2 Data

2.1 Handling the CE database

For this paper, we use Consumer Expenditure Survey (CE) micro data for 2013 to 2015
inclusive. The CE is the most comprehensive micro data source on household spending avail-
able for the U.S., and is primarily used for the construction of official consumer price index
(CPI) weights. The CE data are derived from two separate surveys: the Interview Survey and
the Diary Survey. In this paper, we only use data from the Interview Survey since the Diary
Survey mostly reports day-by-day spending on small items. The Interview Survey collects
expenditure data for up to 25,000 households per 3-month interval.® Each household is inter-
viewed quarterly up to 5 times, reporting their spending over the previous 3 months. To have
a clear representation of when spending occurred, we follow BLS suggestions and convert
these measures into monthly values for every household. In addition to detailed information
on household consumption expenditures, the CE also compiles information on various house-
hold characteristics, including household income, state of residence, etc. All expenditure data
are nominal and non-adjusted for seasonality. U.S. population weights are provided for each
household to accord with a representative sample of the U.S. population.

In general, aggregated consumption measures constructed from the CE micro data have
been found to closely match official aggregate measures of personal consumption expenditures
(PCE) constructed by the Bureau of Economic Analysis (BEA).” However, the CE also has
well-known limitations compared to official aggregate consumption data (Garner, McClelland
and Passero, 2009). First, for some consumption items, the CE is prone to recall bias, hence
some households underestimate their consumption of certain goods and services, and survey
participants tend to round reported values up or down. Second, the CE has been documented to
have an under-representation of higher-income households. The BLS also top-codes consump-
tion values for high-income households to avoid breaching the confidentiality of respondents.
These flaws create an under-reporting problem for certain consumption categories.

To address these limitations, we follow Cloyne, Ferreira, and Surico (2015) and Coibion et

8The Interview Survey provides information on up to 95% of the typical household’s consumption expendi-
tures. The unit of measurement in the CE is the so-called Consumer Unit (CU), which the BLS defines as “(1)
all members of a particular household who are related by blood, marriage, adoption, or other legal arrangements;
(2) a person living alone or sharing a household with others or living as a roomer in a private home or lodging
house or in permanent living quarters in a hotel or motel, but who is financially independent; or (3) two or more
persons living together who use their incomes to make joint expenditure decisions.” To simplify the discussion in
this paper, we will refer to Consumer Units as households.

9This statement is true both in terms of levels and dynamic behavior over time (Bee, Meyer, and Sullivan,
2013). The official aggregate CE data are a combination of both the Interview Survey and Diary Survey data.
Therefore, our aggregate annual numbers do not perfectly match the official aggregate CE data. Furthermore, the
BLS performs some data cleaning to their micro data before aggregation. Nevertheless, the differences between
the official aggregate data and our aggregate measures are relatively small.



al. (2017) and drop data points that are inconsistent or extreme.!° We also drop observations
for households in the top and the bottom percentile of income, where data are the most likely
to be of poor quality. After cleaning, we are left with a database covering 190,000 monthly
household observations from January 2013 to December 2015.

One of our aims in cleaning the data was to derive a measure of household spending that
was not influenced by idiosyncratic sectoral changes that occurred during our period of study
that had nothing to do with the oil price shock. Accordingly, we created a “core” measure
of spending that has several sub-components removed. First, we removed spending on health
insurance due to the changes in the health insurance market in 2014. Second, we removed
a category denoted “retirement savings” since this does not, in our view, conform to actual
spending. Third, we removed education spending, which is extremely volatile and small. By
removing these three categories, in addition to gasoline spending, we developed our measure

of core spending.!!

2.2 Description of the data

Table 1 shows the distribution of spending shares per sub-category and year aggregated
across all households in our cleaned data. We categorize spending into three groups: “essen-
tial” products (food, shelter, transportation, baby care, health care, insurance, and utilities),
“non-essential” products (alcohol, apparel, entertainment, personal care, education, books,
food away from home, household expenses, and miscellaneous) and gasoline. The classifi-
cation of spending into essential and non-essential products was inspired by previous work
by Parker et al. (2013), who categorize all their types of goods and services into durables
and non-durables spending, and work by Edelstein and Kilian (2007) that argues that gasoline
price savings might be largely spent on smaller, discretionary items. Our goal is to distinguish
smaller and/or non-essential purchases from larger and/or essential purchases. Our expectation
is that, generally, spending out of gasoline price savings will be concentrated towards smaller
and/or non-essential purchases. While we acknowledge that our classification could be con-
sidered somewhat subjective, it does not influence the interpretation of our results because we

also look at which sub-components of the categories are driving our results.

2.2.1 Dynamics of consumption expenditures in CE data

As reported in Table 1, the gasoline nominal spending share decreased throughout our

sample as gasoline prices fell. As Figure 1 illustrates, U.S. gasoline prices went from an

0For example, we drop households that report zero or negative income or consumption, or households that
don’t report owning a vehicle, but report spending money on gasoline.

1Tt should be noted that our main results in Table 3 still hold if we don‘t remove education, health insurance,
and retirement savings.



average of $3.55 USD per gallon in the first half of our sample (January 2013 to June 2014)
to $2.73 USD per gallon in the second half (July 2014 to December 2015), a drop of 25 per
cent.!? These two periods will be referred to as before and after the oil price shock for the
remainder of the paper. Figure 1 also reveals that consumers increased their real spending on
gasoline beginning in the latter half of 2014 when gasoline prices began to decline. Between
August 2014 and January 2015, the average number of gallons consumed by U.S. households
rose from 62 gallons to 82 gallons, and remained noticeably higher throughout 2015 compared
to the first half of our sample period.

While gasoline price changes might generally be caused by demand factors, and therefore
would perhaps not be exogenous from the perspective of U.S. households, the 2014-2015
gasoline price decline was widely considered to be mostly driven by supply-side factors. As
documented by Gelman et al. (2016), the 2014-2015 oil price decline, which was responsible
for the decline in gasoline prices, occurred contemporaneously with decisions by OPEC to
abandon price support, and with the expansion of oil supply from the U.S. shale industry and
Canadian Oil Sands, both of which are supply-oriented factors.'?

The evidence in Figure 1, coupled with evidence from Table 1, suggests that the price
elasticity of gasoline spending for U.S. consumers was between zero and -1 during the 2014—
2015 period.'* While we are reluctant to argue that this evidence provides a clean estimate
of the elasticity of demand for gasoline, evidence from other studies suggests elasticity esti-
mates in this range for the U.S. For example, Edelstein and Kilian (2009) derive an estimate
for the price elasticity of gasoline of -0.46 using aggregate U.S. data from 1970 to 2006. More
recently, Gelman et al. (2016) find similar estimates using a non-representative panel of indi-
vidual expenditures derived from mobile app data for the 2014-2016 period. For elasticities in
this range, real gasoline expenditure partially rises as gasoline prices fall, leaving a significant
share of windfall gains for either expenditure on non-gasoline products or for savings. Also,
Table 1 reveals that no other categories of consumption exhibited as large of a decline in spend-
ing share as gasoline over the 2013-2015 period. In contrast to gasoline, spending share on
both essential and non-essential products rose over this period. Spending share on transporta-
tion, a product group that is broadly complementary to gasoline, increased more significantly
than any other sub-group, from 12.7% in 2013 to 13.5% in 2015.

