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Abstract

In order to analyze the pricing of portfolio credit risk – as revealed by tranche spreads
of a popular credit default swap (CDS) index – we extract risk-neutral probabilities of
default (PDs) and physical asset return correlations from single-name CDS spreads. The
time profile and overall level of index spreads validate our PD measures. At the same
time, the physical asset return correlations are too low to account for the spreads of index
tranches and, thus, point to a large correlation risk premium. This premium, which co-
varies negatively with current realized correlations and positively with future realized
correlations, sheds light on market perceptions of and attitude towards correlation risk.

JEL Classification Numbers: G12, G13, C15
Keywords: Portfolio credit risk, Correlation risk premium, CDS index, Tranche spread,
Copula.

∗This paper was previously circulated under the title “The Pricing of Portfolio Credit Risk”. We are grate-
ful to Claudio Borio, Joost Driessen, Song Han, Peter Hoerdahl, Nikunj Kapadia, Srichander Ramaswamy,
Kostas Tsatsaronis, Hao Zhou and seminar participants at the Bank for International Settlements, the 2006
FDIC Derivatives Conference, the 2006 CREDIT conference in Venice, the 2006 Meeting of the European
Econometric Society in Vienna, the 2007 Federal Reserve Board credit risk conference, and the Swiss Fi-
nance Institute conference on “Portfolio Management and Derivatives” for helpful comments. We also thank
Marcus Jellinghaus for valuable help with the data. The views presented here are our own and do not
necessarily represent those of the Bank for International Settlements.

†Nikola Tarashev: Research and Policy Analysis, Bank for International Settlements, Basel, Switzerland.
Tel.: 41-61-280-9213. Fax: 41-61-280-9100. E-mail: nikola.tarashev@bis.org.

‡Haibin Zhu: Research and Policy Analysis, Bank for International Settlements, Basel, Switzerland. Tel.:
41-61-280-9164. Fax: 41-61-280-9100. E-mail: haibin.zhu@bis.org.



Non-technical summary 

Portfolio credit risk has three key components: probability of default (PD), loss 

given default (LGD) and the probability distribution of joint defaults. With the 

rapid development of innovative products in structured finance, the third 

component has grown remarkably in importance. However, there is no concensus 

on how market participants estimate it. 

In this paper, we first propose an approach to deriving the probability 

distribution of joint defaults on the basis of data from the credit default swap 

(CDS) market. This approach extracts risk-neutral PDs and physical asset return 

correlations from the levels and co-movements of single-name CDS spreads. 

Then, in a concrete application of our approach, we use these estimates to 

compute predicted tranche spreads of a popular CDS index – the Dow Jones 

CDX North America Investment-Grade Index – and compare them with 

empirical spreads from the CDS index market. 

We find that predicted spreads fall short of accounting for their empirical 

counterparts tranche by tranche. In particular, observed spreads of protection 

against a large (small) number of defaults are much higher (lower) than predicted 

ones. Further analysis reveals that such discrepancies are likely to be driven by 

the existence of a correlation risk premium, defined as the risk-neutral asset 

return correlation, used for pricing CDS index tranches, minus the physical

correlation underpinning predicted spreads. On average, the correlation risk 

premium amounts to 66% of the physical correlation. 

Our analysis also sheds light on the joint intertemporal behavior of the 

correlation risk premium and the physical correlation. When the 

contemporaneous realization of physical correlations increases, the correlation risk 

premium tends to decrease, consistent with the market anticipating lower upward 

correlation risk or having greater appetite for correlation risk. In addition, a 

positive change in the correlation risk premium is associated with a future 

increase in physical correlations, suggesting that either the market tends to price 

correctly correlation risk or changes in the attitude towards such risk feed back 

into market outcomes down the road.



Nichttechnische Zusammenfassung 

Das Portfoliokreditrisiko setzt sich aus drei Hauptkomponenten zusammen: der 

Ausfallwahrscheinlichkeit (probability of default, PD), der Verlustquote (loss 

given default, LGD) und der Wahrscheinlichkeitsverteilung für gemeinsame 

Ausfälle. Mit der rasanten Entwicklung innovativer Produkte im Bereich der 

strukturierten Finanzierung ist die Bedeutung der dritten Komponente zusehends 

gestiegen. Allerdings herrscht keine Einigkeit darüber, wie die Marktteilnehmer 

diese schätzen.  

Im vorliegenden Arbeitspapier schlagen wir zunächst einen auf CDS-

Marktdaten beruhenden Ansatz zur Ableitung der Wahrscheinlichkeitsverteilung 

für gemeinsame Ausfälle vor. Mit diesem Ansatz werden risikoneutrale PDs und 

physische Asset-Return-Korrelationen aus der Höhe der Preise und dem 

Gleichlauf (Co-movement) von Single-name-CDS-Spreads abgeleitet. 

Anschließend benutzen wir diese Schätzungen in einer konkreten Anwendung 

unseres Ansatzes zur Berechnung von Prognosen für Tranchenspreads eines 

bekannten CDS-Index (Dow Jones CDX North America Investment Grade Index) 

und vergleichen diese mit empirischen Spreads am CDS-Indexmarkt. 

Wir stellen fest, dass die Prognosen für die Spreads nicht in der Lage sind, 

den entsprechenden empirischen Spreads mit Blick auf die betreffenden Tranchen 

Rechnung zu tragen. So sind insbesondere die beobachteten Sicherheitsaufschläge 

für den Fall einer großen (kleinen) Zahl von Ausfällen wesentlich höher

(niedriger) als die Prognosen. Weitere Untersuchungen zeigen, dass solche 

Abweichungen wahrscheinlich durch das Vorhandensein einer Korrelations-

risikoprämie bedingt sind – diese ist definiert als die risikoneutrale Asset-Return-

Korrelation, die zur Preisgestaltung von CDS-Indextranchen verwendet wird, 

abzüglich der den Prognosen für die Spreads zugrunde liegenden physischen

Korrelation. Die Korrelationsrisikoprämie beträgt durchschnittlich 66 % der 

physischen Korrelation. 

Unsere Analyse gibt auch Aufschluss über das gemeinsame intertemporale 

Verhalten von Korrelationsrisikoprämie und physischer Korrelation. Wenn die 

zeitgleiche Realisierung physischer Korrelationen steigt, nimmt die 



Korrelationsrisikoprämie – im Einklang mit der Markterwartung eines geringeren 

aufwärts gerichteten Korrelationsrisikos oder einer größeren Korrelations-

risikoneigung der Marktteilnehmer – tendenziell ab. Darüber hinaus ist eine 

positive Veränderung der Korrelationsrisikoprämie mit einem künftigen Anstieg 

der physischen Korrelationen verbunden, was darauf hindeutet, dass entweder 

der Markt das Korrelationsrisiko tendenziell richtig bepreist, oder sich 

Veränderungen in der Einstellung gegenüber solchen Risiken zu einem späteren
Zeitpunkt in den Marktergebnissen niederschlagen. 



1 Introduction

Portfolio credit risk has three key components: probability of default (PD), loss given default

(LGD) and the probability distribution of joint defaults.1 The last component, which has

received least attention owing to the traditional focus of academic researchers and market

practitioners on single-name credit events, has recently gained in importance as a result of

the rapid development of innovative products in structured finance. Such products, which

allow investors to trade portfolio credit risk, include collateralized debt obligations (CDO),

CDOs of CDOs (or CDO2), nth-to-default credit default swaps (CDS) and CDS indices.2

The prices of these financial instruments rely heavily on estimated probabilities of joint

defaults (see Hull and White, 2004; Gibson, 2004) but here is no consensus on how market

participants construct such estimates.

There are two popular approaches to deriving the probability distribution of joint de-

faults on the basis of firm-level data. One approach estimates this distribution directly

from historical data on defaults (Daniels et al., 2005; Demey et al., 2004; Jarrow and van

Deventer, 2005; Das et al., 2007). Since defaults are rare events, however, this approach

could lead to large estimation errors, especially for portfolios comprising investment-grade

entities. The second approach derives the probability of joint defaults indirectly, on the

basis of equity market data and firms’ balance sheet information. This approach builds

on the Merton (1974) framework and exploits (i) the notion that a default occurs when a

borrower’s assets fall below some threshold and (ii) the insight that, since equity is a call

option on the value of the firm, equity prices reflect asset values. This implies that asset

return correlations underpin, together with individual PDs, the probability distribution of

joint defaults and, from a practical point of view, can be extracted from readily observ-

able equity-return correlations.3 Although it is inherently model dependent, the second

1The mainstream of the credit risk literature focuses on PD: see Duffie and Singleton (2003) for an
overview. The growing literature on LGD includes Altman and Kishore (1996), Jarrow (2001), Covitz and
Han (2004), Pan and Singleton (2005) and Carey and Gordy (2006).

2For a general discussion of products used for trading portfolio credit risk, see BCBS (2004).
3The proprietary Global Correlation model by Moody’s KMV is one such example. See Das and Ishii
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approach possesses an important advantage because it uses risk parameters that can be

estimated from large data sets.4

In this paper, we follow the spirit of the second approach but propose a method for

estimating the probability distribution of joint defaults on the basis of data from the rapidly-

growing CDS market. Our estimation method allows us to investigate to what extent the

pricing of the credit risk of individual companies could help one understand market valuation

of portfolio credit risk. As a concrete instance of such valuation, we consider five-year

spreads on different tranches of a popular CDS index: the Dow Jones CDX North America

investment-grade index (CDX.NA.IG.5Y). In order to dissect these tranche spreads, we use

data on single-name CDS spreads and market estimates of LGDs, which imply two sets of

credit risk parameters that vary over time and across firms: risk-neutral PDs (i.e. PDs

incorporating a premium for the risk of individual defaults) and physical (i.e. actual) asset

return correlations.5 Together with the data on LGD estimates, these estimated credit

risk parameters deliver “predicted” tranche spreads that can be compared directly to their

empirical counterparts from the CDS index market.

The two sets of estimated credit risk parameters relate to different aspects of the prob-

ability distribution of joint defaults and, as a result, have different impacts on predicted

tranche spreads. On the one hand, an increase in PDs entails higher expected default rates,

which raises the spreads of all tranches. On the other hand, a change in asset return cor-

relations affects the shape of the probability distribution of joint defaults and, thus, has

different pricing impacts across tranches. The reason is that an individual tranche spread

relates only to a particular segment of this distribution.

We find that the index and single-name CDS markets employ similar risk-neutral PDs.

(2001) and Crosbie (2005) for details.
4Zhou (2001) attempts to relate the two approaches to estimating the probability distribution of joint

defaults. Specifically, he studies analytically the link between asset return and default correlations in a
first-passage credit risk model.

5In comparison to bond spreads, CDS spreads are widely considered as embedding less noisy information
about market valuation of default risk. This is because CDS spreads respond more quickly to changes in
credit conditions (Blanco et al., 2005; Zhu, 2006) and are affected to a lesser extent by non-credit factors
(Longstaff et al., 2005).
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There is a close match between the cross-sectional average of our PD estimates and the

average PD implied by spreads on the overall (or single-tranche) CDS index. Furthermore,

this match is stable over time and underpins the finding that PDs implied by the single-

name CDS market explain to a large extent the intertemporal evolution of empirical tranche

spreads of the CDS index.

At the same time, predicted spreads fall short of accounting for their empirical counter-

parts tranche by tranche. For instance, observed spreads imply prices of protection against

catastrophe credit events (i.e. against a large number of defaults) that are much higher

than those implied by predicted spreads. In addition, observed prices of protection against

a small number of defaults are lower than predicted. This finding implies that the risk-

neutral asset return correlation, which is used for pricing portfolio credit risk, is higher

than the physical correlation underpinning predicted spreads.

The wedge between risk-neutral and physical asset return correlations suggests the pres-

ence of a correlation risk premium. We measure this premium by subtracting a homogenized

version of the physical asset return correlations, which stays constant across pairs of firms

and fits predicted tranche spreads as closely as possible on each day, from the corresponding

risk-neutral correlation, which is fitted to observed tranche spreads. The time average of the

correlation risk premium amounts to 66% of the time average of the homogenized physical

correlations (which equals 0.15).

We also study the joint intertemporal behavior of the correlation risk premium and

the homogenized physical correlation. First, we find that the premium tends to decrease

when the contemporaneous realization of physical correlations increases. Thus, when asset

return correlations are higher, the market tends to anticipate lower upward correlation risk

or have greater appetite for correlation risk. Second, we find that a positive change in the

correlation risk premium is associated with a future increase in physical correlations. This

suggests that either the market tends to price correctly correlation risk or changes in the

attitude towards such risk feed back into market outcomes down the road.
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By analyzing the pricing of portfolio credit risk on the basis of information from the

single-name credit market, this paper stands apart from related literature that fits flexible

models to observed spreads of CDS index tranches. Longstaff and Rajan (2006), for example,

use a multi-factor model of loan losses and derive that three credit risk factors – two of which

occur with a low probability but have industry- and economy-wide impacts – are needed in

order to explain fully tranche spreads of the CDS index considered here. Pursuing a similar

objective, Kalemanova et al. (2007) and Moosbrucker (2006) demonstrate that tranche

spreads of CDS indices are consistent with Lévy processes driving default trigger variables.

In a different exercise, Hull et al. (2006) construct “implied correlations” – which are similar

to the risk-neutral correlations derived here – under various modeling assumptions and

explore how such assumptions can help account for empirical tranche spreads. However, in

contrast to the analysis here, all these papers do not draw parallels between different credit

markets, do not estimate physical asset return correlations from data and do not identify a

correlation risk premium.

Such a premium is studied in the context of the equity market by Driessen et al. (2006).

Specifically, this paper finds that the risk-neutral correlation implied by equity-index options

is on average 63% higher than the physical correlation estimated from the corresponding

single-name market. This result is strikingly in line with our findings in the context of

credit markets.

The remainder of the paper is organized as follows. Section 2 outlines the structure of

the CDS index market and explains how index tranches are priced. Then, Section 3 explains

how we construct predicted spreads of index tranches on the basis of data from the single-

name CDS market. Section 4 describes the data used in this paper. Section 5 compares

predicted with observed spreads in the index market. The messages of this comparison,

which unveils inter alia the presence of a correlation risk premium, are discussed in Section

6. The final section concludes.
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2 The CDS index market

The market for a CDS index, which allows traders to buy and sell protection against portfolio

credit risk, delivers two sets of prices. The first set is a time series of single-tranche spreads,

which are effectively the prices of protecting the entire notional amount of the index against

losses caused by defaults of the entities in this index. Under risk neutrality, single-tranche

spreads reveal the market’s expectation of default losses but are insensitive to the market’s

perception of and attitude towards the probability of default clustering.

These perception and attitude do affect, however, the second set of prices, which com-

prises several time series of multi-tranche spreads. Each time series consists of the effective

prices of protection against a particular range (or “tranche”) of credit losses on the notional

amount of the index. For example, the tranche relating to the first losses – and, thus, carry-

ing the highest level of credit risk – is known as the equity tranche. If none of the entities in

the index defaults, the investor in this tranche (i.e. the protection seller) receives quarterly

a fixed premium payment (or “spread”) on the tranche’s principal, which is typically 3%

of the total notional amount of the index. If defaults occur, this investor stands ready to

compensate its counterparty (i.e. the protection buyer) for any credit losses that do not

exceed the outstanding principal of the equity tranche. At the same time, this principal

and the associated premium payments are reduced for the remainder of the contract’s life

in order to reflect ongoing credit losses.6 Similarly, an investor in the so-called mezzanine

tranche is typically responsible only for losses between 3% and 7% of the total notional

amount, while investors in the two senior and two super-senior tranches are responsible

only for losses between 7% and 10%, 10% and 15%, 15% and 30%, and 30% and 100% of

the total notional amount, respectively. Thus, the higher the seniority of the tranche, the

less likely it is that the corresponding investor will need to make payments to the protection

buyer.

6For the CDS index contract we consider below, a default triggers an immediate adjustment to the
payments by the protection seller and buyer. In our calculations, however, we impose the simplifying
assumption that such adjustments are made quarterly.
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A multi-tranche spread is of great use to the analysis in this paper because it pertains

to a particular segment of the probability distribution of defaults and, thus, reveals the

market’s perception of and attitude towards default clustering. To see why, observe that,

in a CDS index consisting of 100 equally-weighted entities with LGDs of 50%, the spread

of the equity tranche is effectively the price of protection against the first 6 defaults in the

underlying portfolio. For a given expectation of default losses, weaker interdependence of

defaults across entities raises the probability of there being a few (i.e. up to 6) defaults and,

as a result, raises the spread of the equity tranche. Conversely, stronger interdependence

of defaults increases the probability of default clustering – e.g. of there being zero or a lot

of defaults – which lowers the equity tranche spread. At the same time, greater default

clustering raises the spreads of the senior tranches, because (referring back to the stylized

example) these spreads are the prices of protection against the 14th to the 20th and the 20th

to the 30th defaults, respectively.