2Meanwhile, over the same period oil prices fell 50 per cent, suggesting that the pass through of the oil price
shock to gasoline prices was above zero but below 1.

3For more on the importance of supply factors in driving the 2014-2015 oil price decline, see Baffes et al.
(2015) and Baumeister and Kilian (2016). Gelman et al. (2016) also provide strong evidence that the 2014-2015
oil price shock was unanticipated and treated as permanent by U.S. households.

141f the price elasticity of gasoline were equal to or below -1, then we would expect nominal gasoline spending
to remain constant or rise in a period of falling gasoline prices. If the price elasticity of gasoline were above 0, then
we would expect real gasoline spending to fall in a period of falling gasoline prices. Perhaps due to differences in
the sources of the 2014-2015 and 2008 oil price declines, gasoline exhibited greater elasticity during the 2014—
2015 episode than the 2008 episode (see Crain and Eitches, 2016).



To provide a more rigorous exploration of how U.S. households responded to the 2014—
2015 oil price shock, we consider whether, and by how much, consumers who were especially
exposed to the shock increased their spending. Intuitively, the impact should be larger for
households that own a vehicle or who are relatively dependent on gasoline spending.!> To
examine this, Table 2 reports differences in spending behavior throughout our sample between
vehicle owners and non-vehicle owners and low and high gasoline spenders.!® The set of
households that report owning a vehicle outnumber the set that do not by a ratio of nearly ten
to one (173,341 versus 17,524).!7 By construction, the ratio of high gasoline to low gasoline
spenders is five to one.

Comparing the pre-shock (before July 2014) and post-shock (after June 2014) samples, core
spending increased for our entire sample, as reported in Table 2. This evolution of spending
is consistent with the robust improvements the U.S. economy experienced between 2013 and
2015. Indeed, between our two sample dates, aggregate consumption, as measured by the BEA,
increased 6.5 per cent. More interestingly, the increase in spending was noticeably higher for
vehicle owners and high gasoline spenders than their control counterparts.

This finding could be due to the fact that these households tend to have higher incomes;
several studies have documented that higher-income households benefited the most in the post-
crisis period in the U.S.!8 Intuitively, these income gains could have been passed on to higher
spending, which explains why relative spending by vehicle owners and high gasoline spenders
increased after June 2014.

Meanwhile, vehicle owners and high gasoline spenders differ significantly from their con-
trol group counterparts along several other dimensions as well. On average, both groups have
higher core monthly spending over our entire sample, have more people per household, are
much more likely to have a mortgage, and are more likely to work than their respective control
groups. These differences, as well as household income, should be controlled for when esti-
mating the response of consumer spending to variations in gasoline prices. We describe our

approach to doing this in the next section.

STheoretically, non-gasoline producers that use oil products as inputs should also benefit from lower oil prices,
which could lead to either direct impacts for business owners or indirect impacts for consumers through lower
prices beyond gasoline. However, existing work suggests that there is little evidence to support that these channels
are quantitatively important (Edelstein and Kilian, 2009).

16These two groups are defined with indicator variables. For vehicle owners, we identify each household with a
vehicle with an indicator of 1, and those without a vehicle with an indicator of 0. For this exercise, we exclude any
households in the sample that become a vehicle owner while being interviewed to address endogeneity concerns.
For high gasoline spenders, we identify households who fall above the 20th percentile in the distribution of
gasoline expenditure share with an indicator of 1, and those that fall below the 20th percentile with an indicator
of 0.

"Evidence from the American Community Survey suggests that 9.1% of U.S. households did not own a vehicle
in 2011-2015, which closely resembles the share that we find for 2013-2015.

18See, for example, Semega et al. (2017) or Saez (2016) on the evolution of top incomes in the United States
in the post-crisis period.



3 Empirical Approach

Our primary aim in this analysis is to quantify the change in U.S. core expenditures that
occurred in response to the 2014-2015 oil price shock. To do so, we perform a difference-in-
difference estimation, the theoretical basis for which is illustrated in Figure 2. Our identifica-
tion strategy considers two groups, one that experiences savings brought by lower oil prices
(the treatment group, depicted by the red line) and one that does not (the control group, de-
picted by the blue line). The treatment effect is defined as the difference between the change in
spending from the pre-shock to the post-shock period for the treatment group and the control
group. In Figure 2, this wedge is represented by the difference between the dotted red line and
the solid red line (since the dotted blue line lies on top of the solid blue line for the control
group).

Ideally, a difference-in-difference estimation exercise should have similar pre-treatment
trends for control and treatment groups, as depicted in Figure 2. In Figure 3, we reproduce
similar figures to Figure 2 using actual data from both of our two specifications: where the
treatment group is (1) vehicle owners and (2) households above the 20th percentile in the dis-
tribution of gasoline expenditure share. A visual inspection of both figures reveals a different
evolution of spending for the treatment and control group before the shock under both speci-
fications, which is concerning from the perspective of validity for our test. Note, as well, that
this appears to be less of a problem under our secondary specification. To address this issue,
we include a time trend as a control variable in our regressions.

The difference-in-difference regression specification is the following:

Yi: = Bo+ Bitreated; + B2 shock, + Bz treated; x shock; + Byincome; 4 + Bs controls; s +€; 4,

(D
where Y}, represents a spending variable of interest, treated;, represents an indicator variable
for the treatment group, and shock; represents an indicator variable for after the oil price shock
(post June 2014).

The coefficient of interest, 3, captures the impact of the interaction term, treated and shock,
which indicates the average treatment effect. We also include household income (income; ;)
and additional control variables (controls; ;) to adjust for differences in observable character-
istics across groups.'? Finally, ¢; ; represents an error term that is assumed to be identically and
independently distributed.

Overall, our two specifications offer several advantages and disadvantages. Our main spec-

ification has the advantage that moving from the control group to the treatment group requires

9QOur list of control variables includes: (1) number of persons in the household, (2) age of the head of the
household, (3) gender of the head of the household, (4) urban/rural status, (5) mortgage status, and (6) employment
status.



a significant investment (buying a vehicle), hence it offers perhaps a more convincing identifi-
cation for the impact of oil price changes on consumption based on predetermined exposure to
the shock. Meanwhile, our secondary specification has the advantage that the number of obser-
vations is more balanced between the treatment and control groups, and observable household
characteristics tend to be more balanced as well. The secondary specification also follows sim-
ilar approaches taken in other studies (Edelstein and Kilian, 2009; Farrell and Greig, 2015),
so our results under this specification are perhaps more easily contextualized in the related lit-
erature. In the end, our view is that it is best to consider both specifications and compare the
results as a robustness check.

Our identification strategy assumes that the oil price shock of 2014-2015 was unantici-
pated and predetermined with respect to the changes in consumption between our treatment
and control groups. As mentioned earlier, evidence provided by Gelman et al. (2016) and
others suggests that this shock was mainly driven by supply-side factors, exogenous from the
perspective of U.S. consumers, and that the shock was unanticipated and treated as permanent
by U.S. consumers. Our identification strategy also assumes that selection into treatment and
control groups was predetermined with respect to the shock, adjusting for our list of control
variables. Again, movement from the control to the treatment group under our main specifi-
cation requires a significant investment (buying a vehicle), and hence is likely predetermined
with respect to gasoline prices for most households. Under our secondary specification, while
most households might well spend more on gasoline (in real terms) when prices fall, there is
no clear reason why the ranking of gasoline expenditure across households should change, and

hence our assumption of pre-determinedness is not unrealistic.