3 Predicted tranche spreads

In order to obtain predicted tranche spreads for a CDS index, it suffices to input an estimate

of the probability distribution of joint defaults and data on LGDs and risk-free rates in

the numerical methodology developed in Gibson (2004). For each particular tranche, this

methodology delivers the expected present value of the principal, EP , and the expected

present value of contingent payments, EC, made by the protection seller. Denoting the

tranche spread by θ, the present value of the expected fee revenue of the protection seller,

θ · EP , has to equal EC. The tranche spread is then calculated as:

θ =
EC

EP

Since this paper will rely on the Gibson (2004) methodology, the heart of the empirical

exercise is the construction of the probability distribution of joint defaults. Under typical

assumptions on the stochastic distribution of borrowers’ asset returns (i.e. Gaussian or

6



Student-t), the probability distribution of joint defaults has two key components: the PDs

of constituent entities and the corresponding asset return correlations. The rest of this

section describes how we estimate risk-neutral PDs and physical asset return correlations

from single-name CDS spreads.

3.1 Estimating risk-neutral PDs

In order to uncover risk-neutral PDs from single-name CDS spreads, we follow the frame-

work of Duffie (1999). In a typical single-name CDS contract – written on firm i at date t –

the protection buyer agrees to make constant periodic premium payments – determined by

the CDS spread si,t – to the protection seller until the contract matures – at time t + T –

or a default occurs, whichever happens first. If a default occurs before t+T , the protection

seller compensates the protection buyer for the realized credit loss.

Under market clearing, the present value of CDS premium payments (the left-hand side

of equation (1)) has to equal the present value of protection payments (the right-hand side):

si,t

∫ t+T

t
e−rτ τΓi,τdτ = LGDi,t

∫ t+T

t
e−rτ τqi,τdτ (1)

where rτ stands for the risk-free rate of return, qi,τ denotes the (annualized) unconditional

risk-neutral default intensity of borrower i, Γi,τ ≡ 1−∫ τ
0

qi,vdv is the associated risk-neutral

survival probability over the following τ years, and LGDi,t ∈ [0, 1] is the date-t expectation

of loss given default.7 Under the standard simplifying assumptions that rτ and qi,τ are

expected to be constant over time, equation (1) implies that the one-year risk-neutral PD

equals:

PDi,t (1) = qi,t =
atsi,t

atLGDi,t + btsi,t
(2)

where at ≡
∫ t+T
t e−rtτdτ and bt ≡

∫ t+T
t τe−rtτdτ .

We use equation (2) in order to estimate a daily time series of borrower-specific risk-

neutral one-year PDs on the basis of time series of CDS spreads, expected LGDs and risk-free

7Equation (1) incorporates the assumption that LGD is independent of the variable(s) triggering default
events.
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rates of return.

3.2 Estimating physical asset return correlations

We model the cross-sectional interdependence of default events as driven by the correlation

of entity-specific “default trigger” random variables. Each entity-specific default-trigger

variable is a one-dimensional summary of credit quality and is extracted from the corre-

sponding CDS spread. As such, the default-trigger variables comprise all the information

that is deemed relevant, identified and processed by the single-name CDS market. Such

information includes: (i) balance sheet and stock market information about the entity (i.e.

information that determines credit outlook in traditional structural model à la Merton

(1974)) and (ii) information about systemic “frailty” factors (of the type examined recently

by Das et al., 2007; Duffie et al., 2007, in their study of default contagion).

In order to be able to draw straightforward parallels with the extant literature on port-

folio credit risk (see Hull and White (2004)), we henceforth refer to the default-trigger

variable as “the value of the firm’s assets” and incorporate it in the following model. We

start by assuming that, under the risk-neutral measure, the asset value process of entity i

is:

dVi,t

Vi,t
= μidt + σidWi,t (3)

where μi denotes the drift, σi the asset volatility and the shock Wi,t is a standard Wiener

processes. Then, given a default boundary Di, we define the distance-to-default variable

DDi,t ≡ lnVi,t−lnDi

σi
. By Ito’s Lemma, dDDi,t has a drift μ∗

i =
μi−σ2

i
/2

σi
and a unit variance.

Postulating that entity i defaults τ years into the future if DDi,τ < 0, we obtain that the

probability of default equals:

PDM
i,t (τ ;DDi,t, μ

∗
i ) = Φ

(−DDi,t − τμ∗
i√

τ

)
(4)

where Φ(·) stands for the standard normal CDF. Given two time series of PD estimates,
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the corresponding asset return correlation equals:

ρij ≡ corr (Δ lnVi,t,Δ ln Vj,t)

= corr (ΔDDi,t,ΔDDj,t)

= corr
(
ΔΦ−1

(
PDM

i,t (1;DDi,t, μ
∗
i )

)
,ΔΦ−1

(
PDM

j,t (1;DDj,t, μ
∗
i )

))

≈ corr
(
ΔΦ−1 (qi,t) ,ΔΦ−1 (qj,t)

)
(5)

where the PD horizon τ is set to 1 year and Δ denotes the first difference in discrete time.

A calculation of asset return correlations on the basis of (5) warrants several remarks.

First, the model underlying this procedure assumes that the default boundary (Di), asset

volatility (σi) and drift (μ∗
i ) remain constant over time. In order to relax this assumption,

one needs to incorporate additional stochastic processes and estimate their parameters.

Given the available data, the errors produced by such an estimation would be large enough to

render the exercise useless. Second, the underlying model implies that DDi,t follow unit root

processes, which is supported by the data.8 Third, since Δln(Vi,t) stands for an actual asset

return, equation (5) delivers a measure of the physical asset return correlation. Finally,

the fourth line in (5) holds only as an approximation because qi,t is derived in (2) under the

assumption of a time-invariant default intensity, whereas PDM
i,t (τ ;DDi,t, μ

∗
i ) in equation

(4) violates this assumption. Robustness checks, outlined in the following subsection and

discussed further in Section 5.3.1, reveal that the approximation in the fourth line of (5) is

remarkably good.

Our overall empirical procedure can be summarized as follows. For each day and pair of

entities in our sample, we estimate asset return correlations on the basis of the associated

time series of PD estimates over the previous six months and equation (5).9 Then, for each

8More precisely, a battery of Phillips-Perron tests fail to reject the unit-root null for 132 of the 136
distance-to-default time series we construct. In addition, a unit root process provides a reasonable approxi-
mation to the dynamics in the remaining 4 series.

9We also calculate time series of asset return correlations on the basis of three months of data. These
alternative estimates are more volatile, both in the cross section and over time, but do not alter our main
conclusions.
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day in the sample, we rely on our PD and asset return correlation estimates and a Monte

Carlo simulation technique (outlined in Appendix A.1) in order to generate the probability

distribution of joint defaults in a given portfolio. Used as an input to the Gibson (2004)

methodology (recall Section 3), this probability distribution leads to predicted spreads of

CDS index tranches.

3.3 Alternative estimators of asset return correlations

The adopted mapping from PDs to asset return correlations, which is specified in equation

(5), is essentially a short-cut solution and can be criticized for introducing inconsistency

in the empirical procedure. The inconsistency crystallizes in that, as mentioned above,

the last equality in (5) holds only as an approximation. Here, we propose two alternative

correlation estimators that circumvent this inconsistency.

The first alternative is to estimate asset return correlation on the basis of distance-to-

default variables extracted directly from single-name CDS spreads. Specifically, we combine

equations (1) and (4) using the fact that qi,t can be rewritten as
dPDM

i,t

dt . For a given value

of the drift term μ∗
i , we then obtain a one-to-one mapping between a time series of CDS

spreads and a time series of DDi,t. This eliminates the need to resort to the fourth line in

(5) and delivers asset return correlation estimated within a coherent framework.

Another alternative is to estimate asset return correlations within a coherent first-

passage model, in which the PD over a given horizon equals the probability that the

borrower’s assets fall below some threshold at any point in time over this horizon. In a

first-passage model, the probability that firm i defaults over the next τ years equals:

PDFP
i,t (τ ;DDi,t, μ

∗
i ) = 1−Φ

(
DDi,t + τμ∗

i√
τ

)
+exp (−2DDi,t · μ∗

i ) Φ

(−DDi,t + τμ∗
i√

τ

)
(6)

We combine equation (6) with (1) to derive a mapping between single-name CDS spreads

and the distance-to-default variable. This mapping leads to another set of asset return

correlations.
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In order to carry out either of the two alternative procedures, we experiment with several

values of μ∗
i suggested by the literature, keeping each of these values constant in the cross

section. We find that the correlation estimates are virtually insensitive to the exact value

of μ∗
i and below report results only for μ∗

i = 0.

4 Data

We work with two large data sets, which are described in this section. In addition to

these data, we obtain 5-year Treasury rates from Bloomberg, which we use to proxy for the

risk-free rate of return.

The first data set is provided by JP Morgan Chase and pertains to 5-year contracts writ-

ten on the CDS index Dow Jones CDX North America investment-grade index (CDX.NA.IG.5Y).

These standardized contracts are highly liquid on the secondary market. We use single-

tranche spreads for the “on-the-run” CDX.NA.IG.5Y index, as well as spreads for the

equity, mezzanine and two senior tranches of the same index.10 At each point in time the

CDS index consists of 125 entities that represent major industrial sectors and are actively

traded in the single-name CDS market as well. All entities have equal shares in the total

notional principal of the index. The composition of the index is updated semi-annually – in

a new release – in order to reflect events such as defaults, rating changes, and mergers and

acquisitions. We consider three releases of the CDX.NA.IG.5Y index, launched respectively

on November 13, 2003, March 23, 2004 and September 21, 2004.11 The total number of

entities that appear in at least one of these releases is 136.

The second data set pertains to the single-name CDS market and is provided by Markit,

which has constructed a network of leading market participants who contribute pricing infor-

mation across several thousand credits on a daily basis. Markit aggregates the information

10We abstract from the two super-senior tranches because the spreads on these tranches are likely to be
affected substantially by non-credit factors, such as administrative costs and a liquidity premium. Although
the analysis of such factors is important, it is beyond the scope of this paper.

11This period is free of episodes of market distress and is, thus, likely to feature relatively stable credit
risk parameters. This conjecture is largely in line with our empirical findings.
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it receives and releases daily “consensus” CDS spreads and LGD estimates for each credit

in its database. In line with the contractual terms of the CDX.NA.IG.5Y index, we use

time series of 5-year senior unsecured single-name CDS spreads associated with the no-

restructuring clause (see ISDA, 2003) and denominated in US dollars. For the period from

April 24, 2003 to September 27, 2005, we download CDS spreads and the associated LGD

estimates for all 136 entities that belonged to at least one of the CDS index releases we

consider.

The data on single-name CDS spreads warrant two remarks. First, the spreads in our

sample do appear highly responsive to changes in credit conditions. This property surfaces

in that market staleness – defined as the realization of the same spread on two consecutive

days – characterizes only 13% of our sample. By contrast, it is typical for spreads on the

corporate bond market to be stale for weeks. The high quality of the CDS spreads prompts

us to use daily data in computing asset return correlations. Second, the LGDs provided by

Markit reflect market participants’ consensus view on expected losses, and therefore need not

match realized losses. The reported LGDs exhibit little cross-sectional difference and time

variation (see Table 1). In the cross section of 136 time averages of LGDs, the 1st and 99th

percentiles equal 60% and 63% respectively. In addition, the time series of cross-sectional

averages of LGDs fluctuates within a similarly narrow band. In the light of this and in order

to eliminate potential noise in the LGD data, we set LGDs to be the same across entities

and smooth the resulting time series via an HP filter with a parameter λ = 64000.

5 Empirical findings

In this section, we analyze predicted tranche spreads. These spreads are underpinned by

two sets of credit risk parameter estimates – risk-neutral PDs and physical asset return cor-

relations – which we report in Section 5.1. In Section 5.2, we compare the predicted tranche

spreads with empirical tranche spreads of the CDS index and find substantial differences. In

Section 5.3, we argue that these differences are robust to a number of alternative correlation
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estimates and model specifications that might have been adopted by the market.

5.1 PD and correlation estimates

Using the methodology described in Sections 3.1 and 3.2, we estimate time series of risk-

neutral PDs and physical asset return correlations, respectively. Table 1 reports summary

statistics for the two sets of credit risk parameters. The statistics relate to all 136 entities

that belong to at least one of the first three releases of the CDS index CDX.NA.IG.5Y.

In general, both PDs and correlations change substantially over time. For example, the

cross-sectional average of PDs peaks in August 2004 at about 1.2% and reaches its lowest

levels, roughly 0.75%, towards the end of the sample period. As for asset return correlations,

they are on a general upward trend during the sample period, increasing from around 7%

in late 2003 to 17.5% in March 2005.

Despite the fact that all sample firms are investment-grade entities, the cross-sectional

dispersion in the two sets of credit risk parameters is quite pronounced. Across the 136

entities, the time average of risk-neutral PD estimates has a mean of 94 basis points and

a standard deviation of 78 basis points, with the maximum level (425 basis points) being

eighteen times higher than the minimum level (23 basis points). Similarly, there is marked

heterogeneity across pairwise correlation estimates. Correlations can be as high as 80-

90% for firms in the same business area, as is the case of Ford Motors Credit Company

and General Motors Acceptance Corporation. At the other extreme, there are negative

correlations, such as the one between Intel and Amerada Hess Corporation. In principle,

as argued by Hull and White (2004), heterogeneity across PDs and pairwise correlations

can have important implications for the probability distribution of joint defaults and, by

extension, for the pricing of portfolio credit risk instruments.

5.2 Comparing predicted with observed tranche spreads

In order to construct predicted spreads for the four (i.e. equity, mezzanine and two se-

nior) tranches of the CDS index CDX.NA.IG.5Y, we use our LGD data and the PD and
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correlation estimates obtained from the single-name CDS market (recall Sections 3.1 and

3.2 for the estimation procedures). In applying the Gibson (2004) methodology, we assume

that all random variables are normal. The resulting predicted tranche spreads – which we

dub “baseline” spreads in order to distinguish them from alternatives reported in Section

5.3.2 – can be compared directly with the corresponding spreads observed in the CDS index

market. Figure 1 plots the time series of the two sets of tranche spreads and Table 2 reports

summary statistics (baseline predicted spreads: first row in each panel; observed spreads:

last row in the top panel).

Baseline predicted spreads differ substantially from their counterparts in the data. For

the equity tranche, predicted spreads are too high over most of the sample and over-predict

observed spreads by 10% on average. The differences are more pronounced in the two senior

tranches where predicted spreads are too low over the entire sample period and under-predict

observed spreads by 37% for the first and 63% for the second senior tranche. As for the

mezzanine tranche, the predicted spreads match well the observed spreads on average (306.3

versus 303.9 basis points), but this result masks large pricing differences on individual days.

In fact, the mean absolute percentage error between the predicted and observed spreads for

the mezzanine tranche is substantial, averaging 15.5% of observed spreads.

At the same time, predicted tranche spreads exhibit statistically significant, albeit not

quite large, explanatory power for the evolution of observed spreads over time. Regression

results, reported in Table 3 (Panel A), reveal that changes in predicted tranche spreads

account for 45% or more of the variability of changes in observed spreads for the equity,

mezzanine and first senior tranches.12 The goodness-of-fit measure drops to 16% for the

second senior tranche.13

12Tables 3 and 4 report two versions of each regression: one version uses the variables in levels and the other
one in first differences. While the coefficient estimates in the “levels” regressions are easier to interpreted,
the associated significance levels and goodness-of-fit measures are questionable because one cannot reject
the unit-root hypothesis for both dependent and explanatory variables. This issue is addressed by the “first
difference” regressions.

13All regressions are based on weekly averages of the dependent and explanatory variables. This restricts
the impact of market microstructure noise, which is likely to surface at high frequencies. Running the regres-
sions with daily variables tends to preserve the sign and significance of the coefficients but, not surprisingly,
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5.3 Robustness checks

It is possible that the wedge between observed and baseline predicted spreads is due to

the fact that market participants use credit risk parameter estimates or rely on pricing

frameworks that are different from the ones we have considered so far. A series of robustness

checks reveals that this conjecture is not borne out.

5.3.1 Robustness of predicted spreads to alternative correlation estimates

Following the procedures outlined in Section 3.3, we examine two alternative estimates of

asset return correlations that allow for circumventing the approximation in the fourth line

of (5). It turns out that the sample average of asset return correlations under the first

(second) alternative procedure is 12.39% (12.41%), while the corresponding average of the

original estimates – which underpin the results reported in Sections 5.1 and 5.2 – equals

12.42%. A comparison across the time series of cross-sectional averages of original and

alternative correlations reveals a maximum difference of 0.3 percentage points. In turn,

considering the cross section of the time averages of correlation estimates, we find that the

maximum difference is roughly 0.8 percentage points. Unreported calculations reveal that

such differences have a negligible impact on predicted tranche spreads.