4 Results

4.1 Main results

Our main set of regression results, based on (1) with core spending as the dependent vari-
able, are reported in Table 3. We show results for the impact on core spending under both of
our main vehicle ownership and secondary gasoline spending share specifications. As the first
row indicates, controlling for income and the set of control variables, there is no evidence that
the control groups increased core spending after June 2014 under either of our specifications:
the point estimates for the “shock” variable (after June 2014) are negative and statistically in-
significant in both columns 1 and 2. This result appears to suggest that the broad growth in U.S.
consumption after June 2014 depicted in Table 2 was driven by some of our control variables.

Controlling for income and control variables, consumers with vehicles and/or high gasoline

spending share had significantly higher core spending throughout our entire sample, as indi-
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cated in row 2, where the estimate for “treated” is positive and statistically significant in both
columns 1 and 2. This finding is not surprising, since consumers that own vehicles or spend
more on gasoline might generally have higher spending propensities than our control groups.

In the third row of Table 3, we report estimates of the coefficient on the interaction variable,
which captures the differential response of the treatment group to the shock. Our estimates in-
dicate a large, positive, and statistically significant increase in core expenditures, suggesting
that households that owned vehicles and/or had a high share of gasoline in their consumption
basket spent their savings from foregone gasoline expenditures on non-gasoline products. More
specifically, car owners increased their core expenditures by roughly $106 per month in nom-
inal terms after the 2014-2015 oil price shock (column 1); high gasoline spenders increased
their spending on core products by roughly $89 per month in nominal terms (column 2).

In the Appendix, we provide further robustness tests. These include estimation under our
two specifications with (i) month fixed effects, (ii) clustered standard errors by household, and
(ii1) propensity scores included in the regressions. These tests provide strong confirmation of

our results.

4.1.1 Discussion

To assess whether these magnitudes plausibly represent the real income gains characterized
by Edelstein and Kilian (2009) as the discretionary income effect, we compare them with a
simple back-of-the-envelope calculation.

To begin, U.S. gasoline prices fell from an average of $3.55 before July 2014 to $2.73 after
June 2014 according to BEA data, which marks a 25% decline. Moreover, estimates from the
literature suggest that the elasticity of demand for gasoline in the U.S. is in the region of -0.3
to -0.5. Suppose we take the lower bound of this range, -0.3, and assume the total MPC out
of gasoline price savings is 1. Together, these parameters imply that the cross-price elasticity
of demand for non-gasoline products is 0.7. Given that the average U.S. vehicle owner spends
roughly $200 to $250 per month on gasoline compared to 0% for non-vehicle owners (see Table
2), the maximum possible expenditure wedge between vehicle and non-vehicle owners induced
by the gasoline price shock, which represents the maximum possible size for the discretionary
income effect, should be roughly (0.25)*(0.7)*($250)=%$43.75. Our estimated value of $106 is
over twice as large as this back-of-the-envelope calculation.

Under our secondary specification, the average high gasoline spender spends roughly $227
to $262 per month on gasoline, compared to roughly $30 per month for low gasoline spenders.
Accordingly, a similar back-of-the-envelope calculation reaches a maximum possible size for
the discretionary income effect of roughly (0.25)*(0.7)*($262-$30)=%$40.60. Our estimated
value of $89 is, again, over twice as large as this.

In theory, these large responses could reflect additional mechanisms besides the discre-
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tionary income effect. The precautionary savings effect and the operating cost effect are po-
tential factors that could deliver augmented expenditure responses to gasoline price shocks. In
fact, Edelstein and Kilian (2009) present findings that suggest the expenditure response due to
oil price fluctuations could be roughly three times as large as what the maximum effect due to
discretionary income savings would suggest. They attribute this larger magnitude as partly a
reflection of these additional two effects.?’

Through the precautionary savings effect, consumers might interpret lower gasoline prices
as a higher future real income, and hence the consumption response could be larger than the
direct discretionary savings. Through the operating cost effect, consumers might react to lower
gasoline prices by increasing their purchases of gasoline-related goods. Since these goods are
durable and, in many cases, require lumpy expenditures, the empirical response could be very
large when consumers make purchases. In other words, this response might appear as a sort
of investment in gasoline-related consumption, where purchases are a large discreet event but
consumption is smoothed over the future.

To further examine these avenues, in the next section we decompose expenditures into

product categories, and consider where gasoline savings were spent.

4.2 Decomposition of the results by detailed expenditure categories

Tables 4 and 5 report results from the specification in (1), but with spending on essential
products as the dependent variable. For vehicle owners, depicted in Table 4, the interaction ef-
fect is positive, and statistically significant with a point estimate of approximately $67 (column
1, row 3). Given that the interaction effect for all core spending was around $106, essential
goods are absorbing a substantial share of these additional expenditures. Looking at specific
sub-categories, we find no evidence of a differential response to the shock for the vehicle own-
ers in spending on food, shelter, health care, personal insurance, or utilities. In contrast, we do
find evidence of a differential response for transportation goods and, more specifically, auto-
motive goods (columns 4 and 5, row 3).

For high gasoline spenders, depicted in Table 5, the differential spending response on essen-
tial goods after the shock is not statistically significant and the magnitude is lower than under
the specification in Table 4.2! Again, looking at specific sub-categories, we find no evidence of
a positive differential response to the shock for the high gasoline spenders in spending on food,
shelter, health care, personal insurance, or utilities. And again, we do find evidence of a dif-

ferential response for transportation goods, although the magnitude and statistical significance

20 Another possible effect described by the authors is the uncertainty effect, but this would, in theory, put
downward bias on our results, so it would not explain the large effect that we find.

2INote that the magnitude of the interaction coefficient for core expenditures is also smaller under this speci-
fication than under our main specification ($89 compared to $106), so it is not surprising that the magnitude for
sub-categories is also smaller.
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are lower than under the specification in Table 4.2

The magnitude and statistical significance of the interaction term for transportation goods
under both specifications is comparatively very large. This result is in line with results found
in Edelstein and Kilian (2007, 2009), and seemingly indicative of the operating cost effect
identified by these authors. Intuitively, consumers appear to have reacted to lower gasoline
prices by spending more on transportation goods. The fact that these purchases tend to be
bulky and are consumed over a longer horizon could explain why the magnitude of our co-
efficient estimates in row 3 of Table 3 are so large. In fact, if we net out the estimates for
transportation products (reported in column 4 of Tables 4 and 5), then the coefficient estimates
in row 3 of Table 3 are reduced to $40 ($106-$66) and $51 ($89-$38) for the main specification
and secondary specification, respectively. These figures are remarkably close to our back-of-
the envelope calculations for the maximum potential size for the discretionary income effect
($43.75 and $40.60), which is consistent with the MPC estimate of 1 that is found by Gelman
et al. (2016). Moreover, the difference between the point estimates for total essential products
and transportation products is essentially zero under both specifications, which suggests that
the response in consumption of essential products excluding transportation due to the oil price
shock was negligible.