In the rest of the paper, we keep on working with the original estimates of PDs and asset

return correlations – given by equation (2) and the fourth line of expression (5), respectively

– for the following reasons. First, as stated in the previous paragraph, the approximation

in the fourth line of (5) generates negligible errors in our correlation estimates. Second,

in adopting this approximation, we work with PD estimates that do not depend on an

estimate of the drift parameter μ∗. To see this, compare the adopted equation (2) with the

alternative specifications in (4) and (6). This is important because, unlike the correlation

estimates, the PD estimates are sensitive to the value of μ∗ but the available data do not

allow us to pin down this value. Finally, it is reportedly popular market practice to adopt the

lowers the goodness-of-fit measures (i.e. adjusted R
2).
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constant-default-intensity assumption of equation (2) in pricing credit derivatives products.

If this is true, then choosing a non-flat term structure of default intensities – as implied by

the alternative specification in (4) and (6) – would be supported by structural credit risk

models but would introduce errors in predicted tranche spreads.

5.3.2 Robustness of predicted spreads to alternative pricing frameworks

In this subsection, we report the results of three robustness checks, which explore the

implications of different pricing frameworks.

For the first check, we calculate predicted spreads after removing the heterogeneity in

PDs and/or pairwise correlations. This proxies for a scenario in which investors in the CDS

index market lack information on firm-specific PDs or are unable to derive asset return

correlation for each pair of firms. The results of this exercise, summarized in Table 2 (rows

2-4 in each panel), reveal limited revisions to predicted tranche spreads. In fact, shutting

off the cross-sectional difference in correlations raises (lowers) the predicted spreads for the

equity (two senior) tranches, leading to an even worse match with observed spreads.

Our second exercise is motivated by market commentary, which refers regularly to com-

mon factor models of asset returns.14 We investigate whether the use of such a model for

pricing purposes could have a material impact on predicted tranche spreads. We start by

estimating a one-factor structure of the estimated correlation matrix (see Appendix B) and

then employ this structure in a Gaussian copula to derive tranche spreads (see Appendix

A.2). As reported in Table 2 (row 5 in each panel), adopting a one-factor model has a

limited impact on our results and, if anything, renders the difference between the two sets

of spreads even larger.15

The last robustness check examines the pricing implications of alternative assumptions

14Also see Collin-Dufresne et al. (2003), Das et al. (2007) and Giesecke (2004) for discussions of why the
assets of different firms may be driven by common factors.

15The one-factor approximation matches the mean of the original correlation matrix extremely well –
producing an average discrepancy of 12 basis points – but tends to underestimate the dispersion in correlation
coefficients. To address this issue, we also estimate a two- and a three-factor correlation structures. These
generalizations improve substantially the fit of the original correlation matrix but entail negligible revisions
of predicted trance spreads.
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regarding the distribution of asset returns. Researchers (see Hull and White (2004)) and

market practitioners have argued for the use of Student-t distributions, which perform better

than a Gaussian distribution in accounting for the fat tails of asset returns observed in the

data. In the light of this, we use a one-factor model of asset returns and assume that the

common factor and/or idiosyncratic factors follow a Student-t distribution with four degrees

of freedom.16 To derive predicted tranche spreads under this assumption, we employ the

so-called t-copula. The results are reported in Table 2 (rows 6-7 in each panel). The fat

tails implied by a Student-t distribution raise the probability of a large number of defaults,

which reduces somewhat the gap between predicted and observed spreads for the two senior

tranches. However, this is at the cost of larger gaps for the equity and mezzanine tranches.

6 The pricing of portfolio credit risk

This section delves further into the differences between baseline predicted and observed

tranche spreads. Specifically, we investigate whether the PDs and asset return correlations

we extract from the single-name CDS market, albeit correctly estimated, differ from the

credit risk parameters employed by CDS index market.

6.1 Market estimates of PDs

The PDs of individual borrowers are an important factor in the pricing of portfolio credit

risk. Namely, an overall rise in PDs translates directly into higher portfolio credit risk,

which raises the spreads for all index tranches. Thus, it is natural to ask if the PD estimates

implied by the single-name CDS market and underpinning predicted tranche spreads are

different from the PD estimates used in the CDS index market.

Even though we are not able to pin down the entity-specific PDs used by market par-

ticipants in the CDS index market, we do extract the cross-sectional averages of these PDs.

16On the basis of an ad hoc value for asset return correlations, Hull and White (2004) find that assuming
Student-t distributions with four degrees of freedom for both the common and idiosyncratic factors helps
one account well for the tranche spreads of Dow Jones iTraxx EUR 5y (the European counterpart of the
CDX.NA.IG.5Y index).
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This is done on the basis of a time series of single-tranche spreads, which reveal expected

credit losses (recall Section 2), and data on market expectations of LGDs. The average

(risk-neutral) PDs implied by the single-tranche spreads are plotted in Figure 2 alongside

average PDs implied by the single-name CDS spreads. The two time series differ on average

by only 1.21 basis points, which is roughly 1.4% of the average PD implied by single-name

CDS spreads. Importantly, these differences do not have a material impact on predicted

tranche spreads (see Table 2, row 8 in each panel) and we can conclude that the PD esti-

mates used in the index market are consistent with the PDs embedded in the single-name

CDS market.

Moreover, the close match between the two series of average PDs drives the similarity

of the time paths of predicted and observed tranche spreads (see Figure 1). To substantiate

this claim, we conduct regression analysis. As Table 3 shows, PDs possess significant ex-

planatory power for the level and changes in both predicted and observed tranche spreads

(panels B to D). Strikingly, the goodness-of-fit measures indicate that changes in observed

spreads are explained better by changes in PD estimates than by changes in predicted

spreads. This is evidence that not PDs but another estimated component of predicted

spreads may be weakening their co-movement with observed spreads. This other compo-

nent is the correlation of asset returns, which we analyze in the following subsection.

6.2 Risk-neutral versus physical asset return correlation

In calculating predicted spreads, we have assumed that the physical correlation of asset

returns implied by the single-name CDS market is used for pricing in the index market.

Such an assumption is likely to be violated in practice. In fact, Driessen et al. (2006) find

strong evidence that the risk-neutral correlations used by investors in equity-index options

are substantially higher than the physical correlations implied by the single-name equity

market. In order to examine whether a similar phenomenon exists in the credit market, we

compare a homogenized version of our physical correlation estimates with the corresponding
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risk-neutral correlations, which we estimate on the basis of observed tranche spreads.

6.2.1 Correlation and the average level of tranche spreads

Risk-neutral asset return correlations that are larger than their physical counterparts can

help explain the gap between predicted and observed spreads. This is suggested by Fig-

ure 3, which illustrates the sensitivity of spreads to changes in (homogenous) correlation

coefficients. When the correlation coefficient increases, the default of a particular firm is

more likely to be driven by the deterioration of common risk factors and hence is more

likely to be accompanied by defaults of other firms. This raises (lowers) the probability of a

large (small) number of defaults. As a result, higher asset return correlations lead to higher

(lower) spreads for the senior (equity) tranches of a CDS index but have an indeterminate

impact on the mezzanine tranche. In the light of Figure 1, this implies that replacing the

physical correlations underpinning predicted spreads with higher risk-neutral correlations

would help us account to a greater extent for observed spreads.

6.2.2 Correlation and changes in tranche spreads over time

Differences between the physical correlation of asset returns and its risk-neutral counterpart

could also account for the intertemporal evolution of the differences between predicted and

observed tranche spreads. To see this, recall Figure 3 which implies that, if physical corre-

lations match closely risk-neutral ones, then an increase in their level should lower equity

tranche spreads and raise senior tranche spreads. However, regression results reported in

Table 3 (panel C) show that physical correlations enter either with the wrong sign (“level”

regressions) or are statistically insignificant (“first differences” regressions) as explanatory

variables of observed spreads .

Table 4 provides further evidence that physical correlations, which underpin predicted

spreads, differ from the risk-neutral correlations behind observed spreads. This table con-

tains results from regressions of the gap between predicted and observed tranche spreads

and reveals that physical correlation of asset returns is the most important driver of this
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gap. More specifically, the physical correlation enters with a statistically significant posi-

tive coefficient the regressions for the two senior tranches. This reveals that increases in the

physical correlation, which raise the predicted spread for the senior tranches, are not asso-

ciated with a concurrent rise in observed spreads for those tranches. A symmetric reasoning

applies to the “equity tranche” regressions.17

6.2.3 Correlation risk premium

This subsection describes our measure of a correlation risk premium in the CDS index

market. This premium reflects the market-determined compensation for bearing the risk

that physical asset return correlations may increase above their current level.

Thus, a change in the correlation risk premium has different impacts on the spreads

of different index tranches. An increase in this premium signifies a higher value of pro-

tection against a large number of defaults, which inflates the spreads of senior tranches.

Symmetrically, an increase in the correlation risk premium is tantamount to a lower value

of protection against just a few defaults, which depresses the spread of the equity tranche.