Tables 6 and 7 report results from the specification in (1), but with spending on non-
essential products as the dependent variable. Again, overall spending on these products in-
creased disproportionately for vehicle owners after the gasoline price shock (Table 6: column
1, row 3), although the magnitude is less than that for transportation goods in Table 4. Across
different spending categories, we find a positive and significant differential response for vehicle
owners after the shock for spending on alcohol, apparel, entertainment, household expenses,
and food away from home. We find no evidence of a positive response for spending on books,
appliances, or miscellaneous products.

Under our secondary specification, reported in Table 7, the estimated treatment effect for
overall non-essential goods (column 1, row 3) is, again, positive and statistically significant.
Across sub-categories, the treatment effect for high gasoline spenders is positive and signifi-
cant for spending on alcohol, apparel, entertainment, books, and food away from home, and
either negative or statistically insignificant for spending on appliances, household expenses,
and miscellaneous products.

Overall, results in Tables 4-7 suggest that, under both specifications, the 2014-2015 oil

price shock induced additional spending on transportation goods, alcohol, apparel, entertain-

22We also find, under both specifications, that baby care spending increased significantly for the treatment group
after the shock (Tables 4 and 5: column 6, row 3). This category of spending includes spending for babysitting,
and other expenses for day care centers and nursery schools. CPI inflation for child care and nursery schools was
especially strong in 2015, which might have affected these groups more than their control counterparts. Since this
effect is small and likely not related to lower oil prices, it is not warranted to put emphasis on it.
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ment, and food away from home. How do these results compare to results from other studies?
Edelstein and Kilian (2007) and Farrell and Greig (2015) provide detailed studies on U.S. re-
sponses in consumption due to gasoline price shocks. Edelstein and Kilian (2007) also find
particularly large positive responses for transportation-related goods, including motor vehicles
and parts, pleasure boats, pleasure air crafts, and recreational vehicles.?? Beyond transportation
products, they find negligible evidence of significant responses for other durable goods, which
is consistent with what we find. Both Edelstein and Kilian (2007) and Farrell and Greig (2015)
find significant and persistent increased spending on food in restaurants and apparel/department
store items, which is consistent with our findings in relation to food away from home and ap-
parel. For entertainment, our results are somewhat out of line with those from Edelstein and
Kilian (2007), who find no evidence of significant response, but consistent with results from
Farrell and Greig (2015) who also find that consumers spent some proportion of gasoline sav-
ings on entertainment.>*

Overall, our findings lend support for the importance of both the discretionary income
effect and the operating cost effect in transmitting the 2014-2015 oil price shock to the U.S.

economy.

4.3 Decomposition of the results across household types

Another benefit of the CE data is that we can examine spending responses across different
household types that might be of interest to economists and policy makers. In this section, we
focus specifically on the importance of urban versus rural residence, and mortgage ownership
for the determination of our results.”> Considering urban and rural residents separately, it
might be expected that rural residents, some of whom are likely more dependent on motor
vehicles than urban residents, would benefit relatively more from a decline in gasoline prices.
Indeed, within our sample, rural residents spent 6.4% of their total expenditures on gasoline,
on average, compared to 4.6% for urban residents.

Table 8 presents results that are consistent with this intuition. Looking at results from
estimating equation (1) for urban and rural residents separately, the coefficient on the interac-

tion term — which captures the impact of the treatment according to our model — suggests that

23Since Farrell and Greig (2015) rely on evidence from credit card data, they are unable to capture spending on
most durable goods, including transportation-related goods.

24Edelstein and Kilian (2007) find evidence of decreased spending on alcohol at home, but increased spending
on alcohol away from home, in response to lower gasoline prices. Since our measure of spending on alcohol does
not specify where consumption takes place, our results are difficult to compare. Farell and Greig (2016) do not
report evidence for spending on alcohol.

23We also examined differences across income quintiles but found little evidence of robust patterns across our
two specifications. While it would also be interesting to examine differences across geographical regions (e.g.,
oil states versus non-oil states), experts at the BLS advised us against this due to data reliability issues for some
regions.
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treated urban residents who owned a vehicle spent roughly $94 more in the period after the
gasoline price shock, relative to the control group. In contrast, rural residents spent over three
times this much, roughly $349, according to our results. Under the secondary specification,
where the treatment group is households above the 20th percentile in the gasoline expenditure
share distribution, we find similar results. The impact of the treatment is roughly $78 for ur-
ban residents, but $214 for rural residents. Overall, these results suggest that rural residents
increased spending more in response to the gasoline price shock than urban residents, perhaps
because the rural treatment group tends to be more reliant on gasoline than the urban treatment
group.?®

Another criterion that is interesting to consider is household mortgage status. Kaplan,
Violante and Weidner (2014) document that U.S. households that own primarily illiquid assets,
such as housing, tend to have a high marginal propensity to consume out of transitory income
shocks, and hence operate in a similar hand-to-mouth fashion as households at the bottom end
of the wealth distribution. Cloyne, Ferreira and Surico (2015) present evidence, based on CE
data, that U.S. households that own mortgages react to monetary policy shocks by increasing
consumption, whereas homeowners without mortgage debt are much less responsive. This
evidence is interpreted to reflect hand-to-mouth behavior on the part of mortgage owners, as
consistent with the evidence from Kaplan, Violante and Weidner (2014).

To test the role of these mechanisms for responses to the 2014-2015 oil price shock, we
separately estimate equation (1) for mortgage holders and non-mortgage holders. Results are
reported in Table 9. Interestingly, our results suggest that non-mortgage holders increased
their spending significantly in response to the treatment, whereas the response among mort-
gage holders was muted: the estimated response among non-mortgage holders is roughly $94,
whereas the response among mortgage holders is not statistically distinguishable from zero.
Similarly, under our secondary specification, the estimated response for non-mortgage holders
is roughly $104, while the corresponding estimate for mortgage holders is, again, not statisti-
cally distinguishable from zero.

These results might be explained by several factors. First, if households regard oil price
changes as permanent rather than transitory, then we should expect households that do not
own mortgage debt to increase consumption as much as households that are hand-to-mouth
mortgage holders. Indeed, Gelman et al. (2016) find evidence that owning a mortgage did
not increase the propensity of households to spend out of savings from lower gasoline prices
in 2014-2015. Our finding that non-mortgage holders increased spending more than mort-

gage holders could be on account of mortgage holders paying back mortgage debt rather than

Z6Note that the standard error from the rural regression is very large under both specifications, hence the preci-
sion of these results is lower for the rural groups than the urban groups. This is in large part because our sample
size is much larger for the urban than the rural group. Note, meanwhile, that all results are statistically significant
at the 5% level.
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spending out of gasoline savings. Indeed, this type of behavior is supported by evidence from
Di Maggio et al. (2017) for household responses to mortgage rate adjustments.

We note that these results should also be considered with some degree of caution. Although
39% of vehicle owners in our sample reported owning a mortgage, only 5% of non-mortgage
holders reported owning a vehicle, hence our results in Table 9 rely on relatively few observa-
tions. Nevertheless, these results might indeed be accurate, and suggest, if nothing else, that
the MPC out of gasoline savings among mortgage holders was not higher than that among

non-mortgage holders during the 2014-2015 episode.

5 Conclusion

In this paper, we examine the impact of the 2014-2015 decline in global oil prices on
U.S. consumer spending. We use a difference-in-difference identification strategy, comparing
spending responses of vehicle owners to non-vehicle owners, and also spending responses of
high gasoline spenders to low gasoline spenders. We interpret the difference in these responses
as the impact of the oil price shock on consumer spending.

Our results reveal that spending for vehicle owners and high gasoline spenders grew sig-
nificantly more than spending for control groups, which suggests that the 2014-2015 oil price
shock led to significant growth in U.S. household consumption. In terms of magnitude, our
findings suggest that the average marginal propensity to consume out of gasoline price savings
was above 1, driven by disproportionate growth in lumpy spending on transportation products
and non-essential products.

These findings suggest that the demand channel remains important for the transmission of

oil price shocks to the U.S. economy.

References

Appelbaum, Binyamin (2016) ‘This Time, Cheaper Oil Does Little for the U.S. Economy.’

Energy and Environment, New York Times, January

Baffes, John, M. Ayhan Kose, Franziska Ohnsorge, and Marc Stocker (2015) ‘The Great Plunge
in Oil Prices: Causes, Consequences, and Policy Responses.” Policy Research Notes (PRNs)
94725, The World Bank, December

Baumeister, Christiane, and Lutz Killian (2016) ‘Lower Oil Prices and the U.S. Economy: Is
This Time Different?’ Brookings Papers on Economic Activity 47(2 (Fall)), 287-357

16



Baumeister, Christiane, Lutz Kilian, and Xiaoqing Zhou (2017) ‘Is the Discretionary Income
Effect of Oil Price Shocks a Hoax?" Staff Working Paper, Bank of Canada, November

Bee, Adam, Bruce D. Meyer, and James X. Sullivan (2013) ‘The Validity of Consumption
Data: Are the Consumer Expenditure Interview and Diary Surveys Informative?” In ‘Im-
proving the Measurement of Consumer Expenditures’ NBER Chapters (National Bureau of

Economic Research, Inc) pp. 204-240

Cloyne, James, Clodomiro Ferreira, and Paolo Surico (2015) ‘Monetary Policy when House-
holds Have Debt: New Evidence on the Transmission Mechanism.” CEPR Discussion Papers
11023, December

Coibion, Olivier Yuriy Gorodnichenko, Lorenz Kueng, and John Silvia (2017) ‘Innocent By-
standers? Monetary Policy and Inequality.” Journal of Monetary Economics 88, 70-89

Council of Economic Advisors (2015) ‘Explaining the U.S. Petroleum Surprise.” Federal Re-

search News, June

Crain, Vera, and Eilana Eitches (2016) ‘Using Gasoline Data to Explain Inelasticity.” Beyond

the Numbers, Bureau of Labor Statistics, March

Di Maggio, Marco, Amir Kermani, Benjamin J. Keys, Tomasz Piskorski, Rodney Ram-
charan, Amit Seru, and Vincent Yao (2017) ‘Interest Rate Pass-Through: Mortgage
Rates, Household Consumption, and Voluntary Deleveraging.” American Economic Review
107(11), 3550-3588

Edelstein, Paul, and Lutz Kilian (2007) ‘Retail Energy Prices and Consumer Expenditures.’
CEPR Discussion Papers 6255, April

— (2009) ‘How Sensitive Are Consumer Expenditures to Retail Energy Prices?’ Journal of
Monetary Economics 56(6), 766779

Farrell, Diana, and Fiona Greig (2015) ‘How Falling Gas Prices Fuel the Consumer: Evidence

from 25 Million People.” Technical Report, J.P. Morgan Chase Institute, October

Furman, J. (2015) ‘Advanced Estimate of GDP for the First Quarter of 2015.” Blog, Council of

Economic Advisors, April

Garner, Thesia I., Robert McClelland, and William Passero (2009) ‘Strengths and Weaknesses
of the Consumer Expenditure Survey from a BLS Perspective.” Technical Report, Bureau of

Labour Statistics

17



Gelman, Michael, Yuriy Gorodnichenko, Shachar Kariv, Dmitri Koustas, Matthew D. Shapiro,
Dan Silverman, and Steven Tadelis (2016) ‘The Response of Consumer Spending to Changes
in Gasoline Prices.” NBER Working Papers 22969, National Bureau of Economic Research,

Inc, December

Hamilton, James D. (2011) ‘Nonlinearities and the Macroeconomic Effects of Oil Prices.’
Macroeconomic Dynamics 15(S3), 364-378

Kaplan, Greg, Giovanni L. Violante, and Justin Weidner (2014) ‘The Wealthy Hand-to-Mouth.’
Brookings Papers on Economic Activity 45(1 (Spring), 77-153

Leduc, Sylvain, Kevin Moran, and Robert J. Vigfusson (2016) ‘The Elusive Boost from Cheap
Oi1l.” FRBSF Economic Letter

Mehra, Yash P., and Jon D. Petersen (2005) ‘Oil Prices and Consumer Spending.” Economic
Quarterly (Sum), 51-70

Parker, Jonathan A., Nicholas S. Souleles, David S. Johnson, and Robert McClelland (2013)
‘Consumer Spending and the Economic Stimulus Payments of 2008.” American Economic
Review 103(6), 2530-2553

Ramey, Valerie (2016) ‘Comment on “Lower Oil Prices and the U.S. Economy: Is This Time
Different?”.” Brookings Papers on Economic Activity 47(2 (Fall)), 287-357

Saez, Emmanuel (2016) ‘Striking It Richer: The Evolution of Top Incomes in the United States
(Updated with 2015 preliminary estimates).” Technical Report, UC Berkeley

Semega, Jessica L., Kayla R. Fontenot, and Melissa A. Kolla (2017) ‘Income and Poverty in
the United States: 2016.” Current Population Reports, United States Census Bureau

Swift, Art (2016) ‘Most in U.S. Say Low Gas Prices Make Difference in Finances.” Technical
Report, New York Times, June

18



6 Appendix: Robustness

To test the robustness of our results in Table 3, we again estimate equation (1) under our
two specifications, where core spending is the dependent variable, but also include monthly
fixed effects and clustered standard errors at the household level. Results are reported in Table
10. Under both specifications, the average treatment effect remains positive and statistically
significant, and essentially identical to our estimates in Table 3, when monthly fixed effects are
included in the regression (columns 2 and 5, row 3). When standard errors are clustered at the
household level, the precision of the estimates for the average treatment effect fall significantly,
but remain statistically significant (columns 3 and 6, row 3).

To address concerns over the sizable differences in observable characteristics across our
treatment and control groups, we consider a propensity score matching-type estimation, which
involves the following. First, we estimate a linear probit model where the dependent variable
is our treatment group and the regressors include the set variables included in Table 3, except
for the shock variable, the interaction variable, and the time trend. This estimation provides
a set of household-level fitted values that correspond to the estimated probability of being in
the treatment group based on observed household characteristics. We then estimate a second
linear OLS model where the dependent variable is, as in (1) and Table 3, core spending, and
the regressors include the propensity score, the treatment variable, the shock variable, and the
interaction variable.