In order to derive the correlation risk premium, we start by extracting a time series

of risk-neutral correlations from observed tranche spreads in the index market. On each

day, the risk-neutral correlation has two general properties. First, it is constrained to be

the same for all pairs of entities and is used to calculate four (i.e. equity, mezzanine and

two senior) spreads. Second, the specific value of the risk-neutral correlation is picked

so that it minimizes the mean squared percentage difference between the “fitted” spreads

it implies and the corresponding observed spreads.18 Importantly, our estimate of the

risk-neutral correlations incorporates risk-neutral PDs that vary in the cross section and is,

thus, different from the popular “implied” correlations that are underpinned by homogenous

17Table 4 also reveals that PD coefficients are statistically significant and negative in the regressions of
the errors in the predicted spreads for senior tranches. Although PDs have a low explanatory power in these
regressions, negative coefficients are puzzling because they seem to suggest that a rise in PDs lowers the
tranche spread. Background analysis reveals that this result is driven by a non-linear interaction between
firm-specific PDs and pairwise asset return correlations.

18By minimizing percentage differences, we effectively equalize the units of the pricing errors across dif-
ferent tranches.
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PDs.19

Not surprisingly, fitted spreads perform better than predicted ones in matching ob-

served tranche spreads. This can be visualized by comparing Figures 4 and 1. The overall

improvement in the match, which transpires in the two senior tranches, reveals that the

risk-neutral correlations we estimate capture to a large extent the market’s valuation of the

risk of default clustering. At the same time, the relatively poorer match in the equity and

mezzanine tranches20 suggests that asset return correlations miss some information that is

necessary for a full account of all tranche spreads of the CDS index.21 However, our goal

in this paper is not to provide such a full account but to employ data from the single-name

credit market for the understanding of the pricing of portfolio credit risk. This is what the

estimates of risk-neutral correlations allow us to do.

The second component of the correlation risk premium is a “homogenized” physical

correlation. This correlation is defined in the same way as its risk-neutral counterpart but

is estimated from predicted spreads. In other words, on each day, the homogenized physical

correlation condenses the information contained in the physical correlation matrix that we

estimate from single-name CDS spreads. The homogenized physical correlation fits pre-

dicted spreads extremely well across all tranches, entailing an average absolute percentage

error of less than 2%.22

We define the correlation risk premium as the risk-neutral minus the homogenized phys-

ical correlation. The time series of the premium is plotted in Figure 5, alongside the time

19For the estimation of risk-neutral correlations, we use the same LGDs and risk-free rates that underpin
our estimates of risk-neutral PDs and physical asset return correlations (see Sections 3.1 and 3.2).

20Specifically, the absolute percentage errors between fitted and observed spreads average 13%, 18%,
4% and 7% for the equity, mezzanine and the two senior tranches, respectively. The differences in the
match across tranches is a manifestation of the so-called “correlation smile” phenomenon (see Amato and
Gyntelberg, 2005, for a review).

21To attain a better match, researchers have – explicitly or implicitly – modelled default trigger variables
as driven by more general processes than the ones studied in this paper (see Longstaff and Rajan (2006),
Kalemanova et al. (2007) and Moosbrucker (2006), for example). These general processes effectively provide
a greater number of degrees of freedom.

22The simple cross-sectional average of physical correlation coefficients is on average 2.9 percentage points
lower than the homogenized correlation we work with. Switching between the two physical correlation alter-
natives affects immaterially the intertemporal properties of the correlation risk premium. These properties
are examined in Section 6.2.4.
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series of the two correlation estimates. During the sample period, the average of the corre-

lation risk premium equals 10.1%, i.e. 66% of the homogenized physical correlation, which

averages 15.3%. This result matches almost exactly the finding of Driessen et al. (2006)

that, between 1996 and 2003, the risk-neutral correlation implied by equity-index options

is 63% higher than its physical counterpart.

6.2.4 Intertemporal links between the correlation risk premium and physical

correlations

Figure 5 (bottom panel) highlights the negative relationship between the correlation risk

premium and the physical correlation. For instance, the premium peaks at the end of

2003, exactly when the physical correlation attains its lowest levels. More generally, the

correlation risk premium is on a downward path over the entire sample period, while the

physical correlation is on an upward path. In the rest of this subsection, we examine more

closely the joint behavior of the correlation risk premium and the physical correlation.

The correlation risk premium is constructed in this paper on the basis of one forward-

looking and one backward-looking variable. On the one hand, the risk-neutral correlations

are extracted directly from market spreads and, thus, reflect investors’ forward looking

perceptions and attitude toward correlation risk. On the other hand, realized physical

correlations are estimated from historical data, which renders them backward looking. Im-

portantly, the difference between these two variables, i.e. the correlation risk premium,

has three general components. The first component is due to a discrepancy between the

currently realized value of physical correlations and the market’s expectation of these cor-

relations over the life of CDS contracts. The second component reflects the risk that future

realized correlations are higher than their expected value. Finally, the third component is

driven by market participants’ appetite for correlation risk.

As a result, it is reasonable to expect an interesting joint behaviour of realized physical

correlations and the correlation risk premium. If historical data have a bearing on (i)

market perceptions of the expected level and/or volatility of future asset return correlations
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or (ii) the prevailing attitudes toward risk, then we should observe contemporaneous co-

movement between the correlation risk premium and physical correlations. In addition, the

correlation risk premium may help predict future changes in realized physical correlations

if (i) the market’s forward-looking perceptions are accurate or (ii) the market’s attitude

towards correlation risk feeds back into prices down the road. In order to investigate these

hypotheses, we conduct two regression exercises.

In the first exercise, we investigate to what extent changes in the correlation risk pre-

mium can be accounted for by concurrent changes in the physical correlation. The in-

vestigation is in the form of a simple regression, in which we incorporate two additional

explanatory variables: lagged changes in the correlation risk premium and changes in the

cross-sectional averages of PDs. As reported in Table 5, changes in the physical correla-

tion is the only significant regressor and accounts for roughly 40% of the time variation in

changes of the correlation risk premium. By contract, changes in PDs – a standard proxy

for the credit cycle – exhibit no statistical significance.

Table 5 also reveals that the correlation risk premium tends to decline when the con-

current realization of the physical correlation rises. This finding sheds light on market

perceptions of and attitude towards correlation risk. First, the finding suggests that in-

vestors may perceive mean reversion in the correlation level. Second, it is possible that

investors perceive a negative relationship between the level and the volatility of correlation

over time.23 Thus, when our backward-looking estimate of physical correlations is high,

either perception induces investors to demand lower compensation for correlation risk, as

they attribute a lower probability to further increases in the correlation level. In addition,

a third possibility is that investors with higher tolerance for correlation risk tend to domi-

nate the market when correlation risk is high. The concurrent drop of the correlation risk

premium would then be a result of the lower price of risk demanded by such investors.

In the second regression exercise, we examine whether the correlation risk premium

23Unfortunately, owing to the short sample period, we are not able to test for these intertemporal properties
of the physical correlation of asset returns.
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helps predict future realizations of the physical correlation of asset returns. The results are

reported in Table 6. In contrast to the correlation risk premium, changes in the physical

correlations do exhibit serial correlation, which is captured by the significant positive coeffi-

cient of the lagged dependent variable in the regressions. More importantly, the correlation

risk premium moves systematically in the same direction as future realizations of the phys-

ical correlation. This finding can be interpreted as an indication that market expectations

tend to be validated ex post. Alternatively, it is possible that a rise in the aversion to

correlation risk, which inflates the associated premium, feeds back into market prices and

raises the correlation of asset returns in future periods.

7 Conclusion

This paper has analyzed the pricing of portfolio credit risk in the CDS index market on

the basis of information obtained from the single-name CDS market. This analysis has

revealed the existence of a large correlation risk premium, defined as the difference between

the risk-neutral correlation of asset returns, used for pricing in the index market, and the

corresponding physical correlation. This premium changes over time, co-varying negatively

with current estimates of the physical correlation and positively with future realizations of

this correlation. The intertemporal behavior of the correlation risk premium, which would

be usefully revisited by future research on the basis of longer data series, reveals information

about market perceptions of and attitude towards correlation risk.
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Appendix

A Estimating the probability distribution of defaults

This appendix outlines two methods for estimating the probability distribution of joint

defaults in a given portfolio, when PDs of individual entities and the asset return correlation

across entities are known. The first method relies on Monte Carlo simulations and does

not impose any restriction on the structure of the correlation matrix. The second, copula,

method requires the correlation structure to be driven by a finite number of common factors.

A.1 Monte-Carlo simulation

Under this method, the probability distribution of defaults in a portfolio of N entities is

derived as follows.