Results from this propensity score matching exercise are reported in Table 11. As might be
expected, the estimated coefficient for the propensity score is large and statistically very signif-
icant under both the vehicle ownership and gasoline spending share specifications (columns 1
and 3, row 1). Under the vehicle ownership specification in column 1, the coefficient estimate
for the interaction term (row 4) remains positive and statistically significant. We also estimate
this model by including the set of control variables from Table 3 (column 2), and again, the es-
timate for the coefficient of interest remains positive, statistically significant, and is of a similar
magnitude as it is under our baseline model reported in Table 3.

Results from a similar propensity score matching exercise, but for our secondary speci-
fication where the treated group is high gasoline spenders, are reported in columns 3 and 4.
The estimated coefficients on the interaction term are positive and statistically significant at
the 0.1% level. Results from column 4, which includes control variables, again suggest a simi-
lar estimate for the coefficient on the interaction term as suggested by our main OLS analysis
reported in Table 3.

Overall, results from these robustness tests provide strong confirmation that consumers
who were particularly exposed to the 2014-2015 oil price shock increased core spending sig-

nificantly in response to the shock.
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7 Tables and Figures

Table 1: Aggregated expenditure shares across product groups

2013 2014 2015

Total spending $49,827 $51,567 $52,798
As a share of total spending
Essential 704%  71.0%  71.5%
Food 10.2% 10.1% 10.0%
Shelter 20.6%  20.6% 19.9%
Transportation 127%  12.5%  13.5%
Baby care 0.6% 0.6% 0.7%
Health care 7.3% 8.2% 8.1%
Personal insurance 11.4% 11.3% 11.9%
Utilities 7.6% 7.7% 7.4%
Non-essential 24.3% 24.1% 24.5%
Alcoholic beverages 0.8% 0.8% 0.9%
Apparel 1.8% 1.9% 1.9%
Entertainment 4.5% 4.7% 4.7%
Personal care 0.6% 0.6% 0.6%
Education 2.0% 1.9% 1.7%
Books 0.2% 0.2% 0.2%
Food away from home 4.7% 4.8% 4.9%
House expenses 3.3% 3.2% 3.4%
Miscellaneous 6.4% 6.1% 6.3%
Gasoline 5.3% 4.9% 4.0%
Core 773%  76.9%  77.2%

Number of observations 62,864 63,071 64,917

Source: Derived by authors from CE micro data. See section 2 for details.
Notes: We report the data using the same subcategories as the official CE aggregate values.
Our measure of core spending excludes gasoline, education, health insurance, and retirement savings.

All figures reported represent annual averages across households.
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Table 2: Differences in consumption patterns, before and after the oil price shock

Core monthly spending

All sample Withacar Withoutacar Low gas  High gas

Before shock (Jan2013-Jun2014) $3,216.49 $3,386.48  $1,582.37  $2,060.77 $3,481.26
After shock (Jul2014-Dec2015)  $3,390.65  $3,569.95 $1,613.90  $2,111.22 $3,741.31
Difference (%) 5.40% 5.40% 2.00% 2.40% 7.50%

Gasoline spending

All sample Withacar Withoutacar Low gas  High gas

Before shock (Jan2013-Jun2014)  $218.75 $240.87 . $29.03 $261.49
After shock (Jul2014-Dec2015) $184.75 $203.36 . $28.54 $227.25
Difference (%) -15.50% -15.60% . -1.70% -13.10%
Number of observations 190,852 173,341 17,524 38,174 152,691

Source: Derived by authors from CE micro data.
Notes: Our measure of core spending excludes gasoline, education, health insurance, and retirement savings.

All figures reported represent monthly averages across households.

Table 3: Main results from difference-in-difference estimations

Vehicle Ownership Gasoline Reliance

Core Core
Shock -50.5 -16.71
(29.78) (32.12)
Treated 563.0%%** 525.5%%**
(16.68) (19.35)
Treated x Shock 106.1*%* 89.26%**
(22.43) (26.29)
Constant 225.4%%* 337 . 7x**
(46.22) (46.88)
Control Vars. X X
Obs. 190,852 190,852
Adj. R-squared 0.211 0.212

Source: Derived by authors from CE micro data.

Notes: This table reports results from estimation of equation (1). Columns 1 and 2 report results with core spending as
dependent variable. Definition of core spending is described in section 2. Column 1 reports results where “treated” group
is households that report owning a vehicle. Column 2 reports results where “treated” group is households above the 20th
percentile in the gasoline expenditure share distribution. All results reported include time fixed effects. Robust standard

errors are reported in brackets. *, **, *** indicate p<0.05, p<0.01, and p<0.001, respectively.
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Table 4: Detailed regressions for essential core spending and its sub-components with vehicle
ownership specification

Essential Food Shelter ~ Transport Auto
Shock -25.47 -5.004 0.242 -27.8 -25.26
(23.50) (3.773) (12.20) (18.12) (17.51)
Treated 350.3%%*  3(0.35%** .97.92%*k* RS 4H*E [8] SFk**
(12.90) (2.607) (7.616) (8.978) (8.629)
TreatedxShock 67.37***  6.441 -6.272  65.61%**  49.19%**
(17.35) (3.421) (10.82) (11.67) (11.21)
Constant 276.7%**  83.20%** 375 F** -39.17 53.62
(38.83) (6.321) (14.40) (33.93) (33.23)
Control Vars. X X X X X
Obs. 190,852 190,852 190,852 190,852 190,852
Adj. R-squared 0.145 0.274 0.175 0.02 0.007

Source: Derived by authors from CE micro data.

Notes: This table reports results from estimation of equation (1). Column 1 reports results with essential spending as
dependent variable. Definition of essential spending is described in section 2. Columns 2-5 report results where dependent
variable is spending on food, shelter, transportation, and automobiles, respectively. All columns report results where
“treated” group is households that report owning a vehicle. All results reported include time fixed effects. Robust standard
errors are reported in brackets. *, #* *** jndicate p<0.05, p<0.01, and p<0.001, respectively.

Table 4: (continued) Detailed regressions for essential core spending and its sub-components
with vehicle ownership specification

Baby care Health care Pers. insur.  Ultilities

Shock 0.749 9.788* -0.463 -2.976
(1.803) (3.972) (2.337) (2.684)
Treated -8.314%%% 52 2Q%** 6.273%*% 82 23%**
(1.219) (2.370) (1.147) (1.781)
TreatedxShock  5.362%%* -5.431 -2.693 4.358
(1.550) (3.192) (1.470) (2.445)
Constant 37.18%%*%  J7.49%** 4] 29%**k  _6(.86%F*
(2.109) (5.670) (3.119) (4.029)
Control Vars. X X X X
Obs. 190,852 190,852 190,852 190,852
Adj. R-squared 0.055 0.027 0.009 0.304

Source: Derived by authors from CE micro data.

Notes: This table reports results from estimation of equation (1). Columns 1-4 report results where dependent

variable is spending on baby care, health care, personal insurance, and utilities, respectively. All columns report results
where “treated” group is households that report owning a vehicle. All results reported include time fixed effects. Robust
standard errors are reported in brackets. *, **, *** indicate p<0.05, p<0.01, and p<0.001, respectively.
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Table 5: Detailed regressions for essential core spending and its sub-components with high
gasoline spenders specification

Essential Food Shelter ~ Transport Auto
Shock 17.24 -2.188 10.53 5.941 -0.396
(26.48) (2.968) (11.68) (21.93) (21.26)
Treated 335.4%%% 47 28%**  4(0.43%*F*  230.5%F*F  [4].8%**

(15.07)  (1.984)  (6351)  (12.37)  (12.00)
TreatedxShock  30.25 4569  21.24%  37.80%  28.29
(21.42)  (2.548)  (10.05)  (17.38)  (16.87)

Constant 338.7*%*k TG 14%*k* 3P4 FEk* 36.79 104.6%*
(39.49) (6.042) (13.74) (34.98) (34.29)
Control Vars. X X X X X
Obs. 190,852 190,852 190,852 190,852 190,852
Adj. R-squared 0.146 0.277 0.174 0.021 0.007

Source: Derived by authors from CE micro data.

Notes: This table reports results from estimation of equation (1). Column 1 reports results with essential spending as
dependent variable. Definition of essential spending is described in section 2. Columns 2-5 report results where dependent
variable is spending on food, shelter, transportation, and automobiles, respectively. All columns report results where “treated”
group is households above the 20th percentile in the gasoline expenditure share distribution. All results reported include

time fixed effects. Robust standard errors are reported in brackets. *, **, *¥* indicate p<0.05, p<0.01, and p<0.001,

respectively.

Table 5: (continued) Detailed regressions for essential core spending and its sub-components
with high gasoline spenders specification

Baby care Health care Pers. insur.  Ultilities

Shock 0.962 3.211 -4.032 2.819
(1.690) (4.450) (2.464) (2.169)
Treated -11.57 %% 33 ,02%** 5.723%%%  7() . 82%**
(1.205) (2.724) (1.489) (1.442)
TreatedxShock  5.668%*** 2.77 1.469 -0.787
(1.477) (3.516) (1.811) (1.864)
Constant 37.90%*% 57 20%** .30 57xk*k  _A] GQF*k
(2.058) (5.594) (3.395) (3.959)
Control Vars. X X X X
Obs. 190,852 190,852 190,852 190,852
Adj. R-squared 0.055 0.026 0.009 0.308

Source: Derived by authors from CE micro data.

Notes: This table reports results from estimation of equation (1). Columns 14 report results where dependent variable is
spending on baby care, health care, personal insurance and utilities, respectively. All columns report results where “treated”
group is households above the 20th percentile in the gasoline expenditure share distribution. All results reported include time
fixed effects. Robust standard errors are reported in brackets. *, **, *#** indicate p<0.05, p<0.01, and p<0.001, respectively.
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Table 6: Detailed regressions for non-essential core spending and its sub-components with

vehicle ownership specification

Non-essential ~ Alcohol ~ Apparel  Entertain ~ Books
Shock -25.04 2.404%* -4.713 -9.163 1.307%*%*
(14.95) (1.060) (2.846) (5.253) (0.397)
Treated 212.7%*% 4.764%%%  _6.941%%* 47 26%**k  42]8%**
(8.515) (0.632) (1.905) (2.289) (0.226)
Treated x Shock 38.74%%* 1.984*  9.230%**  ]1.87*%* -1.489%%*
(11.91) (0.922) (2.141) (3.689) (0.329)
Constant -51.31% 32.44%%%  26.49%** 18.14  -6.663%**
(21.07) (1.329) (2.954) (10.82) (0.584)
Control Vars. X X X X X
Obs. 190,852 190,852 190,852 190,852 190,852
Adj. R-squared 0.144 0.097 0.026 0.039 0.026

Source: Derived by authors from CE micro data.

Notes: This table reports results from estimation of equation (1). Column 1 reports results with non-essential spending as

dependent variable. Definition of non-essential spending is described in section 2. Columns 2-5 report results where

dependent variable is spending on alcohol, apparel, entertainment, and books, respectively. All columns report results where
“treated” group is households that report owning a vehicle. All results reported include time fixed effects. Robust standard
errors are reported in brackets. *, #* *** jndicate p<0.05, p<0.01, and p<0.001, respectively.

Table 6: (continued) Detailed regressions for non-essential core spending and its sub-
components with vehicle ownership specification
Appliances Household expenses Food away from home Misc.
Shock -0.592 -5.277 -7.381 -1.218
(1.577) (6.484) (3.805) (9.092)
Treated 6.265%** 22.36%** 32.93 % 104.17%%#%*
(0.748) (4.197) (2.655) (4.614)
Treated x Shock 0.575 13.31* 11.79%%** -9.251
(1.236) (5.325) (3.342) (7.395)
Constant -9.735%** -15.79%* 25.68#%* -123.5%**
(2.865) (7.992) (4.467) (11.65)
Control Vars. X X X X
Obs. 190,852 190,852 190,852 190,852
Adj. R-squared 0.006 0.032 0.153 0.036

Source: Derived by authors from CE micro data.

Notes: This table reports results from estimation of equation (1). Columns 1-4 report results where dependent

variable is spending on appliances, household expenses, food away from home, and miscellaneous products, respectively.
All columns report results where “treated” group is households that report owning a vehicle. All results reported include time
fixed effects. Robust standard errors are reported in brackets. *, **, *** indicate p<0.05, p<0.01, and p<0.001 respectively.
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Table 7: Detailed regressions for non-essential core spending and its sub-components with high
gasoline spenders specification

Non-essential ~ Alcohol ~ Apparel Entertain ~ Books

Shock -33.95* 2.111%* -5.038 -9.258 1.490%*
(14.45) (0.881) (2.700) (5.888) (0.376)
Treated 190. 1% 4.210%*%%  0.722  36.00%** 3. 130%**

(10.36) (0.548) (1.714) (4.173) (0.229)
Treated x Shock 59.071%** 2.710%%%  10.88%#*  14.44%* -] 856%**
(12.74) (0.736) (2.059) (5.009) (0.306)

Constant -1.01 33.66%*** 21 37*%* 3D 8I** 5 443%%*
(21.24) (1.284) (2.898) (10.85) (0.588)
Control Vars. X X X X X
Obs. 190,852 190,852 190,852 190,852 190,852
Adj. R-squared 0.145 0.097 0.026 0.039 0.026

Source: Derived by authors from CE micro data.

Notes: This table reports results from estimation of equation (1). Column 1 reports results with non-essential spending as
dependent variable. Definition of non-essential spending is described in section 2. Columns 2-5 report results where dependent
variable is spending on alcohol, apparel, entertainment, and books, respectively. All columns report results where “treated”
group is households above the 20th percentile in the gasoline expenditure share distribution. All results reported include time
fixed effects. Robust standard errors are reported in brackets. *, **, *** indicate p<0.05, p<0.01, and p<0.001, respectively.

Table 7: (continued) Detailed regressions for non-essential core spending and its sub-
components with high gasoline spenders specification

Appliances Household expenses Food away from home Misc.

Shock 2.246 1.776 -4.935 -19.46%*
(1.644) (5.797) (2.975) (8.771)
Treated 6.014%* 21.88%** 45.53%#%* 73.53%%*
(0.968) (3.777) (1.865) (7.162)
Treated xShock  -2.751%* 6.844 11.14%%* 13.76
(1.401) (4.768) (2.437) (8.706)
Constant -8.954%** -12.32 23.83%%* -86.84 %+
(2.925) (7.714) (4.040) (12.19)
Control Vars. X X X X
Obs. 190,852 190,852 190,852 190,852
Adj. R-squared 0.006 0.033 0.156 0.036

Source: Derived by authors from CE micro data.