1. Generate N random draws x0 from independent standard normal distributions.

2. Calculate x = R′x0, where R denotes the Cholesky factor of the estimated asset return

correlation matrix for the N entities.

3. Denoting the i-th member of x by xi (i = 1, · · · , N) and the associated PD by PDi,t,

entity i is said to default if and only if xi < Φ−1(PDi,t).

4. Repeat steps 2 to 4 a large number of times to estimate the probability of n ∈
{0, · · · , N} defaults.

A.2 Copula

The copula method, developed by Li (2000), Laurent and Gregory (2005) and Andersen

and Sidenius (2005), relies on a common factor structure of asset returns. For simplicity,

we describe the copula method assuming there is only one common factor but the method

can be generalized to multiple common factors. Without loss of generality, all factors are

assumed to have zero mean and unit standard deviation.

Denoting the common and idiosyncratic factors, the loading coefficient on the common

factor and the unconditional PD by Mt, Zi,t, αi and PDi,t, we calculate the probability

distribution of joint defaults in three steps. In the first step, we calculate the conditional

default probability for entity i on date t: PD(i|Mt). Postulating that a default is triggered

when the asset value Vi,t = αiMt +
√

1 − α2
i,t · Zi,t falls below some threshold, we obtain:

PD(i|Mt) = G

⎛
⎝F−1(PDi,t) − αiMt√

1 − α2
i

⎞
⎠ (7)
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where G and F are the cumulative distributional functions of Zi,t and Vi,t, respectively. In

general, there need not be analytical expressions for these distributions.

The second step is to calculate the conditional probability of an arbitrary number of

defaults. Suppose we know the probability of k ∈ {0, 1, ...,K} defaults in a portfolio of

K entities: pK(k|Mt). Then, adding one more entity leads to the following update of the

distribution of defaults:

pK+1(0|Mt) = pK(0|Mt)(1 − PD(K + 1|Mt))

pK+1(k|Mt) = pK(k|Mt)(1 − PD(K + 1|Mt))

+pK(k − 1|Mt)PD(K + 1|Mt) for k = 1, · · · ,K

pK+1(K + 1|Mt) = pK(K|Mt)PD(K + 1|Mt)

This recursion starts with the initial condition p0(0|Mt) = 1.

The final step is to calculate the unconditional probability of k defaults in a portfolio

of N entities:

pN (k, t) =

∫ ∞

−∞

pN (k|Mt)ϕ(Mt)dMt

where ϕ is the probability density function of Mt.

B Estimating a common-factor structure of asset return cor-

relations

This appendix describes how we fit a common-factor structure to a given correlation matrix.

The given correlation matrix has entries ρij, where i and j ∈ {1, · · · , N} and N is the size

of the cross section. This matrix is to be approximated under the assumption that asset

returns are underpinned by F common factors Mt = [M1,t, · · · ,MF,t]
′ and N idiosyncratic

factors Zi,t:

Δln(Vi,t) = AiMt +
√

1 − A′
iAi · Zi,t

where Ai ≡ [αi,1, · · · , αi,f , · · · , αi,F ] is the vector of common factor loadings, αi,f ∈ [−1, 1]

and
∑F

f=1
α2

i,f ≤ 1. Without loss of generality, all common and idiosyncratic factors are

assumed to be mutually independent and to have zero means and unit standard deviations.

We estimate the loading coefficients αi,f (i = 1, · · · , N , f = 1, · · · , F ) by minimizing the

mean squared difference between the factor-driven correlation and the target correlation:

min
A1···AN

N∑
i=2

N∑
j<i

(
ρij − AiA

′
j

)2

Andersen et al. (2003) proposes an efficient algorithm to solve this optimization problem.

Importantly, besides the “zero mean-unit variance” normalization, this estimation method
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imposes no restriction on the distribution of the common and idiosyncratic factors.
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Table 1: Risk parameter estimates

mean std. dev. min 5% 25% 50% 75% 95% max

LGDs (%)
Daily averages 61.6 0.9 60.3 60.3 60.5 61.7 62.3 62.7 63.6
Averages over time 61.6 0.7 59.0 60.5 61.1 61.5 61.9 62.7 63.7

PDs (basis points)
Daily averages 93.9 11.8 75.0 77.4 83.0 93.5 105.0 111.4 116.6
Averages over time 93.9 78.2 23.3 34.3 53.0 68.5 92.2 268.9 425.0

Pairwise correlations (%)
Daily averages 12.0 2.9 6.6 7.0 10.5 12.6 13.7 16.7 17.5
Averages over time 12.0 7.5 -14.8 0.9 7.0 11.5 16.4 24.5 89.1

Note: The summary statistics refer to the sample period between November 13, 2003 and March 18, 2005

and reflect all 136 entities that belong to any of the first three releases of the CDS index CDX.NA.IG.5Y.

In each panel, the first row is based on a time series of daily cross-sectional averages, whereas the second

row is based on a cross section of time averages.
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Table 2: Predicted versus observed tranche spreads

A. Predicted tranche spreads (averages), in basis points

0-3% 3-7% 7-10% 10-15%

Baseline 1849.7 306.3 68.5 15.9
no dispersion in PDs 1849.3 315.3 74.5 18.7
no dispersion in correlations 1960.7 290.3 52.0 10.0
no dispersion in PDs and correlations 1929.5 307.4 62.0 13.4
One-factor correlation structure 1915.3 289.7 62.2 14.5
t-copula: (4,4) 2087.0 210.5 46.2 20.2
t-copula: (4,∞) 1899.7 244.8 60.1 24.5
Adjust the level of PDs 1887.8 316.3 71.9 16.9
Memo:

Observed tranche spreads 1705.4 303.9 111.1 45.5

B. Mean absolute error, in basis points

0-3% 3-7% 7-10% 10-15%

Baseline 178.4 45.7 42.7 29.6
no dispersion in PDs 177.3 54.7 36.9 26.8
no dispersion in correlations 256.2 52.1 59.1 35.5
no dispersion in PDs and correlations 231.0 56.2 49.1 32.1
One-factor correlation structure 222.1 46.2 48.9 31.1
t-copula: (4,4) 371.8 95.2 65.3 25.5
t-copula: (4,∞) 222.5 62.3 51.4 21.6
Adjust the level of PDs 171.1 53.1 39.1 28.1

C. Mean absolute percentage error, in per cent

0-3% 3-7% 7-10% 10-15%

Baseline 10.2 15.5 37.5 62.8
no dispersion in PDs 10.2 18.9 31.7 55.2
no dispersion in correlations 14.5 16.5 52.9 76.5
no dispersion in PDs and correlations 13.1 18.7 43.1 67.7
One-factor correlation structure 12.6 14.8 43.2 66.1
t-copula: (4,4) 21.0 30.8 57.8 51.4
t-copula: (4,∞) 12.7 18.9 44.0 41.9
Adjust the level of PDs 9.8 20.1 32.8 58.9

Note: The reported averages are based on daily predicted tranche spreads calculated between November 21,

2003 and March 18, 2005 (369 business days). Column headings specify the particular tranche of the CDS

index. Row headings indicate alternative assumptions behind predicted spreads. The “baseline” results

incorporate firm-specific PDs and pairwise asset return correlations estimated from the single-name CDS

market and assume that asset returns are Gaussian. The pricing of index tranches in the baseline case adopts

the Monte Carlo simulation technique (see Appendix A.1). The other results reflect variations on the baseline

scenario and are obtained by: (1) removing the dispersion in PDs on each day; (2) removing the dispersion

in correlation coefficients on each day; (3) removing the dispersion in both PDs and correlation coefficients

on each day; (4) adopting a single-factor correlation structure that best fits the original correlation matrix

(see Appendix B) and relying on a Gaussian copula (Appendix A.2); (5) adopting the same single-factor

correlation structure as in (4) but relying on “t-copula” (the two numbers in parentheses refer to the degrees

of freedom of the common and idiosyncratic factors); and (6) adjusting the level of individual PDs so that

the cross-sectional average PD equals the PD implied by the single-tranche index spread on each day.
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Table 3: Explaining the time variation in tranche spreads

in levels in first differences

0-3% 3-7% 7-10% 10-15% 0-3% 3-7% 7-10% 10-15%

A. Dependent variable: observed spreads, in basis points (bps)

Predicted spreads (bps) 0.54 0.88 0.87 0.85 0.55 0.78 0.81 0.64
(15.6) (11.3) (8.7) (4.2) (7.7) (9.8) (7.6) (3.8)

Adjusted R
2 0.78 0.64 0.52 0.19 0.46 0.58 0.45 0.16

B. Dependent variable: observed spreads (bps)

PD (bps) 15.34 5.39 2.16 0.89 15.74 4.99 2.26 0.86
(23.9) (10.9) (13.8) (8.1) (11.3) (9.0) (9.3) (6.6)