Notes: This table reports results from estimation of equation (1). Columns 1-4 report results where dependent variable is
spending on appliances, household expenses, food away from home, and miscellaneous products, respectively. All columns
report results where “treated” group is households above the 20th percentile in the gasoline expenditure share distribution.
All results reported include time fixed effects. Robust standard errors are reported in brackets. *, **, *** indicate p<0.05,
p<0.01, and p<0.001, respectively.
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Table 8: Separate regressions for core spending for rural and urban populations

Vehicle Ownership Gasoline Reliance

Urban Rural Urban Rural
Shock -47.76 -176.6 -17.79 9.102

(30.64) (130.3) (33.51) (111.4)
Treated 567.9%*%%  480.6%**  518.0%** 624 77%**

(17.19) (71.72) (20.42) (58.03)
Treated x Shock  93.72%%%* 349 2%** 78 3]** 213.7*
(23.10) (95.68) (27.57) (85.95)

Constant 528.5%** 269.1 636.4%%* 228.8
(38.63) (143.7) (40.34) (145.2)

Control Vars. X X X X

Obs. 179,094 11,758 179,094 11,758

Adj. R-squared 0.213 0.117 0.214 0.125

Source: Derived by authors from CE micro data.

Notes: This table reports results from estimation of equation (1) where dependent variable is core spending as defined in
section 2. Columns 1 and 2 report results where “treated” group is households that report owning a vehicle. Columns 3

and 4 report results where “treated” group is households above the 20th percentile in the gasoline expenditure share
distribution. Columns 1 and 3 report results based on population of urban residents. Columns 2 and 4 report results based on
population of rural residents. All results reported include time fixed effects. Robust standard errors are reported in

brackets. *, **, *#** indicate p<0.05, p<0.01, and p<0.001, respectively.

Table 9: Separate regressions for core spending for populations with and without mortgages

Vehicle Ownership Gasoline Reliance
With mortgage W/o mortgage With mortgage W/o mortgage
Shock 148.1 -101.7%* 216.2% -87.94*
(115.6) (32.61) (85.01) (34.96)
Treated 738.2%%* 556.0%** 625.6%%* 514.4%%*
(73.45) (17.65) (51.16) (21.30)
Treated x Shock 13.74 03.73%%* -48.71 103.5%**
(108.4) (24.16) (76.79) (28.58)
Constant 408.5%* 239.6%** 575.6%%* 359.1%**
(126.6) (50.04) (114.1) (50.85)
Control variables X X X X
Observations 69,335 121,517 69,335 121,517
Adjusted R-squared 0.165 0.173 0.166 0.175

Source: Derived by authors from CE micro data.

Notes: This table reports results from estimation of equation (1) where dependent variable is core spending as defined in
section 2. Columns 1 and 2 report results where “treated” group is households that report owning a vehicle. Columns

3 and 4 report results where “treated” group is households above the 20th percentile in the gasoline expenditure share
distribution. Columns 1 and 3 report results based on population of mortgage holders. Columns 2 and 4 report results based
on population of non-mortgage holders. All results reported include time fixed effects. Robust standard errors are reported in
brackets. *, **, #** ipndicate p<0.05, p<0.01, and p<0.001, respectively.
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Table 10: Robustness checks

Vehicle Ownership Gasoline Reliance
Baseline Month FE Cluster by CU Baseline Month FE Cluster by CU
Shock -50.5 -67.35% -50.5 -16.71 -29.47 -16.71
(29.78) (31.41) (48.35) (32.12) (33.34) (48.26)
Treated 563.0%**  562.9%%* 563.0%** 525.5%#% 524 4x%* 525.5%*%
(16.68) (16.70) (33.08) (19.35) (19.35) (32.80)
Treatedx Shock 106.1***  106.0%** 106.1* 89.26%#* 8T TTH** 89.26*
(22.43) (22.48) (41.67) (26.29) (26.30) (42.42)
Constant 225.4%%*  160.4%* 225.4%%* 337.7%%*  280.2%%* 337.7%%*
(46.22) (50.78) (80.71) (46.88) (51.75) (80.69)
Control Vars. X X X X X X
Obs. 190,852 190,852 190,852 190,852 190,852 190,852
Adj. R-squared 0.211 0.211 0.211 0.212 0.213 0.212

Source: Derived by authors from CE micro data.

Notes: This table reports results from estimation of equation (1). All columns report results with core spending as dependent
variable. Columns 2 and 5 report results with month fixed effects. Columns 3 and 6 report results with clustered standard
errors by consumer unit. Definition of core spending is described in section 2. Columns 1-3 report results where “treated”
group is households that report owning a vehicle. Columns 46 report results where “treated” group is households above the
20th percentile in the gasoline expenditure share distribution. All results reported include time fixed effects. Robust standard

errors are reported in brackets. *, **, *** indicate p<0.05, p<0.01, and p<0.001, respectively.
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Table 11: Propensity score matching exercise

Vehicle Ownership Gasoline Reliance
Propensity Score  10642.6%** 1595.7*%**  6436.5%** 1183.6%**
(73.75) (162.5) (50.54) (166.6)

Shock 46.11%* 42.34%%* 88.09***  85.26%%*
(20.14) (16.09) (21.37) (19.75)
Treated 321.9%%*  A481.9%**  FRS¥HKH A5 ]HH*

(19.04) (16.23) (20.79) (19.17)
Treated x Shock 170.6%** 102.9%**  165.6%**  90.62%**

(26.00) (22.36) (28.01) (26.22)

Constant -6807.1%%*  _846.6%** 2228 4%**  D]].3%
(58.89) (118.6) (33.91) (93.10)
Control Vars. X X
Obs. 190,852 190,852 190,852 190,852
Adj. R-squared 0.109 0.211 0.124 0.213

Source: Derived by authors from CE micro data.

Notes: This table reports results from estimation of equation (1) with propensity score included as a regressor as

described in the Appendix. All columns report results with core spending as dependent variable. Columns 1 and 3 report
results without control variables included. Columns 2 and 4 report results with control variables included. Definition of

core spending is described in section 2. Columns 1-2 report results where “treated” group is households that report owning a
vehicle. Columns 3—4 report results where “treated” group is households above the 20th percentile in the gasoline
expenditure share distribution. All results reported include time fixed effects. Robust standard errors are reported in brackets.
* wk Rk ipdicate p<0.05, p<0.01, and p<0.001, respectively.
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Figure 1: Relationship between gasoline prices and real expenditures, 2013 to 2015
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Notes: Values for gasoline prices are taken from U.S. Energy Information Administration data. Values for number of
gallons are derived by dividing total spending on gasoline, based on CE micro data, by the price of gasoline. All figures
are derived from monthly data.
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Figure 2: Assumption for a difference-in-difference regression
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Notes: The wedge between the solid and dotted lines depicts the treatment effect.
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Figure 3: Pre- and post-shock trends in household expenditures across treatment and control
groups
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Notes: The top and bottom figures report pre- and post-shock average trends for the vehicle ownership and
gasoline spending treatment and control groups, respectively. Figures are derived based on monthly averages
across households from CE micro data.
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