Adjusted R
2 0.89 0.63 0.73 0.48 0.65 0.53 0.55 0.37

C. Dependent variable: observed spreads (bps)

PD (bps) 15.40 5.05 2.04 0.79 15.51 4.99 2.25 0.86
(23.5) (11.3) (15.2) (8.8) (10.9) (8.7) (9.0) (6.4)

Correlation (%) 1.66 -9.26 -3.28 -2.52 4.63 0.05 0.25 -0.03
(0.5) (4.5) (5.3) (6.0) (0.7) (0.0) (0.2) (0.1)

Adjusted R
2 0.89 0.71 0.81 0.66 0.65 0.53 0.55 0.37

D. Dependent variable: predicted spreads (bps)

PD (bps) 24.49 6.26 2.01 0.58 24.23 6.22 1.68 0.39
(64.8) (77.9) (36.3) (23.7) (48.7) (44.3) (21.2) (10.2)

Correlation (%) -27.94 3.00 4.15 1.77 -45.55 4.85 6.56 3.03
(16.8) (8.5) (17.0) (16.4) (20.0) (7.6) (18.0) (17.5)

Adjusted R
2 0.99 0.99 0.95 0.91 0.97 0.97 0.93 0.88

Note: All variables are used as weekly averages and run from November 21, 2003 to March 18, 2005. The

PD and correlation variables in the regressions are time series of cross-sectional averages of risk-neutral PDs

and physical asset return correlations estimated from the single-name CDS market. For the results in the

left panel all variables are used in levels; for the right panel, all variables are expressed in first differences.

Column headings specify the particular tranche of the CDS index. t-statistics are reported in parentheses

and significant coefficients (at the 95% confidence level) are in bold. All regressions include a constant term,

which is omitted from the table.
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Table 4: Explaining errors in predicted tranche spreads

in levels in first differences

0-3% 3-7% 7-10% 10-15% 0-3% 3-7% 7-10% 10-15%

A. dependent variable: prediction error (bps)

Correlation (%) -38.30 11.39 7.40 4.41 -41.46 6.04 5.75 2.59
(5.8) (6.3) (18.0) (12.7) (4.8) (2.5) (5.5) (4.0)

Adjusted R
2 0.32 0.35 0.82 0.70 0.24 0.07 0.30 0.18

B. dependent variable: prediction error (bps)

PD (bps) 10.31 0.75 -0.30 -0.37 6.28 1.46 -0.26 -0.32
(8.5) (1.6) (1.4) (2.8) (3.1) (2.8) (0.9) (2.1)

Adjusted R
2 0.50 0.02 0.01 0.09 0.11 0.08 0.00 0.05

C. dependent variable: prediction error (bps)

Dependent variable (-1) 0.96 0.97 0.97 0.97 0.36 0.20 0.07 -0.03
(28.3) (31.9) (27.4) (31.2) (3.2) (1.7) (0.6) (0.2)

Adjusted R
2 0.92 0.94 0.92 0.93 0.12 0.03 0.00 0.00

D. dependent variable: prediction error (bps)

Dependent variable (-1) 0.84 0.89 0.69 0.82 0.10 0.15 0.01 -0.08
(14.4) (25.2) (11.7) (16.4) (1.0) (1.3) (0.1) (0.8)

PD (bps) 2.07 0.27 -0.01 -0.03 7.63 1.00 -0.61 -0.51
(3.1) (2.2) (0.2) (0.9) (4.3) (1.9) (2.6) (3.6)

Correlation (%) -2.41 2.39 2.59 0.94 -48.17 4.68 6.28 3.05
(0.8) (3.5) (5.4) (3.7) (6.2) (2.0) (6.0) (4.9)

Adjusted R
2 0.93 0.95 0.94 0.94 0.46 0.12 0.34 0.30

Note: The dependent variable is the weekly average of prediction errors, which are defined as predicted

tranche spreads (based on risk-neutral PDs and physical correlation estimates implied by the single-name

CDS market) minus observed spreads in the CDS index market. Explanatory variables, specified in row

headings, include the first lag of the dependent variable and the weakly average of physical correlations and

of PDs. For the results in the left panel all variables are used in levels; for the right panel, all variables

are expressed in first differences. All variables run from November 11, 2003 to March 18, 2005. Column

headings specify the particular tranche of the CDS index. t-statistics are reported in parentheses and

significant coefficients (at the 95% confidence level) are in bold. All regressions include a constant term,

which is omitted from the table.

34



Table 5: Explaining the correlation risk premium

dependent variable: Δ correlation risk premium (%)

Lagged dependent variable 0.09 0.05
(0.8) (0.5)

� homogenized physical correlation (%) -1.04 -1.01
(6.8) (6.4)

� PD (bps) -0.07 -0.04
(1.4) (0.8)

Adjusted R
2 0.02 0.40 0.01 0.41

Note: The dependent variable is the change in the weekly average of the correlation risk premium, which

equals a risk-neutral correlation minus a homogenized physical correlation. On each day, the risk-neutral and

the homogenized physical correlations are constrained to be the same across all pair of firms and across the

four CDS tranches. Given this constraint, the risk-neutral and physical correlations are fitted to observed

and predicted tranche spreads, respectively, and minimize mean squared percentage errors. Explanatory

variables include the first lag of the dependent variable, changes in the weekly average of homogenized

physical correlations and changes in the weekly average of PDs. There is no overlap between the sets of

observations underlying any two weekly averages. The sample period is from November 21, 2003 to March

18, 2005. t-statistics are reported in parentheses and significant coefficients (at the 95% confidence level)

are in bold. All regressions include a constant term, which is omitted from the table.

Table 6: Explaining realized correlations of asset returns

dependent variable: Δ homogenized physical correlation (%)

Lagged dependent variable 0.27 0.24
(2.3) (2.1)

� Risk-neutral correlation (%) 0.28 0.25
(2.2) (2.0)

Adjusted R
2 0.05 0.06 0.10

Note: The dependent variable is the first difference of the weekly averages of homogenized physical correla-

tions (see Table 5). Each daily estimate of the homogenized physical correlations is based on single-name CDS

spreads observed over the previous 6 months. Explanatory variables include the first lag of the dependent

variable and first differences (lagged by six months) of the weekly averages of the risk-neutral correlations

implied by observed tranche spreads. There is no overlap between the sets of observations underlying any

two weekly averages. The sample period is from November 21, 2003 to March 18, 2005. t-statistics are

reported in parentheses and significant coefficients (at the 95% confidence level) are in bold. All regressions

include a constant term, which is omitted from the table.
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Figure 1: Predicted versus observed spreads of CDS index tranches
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Note: The observed tranche spreads in the CDS index market are provided by JP Morgan
Chase. Predicted tranche spreads are based on firm-specific PDs and physical asset return
correlations implied by the single-name CDS market as well as on a particular pricing
algorithm. This algorithm incorporates Monte Carlo simulations and assumes normally
distributed asset returns (see Appendix A.1).
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Figure 2: Probabilities of default

Oct03 Jan04 Apr04 Jul04 Oct04 Jan05 Apr05
20

40

60

80

100

120

140

160

180

200

220

b
a

s
is

 p
o

in
ts

Mean
10th percentile
90th percentile
index PDs

Note: The mean and the two percentiles are based on daily cross sections of PDs, which
are estimated from the single-name CDS spreads of the 125 entities in the “on-the-run”
release of the CDS index CDX.NA.IG.5Y. The series “index PDs” consists of the average
PDs (across the same 125 entities) implied by the single-tranche spreads on the CDS index.
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Figure 3: The sensitivity of tranche spreads to average correlations
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Note: This illustrative example uses the cross section of time averages of PDs, and the
average LGD and risk-free rate in our sample. All pairwise correlations are held fixed in
the cross section.
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Figure 4: Matching observed tranche spreads
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Note: Fitted spreads are based on a daily estimate of the risk-neutral correlation, which is
the same across all pairs of firms and across tranches. On each day, this risk-neutral cor-
relation minimizes the mean squared percentage error between observed and fitted spreads
across the four tranches.
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Figure 5: Correlation risk premium
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Note: On each day, both the risk-neutral and the homogenized physical correlations are
assumed to be constant across pairs of firms and the four (i.e. equity, mezzanine and two
senior) tranches. The risk-neutral correlation is fitted to observed tranche spreads, while
the physical correlation is fitted to predicted tranche spreads (see Tables 5 and 6 for further
detail). The correlation risk premium is defined as the risk-neutral correlation minus the
physical correlation.
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